Remove most uses of ALL_OBJFILES
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static int lesseq_defined_than (struct symbol *, struct symbol *);
197
198 static int equiv_types (struct type *, struct type *);
199
200 static int is_name_suffix (const char *);
201
202 static int advance_wild_match (const char **, const char *, int);
203
204 static bool wild_match (const char *name, const char *patn);
205
206 static struct value *ada_coerce_ref (struct value *);
207
208 static LONGEST pos_atr (struct value *);
209
210 static struct value *value_pos_atr (struct type *, struct value *);
211
212 static struct value *value_val_atr (struct type *, struct value *);
213
214 static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
216
217 static struct value *ada_search_struct_field (const char *, struct value *, int,
218 struct type *);
219
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
223 static int find_struct_field (const char *, struct type *, int,
224 struct type **, int *, int *, int *, int *);
225
226 static int ada_resolve_function (struct block_symbol *, int,
227 struct value **, int, const char *,
228 struct type *);
229
230 static int ada_is_direct_array_type (struct type *);
231
232 static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
234
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238 static struct value *assign_aggregate (struct value *, struct value *,
239 struct expression *,
240 int *, enum noside);
241
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247 static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253 static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
266
267 static struct type *ada_find_any_type (const char *name);
268
269 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
270 (const lookup_name_info &lookup_name);
271
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 static const char ada_completer_word_break_characters[] =
318 #ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320 #else
321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
322 #endif
323
324 /* The name of the symbol to use to get the name of the main subprogram. */
325 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326 = "__gnat_ada_main_program_name";
327
328 /* Limit on the number of warnings to raise per expression evaluation. */
329 static int warning_limit = 2;
330
331 /* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333 static int warnings_issued = 0;
334
335 static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337 };
338
339 static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341 };
342
343 /* Maintenance-related settings for this module. */
344
345 static struct cmd_list_element *maint_set_ada_cmdlist;
346 static struct cmd_list_element *maint_show_ada_cmdlist;
347
348 /* Implement the "maintenance set ada" (prefix) command. */
349
350 static void
351 maint_set_ada_cmd (const char *args, int from_tty)
352 {
353 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
354 gdb_stdout);
355 }
356
357 /* Implement the "maintenance show ada" (prefix) command. */
358
359 static void
360 maint_show_ada_cmd (const char *args, int from_tty)
361 {
362 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
363 }
364
365 /* The "maintenance ada set/show ignore-descriptive-type" value. */
366
367 static int ada_ignore_descriptive_types_p = 0;
368
369 /* Inferior-specific data. */
370
371 /* Per-inferior data for this module. */
372
373 struct ada_inferior_data
374 {
375 /* The ada__tags__type_specific_data type, which is used when decoding
376 tagged types. With older versions of GNAT, this type was directly
377 accessible through a component ("tsd") in the object tag. But this
378 is no longer the case, so we cache it for each inferior. */
379 struct type *tsd_type;
380
381 /* The exception_support_info data. This data is used to determine
382 how to implement support for Ada exception catchpoints in a given
383 inferior. */
384 const struct exception_support_info *exception_info;
385 };
386
387 /* Our key to this module's inferior data. */
388 static const struct inferior_data *ada_inferior_data;
389
390 /* A cleanup routine for our inferior data. */
391 static void
392 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
393 {
394 struct ada_inferior_data *data;
395
396 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
397 if (data != NULL)
398 xfree (data);
399 }
400
401 /* Return our inferior data for the given inferior (INF).
402
403 This function always returns a valid pointer to an allocated
404 ada_inferior_data structure. If INF's inferior data has not
405 been previously set, this functions creates a new one with all
406 fields set to zero, sets INF's inferior to it, and then returns
407 a pointer to that newly allocated ada_inferior_data. */
408
409 static struct ada_inferior_data *
410 get_ada_inferior_data (struct inferior *inf)
411 {
412 struct ada_inferior_data *data;
413
414 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
415 if (data == NULL)
416 {
417 data = XCNEW (struct ada_inferior_data);
418 set_inferior_data (inf, ada_inferior_data, data);
419 }
420
421 return data;
422 }
423
424 /* Perform all necessary cleanups regarding our module's inferior data
425 that is required after the inferior INF just exited. */
426
427 static void
428 ada_inferior_exit (struct inferior *inf)
429 {
430 ada_inferior_data_cleanup (inf, NULL);
431 set_inferior_data (inf, ada_inferior_data, NULL);
432 }
433
434
435 /* program-space-specific data. */
436
437 /* This module's per-program-space data. */
438 struct ada_pspace_data
439 {
440 /* The Ada symbol cache. */
441 struct ada_symbol_cache *sym_cache;
442 };
443
444 /* Key to our per-program-space data. */
445 static const struct program_space_data *ada_pspace_data_handle;
446
447 /* Return this module's data for the given program space (PSPACE).
448 If not is found, add a zero'ed one now.
449
450 This function always returns a valid object. */
451
452 static struct ada_pspace_data *
453 get_ada_pspace_data (struct program_space *pspace)
454 {
455 struct ada_pspace_data *data;
456
457 data = ((struct ada_pspace_data *)
458 program_space_data (pspace, ada_pspace_data_handle));
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466 }
467
468 /* The cleanup callback for this module's per-program-space data. */
469
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478 }
479
480 /* Utilities */
481
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483 all typedef layers have been peeled. Otherwise, return TYPE.
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515 }
516
517 /* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540 }
541
542 /* Return a string starting with '<', followed by STR, and '>'. */
543
544 static std::string
545 add_angle_brackets (const char *str)
546 {
547 return string_printf ("<%s>", str);
548 }
549
550 static const char *
551 ada_get_gdb_completer_word_break_characters (void)
552 {
553 return ada_completer_word_break_characters;
554 }
555
556 /* Print an array element index using the Ada syntax. */
557
558 static void
559 ada_print_array_index (struct value *index_value, struct ui_file *stream,
560 const struct value_print_options *options)
561 {
562 LA_VALUE_PRINT (index_value, stream, options);
563 fprintf_filtered (stream, " => ");
564 }
565
566 /* la_watch_location_expression for Ada. */
567
568 gdb::unique_xmalloc_ptr<char>
569 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
570 {
571 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
572 std::string name = type_to_string (type);
573 return gdb::unique_xmalloc_ptr<char>
574 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
575 }
576
577 /* Assuming VECT points to an array of *SIZE objects of size
578 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
579 updating *SIZE as necessary and returning the (new) array. */
580
581 void *
582 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
583 {
584 if (*size < min_size)
585 {
586 *size *= 2;
587 if (*size < min_size)
588 *size = min_size;
589 vect = xrealloc (vect, *size * element_size);
590 }
591 return vect;
592 }
593
594 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
595 suffix of FIELD_NAME beginning "___". */
596
597 static int
598 field_name_match (const char *field_name, const char *target)
599 {
600 int len = strlen (target);
601
602 return
603 (strncmp (field_name, target, len) == 0
604 && (field_name[len] == '\0'
605 || (startswith (field_name + len, "___")
606 && strcmp (field_name + strlen (field_name) - 6,
607 "___XVN") != 0)));
608 }
609
610
611 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
612 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
613 and return its index. This function also handles fields whose name
614 have ___ suffixes because the compiler sometimes alters their name
615 by adding such a suffix to represent fields with certain constraints.
616 If the field could not be found, return a negative number if
617 MAYBE_MISSING is set. Otherwise raise an error. */
618
619 int
620 ada_get_field_index (const struct type *type, const char *field_name,
621 int maybe_missing)
622 {
623 int fieldno;
624 struct type *struct_type = check_typedef ((struct type *) type);
625
626 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
627 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
628 return fieldno;
629
630 if (!maybe_missing)
631 error (_("Unable to find field %s in struct %s. Aborting"),
632 field_name, TYPE_NAME (struct_type));
633
634 return -1;
635 }
636
637 /* The length of the prefix of NAME prior to any "___" suffix. */
638
639 int
640 ada_name_prefix_len (const char *name)
641 {
642 if (name == NULL)
643 return 0;
644 else
645 {
646 const char *p = strstr (name, "___");
647
648 if (p == NULL)
649 return strlen (name);
650 else
651 return p - name;
652 }
653 }
654
655 /* Return non-zero if SUFFIX is a suffix of STR.
656 Return zero if STR is null. */
657
658 static int
659 is_suffix (const char *str, const char *suffix)
660 {
661 int len1, len2;
662
663 if (str == NULL)
664 return 0;
665 len1 = strlen (str);
666 len2 = strlen (suffix);
667 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
668 }
669
670 /* The contents of value VAL, treated as a value of type TYPE. The
671 result is an lval in memory if VAL is. */
672
673 static struct value *
674 coerce_unspec_val_to_type (struct value *val, struct type *type)
675 {
676 type = ada_check_typedef (type);
677 if (value_type (val) == type)
678 return val;
679 else
680 {
681 struct value *result;
682
683 /* Make sure that the object size is not unreasonable before
684 trying to allocate some memory for it. */
685 ada_ensure_varsize_limit (type);
686
687 if (value_lazy (val)
688 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
689 result = allocate_value_lazy (type);
690 else
691 {
692 result = allocate_value (type);
693 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
694 }
695 set_value_component_location (result, val);
696 set_value_bitsize (result, value_bitsize (val));
697 set_value_bitpos (result, value_bitpos (val));
698 set_value_address (result, value_address (val));
699 return result;
700 }
701 }
702
703 static const gdb_byte *
704 cond_offset_host (const gdb_byte *valaddr, long offset)
705 {
706 if (valaddr == NULL)
707 return NULL;
708 else
709 return valaddr + offset;
710 }
711
712 static CORE_ADDR
713 cond_offset_target (CORE_ADDR address, long offset)
714 {
715 if (address == 0)
716 return 0;
717 else
718 return address + offset;
719 }
720
721 /* Issue a warning (as for the definition of warning in utils.c, but
722 with exactly one argument rather than ...), unless the limit on the
723 number of warnings has passed during the evaluation of the current
724 expression. */
725
726 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
727 provided by "complaint". */
728 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
729
730 static void
731 lim_warning (const char *format, ...)
732 {
733 va_list args;
734
735 va_start (args, format);
736 warnings_issued += 1;
737 if (warnings_issued <= warning_limit)
738 vwarning (format, args);
739
740 va_end (args);
741 }
742
743 /* Issue an error if the size of an object of type T is unreasonable,
744 i.e. if it would be a bad idea to allocate a value of this type in
745 GDB. */
746
747 void
748 ada_ensure_varsize_limit (const struct type *type)
749 {
750 if (TYPE_LENGTH (type) > varsize_limit)
751 error (_("object size is larger than varsize-limit"));
752 }
753
754 /* Maximum value of a SIZE-byte signed integer type. */
755 static LONGEST
756 max_of_size (int size)
757 {
758 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
759
760 return top_bit | (top_bit - 1);
761 }
762
763 /* Minimum value of a SIZE-byte signed integer type. */
764 static LONGEST
765 min_of_size (int size)
766 {
767 return -max_of_size (size) - 1;
768 }
769
770 /* Maximum value of a SIZE-byte unsigned integer type. */
771 static ULONGEST
772 umax_of_size (int size)
773 {
774 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
775
776 return top_bit | (top_bit - 1);
777 }
778
779 /* Maximum value of integral type T, as a signed quantity. */
780 static LONGEST
781 max_of_type (struct type *t)
782 {
783 if (TYPE_UNSIGNED (t))
784 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785 else
786 return max_of_size (TYPE_LENGTH (t));
787 }
788
789 /* Minimum value of integral type T, as a signed quantity. */
790 static LONGEST
791 min_of_type (struct type *t)
792 {
793 if (TYPE_UNSIGNED (t))
794 return 0;
795 else
796 return min_of_size (TYPE_LENGTH (t));
797 }
798
799 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
800 LONGEST
801 ada_discrete_type_high_bound (struct type *type)
802 {
803 type = resolve_dynamic_type (type, NULL, 0);
804 switch (TYPE_CODE (type))
805 {
806 case TYPE_CODE_RANGE:
807 return TYPE_HIGH_BOUND (type);
808 case TYPE_CODE_ENUM:
809 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
810 case TYPE_CODE_BOOL:
811 return 1;
812 case TYPE_CODE_CHAR:
813 case TYPE_CODE_INT:
814 return max_of_type (type);
815 default:
816 error (_("Unexpected type in ada_discrete_type_high_bound."));
817 }
818 }
819
820 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
821 LONGEST
822 ada_discrete_type_low_bound (struct type *type)
823 {
824 type = resolve_dynamic_type (type, NULL, 0);
825 switch (TYPE_CODE (type))
826 {
827 case TYPE_CODE_RANGE:
828 return TYPE_LOW_BOUND (type);
829 case TYPE_CODE_ENUM:
830 return TYPE_FIELD_ENUMVAL (type, 0);
831 case TYPE_CODE_BOOL:
832 return 0;
833 case TYPE_CODE_CHAR:
834 case TYPE_CODE_INT:
835 return min_of_type (type);
836 default:
837 error (_("Unexpected type in ada_discrete_type_low_bound."));
838 }
839 }
840
841 /* The identity on non-range types. For range types, the underlying
842 non-range scalar type. */
843
844 static struct type *
845 get_base_type (struct type *type)
846 {
847 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848 {
849 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850 return type;
851 type = TYPE_TARGET_TYPE (type);
852 }
853 return type;
854 }
855
856 /* Return a decoded version of the given VALUE. This means returning
857 a value whose type is obtained by applying all the GNAT-specific
858 encondings, making the resulting type a static but standard description
859 of the initial type. */
860
861 struct value *
862 ada_get_decoded_value (struct value *value)
863 {
864 struct type *type = ada_check_typedef (value_type (value));
865
866 if (ada_is_array_descriptor_type (type)
867 || (ada_is_constrained_packed_array_type (type)
868 && TYPE_CODE (type) != TYPE_CODE_PTR))
869 {
870 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
871 value = ada_coerce_to_simple_array_ptr (value);
872 else
873 value = ada_coerce_to_simple_array (value);
874 }
875 else
876 value = ada_to_fixed_value (value);
877
878 return value;
879 }
880
881 /* Same as ada_get_decoded_value, but with the given TYPE.
882 Because there is no associated actual value for this type,
883 the resulting type might be a best-effort approximation in
884 the case of dynamic types. */
885
886 struct type *
887 ada_get_decoded_type (struct type *type)
888 {
889 type = to_static_fixed_type (type);
890 if (ada_is_constrained_packed_array_type (type))
891 type = ada_coerce_to_simple_array_type (type);
892 return type;
893 }
894
895 \f
896
897 /* Language Selection */
898
899 /* If the main program is in Ada, return language_ada, otherwise return LANG
900 (the main program is in Ada iif the adainit symbol is found). */
901
902 enum language
903 ada_update_initial_language (enum language lang)
904 {
905 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
906 (struct objfile *) NULL).minsym != NULL)
907 return language_ada;
908
909 return lang;
910 }
911
912 /* If the main procedure is written in Ada, then return its name.
913 The result is good until the next call. Return NULL if the main
914 procedure doesn't appear to be in Ada. */
915
916 char *
917 ada_main_name (void)
918 {
919 struct bound_minimal_symbol msym;
920 static gdb::unique_xmalloc_ptr<char> main_program_name;
921
922 /* For Ada, the name of the main procedure is stored in a specific
923 string constant, generated by the binder. Look for that symbol,
924 extract its address, and then read that string. If we didn't find
925 that string, then most probably the main procedure is not written
926 in Ada. */
927 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928
929 if (msym.minsym != NULL)
930 {
931 CORE_ADDR main_program_name_addr;
932 int err_code;
933
934 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
935 if (main_program_name_addr == 0)
936 error (_("Invalid address for Ada main program name."));
937
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name.get ();
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
984
985 static char *
986 ada_encode_1 (const char *decoded, bool throw_errors)
987 {
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
990 const char *p;
991 int k;
992
993 if (decoded == NULL)
994 return NULL;
995
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
998
999 k = 0;
1000 for (p = decoded; *p != '\0'; p += 1)
1001 {
1002 if (*p == '.')
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
1007 else if (*p == '"')
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1012 mapping->encoded != NULL
1013 && !startswith (p, mapping->decoded); mapping += 1)
1014 ;
1015 if (mapping->encoded == NULL)
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
1026 else
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
1031 }
1032
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
1035 }
1036
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040 char *
1041 ada_encode (const char *decoded)
1042 {
1043 return ada_encode_1 (decoded, true);
1044 }
1045
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
1050 char *
1051 ada_fold_name (const char *name)
1052 {
1053 static char *fold_buffer = NULL;
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1058
1059 if (name[0] == '\'')
1060 {
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
1063 }
1064 else
1065 {
1066 int i;
1067
1068 for (i = 0; i <= len; i += 1)
1069 fold_buffer[i] = tolower (name[i]);
1070 }
1071
1072 return fold_buffer;
1073 }
1074
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077 static int
1078 is_lower_alphanum (const char c)
1079 {
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081 }
1082
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
1090
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095 static void
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1097 {
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
1101
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1109 *len = i - 2;
1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111 *len = i - 1;
1112 }
1113 }
1114
1115 /* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118 static void
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120 {
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
1126 the 'P' suffix. The second calls the first one after handling
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135 }
1136
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139 static void
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1141 {
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155 }
1156
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
1160
1161 The resulting string is valid until the next call of ada_decode.
1162 If the string is unchanged by decoding, the original string pointer
1163 is returned. */
1164
1165 const char *
1166 ada_decode (const char *encoded)
1167 {
1168 int i, j;
1169 int len0;
1170 const char *p;
1171 char *decoded;
1172 int at_start_name;
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
1175
1176 /* With function descriptors on PPC64, the value of a symbol named
1177 ".FN", if it exists, is the entry point of the function "FN". */
1178 if (encoded[0] == '.')
1179 encoded += 1;
1180
1181 /* The name of the Ada main procedure starts with "_ada_".
1182 This prefix is not part of the decoded name, so skip this part
1183 if we see this prefix. */
1184 if (startswith (encoded, "_ada_"))
1185 encoded += 5;
1186
1187 /* If the name starts with '_', then it is not a properly encoded
1188 name, so do not attempt to decode it. Similarly, if the name
1189 starts with '<', the name should not be decoded. */
1190 if (encoded[0] == '_' || encoded[0] == '<')
1191 goto Suppress;
1192
1193 len0 = strlen (encoded);
1194
1195 ada_remove_trailing_digits (encoded, &len0);
1196 ada_remove_po_subprogram_suffix (encoded, &len0);
1197
1198 /* Remove the ___X.* suffix if present. Do not forget to verify that
1199 the suffix is located before the current "end" of ENCODED. We want
1200 to avoid re-matching parts of ENCODED that have previously been
1201 marked as discarded (by decrementing LEN0). */
1202 p = strstr (encoded, "___");
1203 if (p != NULL && p - encoded < len0 - 3)
1204 {
1205 if (p[3] == 'X')
1206 len0 = p - encoded;
1207 else
1208 goto Suppress;
1209 }
1210
1211 /* Remove any trailing TKB suffix. It tells us that this symbol
1212 is for the body of a task, but that information does not actually
1213 appear in the decoded name. */
1214
1215 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1216 len0 -= 3;
1217
1218 /* Remove any trailing TB suffix. The TB suffix is slightly different
1219 from the TKB suffix because it is used for non-anonymous task
1220 bodies. */
1221
1222 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1223 len0 -= 2;
1224
1225 /* Remove trailing "B" suffixes. */
1226 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1227
1228 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1229 len0 -= 1;
1230
1231 /* Make decoded big enough for possible expansion by operator name. */
1232
1233 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1234 decoded = decoding_buffer;
1235
1236 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1237
1238 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1239 {
1240 i = len0 - 2;
1241 while ((i >= 0 && isdigit (encoded[i]))
1242 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1243 i -= 1;
1244 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1245 len0 = i - 1;
1246 else if (encoded[i] == '$')
1247 len0 = i;
1248 }
1249
1250 /* The first few characters that are not alphabetic are not part
1251 of any encoding we use, so we can copy them over verbatim. */
1252
1253 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1254 decoded[j] = encoded[i];
1255
1256 at_start_name = 1;
1257 while (i < len0)
1258 {
1259 /* Is this a symbol function? */
1260 if (at_start_name && encoded[i] == 'O')
1261 {
1262 int k;
1263
1264 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1265 {
1266 int op_len = strlen (ada_opname_table[k].encoded);
1267 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1268 op_len - 1) == 0)
1269 && !isalnum (encoded[i + op_len]))
1270 {
1271 strcpy (decoded + j, ada_opname_table[k].decoded);
1272 at_start_name = 0;
1273 i += op_len;
1274 j += strlen (ada_opname_table[k].decoded);
1275 break;
1276 }
1277 }
1278 if (ada_opname_table[k].encoded != NULL)
1279 continue;
1280 }
1281 at_start_name = 0;
1282
1283 /* Replace "TK__" with "__", which will eventually be translated
1284 into "." (just below). */
1285
1286 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1287 i += 2;
1288
1289 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1290 be translated into "." (just below). These are internal names
1291 generated for anonymous blocks inside which our symbol is nested. */
1292
1293 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1294 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1295 && isdigit (encoded [i+4]))
1296 {
1297 int k = i + 5;
1298
1299 while (k < len0 && isdigit (encoded[k]))
1300 k++; /* Skip any extra digit. */
1301
1302 /* Double-check that the "__B_{DIGITS}+" sequence we found
1303 is indeed followed by "__". */
1304 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1305 i = k;
1306 }
1307
1308 /* Remove _E{DIGITS}+[sb] */
1309
1310 /* Just as for protected object subprograms, there are 2 categories
1311 of subprograms created by the compiler for each entry. The first
1312 one implements the actual entry code, and has a suffix following
1313 the convention above; the second one implements the barrier and
1314 uses the same convention as above, except that the 'E' is replaced
1315 by a 'B'.
1316
1317 Just as above, we do not decode the name of barrier functions
1318 to give the user a clue that the code he is debugging has been
1319 internally generated. */
1320
1321 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1322 && isdigit (encoded[i+2]))
1323 {
1324 int k = i + 3;
1325
1326 while (k < len0 && isdigit (encoded[k]))
1327 k++;
1328
1329 if (k < len0
1330 && (encoded[k] == 'b' || encoded[k] == 's'))
1331 {
1332 k++;
1333 /* Just as an extra precaution, make sure that if this
1334 suffix is followed by anything else, it is a '_'.
1335 Otherwise, we matched this sequence by accident. */
1336 if (k == len0
1337 || (k < len0 && encoded[k] == '_'))
1338 i = k;
1339 }
1340 }
1341
1342 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1343 the GNAT front-end in protected object subprograms. */
1344
1345 if (i < len0 + 3
1346 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1347 {
1348 /* Backtrack a bit up until we reach either the begining of
1349 the encoded name, or "__". Make sure that we only find
1350 digits or lowercase characters. */
1351 const char *ptr = encoded + i - 1;
1352
1353 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1354 ptr--;
1355 if (ptr < encoded
1356 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1357 i++;
1358 }
1359
1360 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1361 {
1362 /* This is a X[bn]* sequence not separated from the previous
1363 part of the name with a non-alpha-numeric character (in other
1364 words, immediately following an alpha-numeric character), then
1365 verify that it is placed at the end of the encoded name. If
1366 not, then the encoding is not valid and we should abort the
1367 decoding. Otherwise, just skip it, it is used in body-nested
1368 package names. */
1369 do
1370 i += 1;
1371 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1372 if (i < len0)
1373 goto Suppress;
1374 }
1375 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1376 {
1377 /* Replace '__' by '.'. */
1378 decoded[j] = '.';
1379 at_start_name = 1;
1380 i += 2;
1381 j += 1;
1382 }
1383 else
1384 {
1385 /* It's a character part of the decoded name, so just copy it
1386 over. */
1387 decoded[j] = encoded[i];
1388 i += 1;
1389 j += 1;
1390 }
1391 }
1392 decoded[j] = '\000';
1393
1394 /* Decoded names should never contain any uppercase character.
1395 Double-check this, and abort the decoding if we find one. */
1396
1397 for (i = 0; decoded[i] != '\0'; i += 1)
1398 if (isupper (decoded[i]) || decoded[i] == ' ')
1399 goto Suppress;
1400
1401 if (strcmp (decoded, encoded) == 0)
1402 return encoded;
1403 else
1404 return decoded;
1405
1406 Suppress:
1407 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1408 decoded = decoding_buffer;
1409 if (encoded[0] == '<')
1410 strcpy (decoded, encoded);
1411 else
1412 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1413 return decoded;
1414
1415 }
1416
1417 /* Table for keeping permanent unique copies of decoded names. Once
1418 allocated, names in this table are never released. While this is a
1419 storage leak, it should not be significant unless there are massive
1420 changes in the set of decoded names in successive versions of a
1421 symbol table loaded during a single session. */
1422 static struct htab *decoded_names_store;
1423
1424 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1425 in the language-specific part of GSYMBOL, if it has not been
1426 previously computed. Tries to save the decoded name in the same
1427 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1428 in any case, the decoded symbol has a lifetime at least that of
1429 GSYMBOL).
1430 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1431 const, but nevertheless modified to a semantically equivalent form
1432 when a decoded name is cached in it. */
1433
1434 const char *
1435 ada_decode_symbol (const struct general_symbol_info *arg)
1436 {
1437 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1438 const char **resultp =
1439 &gsymbol->language_specific.demangled_name;
1440
1441 if (!gsymbol->ada_mangled)
1442 {
1443 const char *decoded = ada_decode (gsymbol->name);
1444 struct obstack *obstack = gsymbol->language_specific.obstack;
1445
1446 gsymbol->ada_mangled = 1;
1447
1448 if (obstack != NULL)
1449 *resultp
1450 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1451 else
1452 {
1453 /* Sometimes, we can't find a corresponding objfile, in
1454 which case, we put the result on the heap. Since we only
1455 decode when needed, we hope this usually does not cause a
1456 significant memory leak (FIXME). */
1457
1458 char **slot = (char **) htab_find_slot (decoded_names_store,
1459 decoded, INSERT);
1460
1461 if (*slot == NULL)
1462 *slot = xstrdup (decoded);
1463 *resultp = *slot;
1464 }
1465 }
1466
1467 return *resultp;
1468 }
1469
1470 static char *
1471 ada_la_decode (const char *encoded, int options)
1472 {
1473 return xstrdup (ada_decode (encoded));
1474 }
1475
1476 /* Implement la_sniff_from_mangled_name for Ada. */
1477
1478 static int
1479 ada_sniff_from_mangled_name (const char *mangled, char **out)
1480 {
1481 const char *demangled = ada_decode (mangled);
1482
1483 *out = NULL;
1484
1485 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1486 {
1487 /* Set the gsymbol language to Ada, but still return 0.
1488 Two reasons for that:
1489
1490 1. For Ada, we prefer computing the symbol's decoded name
1491 on the fly rather than pre-compute it, in order to save
1492 memory (Ada projects are typically very large).
1493
1494 2. There are some areas in the definition of the GNAT
1495 encoding where, with a bit of bad luck, we might be able
1496 to decode a non-Ada symbol, generating an incorrect
1497 demangled name (Eg: names ending with "TB" for instance
1498 are identified as task bodies and so stripped from
1499 the decoded name returned).
1500
1501 Returning 1, here, but not setting *DEMANGLED, helps us get a
1502 little bit of the best of both worlds. Because we're last,
1503 we should not affect any of the other languages that were
1504 able to demangle the symbol before us; we get to correctly
1505 tag Ada symbols as such; and even if we incorrectly tagged a
1506 non-Ada symbol, which should be rare, any routing through the
1507 Ada language should be transparent (Ada tries to behave much
1508 like C/C++ with non-Ada symbols). */
1509 return 1;
1510 }
1511
1512 return 0;
1513 }
1514
1515 \f
1516
1517 /* Arrays */
1518
1519 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1520 generated by the GNAT compiler to describe the index type used
1521 for each dimension of an array, check whether it follows the latest
1522 known encoding. If not, fix it up to conform to the latest encoding.
1523 Otherwise, do nothing. This function also does nothing if
1524 INDEX_DESC_TYPE is NULL.
1525
1526 The GNAT encoding used to describle the array index type evolved a bit.
1527 Initially, the information would be provided through the name of each
1528 field of the structure type only, while the type of these fields was
1529 described as unspecified and irrelevant. The debugger was then expected
1530 to perform a global type lookup using the name of that field in order
1531 to get access to the full index type description. Because these global
1532 lookups can be very expensive, the encoding was later enhanced to make
1533 the global lookup unnecessary by defining the field type as being
1534 the full index type description.
1535
1536 The purpose of this routine is to allow us to support older versions
1537 of the compiler by detecting the use of the older encoding, and by
1538 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1539 we essentially replace each field's meaningless type by the associated
1540 index subtype). */
1541
1542 void
1543 ada_fixup_array_indexes_type (struct type *index_desc_type)
1544 {
1545 int i;
1546
1547 if (index_desc_type == NULL)
1548 return;
1549 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1550
1551 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1552 to check one field only, no need to check them all). If not, return
1553 now.
1554
1555 If our INDEX_DESC_TYPE was generated using the older encoding,
1556 the field type should be a meaningless integer type whose name
1557 is not equal to the field name. */
1558 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1559 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1560 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1561 return;
1562
1563 /* Fixup each field of INDEX_DESC_TYPE. */
1564 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1565 {
1566 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1567 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1568
1569 if (raw_type)
1570 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1571 }
1572 }
1573
1574 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1575
1576 static const char *bound_name[] = {
1577 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1578 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1579 };
1580
1581 /* Maximum number of array dimensions we are prepared to handle. */
1582
1583 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1584
1585
1586 /* The desc_* routines return primitive portions of array descriptors
1587 (fat pointers). */
1588
1589 /* The descriptor or array type, if any, indicated by TYPE; removes
1590 level of indirection, if needed. */
1591
1592 static struct type *
1593 desc_base_type (struct type *type)
1594 {
1595 if (type == NULL)
1596 return NULL;
1597 type = ada_check_typedef (type);
1598 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1599 type = ada_typedef_target_type (type);
1600
1601 if (type != NULL
1602 && (TYPE_CODE (type) == TYPE_CODE_PTR
1603 || TYPE_CODE (type) == TYPE_CODE_REF))
1604 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1605 else
1606 return type;
1607 }
1608
1609 /* True iff TYPE indicates a "thin" array pointer type. */
1610
1611 static int
1612 is_thin_pntr (struct type *type)
1613 {
1614 return
1615 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1616 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1617 }
1618
1619 /* The descriptor type for thin pointer type TYPE. */
1620
1621 static struct type *
1622 thin_descriptor_type (struct type *type)
1623 {
1624 struct type *base_type = desc_base_type (type);
1625
1626 if (base_type == NULL)
1627 return NULL;
1628 if (is_suffix (ada_type_name (base_type), "___XVE"))
1629 return base_type;
1630 else
1631 {
1632 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1633
1634 if (alt_type == NULL)
1635 return base_type;
1636 else
1637 return alt_type;
1638 }
1639 }
1640
1641 /* A pointer to the array data for thin-pointer value VAL. */
1642
1643 static struct value *
1644 thin_data_pntr (struct value *val)
1645 {
1646 struct type *type = ada_check_typedef (value_type (val));
1647 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1648
1649 data_type = lookup_pointer_type (data_type);
1650
1651 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1652 return value_cast (data_type, value_copy (val));
1653 else
1654 return value_from_longest (data_type, value_address (val));
1655 }
1656
1657 /* True iff TYPE indicates a "thick" array pointer type. */
1658
1659 static int
1660 is_thick_pntr (struct type *type)
1661 {
1662 type = desc_base_type (type);
1663 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1664 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1665 }
1666
1667 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1668 pointer to one, the type of its bounds data; otherwise, NULL. */
1669
1670 static struct type *
1671 desc_bounds_type (struct type *type)
1672 {
1673 struct type *r;
1674
1675 type = desc_base_type (type);
1676
1677 if (type == NULL)
1678 return NULL;
1679 else if (is_thin_pntr (type))
1680 {
1681 type = thin_descriptor_type (type);
1682 if (type == NULL)
1683 return NULL;
1684 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1685 if (r != NULL)
1686 return ada_check_typedef (r);
1687 }
1688 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1689 {
1690 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1691 if (r != NULL)
1692 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1693 }
1694 return NULL;
1695 }
1696
1697 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1698 one, a pointer to its bounds data. Otherwise NULL. */
1699
1700 static struct value *
1701 desc_bounds (struct value *arr)
1702 {
1703 struct type *type = ada_check_typedef (value_type (arr));
1704
1705 if (is_thin_pntr (type))
1706 {
1707 struct type *bounds_type =
1708 desc_bounds_type (thin_descriptor_type (type));
1709 LONGEST addr;
1710
1711 if (bounds_type == NULL)
1712 error (_("Bad GNAT array descriptor"));
1713
1714 /* NOTE: The following calculation is not really kosher, but
1715 since desc_type is an XVE-encoded type (and shouldn't be),
1716 the correct calculation is a real pain. FIXME (and fix GCC). */
1717 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1718 addr = value_as_long (arr);
1719 else
1720 addr = value_address (arr);
1721
1722 return
1723 value_from_longest (lookup_pointer_type (bounds_type),
1724 addr - TYPE_LENGTH (bounds_type));
1725 }
1726
1727 else if (is_thick_pntr (type))
1728 {
1729 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1730 _("Bad GNAT array descriptor"));
1731 struct type *p_bounds_type = value_type (p_bounds);
1732
1733 if (p_bounds_type
1734 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1735 {
1736 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1737
1738 if (TYPE_STUB (target_type))
1739 p_bounds = value_cast (lookup_pointer_type
1740 (ada_check_typedef (target_type)),
1741 p_bounds);
1742 }
1743 else
1744 error (_("Bad GNAT array descriptor"));
1745
1746 return p_bounds;
1747 }
1748 else
1749 return NULL;
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 position of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitpos (struct type *type)
1757 {
1758 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1759 }
1760
1761 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1762 size of the field containing the address of the bounds data. */
1763
1764 static int
1765 fat_pntr_bounds_bitsize (struct type *type)
1766 {
1767 type = desc_base_type (type);
1768
1769 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1770 return TYPE_FIELD_BITSIZE (type, 1);
1771 else
1772 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1773 }
1774
1775 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1776 pointer to one, the type of its array data (a array-with-no-bounds type);
1777 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1778 data. */
1779
1780 static struct type *
1781 desc_data_target_type (struct type *type)
1782 {
1783 type = desc_base_type (type);
1784
1785 /* NOTE: The following is bogus; see comment in desc_bounds. */
1786 if (is_thin_pntr (type))
1787 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1788 else if (is_thick_pntr (type))
1789 {
1790 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1791
1792 if (data_type
1793 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1794 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1795 }
1796
1797 return NULL;
1798 }
1799
1800 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1801 its array data. */
1802
1803 static struct value *
1804 desc_data (struct value *arr)
1805 {
1806 struct type *type = value_type (arr);
1807
1808 if (is_thin_pntr (type))
1809 return thin_data_pntr (arr);
1810 else if (is_thick_pntr (type))
1811 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1812 _("Bad GNAT array descriptor"));
1813 else
1814 return NULL;
1815 }
1816
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 position of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitpos (struct type *type)
1823 {
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1825 }
1826
1827 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1828 size of the field containing the address of the data. */
1829
1830 static int
1831 fat_pntr_data_bitsize (struct type *type)
1832 {
1833 type = desc_base_type (type);
1834
1835 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1836 return TYPE_FIELD_BITSIZE (type, 0);
1837 else
1838 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1839 }
1840
1841 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1842 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1843 bound, if WHICH is 1. The first bound is I=1. */
1844
1845 static struct value *
1846 desc_one_bound (struct value *bounds, int i, int which)
1847 {
1848 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1849 _("Bad GNAT array descriptor bounds"));
1850 }
1851
1852 /* If BOUNDS is an array-bounds structure type, return the bit position
1853 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1854 bound, if WHICH is 1. The first bound is I=1. */
1855
1856 static int
1857 desc_bound_bitpos (struct type *type, int i, int which)
1858 {
1859 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1860 }
1861
1862 /* If BOUNDS is an array-bounds structure type, return the bit field size
1863 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1864 bound, if WHICH is 1. The first bound is I=1. */
1865
1866 static int
1867 desc_bound_bitsize (struct type *type, int i, int which)
1868 {
1869 type = desc_base_type (type);
1870
1871 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1872 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1873 else
1874 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1875 }
1876
1877 /* If TYPE is the type of an array-bounds structure, the type of its
1878 Ith bound (numbering from 1). Otherwise, NULL. */
1879
1880 static struct type *
1881 desc_index_type (struct type *type, int i)
1882 {
1883 type = desc_base_type (type);
1884
1885 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1886 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1887 else
1888 return NULL;
1889 }
1890
1891 /* The number of index positions in the array-bounds type TYPE.
1892 Return 0 if TYPE is NULL. */
1893
1894 static int
1895 desc_arity (struct type *type)
1896 {
1897 type = desc_base_type (type);
1898
1899 if (type != NULL)
1900 return TYPE_NFIELDS (type) / 2;
1901 return 0;
1902 }
1903
1904 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1905 an array descriptor type (representing an unconstrained array
1906 type). */
1907
1908 static int
1909 ada_is_direct_array_type (struct type *type)
1910 {
1911 if (type == NULL)
1912 return 0;
1913 type = ada_check_typedef (type);
1914 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1915 || ada_is_array_descriptor_type (type));
1916 }
1917
1918 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1919 * to one. */
1920
1921 static int
1922 ada_is_array_type (struct type *type)
1923 {
1924 while (type != NULL
1925 && (TYPE_CODE (type) == TYPE_CODE_PTR
1926 || TYPE_CODE (type) == TYPE_CODE_REF))
1927 type = TYPE_TARGET_TYPE (type);
1928 return ada_is_direct_array_type (type);
1929 }
1930
1931 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1932
1933 int
1934 ada_is_simple_array_type (struct type *type)
1935 {
1936 if (type == NULL)
1937 return 0;
1938 type = ada_check_typedef (type);
1939 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1940 || (TYPE_CODE (type) == TYPE_CODE_PTR
1941 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1942 == TYPE_CODE_ARRAY));
1943 }
1944
1945 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1946
1947 int
1948 ada_is_array_descriptor_type (struct type *type)
1949 {
1950 struct type *data_type = desc_data_target_type (type);
1951
1952 if (type == NULL)
1953 return 0;
1954 type = ada_check_typedef (type);
1955 return (data_type != NULL
1956 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1957 && desc_arity (desc_bounds_type (type)) > 0);
1958 }
1959
1960 /* Non-zero iff type is a partially mal-formed GNAT array
1961 descriptor. FIXME: This is to compensate for some problems with
1962 debugging output from GNAT. Re-examine periodically to see if it
1963 is still needed. */
1964
1965 int
1966 ada_is_bogus_array_descriptor (struct type *type)
1967 {
1968 return
1969 type != NULL
1970 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1971 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1972 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1973 && !ada_is_array_descriptor_type (type);
1974 }
1975
1976
1977 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1978 (fat pointer) returns the type of the array data described---specifically,
1979 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1980 in from the descriptor; otherwise, they are left unspecified. If
1981 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1982 returns NULL. The result is simply the type of ARR if ARR is not
1983 a descriptor. */
1984 struct type *
1985 ada_type_of_array (struct value *arr, int bounds)
1986 {
1987 if (ada_is_constrained_packed_array_type (value_type (arr)))
1988 return decode_constrained_packed_array_type (value_type (arr));
1989
1990 if (!ada_is_array_descriptor_type (value_type (arr)))
1991 return value_type (arr);
1992
1993 if (!bounds)
1994 {
1995 struct type *array_type =
1996 ada_check_typedef (desc_data_target_type (value_type (arr)));
1997
1998 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1999 TYPE_FIELD_BITSIZE (array_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001
2002 return array_type;
2003 }
2004 else
2005 {
2006 struct type *elt_type;
2007 int arity;
2008 struct value *descriptor;
2009
2010 elt_type = ada_array_element_type (value_type (arr), -1);
2011 arity = ada_array_arity (value_type (arr));
2012
2013 if (elt_type == NULL || arity == 0)
2014 return ada_check_typedef (value_type (arr));
2015
2016 descriptor = desc_bounds (arr);
2017 if (value_as_long (descriptor) == 0)
2018 return NULL;
2019 while (arity > 0)
2020 {
2021 struct type *range_type = alloc_type_copy (value_type (arr));
2022 struct type *array_type = alloc_type_copy (value_type (arr));
2023 struct value *low = desc_one_bound (descriptor, arity, 0);
2024 struct value *high = desc_one_bound (descriptor, arity, 1);
2025
2026 arity -= 1;
2027 create_static_range_type (range_type, value_type (low),
2028 longest_to_int (value_as_long (low)),
2029 longest_to_int (value_as_long (high)));
2030 elt_type = create_array_type (array_type, elt_type, range_type);
2031
2032 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2033 {
2034 /* We need to store the element packed bitsize, as well as
2035 recompute the array size, because it was previously
2036 computed based on the unpacked element size. */
2037 LONGEST lo = value_as_long (low);
2038 LONGEST hi = value_as_long (high);
2039
2040 TYPE_FIELD_BITSIZE (elt_type, 0) =
2041 decode_packed_array_bitsize (value_type (arr));
2042 /* If the array has no element, then the size is already
2043 zero, and does not need to be recomputed. */
2044 if (lo < hi)
2045 {
2046 int array_bitsize =
2047 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2048
2049 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2050 }
2051 }
2052 }
2053
2054 return lookup_pointer_type (elt_type);
2055 }
2056 }
2057
2058 /* If ARR does not represent an array, returns ARR unchanged.
2059 Otherwise, returns either a standard GDB array with bounds set
2060 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2061 GDB array. Returns NULL if ARR is a null fat pointer. */
2062
2063 struct value *
2064 ada_coerce_to_simple_array_ptr (struct value *arr)
2065 {
2066 if (ada_is_array_descriptor_type (value_type (arr)))
2067 {
2068 struct type *arrType = ada_type_of_array (arr, 1);
2069
2070 if (arrType == NULL)
2071 return NULL;
2072 return value_cast (arrType, value_copy (desc_data (arr)));
2073 }
2074 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2075 return decode_constrained_packed_array (arr);
2076 else
2077 return arr;
2078 }
2079
2080 /* If ARR does not represent an array, returns ARR unchanged.
2081 Otherwise, returns a standard GDB array describing ARR (which may
2082 be ARR itself if it already is in the proper form). */
2083
2084 struct value *
2085 ada_coerce_to_simple_array (struct value *arr)
2086 {
2087 if (ada_is_array_descriptor_type (value_type (arr)))
2088 {
2089 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2090
2091 if (arrVal == NULL)
2092 error (_("Bounds unavailable for null array pointer."));
2093 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2094 return value_ind (arrVal);
2095 }
2096 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2097 return decode_constrained_packed_array (arr);
2098 else
2099 return arr;
2100 }
2101
2102 /* If TYPE represents a GNAT array type, return it translated to an
2103 ordinary GDB array type (possibly with BITSIZE fields indicating
2104 packing). For other types, is the identity. */
2105
2106 struct type *
2107 ada_coerce_to_simple_array_type (struct type *type)
2108 {
2109 if (ada_is_constrained_packed_array_type (type))
2110 return decode_constrained_packed_array_type (type);
2111
2112 if (ada_is_array_descriptor_type (type))
2113 return ada_check_typedef (desc_data_target_type (type));
2114
2115 return type;
2116 }
2117
2118 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2119
2120 static int
2121 ada_is_packed_array_type (struct type *type)
2122 {
2123 if (type == NULL)
2124 return 0;
2125 type = desc_base_type (type);
2126 type = ada_check_typedef (type);
2127 return
2128 ada_type_name (type) != NULL
2129 && strstr (ada_type_name (type), "___XP") != NULL;
2130 }
2131
2132 /* Non-zero iff TYPE represents a standard GNAT constrained
2133 packed-array type. */
2134
2135 int
2136 ada_is_constrained_packed_array_type (struct type *type)
2137 {
2138 return ada_is_packed_array_type (type)
2139 && !ada_is_array_descriptor_type (type);
2140 }
2141
2142 /* Non-zero iff TYPE represents an array descriptor for a
2143 unconstrained packed-array type. */
2144
2145 static int
2146 ada_is_unconstrained_packed_array_type (struct type *type)
2147 {
2148 return ada_is_packed_array_type (type)
2149 && ada_is_array_descriptor_type (type);
2150 }
2151
2152 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2153 return the size of its elements in bits. */
2154
2155 static long
2156 decode_packed_array_bitsize (struct type *type)
2157 {
2158 const char *raw_name;
2159 const char *tail;
2160 long bits;
2161
2162 /* Access to arrays implemented as fat pointers are encoded as a typedef
2163 of the fat pointer type. We need the name of the fat pointer type
2164 to do the decoding, so strip the typedef layer. */
2165 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2166 type = ada_typedef_target_type (type);
2167
2168 raw_name = ada_type_name (ada_check_typedef (type));
2169 if (!raw_name)
2170 raw_name = ada_type_name (desc_base_type (type));
2171
2172 if (!raw_name)
2173 return 0;
2174
2175 tail = strstr (raw_name, "___XP");
2176 gdb_assert (tail != NULL);
2177
2178 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2179 {
2180 lim_warning
2181 (_("could not understand bit size information on packed array"));
2182 return 0;
2183 }
2184
2185 return bits;
2186 }
2187
2188 /* Given that TYPE is a standard GDB array type with all bounds filled
2189 in, and that the element size of its ultimate scalar constituents
2190 (that is, either its elements, or, if it is an array of arrays, its
2191 elements' elements, etc.) is *ELT_BITS, return an identical type,
2192 but with the bit sizes of its elements (and those of any
2193 constituent arrays) recorded in the BITSIZE components of its
2194 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2195 in bits.
2196
2197 Note that, for arrays whose index type has an XA encoding where
2198 a bound references a record discriminant, getting that discriminant,
2199 and therefore the actual value of that bound, is not possible
2200 because none of the given parameters gives us access to the record.
2201 This function assumes that it is OK in the context where it is being
2202 used to return an array whose bounds are still dynamic and where
2203 the length is arbitrary. */
2204
2205 static struct type *
2206 constrained_packed_array_type (struct type *type, long *elt_bits)
2207 {
2208 struct type *new_elt_type;
2209 struct type *new_type;
2210 struct type *index_type_desc;
2211 struct type *index_type;
2212 LONGEST low_bound, high_bound;
2213
2214 type = ada_check_typedef (type);
2215 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2216 return type;
2217
2218 index_type_desc = ada_find_parallel_type (type, "___XA");
2219 if (index_type_desc)
2220 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2221 NULL);
2222 else
2223 index_type = TYPE_INDEX_TYPE (type);
2224
2225 new_type = alloc_type_copy (type);
2226 new_elt_type =
2227 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2228 elt_bits);
2229 create_array_type (new_type, new_elt_type, index_type);
2230 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2231 TYPE_NAME (new_type) = ada_type_name (type);
2232
2233 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2234 && is_dynamic_type (check_typedef (index_type)))
2235 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2236 low_bound = high_bound = 0;
2237 if (high_bound < low_bound)
2238 *elt_bits = TYPE_LENGTH (new_type) = 0;
2239 else
2240 {
2241 *elt_bits *= (high_bound - low_bound + 1);
2242 TYPE_LENGTH (new_type) =
2243 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2244 }
2245
2246 TYPE_FIXED_INSTANCE (new_type) = 1;
2247 return new_type;
2248 }
2249
2250 /* The array type encoded by TYPE, where
2251 ada_is_constrained_packed_array_type (TYPE). */
2252
2253 static struct type *
2254 decode_constrained_packed_array_type (struct type *type)
2255 {
2256 const char *raw_name = ada_type_name (ada_check_typedef (type));
2257 char *name;
2258 const char *tail;
2259 struct type *shadow_type;
2260 long bits;
2261
2262 if (!raw_name)
2263 raw_name = ada_type_name (desc_base_type (type));
2264
2265 if (!raw_name)
2266 return NULL;
2267
2268 name = (char *) alloca (strlen (raw_name) + 1);
2269 tail = strstr (raw_name, "___XP");
2270 type = desc_base_type (type);
2271
2272 memcpy (name, raw_name, tail - raw_name);
2273 name[tail - raw_name] = '\000';
2274
2275 shadow_type = ada_find_parallel_type_with_name (type, name);
2276
2277 if (shadow_type == NULL)
2278 {
2279 lim_warning (_("could not find bounds information on packed array"));
2280 return NULL;
2281 }
2282 shadow_type = check_typedef (shadow_type);
2283
2284 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2285 {
2286 lim_warning (_("could not understand bounds "
2287 "information on packed array"));
2288 return NULL;
2289 }
2290
2291 bits = decode_packed_array_bitsize (type);
2292 return constrained_packed_array_type (shadow_type, &bits);
2293 }
2294
2295 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2296 array, returns a simple array that denotes that array. Its type is a
2297 standard GDB array type except that the BITSIZEs of the array
2298 target types are set to the number of bits in each element, and the
2299 type length is set appropriately. */
2300
2301 static struct value *
2302 decode_constrained_packed_array (struct value *arr)
2303 {
2304 struct type *type;
2305
2306 /* If our value is a pointer, then dereference it. Likewise if
2307 the value is a reference. Make sure that this operation does not
2308 cause the target type to be fixed, as this would indirectly cause
2309 this array to be decoded. The rest of the routine assumes that
2310 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2311 and "value_ind" routines to perform the dereferencing, as opposed
2312 to using "ada_coerce_ref" or "ada_value_ind". */
2313 arr = coerce_ref (arr);
2314 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2315 arr = value_ind (arr);
2316
2317 type = decode_constrained_packed_array_type (value_type (arr));
2318 if (type == NULL)
2319 {
2320 error (_("can't unpack array"));
2321 return NULL;
2322 }
2323
2324 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2325 && ada_is_modular_type (value_type (arr)))
2326 {
2327 /* This is a (right-justified) modular type representing a packed
2328 array with no wrapper. In order to interpret the value through
2329 the (left-justified) packed array type we just built, we must
2330 first left-justify it. */
2331 int bit_size, bit_pos;
2332 ULONGEST mod;
2333
2334 mod = ada_modulus (value_type (arr)) - 1;
2335 bit_size = 0;
2336 while (mod > 0)
2337 {
2338 bit_size += 1;
2339 mod >>= 1;
2340 }
2341 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2342 arr = ada_value_primitive_packed_val (arr, NULL,
2343 bit_pos / HOST_CHAR_BIT,
2344 bit_pos % HOST_CHAR_BIT,
2345 bit_size,
2346 type);
2347 }
2348
2349 return coerce_unspec_val_to_type (arr, type);
2350 }
2351
2352
2353 /* The value of the element of packed array ARR at the ARITY indices
2354 given in IND. ARR must be a simple array. */
2355
2356 static struct value *
2357 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2358 {
2359 int i;
2360 int bits, elt_off, bit_off;
2361 long elt_total_bit_offset;
2362 struct type *elt_type;
2363 struct value *v;
2364
2365 bits = 0;
2366 elt_total_bit_offset = 0;
2367 elt_type = ada_check_typedef (value_type (arr));
2368 for (i = 0; i < arity; i += 1)
2369 {
2370 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2371 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2372 error
2373 (_("attempt to do packed indexing of "
2374 "something other than a packed array"));
2375 else
2376 {
2377 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2378 LONGEST lowerbound, upperbound;
2379 LONGEST idx;
2380
2381 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2382 {
2383 lim_warning (_("don't know bounds of array"));
2384 lowerbound = upperbound = 0;
2385 }
2386
2387 idx = pos_atr (ind[i]);
2388 if (idx < lowerbound || idx > upperbound)
2389 lim_warning (_("packed array index %ld out of bounds"),
2390 (long) idx);
2391 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2392 elt_total_bit_offset += (idx - lowerbound) * bits;
2393 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2394 }
2395 }
2396 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2397 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2398
2399 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2400 bits, elt_type);
2401 return v;
2402 }
2403
2404 /* Non-zero iff TYPE includes negative integer values. */
2405
2406 static int
2407 has_negatives (struct type *type)
2408 {
2409 switch (TYPE_CODE (type))
2410 {
2411 default:
2412 return 0;
2413 case TYPE_CODE_INT:
2414 return !TYPE_UNSIGNED (type);
2415 case TYPE_CODE_RANGE:
2416 return TYPE_LOW_BOUND (type) < 0;
2417 }
2418 }
2419
2420 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2421 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2422 the unpacked buffer.
2423
2424 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2425 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2426
2427 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2428 zero otherwise.
2429
2430 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2431
2432 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2433
2434 static void
2435 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2436 gdb_byte *unpacked, int unpacked_len,
2437 int is_big_endian, int is_signed_type,
2438 int is_scalar)
2439 {
2440 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2441 int src_idx; /* Index into the source area */
2442 int src_bytes_left; /* Number of source bytes left to process. */
2443 int srcBitsLeft; /* Number of source bits left to move */
2444 int unusedLS; /* Number of bits in next significant
2445 byte of source that are unused */
2446
2447 int unpacked_idx; /* Index into the unpacked buffer */
2448 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2449
2450 unsigned long accum; /* Staging area for bits being transferred */
2451 int accumSize; /* Number of meaningful bits in accum */
2452 unsigned char sign;
2453
2454 /* Transmit bytes from least to most significant; delta is the direction
2455 the indices move. */
2456 int delta = is_big_endian ? -1 : 1;
2457
2458 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2459 bits from SRC. .*/
2460 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2461 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2462 bit_size, unpacked_len);
2463
2464 srcBitsLeft = bit_size;
2465 src_bytes_left = src_len;
2466 unpacked_bytes_left = unpacked_len;
2467 sign = 0;
2468
2469 if (is_big_endian)
2470 {
2471 src_idx = src_len - 1;
2472 if (is_signed_type
2473 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2474 sign = ~0;
2475
2476 unusedLS =
2477 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2478 % HOST_CHAR_BIT;
2479
2480 if (is_scalar)
2481 {
2482 accumSize = 0;
2483 unpacked_idx = unpacked_len - 1;
2484 }
2485 else
2486 {
2487 /* Non-scalar values must be aligned at a byte boundary... */
2488 accumSize =
2489 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2490 /* ... And are placed at the beginning (most-significant) bytes
2491 of the target. */
2492 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2493 unpacked_bytes_left = unpacked_idx + 1;
2494 }
2495 }
2496 else
2497 {
2498 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2499
2500 src_idx = unpacked_idx = 0;
2501 unusedLS = bit_offset;
2502 accumSize = 0;
2503
2504 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2505 sign = ~0;
2506 }
2507
2508 accum = 0;
2509 while (src_bytes_left > 0)
2510 {
2511 /* Mask for removing bits of the next source byte that are not
2512 part of the value. */
2513 unsigned int unusedMSMask =
2514 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2515 1;
2516 /* Sign-extend bits for this byte. */
2517 unsigned int signMask = sign & ~unusedMSMask;
2518
2519 accum |=
2520 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2521 accumSize += HOST_CHAR_BIT - unusedLS;
2522 if (accumSize >= HOST_CHAR_BIT)
2523 {
2524 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2525 accumSize -= HOST_CHAR_BIT;
2526 accum >>= HOST_CHAR_BIT;
2527 unpacked_bytes_left -= 1;
2528 unpacked_idx += delta;
2529 }
2530 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2531 unusedLS = 0;
2532 src_bytes_left -= 1;
2533 src_idx += delta;
2534 }
2535 while (unpacked_bytes_left > 0)
2536 {
2537 accum |= sign << accumSize;
2538 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2539 accumSize -= HOST_CHAR_BIT;
2540 if (accumSize < 0)
2541 accumSize = 0;
2542 accum >>= HOST_CHAR_BIT;
2543 unpacked_bytes_left -= 1;
2544 unpacked_idx += delta;
2545 }
2546 }
2547
2548 /* Create a new value of type TYPE from the contents of OBJ starting
2549 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2550 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2551 assigning through the result will set the field fetched from.
2552 VALADDR is ignored unless OBJ is NULL, in which case,
2553 VALADDR+OFFSET must address the start of storage containing the
2554 packed value. The value returned in this case is never an lval.
2555 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2556
2557 struct value *
2558 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2559 long offset, int bit_offset, int bit_size,
2560 struct type *type)
2561 {
2562 struct value *v;
2563 const gdb_byte *src; /* First byte containing data to unpack */
2564 gdb_byte *unpacked;
2565 const int is_scalar = is_scalar_type (type);
2566 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2567 gdb::byte_vector staging;
2568
2569 type = ada_check_typedef (type);
2570
2571 if (obj == NULL)
2572 src = valaddr + offset;
2573 else
2574 src = value_contents (obj) + offset;
2575
2576 if (is_dynamic_type (type))
2577 {
2578 /* The length of TYPE might by dynamic, so we need to resolve
2579 TYPE in order to know its actual size, which we then use
2580 to create the contents buffer of the value we return.
2581 The difficulty is that the data containing our object is
2582 packed, and therefore maybe not at a byte boundary. So, what
2583 we do, is unpack the data into a byte-aligned buffer, and then
2584 use that buffer as our object's value for resolving the type. */
2585 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2586 staging.resize (staging_len);
2587
2588 ada_unpack_from_contents (src, bit_offset, bit_size,
2589 staging.data (), staging.size (),
2590 is_big_endian, has_negatives (type),
2591 is_scalar);
2592 type = resolve_dynamic_type (type, staging.data (), 0);
2593 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2594 {
2595 /* This happens when the length of the object is dynamic,
2596 and is actually smaller than the space reserved for it.
2597 For instance, in an array of variant records, the bit_size
2598 we're given is the array stride, which is constant and
2599 normally equal to the maximum size of its element.
2600 But, in reality, each element only actually spans a portion
2601 of that stride. */
2602 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2603 }
2604 }
2605
2606 if (obj == NULL)
2607 {
2608 v = allocate_value (type);
2609 src = valaddr + offset;
2610 }
2611 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2612 {
2613 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2614 gdb_byte *buf;
2615
2616 v = value_at (type, value_address (obj) + offset);
2617 buf = (gdb_byte *) alloca (src_len);
2618 read_memory (value_address (v), buf, src_len);
2619 src = buf;
2620 }
2621 else
2622 {
2623 v = allocate_value (type);
2624 src = value_contents (obj) + offset;
2625 }
2626
2627 if (obj != NULL)
2628 {
2629 long new_offset = offset;
2630
2631 set_value_component_location (v, obj);
2632 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2633 set_value_bitsize (v, bit_size);
2634 if (value_bitpos (v) >= HOST_CHAR_BIT)
2635 {
2636 ++new_offset;
2637 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2638 }
2639 set_value_offset (v, new_offset);
2640
2641 /* Also set the parent value. This is needed when trying to
2642 assign a new value (in inferior memory). */
2643 set_value_parent (v, obj);
2644 }
2645 else
2646 set_value_bitsize (v, bit_size);
2647 unpacked = value_contents_writeable (v);
2648
2649 if (bit_size == 0)
2650 {
2651 memset (unpacked, 0, TYPE_LENGTH (type));
2652 return v;
2653 }
2654
2655 if (staging.size () == TYPE_LENGTH (type))
2656 {
2657 /* Small short-cut: If we've unpacked the data into a buffer
2658 of the same size as TYPE's length, then we can reuse that,
2659 instead of doing the unpacking again. */
2660 memcpy (unpacked, staging.data (), staging.size ());
2661 }
2662 else
2663 ada_unpack_from_contents (src, bit_offset, bit_size,
2664 unpacked, TYPE_LENGTH (type),
2665 is_big_endian, has_negatives (type), is_scalar);
2666
2667 return v;
2668 }
2669
2670 /* Store the contents of FROMVAL into the location of TOVAL.
2671 Return a new value with the location of TOVAL and contents of
2672 FROMVAL. Handles assignment into packed fields that have
2673 floating-point or non-scalar types. */
2674
2675 static struct value *
2676 ada_value_assign (struct value *toval, struct value *fromval)
2677 {
2678 struct type *type = value_type (toval);
2679 int bits = value_bitsize (toval);
2680
2681 toval = ada_coerce_ref (toval);
2682 fromval = ada_coerce_ref (fromval);
2683
2684 if (ada_is_direct_array_type (value_type (toval)))
2685 toval = ada_coerce_to_simple_array (toval);
2686 if (ada_is_direct_array_type (value_type (fromval)))
2687 fromval = ada_coerce_to_simple_array (fromval);
2688
2689 if (!deprecated_value_modifiable (toval))
2690 error (_("Left operand of assignment is not a modifiable lvalue."));
2691
2692 if (VALUE_LVAL (toval) == lval_memory
2693 && bits > 0
2694 && (TYPE_CODE (type) == TYPE_CODE_FLT
2695 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2696 {
2697 int len = (value_bitpos (toval)
2698 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2699 int from_size;
2700 gdb_byte *buffer = (gdb_byte *) alloca (len);
2701 struct value *val;
2702 CORE_ADDR to_addr = value_address (toval);
2703
2704 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2705 fromval = value_cast (type, fromval);
2706
2707 read_memory (to_addr, buffer, len);
2708 from_size = value_bitsize (fromval);
2709 if (from_size == 0)
2710 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2711 if (gdbarch_bits_big_endian (get_type_arch (type)))
2712 copy_bitwise (buffer, value_bitpos (toval),
2713 value_contents (fromval), from_size - bits, bits, 1);
2714 else
2715 copy_bitwise (buffer, value_bitpos (toval),
2716 value_contents (fromval), 0, bits, 0);
2717 write_memory_with_notification (to_addr, buffer, len);
2718
2719 val = value_copy (toval);
2720 memcpy (value_contents_raw (val), value_contents (fromval),
2721 TYPE_LENGTH (type));
2722 deprecated_set_value_type (val, type);
2723
2724 return val;
2725 }
2726
2727 return value_assign (toval, fromval);
2728 }
2729
2730
2731 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2732 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2733 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2734 COMPONENT, and not the inferior's memory. The current contents
2735 of COMPONENT are ignored.
2736
2737 Although not part of the initial design, this function also works
2738 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2739 had a null address, and COMPONENT had an address which is equal to
2740 its offset inside CONTAINER. */
2741
2742 static void
2743 value_assign_to_component (struct value *container, struct value *component,
2744 struct value *val)
2745 {
2746 LONGEST offset_in_container =
2747 (LONGEST) (value_address (component) - value_address (container));
2748 int bit_offset_in_container =
2749 value_bitpos (component) - value_bitpos (container);
2750 int bits;
2751
2752 val = value_cast (value_type (component), val);
2753
2754 if (value_bitsize (component) == 0)
2755 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2756 else
2757 bits = value_bitsize (component);
2758
2759 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2760 {
2761 int src_offset;
2762
2763 if (is_scalar_type (check_typedef (value_type (component))))
2764 src_offset
2765 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2766 else
2767 src_offset = 0;
2768 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2769 value_bitpos (container) + bit_offset_in_container,
2770 value_contents (val), src_offset, bits, 1);
2771 }
2772 else
2773 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2774 value_bitpos (container) + bit_offset_in_container,
2775 value_contents (val), 0, bits, 0);
2776 }
2777
2778 /* Determine if TYPE is an access to an unconstrained array. */
2779
2780 bool
2781 ada_is_access_to_unconstrained_array (struct type *type)
2782 {
2783 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2784 && is_thick_pntr (ada_typedef_target_type (type)));
2785 }
2786
2787 /* The value of the element of array ARR at the ARITY indices given in IND.
2788 ARR may be either a simple array, GNAT array descriptor, or pointer
2789 thereto. */
2790
2791 struct value *
2792 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2793 {
2794 int k;
2795 struct value *elt;
2796 struct type *elt_type;
2797
2798 elt = ada_coerce_to_simple_array (arr);
2799
2800 elt_type = ada_check_typedef (value_type (elt));
2801 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2802 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2803 return value_subscript_packed (elt, arity, ind);
2804
2805 for (k = 0; k < arity; k += 1)
2806 {
2807 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2808
2809 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2810 error (_("too many subscripts (%d expected)"), k);
2811
2812 elt = value_subscript (elt, pos_atr (ind[k]));
2813
2814 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2815 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2816 {
2817 /* The element is a typedef to an unconstrained array,
2818 except that the value_subscript call stripped the
2819 typedef layer. The typedef layer is GNAT's way to
2820 specify that the element is, at the source level, an
2821 access to the unconstrained array, rather than the
2822 unconstrained array. So, we need to restore that
2823 typedef layer, which we can do by forcing the element's
2824 type back to its original type. Otherwise, the returned
2825 value is going to be printed as the array, rather
2826 than as an access. Another symptom of the same issue
2827 would be that an expression trying to dereference the
2828 element would also be improperly rejected. */
2829 deprecated_set_value_type (elt, saved_elt_type);
2830 }
2831
2832 elt_type = ada_check_typedef (value_type (elt));
2833 }
2834
2835 return elt;
2836 }
2837
2838 /* Assuming ARR is a pointer to a GDB array, the value of the element
2839 of *ARR at the ARITY indices given in IND.
2840 Does not read the entire array into memory.
2841
2842 Note: Unlike what one would expect, this function is used instead of
2843 ada_value_subscript for basically all non-packed array types. The reason
2844 for this is that a side effect of doing our own pointer arithmetics instead
2845 of relying on value_subscript is that there is no implicit typedef peeling.
2846 This is important for arrays of array accesses, where it allows us to
2847 preserve the fact that the array's element is an array access, where the
2848 access part os encoded in a typedef layer. */
2849
2850 static struct value *
2851 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2852 {
2853 int k;
2854 struct value *array_ind = ada_value_ind (arr);
2855 struct type *type
2856 = check_typedef (value_enclosing_type (array_ind));
2857
2858 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2859 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2860 return value_subscript_packed (array_ind, arity, ind);
2861
2862 for (k = 0; k < arity; k += 1)
2863 {
2864 LONGEST lwb, upb;
2865 struct value *lwb_value;
2866
2867 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2868 error (_("too many subscripts (%d expected)"), k);
2869 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2870 value_copy (arr));
2871 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2872 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2873 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2874 type = TYPE_TARGET_TYPE (type);
2875 }
2876
2877 return value_ind (arr);
2878 }
2879
2880 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2881 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2882 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2883 this array is LOW, as per Ada rules. */
2884 static struct value *
2885 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2886 int low, int high)
2887 {
2888 struct type *type0 = ada_check_typedef (type);
2889 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2890 struct type *index_type
2891 = create_static_range_type (NULL, base_index_type, low, high);
2892 struct type *slice_type = create_array_type_with_stride
2893 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2894 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2895 TYPE_FIELD_BITSIZE (type0, 0));
2896 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2897 LONGEST base_low_pos, low_pos;
2898 CORE_ADDR base;
2899
2900 if (!discrete_position (base_index_type, low, &low_pos)
2901 || !discrete_position (base_index_type, base_low, &base_low_pos))
2902 {
2903 warning (_("unable to get positions in slice, use bounds instead"));
2904 low_pos = low;
2905 base_low_pos = base_low;
2906 }
2907
2908 base = value_as_address (array_ptr)
2909 + ((low_pos - base_low_pos)
2910 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2911 return value_at_lazy (slice_type, base);
2912 }
2913
2914
2915 static struct value *
2916 ada_value_slice (struct value *array, int low, int high)
2917 {
2918 struct type *type = ada_check_typedef (value_type (array));
2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2920 struct type *index_type
2921 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2922 struct type *slice_type = create_array_type_with_stride
2923 (NULL, TYPE_TARGET_TYPE (type), index_type,
2924 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2925 TYPE_FIELD_BITSIZE (type, 0));
2926 LONGEST low_pos, high_pos;
2927
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, high, &high_pos))
2930 {
2931 warning (_("unable to get positions in slice, use bounds instead"));
2932 low_pos = low;
2933 high_pos = high;
2934 }
2935
2936 return value_cast (slice_type,
2937 value_slice (array, low, high_pos - low_pos + 1));
2938 }
2939
2940 /* If type is a record type in the form of a standard GNAT array
2941 descriptor, returns the number of dimensions for type. If arr is a
2942 simple array, returns the number of "array of"s that prefix its
2943 type designation. Otherwise, returns 0. */
2944
2945 int
2946 ada_array_arity (struct type *type)
2947 {
2948 int arity;
2949
2950 if (type == NULL)
2951 return 0;
2952
2953 type = desc_base_type (type);
2954
2955 arity = 0;
2956 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2957 return desc_arity (desc_bounds_type (type));
2958 else
2959 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2960 {
2961 arity += 1;
2962 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2963 }
2964
2965 return arity;
2966 }
2967
2968 /* If TYPE is a record type in the form of a standard GNAT array
2969 descriptor or a simple array type, returns the element type for
2970 TYPE after indexing by NINDICES indices, or by all indices if
2971 NINDICES is -1. Otherwise, returns NULL. */
2972
2973 struct type *
2974 ada_array_element_type (struct type *type, int nindices)
2975 {
2976 type = desc_base_type (type);
2977
2978 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2979 {
2980 int k;
2981 struct type *p_array_type;
2982
2983 p_array_type = desc_data_target_type (type);
2984
2985 k = ada_array_arity (type);
2986 if (k == 0)
2987 return NULL;
2988
2989 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2990 if (nindices >= 0 && k > nindices)
2991 k = nindices;
2992 while (k > 0 && p_array_type != NULL)
2993 {
2994 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2995 k -= 1;
2996 }
2997 return p_array_type;
2998 }
2999 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3000 {
3001 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3002 {
3003 type = TYPE_TARGET_TYPE (type);
3004 nindices -= 1;
3005 }
3006 return type;
3007 }
3008
3009 return NULL;
3010 }
3011
3012 /* The type of nth index in arrays of given type (n numbering from 1).
3013 Does not examine memory. Throws an error if N is invalid or TYPE
3014 is not an array type. NAME is the name of the Ada attribute being
3015 evaluated ('range, 'first, 'last, or 'length); it is used in building
3016 the error message. */
3017
3018 static struct type *
3019 ada_index_type (struct type *type, int n, const char *name)
3020 {
3021 struct type *result_type;
3022
3023 type = desc_base_type (type);
3024
3025 if (n < 0 || n > ada_array_arity (type))
3026 error (_("invalid dimension number to '%s"), name);
3027
3028 if (ada_is_simple_array_type (type))
3029 {
3030 int i;
3031
3032 for (i = 1; i < n; i += 1)
3033 type = TYPE_TARGET_TYPE (type);
3034 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3035 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3036 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3037 perhaps stabsread.c would make more sense. */
3038 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3039 result_type = NULL;
3040 }
3041 else
3042 {
3043 result_type = desc_index_type (desc_bounds_type (type), n);
3044 if (result_type == NULL)
3045 error (_("attempt to take bound of something that is not an array"));
3046 }
3047
3048 return result_type;
3049 }
3050
3051 /* Given that arr is an array type, returns the lower bound of the
3052 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3053 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3054 array-descriptor type. It works for other arrays with bounds supplied
3055 by run-time quantities other than discriminants. */
3056
3057 static LONGEST
3058 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3059 {
3060 struct type *type, *index_type_desc, *index_type;
3061 int i;
3062
3063 gdb_assert (which == 0 || which == 1);
3064
3065 if (ada_is_constrained_packed_array_type (arr_type))
3066 arr_type = decode_constrained_packed_array_type (arr_type);
3067
3068 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3069 return (LONGEST) - which;
3070
3071 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3072 type = TYPE_TARGET_TYPE (arr_type);
3073 else
3074 type = arr_type;
3075
3076 if (TYPE_FIXED_INSTANCE (type))
3077 {
3078 /* The array has already been fixed, so we do not need to
3079 check the parallel ___XA type again. That encoding has
3080 already been applied, so ignore it now. */
3081 index_type_desc = NULL;
3082 }
3083 else
3084 {
3085 index_type_desc = ada_find_parallel_type (type, "___XA");
3086 ada_fixup_array_indexes_type (index_type_desc);
3087 }
3088
3089 if (index_type_desc != NULL)
3090 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3091 NULL);
3092 else
3093 {
3094 struct type *elt_type = check_typedef (type);
3095
3096 for (i = 1; i < n; i++)
3097 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3098
3099 index_type = TYPE_INDEX_TYPE (elt_type);
3100 }
3101
3102 return
3103 (LONGEST) (which == 0
3104 ? ada_discrete_type_low_bound (index_type)
3105 : ada_discrete_type_high_bound (index_type));
3106 }
3107
3108 /* Given that arr is an array value, returns the lower bound of the
3109 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3110 WHICH is 1. This routine will also work for arrays with bounds
3111 supplied by run-time quantities other than discriminants. */
3112
3113 static LONGEST
3114 ada_array_bound (struct value *arr, int n, int which)
3115 {
3116 struct type *arr_type;
3117
3118 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3119 arr = value_ind (arr);
3120 arr_type = value_enclosing_type (arr);
3121
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3124 else if (ada_is_simple_array_type (arr_type))
3125 return ada_array_bound_from_type (arr_type, n, which);
3126 else
3127 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3128 }
3129
3130 /* Given that arr is an array value, returns the length of the
3131 nth index. This routine will also work for arrays with bounds
3132 supplied by run-time quantities other than discriminants.
3133 Does not work for arrays indexed by enumeration types with representation
3134 clauses at the moment. */
3135
3136 static LONGEST
3137 ada_array_length (struct value *arr, int n)
3138 {
3139 struct type *arr_type, *index_type;
3140 int low, high;
3141
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
3145
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_length (decode_constrained_packed_array (arr), n);
3148
3149 if (ada_is_simple_array_type (arr_type))
3150 {
3151 low = ada_array_bound_from_type (arr_type, n, 0);
3152 high = ada_array_bound_from_type (arr_type, n, 1);
3153 }
3154 else
3155 {
3156 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3157 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3158 }
3159
3160 arr_type = check_typedef (arr_type);
3161 index_type = ada_index_type (arr_type, n, "length");
3162 if (index_type != NULL)
3163 {
3164 struct type *base_type;
3165 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3166 base_type = TYPE_TARGET_TYPE (index_type);
3167 else
3168 base_type = index_type;
3169
3170 low = pos_atr (value_from_longest (base_type, low));
3171 high = pos_atr (value_from_longest (base_type, high));
3172 }
3173 return high - low + 1;
3174 }
3175
3176 /* An empty array whose type is that of ARR_TYPE (an array type),
3177 with bounds LOW to LOW-1. */
3178
3179 static struct value *
3180 empty_array (struct type *arr_type, int low)
3181 {
3182 struct type *arr_type0 = ada_check_typedef (arr_type);
3183 struct type *index_type
3184 = create_static_range_type
3185 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3186 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3187
3188 return allocate_value (create_array_type (NULL, elt_type, index_type));
3189 }
3190 \f
3191
3192 /* Name resolution */
3193
3194 /* The "decoded" name for the user-definable Ada operator corresponding
3195 to OP. */
3196
3197 static const char *
3198 ada_decoded_op_name (enum exp_opcode op)
3199 {
3200 int i;
3201
3202 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3203 {
3204 if (ada_opname_table[i].op == op)
3205 return ada_opname_table[i].decoded;
3206 }
3207 error (_("Could not find operator name for opcode"));
3208 }
3209
3210
3211 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3212 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3213 undefined namespace) and converts operators that are
3214 user-defined into appropriate function calls. If CONTEXT_TYPE is
3215 non-null, it provides a preferred result type [at the moment, only
3216 type void has any effect---causing procedures to be preferred over
3217 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3218 return type is preferred. May change (expand) *EXP. */
3219
3220 static void
3221 resolve (expression_up *expp, int void_context_p)
3222 {
3223 struct type *context_type = NULL;
3224 int pc = 0;
3225
3226 if (void_context_p)
3227 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3228
3229 resolve_subexp (expp, &pc, 1, context_type);
3230 }
3231
3232 /* Resolve the operator of the subexpression beginning at
3233 position *POS of *EXPP. "Resolving" consists of replacing
3234 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3235 with their resolutions, replacing built-in operators with
3236 function calls to user-defined operators, where appropriate, and,
3237 when DEPROCEDURE_P is non-zero, converting function-valued variables
3238 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3239 are as in ada_resolve, above. */
3240
3241 static struct value *
3242 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3243 struct type *context_type)
3244 {
3245 int pc = *pos;
3246 int i;
3247 struct expression *exp; /* Convenience: == *expp. */
3248 enum exp_opcode op = (*expp)->elts[pc].opcode;
3249 struct value **argvec; /* Vector of operand types (alloca'ed). */
3250 int nargs; /* Number of operands. */
3251 int oplen;
3252
3253 argvec = NULL;
3254 nargs = 0;
3255 exp = expp->get ();
3256
3257 /* Pass one: resolve operands, saving their types and updating *pos,
3258 if needed. */
3259 switch (op)
3260 {
3261 case OP_FUNCALL:
3262 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3263 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3264 *pos += 7;
3265 else
3266 {
3267 *pos += 3;
3268 resolve_subexp (expp, pos, 0, NULL);
3269 }
3270 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3271 break;
3272
3273 case UNOP_ADDR:
3274 *pos += 1;
3275 resolve_subexp (expp, pos, 0, NULL);
3276 break;
3277
3278 case UNOP_QUAL:
3279 *pos += 3;
3280 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3281 break;
3282
3283 case OP_ATR_MODULUS:
3284 case OP_ATR_SIZE:
3285 case OP_ATR_TAG:
3286 case OP_ATR_FIRST:
3287 case OP_ATR_LAST:
3288 case OP_ATR_LENGTH:
3289 case OP_ATR_POS:
3290 case OP_ATR_VAL:
3291 case OP_ATR_MIN:
3292 case OP_ATR_MAX:
3293 case TERNOP_IN_RANGE:
3294 case BINOP_IN_BOUNDS:
3295 case UNOP_IN_RANGE:
3296 case OP_AGGREGATE:
3297 case OP_OTHERS:
3298 case OP_CHOICES:
3299 case OP_POSITIONAL:
3300 case OP_DISCRETE_RANGE:
3301 case OP_NAME:
3302 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3303 *pos += oplen;
3304 break;
3305
3306 case BINOP_ASSIGN:
3307 {
3308 struct value *arg1;
3309
3310 *pos += 1;
3311 arg1 = resolve_subexp (expp, pos, 0, NULL);
3312 if (arg1 == NULL)
3313 resolve_subexp (expp, pos, 1, NULL);
3314 else
3315 resolve_subexp (expp, pos, 1, value_type (arg1));
3316 break;
3317 }
3318
3319 case UNOP_CAST:
3320 *pos += 3;
3321 nargs = 1;
3322 break;
3323
3324 case BINOP_ADD:
3325 case BINOP_SUB:
3326 case BINOP_MUL:
3327 case BINOP_DIV:
3328 case BINOP_REM:
3329 case BINOP_MOD:
3330 case BINOP_EXP:
3331 case BINOP_CONCAT:
3332 case BINOP_LOGICAL_AND:
3333 case BINOP_LOGICAL_OR:
3334 case BINOP_BITWISE_AND:
3335 case BINOP_BITWISE_IOR:
3336 case BINOP_BITWISE_XOR:
3337
3338 case BINOP_EQUAL:
3339 case BINOP_NOTEQUAL:
3340 case BINOP_LESS:
3341 case BINOP_GTR:
3342 case BINOP_LEQ:
3343 case BINOP_GEQ:
3344
3345 case BINOP_REPEAT:
3346 case BINOP_SUBSCRIPT:
3347 case BINOP_COMMA:
3348 *pos += 1;
3349 nargs = 2;
3350 break;
3351
3352 case UNOP_NEG:
3353 case UNOP_PLUS:
3354 case UNOP_LOGICAL_NOT:
3355 case UNOP_ABS:
3356 case UNOP_IND:
3357 *pos += 1;
3358 nargs = 1;
3359 break;
3360
3361 case OP_LONG:
3362 case OP_FLOAT:
3363 case OP_VAR_VALUE:
3364 case OP_VAR_MSYM_VALUE:
3365 *pos += 4;
3366 break;
3367
3368 case OP_TYPE:
3369 case OP_BOOL:
3370 case OP_LAST:
3371 case OP_INTERNALVAR:
3372 *pos += 3;
3373 break;
3374
3375 case UNOP_MEMVAL:
3376 *pos += 3;
3377 nargs = 1;
3378 break;
3379
3380 case OP_REGISTER:
3381 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3382 break;
3383
3384 case STRUCTOP_STRUCT:
3385 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3386 nargs = 1;
3387 break;
3388
3389 case TERNOP_SLICE:
3390 *pos += 1;
3391 nargs = 3;
3392 break;
3393
3394 case OP_STRING:
3395 break;
3396
3397 default:
3398 error (_("Unexpected operator during name resolution"));
3399 }
3400
3401 argvec = XALLOCAVEC (struct value *, nargs + 1);
3402 for (i = 0; i < nargs; i += 1)
3403 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3404 argvec[i] = NULL;
3405 exp = expp->get ();
3406
3407 /* Pass two: perform any resolution on principal operator. */
3408 switch (op)
3409 {
3410 default:
3411 break;
3412
3413 case OP_VAR_VALUE:
3414 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3415 {
3416 std::vector<struct block_symbol> candidates;
3417 int n_candidates;
3418
3419 n_candidates =
3420 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3421 (exp->elts[pc + 2].symbol),
3422 exp->elts[pc + 1].block, VAR_DOMAIN,
3423 &candidates);
3424
3425 if (n_candidates > 1)
3426 {
3427 /* Types tend to get re-introduced locally, so if there
3428 are any local symbols that are not types, first filter
3429 out all types. */
3430 int j;
3431 for (j = 0; j < n_candidates; j += 1)
3432 switch (SYMBOL_CLASS (candidates[j].symbol))
3433 {
3434 case LOC_REGISTER:
3435 case LOC_ARG:
3436 case LOC_REF_ARG:
3437 case LOC_REGPARM_ADDR:
3438 case LOC_LOCAL:
3439 case LOC_COMPUTED:
3440 goto FoundNonType;
3441 default:
3442 break;
3443 }
3444 FoundNonType:
3445 if (j < n_candidates)
3446 {
3447 j = 0;
3448 while (j < n_candidates)
3449 {
3450 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3451 {
3452 candidates[j] = candidates[n_candidates - 1];
3453 n_candidates -= 1;
3454 }
3455 else
3456 j += 1;
3457 }
3458 }
3459 }
3460
3461 if (n_candidates == 0)
3462 error (_("No definition found for %s"),
3463 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3464 else if (n_candidates == 1)
3465 i = 0;
3466 else if (deprocedure_p
3467 && !is_nonfunction (candidates.data (), n_candidates))
3468 {
3469 i = ada_resolve_function
3470 (candidates.data (), n_candidates, NULL, 0,
3471 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3472 context_type);
3473 if (i < 0)
3474 error (_("Could not find a match for %s"),
3475 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3476 }
3477 else
3478 {
3479 printf_filtered (_("Multiple matches for %s\n"),
3480 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3481 user_select_syms (candidates.data (), n_candidates, 1);
3482 i = 0;
3483 }
3484
3485 exp->elts[pc + 1].block = candidates[i].block;
3486 exp->elts[pc + 2].symbol = candidates[i].symbol;
3487 innermost_block.update (candidates[i]);
3488 }
3489
3490 if (deprocedure_p
3491 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3492 == TYPE_CODE_FUNC))
3493 {
3494 replace_operator_with_call (expp, pc, 0, 4,
3495 exp->elts[pc + 2].symbol,
3496 exp->elts[pc + 1].block);
3497 exp = expp->get ();
3498 }
3499 break;
3500
3501 case OP_FUNCALL:
3502 {
3503 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3504 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3505 {
3506 std::vector<struct block_symbol> candidates;
3507 int n_candidates;
3508
3509 n_candidates =
3510 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3511 (exp->elts[pc + 5].symbol),
3512 exp->elts[pc + 4].block, VAR_DOMAIN,
3513 &candidates);
3514
3515 if (n_candidates == 1)
3516 i = 0;
3517 else
3518 {
3519 i = ada_resolve_function
3520 (candidates.data (), n_candidates,
3521 argvec, nargs,
3522 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3523 context_type);
3524 if (i < 0)
3525 error (_("Could not find a match for %s"),
3526 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3527 }
3528
3529 exp->elts[pc + 4].block = candidates[i].block;
3530 exp->elts[pc + 5].symbol = candidates[i].symbol;
3531 innermost_block.update (candidates[i]);
3532 }
3533 }
3534 break;
3535 case BINOP_ADD:
3536 case BINOP_SUB:
3537 case BINOP_MUL:
3538 case BINOP_DIV:
3539 case BINOP_REM:
3540 case BINOP_MOD:
3541 case BINOP_CONCAT:
3542 case BINOP_BITWISE_AND:
3543 case BINOP_BITWISE_IOR:
3544 case BINOP_BITWISE_XOR:
3545 case BINOP_EQUAL:
3546 case BINOP_NOTEQUAL:
3547 case BINOP_LESS:
3548 case BINOP_GTR:
3549 case BINOP_LEQ:
3550 case BINOP_GEQ:
3551 case BINOP_EXP:
3552 case UNOP_NEG:
3553 case UNOP_PLUS:
3554 case UNOP_LOGICAL_NOT:
3555 case UNOP_ABS:
3556 if (possible_user_operator_p (op, argvec))
3557 {
3558 std::vector<struct block_symbol> candidates;
3559 int n_candidates;
3560
3561 n_candidates =
3562 ada_lookup_symbol_list (ada_decoded_op_name (op),
3563 (struct block *) NULL, VAR_DOMAIN,
3564 &candidates);
3565
3566 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3567 nargs, ada_decoded_op_name (op), NULL);
3568 if (i < 0)
3569 break;
3570
3571 replace_operator_with_call (expp, pc, nargs, 1,
3572 candidates[i].symbol,
3573 candidates[i].block);
3574 exp = expp->get ();
3575 }
3576 break;
3577
3578 case OP_TYPE:
3579 case OP_REGISTER:
3580 return NULL;
3581 }
3582
3583 *pos = pc;
3584 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3585 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3586 exp->elts[pc + 1].objfile,
3587 exp->elts[pc + 2].msymbol);
3588 else
3589 return evaluate_subexp_type (exp, pos);
3590 }
3591
3592 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3593 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3594 a non-pointer. */
3595 /* The term "match" here is rather loose. The match is heuristic and
3596 liberal. */
3597
3598 static int
3599 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3600 {
3601 ftype = ada_check_typedef (ftype);
3602 atype = ada_check_typedef (atype);
3603
3604 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3605 ftype = TYPE_TARGET_TYPE (ftype);
3606 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3607 atype = TYPE_TARGET_TYPE (atype);
3608
3609 switch (TYPE_CODE (ftype))
3610 {
3611 default:
3612 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3613 case TYPE_CODE_PTR:
3614 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3615 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3616 TYPE_TARGET_TYPE (atype), 0);
3617 else
3618 return (may_deref
3619 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3620 case TYPE_CODE_INT:
3621 case TYPE_CODE_ENUM:
3622 case TYPE_CODE_RANGE:
3623 switch (TYPE_CODE (atype))
3624 {
3625 case TYPE_CODE_INT:
3626 case TYPE_CODE_ENUM:
3627 case TYPE_CODE_RANGE:
3628 return 1;
3629 default:
3630 return 0;
3631 }
3632
3633 case TYPE_CODE_ARRAY:
3634 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3635 || ada_is_array_descriptor_type (atype));
3636
3637 case TYPE_CODE_STRUCT:
3638 if (ada_is_array_descriptor_type (ftype))
3639 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3640 || ada_is_array_descriptor_type (atype));
3641 else
3642 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3643 && !ada_is_array_descriptor_type (atype));
3644
3645 case TYPE_CODE_UNION:
3646 case TYPE_CODE_FLT:
3647 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3648 }
3649 }
3650
3651 /* Return non-zero if the formals of FUNC "sufficiently match" the
3652 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3653 may also be an enumeral, in which case it is treated as a 0-
3654 argument function. */
3655
3656 static int
3657 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3658 {
3659 int i;
3660 struct type *func_type = SYMBOL_TYPE (func);
3661
3662 if (SYMBOL_CLASS (func) == LOC_CONST
3663 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3664 return (n_actuals == 0);
3665 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3666 return 0;
3667
3668 if (TYPE_NFIELDS (func_type) != n_actuals)
3669 return 0;
3670
3671 for (i = 0; i < n_actuals; i += 1)
3672 {
3673 if (actuals[i] == NULL)
3674 return 0;
3675 else
3676 {
3677 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3678 i));
3679 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3680
3681 if (!ada_type_match (ftype, atype, 1))
3682 return 0;
3683 }
3684 }
3685 return 1;
3686 }
3687
3688 /* False iff function type FUNC_TYPE definitely does not produce a value
3689 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3690 FUNC_TYPE is not a valid function type with a non-null return type
3691 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3692
3693 static int
3694 return_match (struct type *func_type, struct type *context_type)
3695 {
3696 struct type *return_type;
3697
3698 if (func_type == NULL)
3699 return 1;
3700
3701 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3702 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3703 else
3704 return_type = get_base_type (func_type);
3705 if (return_type == NULL)
3706 return 1;
3707
3708 context_type = get_base_type (context_type);
3709
3710 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3711 return context_type == NULL || return_type == context_type;
3712 else if (context_type == NULL)
3713 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3714 else
3715 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3716 }
3717
3718
3719 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3720 function (if any) that matches the types of the NARGS arguments in
3721 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3722 that returns that type, then eliminate matches that don't. If
3723 CONTEXT_TYPE is void and there is at least one match that does not
3724 return void, eliminate all matches that do.
3725
3726 Asks the user if there is more than one match remaining. Returns -1
3727 if there is no such symbol or none is selected. NAME is used
3728 solely for messages. May re-arrange and modify SYMS in
3729 the process; the index returned is for the modified vector. */
3730
3731 static int
3732 ada_resolve_function (struct block_symbol syms[],
3733 int nsyms, struct value **args, int nargs,
3734 const char *name, struct type *context_type)
3735 {
3736 int fallback;
3737 int k;
3738 int m; /* Number of hits */
3739
3740 m = 0;
3741 /* In the first pass of the loop, we only accept functions matching
3742 context_type. If none are found, we add a second pass of the loop
3743 where every function is accepted. */
3744 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3745 {
3746 for (k = 0; k < nsyms; k += 1)
3747 {
3748 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3749
3750 if (ada_args_match (syms[k].symbol, args, nargs)
3751 && (fallback || return_match (type, context_type)))
3752 {
3753 syms[m] = syms[k];
3754 m += 1;
3755 }
3756 }
3757 }
3758
3759 /* If we got multiple matches, ask the user which one to use. Don't do this
3760 interactive thing during completion, though, as the purpose of the
3761 completion is providing a list of all possible matches. Prompting the
3762 user to filter it down would be completely unexpected in this case. */
3763 if (m == 0)
3764 return -1;
3765 else if (m > 1 && !parse_completion)
3766 {
3767 printf_filtered (_("Multiple matches for %s\n"), name);
3768 user_select_syms (syms, m, 1);
3769 return 0;
3770 }
3771 return 0;
3772 }
3773
3774 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3775 in a listing of choices during disambiguation (see sort_choices, below).
3776 The idea is that overloadings of a subprogram name from the
3777 same package should sort in their source order. We settle for ordering
3778 such symbols by their trailing number (__N or $N). */
3779
3780 static int
3781 encoded_ordered_before (const char *N0, const char *N1)
3782 {
3783 if (N1 == NULL)
3784 return 0;
3785 else if (N0 == NULL)
3786 return 1;
3787 else
3788 {
3789 int k0, k1;
3790
3791 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3792 ;
3793 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3794 ;
3795 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3796 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3797 {
3798 int n0, n1;
3799
3800 n0 = k0;
3801 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3802 n0 -= 1;
3803 n1 = k1;
3804 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3805 n1 -= 1;
3806 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3807 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3808 }
3809 return (strcmp (N0, N1) < 0);
3810 }
3811 }
3812
3813 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3814 encoded names. */
3815
3816 static void
3817 sort_choices (struct block_symbol syms[], int nsyms)
3818 {
3819 int i;
3820
3821 for (i = 1; i < nsyms; i += 1)
3822 {
3823 struct block_symbol sym = syms[i];
3824 int j;
3825
3826 for (j = i - 1; j >= 0; j -= 1)
3827 {
3828 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3829 SYMBOL_LINKAGE_NAME (sym.symbol)))
3830 break;
3831 syms[j + 1] = syms[j];
3832 }
3833 syms[j + 1] = sym;
3834 }
3835 }
3836
3837 /* Whether GDB should display formals and return types for functions in the
3838 overloads selection menu. */
3839 static int print_signatures = 1;
3840
3841 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3842 all but functions, the signature is just the name of the symbol. For
3843 functions, this is the name of the function, the list of types for formals
3844 and the return type (if any). */
3845
3846 static void
3847 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3848 const struct type_print_options *flags)
3849 {
3850 struct type *type = SYMBOL_TYPE (sym);
3851
3852 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3853 if (!print_signatures
3854 || type == NULL
3855 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3856 return;
3857
3858 if (TYPE_NFIELDS (type) > 0)
3859 {
3860 int i;
3861
3862 fprintf_filtered (stream, " (");
3863 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3864 {
3865 if (i > 0)
3866 fprintf_filtered (stream, "; ");
3867 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3868 flags);
3869 }
3870 fprintf_filtered (stream, ")");
3871 }
3872 if (TYPE_TARGET_TYPE (type) != NULL
3873 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3874 {
3875 fprintf_filtered (stream, " return ");
3876 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3877 }
3878 }
3879
3880 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3881 by asking the user (if necessary), returning the number selected,
3882 and setting the first elements of SYMS items. Error if no symbols
3883 selected. */
3884
3885 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3886 to be re-integrated one of these days. */
3887
3888 int
3889 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3890 {
3891 int i;
3892 int *chosen = XALLOCAVEC (int , nsyms);
3893 int n_chosen;
3894 int first_choice = (max_results == 1) ? 1 : 2;
3895 const char *select_mode = multiple_symbols_select_mode ();
3896
3897 if (max_results < 1)
3898 error (_("Request to select 0 symbols!"));
3899 if (nsyms <= 1)
3900 return nsyms;
3901
3902 if (select_mode == multiple_symbols_cancel)
3903 error (_("\
3904 canceled because the command is ambiguous\n\
3905 See set/show multiple-symbol."));
3906
3907 /* If select_mode is "all", then return all possible symbols.
3908 Only do that if more than one symbol can be selected, of course.
3909 Otherwise, display the menu as usual. */
3910 if (select_mode == multiple_symbols_all && max_results > 1)
3911 return nsyms;
3912
3913 printf_unfiltered (_("[0] cancel\n"));
3914 if (max_results > 1)
3915 printf_unfiltered (_("[1] all\n"));
3916
3917 sort_choices (syms, nsyms);
3918
3919 for (i = 0; i < nsyms; i += 1)
3920 {
3921 if (syms[i].symbol == NULL)
3922 continue;
3923
3924 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3925 {
3926 struct symtab_and_line sal =
3927 find_function_start_sal (syms[i].symbol, 1);
3928
3929 printf_unfiltered ("[%d] ", i + first_choice);
3930 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3931 &type_print_raw_options);
3932 if (sal.symtab == NULL)
3933 printf_unfiltered (_(" at <no source file available>:%d\n"),
3934 sal.line);
3935 else
3936 printf_unfiltered (_(" at %s:%d\n"),
3937 symtab_to_filename_for_display (sal.symtab),
3938 sal.line);
3939 continue;
3940 }
3941 else
3942 {
3943 int is_enumeral =
3944 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3945 && SYMBOL_TYPE (syms[i].symbol) != NULL
3946 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3947 struct symtab *symtab = NULL;
3948
3949 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3950 symtab = symbol_symtab (syms[i].symbol);
3951
3952 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3953 {
3954 printf_unfiltered ("[%d] ", i + first_choice);
3955 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3956 &type_print_raw_options);
3957 printf_unfiltered (_(" at %s:%d\n"),
3958 symtab_to_filename_for_display (symtab),
3959 SYMBOL_LINE (syms[i].symbol));
3960 }
3961 else if (is_enumeral
3962 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3963 {
3964 printf_unfiltered (("[%d] "), i + first_choice);
3965 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3966 gdb_stdout, -1, 0, &type_print_raw_options);
3967 printf_unfiltered (_("'(%s) (enumeral)\n"),
3968 SYMBOL_PRINT_NAME (syms[i].symbol));
3969 }
3970 else
3971 {
3972 printf_unfiltered ("[%d] ", i + first_choice);
3973 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3974 &type_print_raw_options);
3975
3976 if (symtab != NULL)
3977 printf_unfiltered (is_enumeral
3978 ? _(" in %s (enumeral)\n")
3979 : _(" at %s:?\n"),
3980 symtab_to_filename_for_display (symtab));
3981 else
3982 printf_unfiltered (is_enumeral
3983 ? _(" (enumeral)\n")
3984 : _(" at ?\n"));
3985 }
3986 }
3987 }
3988
3989 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3990 "overload-choice");
3991
3992 for (i = 0; i < n_chosen; i += 1)
3993 syms[i] = syms[chosen[i]];
3994
3995 return n_chosen;
3996 }
3997
3998 /* Read and validate a set of numeric choices from the user in the
3999 range 0 .. N_CHOICES-1. Place the results in increasing
4000 order in CHOICES[0 .. N-1], and return N.
4001
4002 The user types choices as a sequence of numbers on one line
4003 separated by blanks, encoding them as follows:
4004
4005 + A choice of 0 means to cancel the selection, throwing an error.
4006 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4007 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4008
4009 The user is not allowed to choose more than MAX_RESULTS values.
4010
4011 ANNOTATION_SUFFIX, if present, is used to annotate the input
4012 prompts (for use with the -f switch). */
4013
4014 int
4015 get_selections (int *choices, int n_choices, int max_results,
4016 int is_all_choice, const char *annotation_suffix)
4017 {
4018 char *args;
4019 const char *prompt;
4020 int n_chosen;
4021 int first_choice = is_all_choice ? 2 : 1;
4022
4023 prompt = getenv ("PS2");
4024 if (prompt == NULL)
4025 prompt = "> ";
4026
4027 args = command_line_input (prompt, annotation_suffix);
4028
4029 if (args == NULL)
4030 error_no_arg (_("one or more choice numbers"));
4031
4032 n_chosen = 0;
4033
4034 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4035 order, as given in args. Choices are validated. */
4036 while (1)
4037 {
4038 char *args2;
4039 int choice, j;
4040
4041 args = skip_spaces (args);
4042 if (*args == '\0' && n_chosen == 0)
4043 error_no_arg (_("one or more choice numbers"));
4044 else if (*args == '\0')
4045 break;
4046
4047 choice = strtol (args, &args2, 10);
4048 if (args == args2 || choice < 0
4049 || choice > n_choices + first_choice - 1)
4050 error (_("Argument must be choice number"));
4051 args = args2;
4052
4053 if (choice == 0)
4054 error (_("cancelled"));
4055
4056 if (choice < first_choice)
4057 {
4058 n_chosen = n_choices;
4059 for (j = 0; j < n_choices; j += 1)
4060 choices[j] = j;
4061 break;
4062 }
4063 choice -= first_choice;
4064
4065 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4066 {
4067 }
4068
4069 if (j < 0 || choice != choices[j])
4070 {
4071 int k;
4072
4073 for (k = n_chosen - 1; k > j; k -= 1)
4074 choices[k + 1] = choices[k];
4075 choices[j + 1] = choice;
4076 n_chosen += 1;
4077 }
4078 }
4079
4080 if (n_chosen > max_results)
4081 error (_("Select no more than %d of the above"), max_results);
4082
4083 return n_chosen;
4084 }
4085
4086 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4087 on the function identified by SYM and BLOCK, and taking NARGS
4088 arguments. Update *EXPP as needed to hold more space. */
4089
4090 static void
4091 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4092 int oplen, struct symbol *sym,
4093 const struct block *block)
4094 {
4095 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4096 symbol, -oplen for operator being replaced). */
4097 struct expression *newexp = (struct expression *)
4098 xzalloc (sizeof (struct expression)
4099 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4100 struct expression *exp = expp->get ();
4101
4102 newexp->nelts = exp->nelts + 7 - oplen;
4103 newexp->language_defn = exp->language_defn;
4104 newexp->gdbarch = exp->gdbarch;
4105 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4106 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4107 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4108
4109 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4110 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4111
4112 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4113 newexp->elts[pc + 4].block = block;
4114 newexp->elts[pc + 5].symbol = sym;
4115
4116 expp->reset (newexp);
4117 }
4118
4119 /* Type-class predicates */
4120
4121 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4122 or FLOAT). */
4123
4124 static int
4125 numeric_type_p (struct type *type)
4126 {
4127 if (type == NULL)
4128 return 0;
4129 else
4130 {
4131 switch (TYPE_CODE (type))
4132 {
4133 case TYPE_CODE_INT:
4134 case TYPE_CODE_FLT:
4135 return 1;
4136 case TYPE_CODE_RANGE:
4137 return (type == TYPE_TARGET_TYPE (type)
4138 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4139 default:
4140 return 0;
4141 }
4142 }
4143 }
4144
4145 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4146
4147 static int
4148 integer_type_p (struct type *type)
4149 {
4150 if (type == NULL)
4151 return 0;
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4155 {
4156 case TYPE_CODE_INT:
4157 return 1;
4158 case TYPE_CODE_RANGE:
4159 return (type == TYPE_TARGET_TYPE (type)
4160 || integer_type_p (TYPE_TARGET_TYPE (type)));
4161 default:
4162 return 0;
4163 }
4164 }
4165 }
4166
4167 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4168
4169 static int
4170 scalar_type_p (struct type *type)
4171 {
4172 if (type == NULL)
4173 return 0;
4174 else
4175 {
4176 switch (TYPE_CODE (type))
4177 {
4178 case TYPE_CODE_INT:
4179 case TYPE_CODE_RANGE:
4180 case TYPE_CODE_ENUM:
4181 case TYPE_CODE_FLT:
4182 return 1;
4183 default:
4184 return 0;
4185 }
4186 }
4187 }
4188
4189 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4190
4191 static int
4192 discrete_type_p (struct type *type)
4193 {
4194 if (type == NULL)
4195 return 0;
4196 else
4197 {
4198 switch (TYPE_CODE (type))
4199 {
4200 case TYPE_CODE_INT:
4201 case TYPE_CODE_RANGE:
4202 case TYPE_CODE_ENUM:
4203 case TYPE_CODE_BOOL:
4204 return 1;
4205 default:
4206 return 0;
4207 }
4208 }
4209 }
4210
4211 /* Returns non-zero if OP with operands in the vector ARGS could be
4212 a user-defined function. Errs on the side of pre-defined operators
4213 (i.e., result 0). */
4214
4215 static int
4216 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4217 {
4218 struct type *type0 =
4219 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4220 struct type *type1 =
4221 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4222
4223 if (type0 == NULL)
4224 return 0;
4225
4226 switch (op)
4227 {
4228 default:
4229 return 0;
4230
4231 case BINOP_ADD:
4232 case BINOP_SUB:
4233 case BINOP_MUL:
4234 case BINOP_DIV:
4235 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4236
4237 case BINOP_REM:
4238 case BINOP_MOD:
4239 case BINOP_BITWISE_AND:
4240 case BINOP_BITWISE_IOR:
4241 case BINOP_BITWISE_XOR:
4242 return (!(integer_type_p (type0) && integer_type_p (type1)));
4243
4244 case BINOP_EQUAL:
4245 case BINOP_NOTEQUAL:
4246 case BINOP_LESS:
4247 case BINOP_GTR:
4248 case BINOP_LEQ:
4249 case BINOP_GEQ:
4250 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4251
4252 case BINOP_CONCAT:
4253 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4254
4255 case BINOP_EXP:
4256 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4257
4258 case UNOP_NEG:
4259 case UNOP_PLUS:
4260 case UNOP_LOGICAL_NOT:
4261 case UNOP_ABS:
4262 return (!numeric_type_p (type0));
4263
4264 }
4265 }
4266 \f
4267 /* Renaming */
4268
4269 /* NOTES:
4270
4271 1. In the following, we assume that a renaming type's name may
4272 have an ___XD suffix. It would be nice if this went away at some
4273 point.
4274 2. We handle both the (old) purely type-based representation of
4275 renamings and the (new) variable-based encoding. At some point,
4276 it is devoutly to be hoped that the former goes away
4277 (FIXME: hilfinger-2007-07-09).
4278 3. Subprogram renamings are not implemented, although the XRS
4279 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4280
4281 /* If SYM encodes a renaming,
4282
4283 <renaming> renames <renamed entity>,
4284
4285 sets *LEN to the length of the renamed entity's name,
4286 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4287 the string describing the subcomponent selected from the renamed
4288 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4289 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4290 are undefined). Otherwise, returns a value indicating the category
4291 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4292 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4293 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4294 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4295 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4296 may be NULL, in which case they are not assigned.
4297
4298 [Currently, however, GCC does not generate subprogram renamings.] */
4299
4300 enum ada_renaming_category
4301 ada_parse_renaming (struct symbol *sym,
4302 const char **renamed_entity, int *len,
4303 const char **renaming_expr)
4304 {
4305 enum ada_renaming_category kind;
4306 const char *info;
4307 const char *suffix;
4308
4309 if (sym == NULL)
4310 return ADA_NOT_RENAMING;
4311 switch (SYMBOL_CLASS (sym))
4312 {
4313 default:
4314 return ADA_NOT_RENAMING;
4315 case LOC_TYPEDEF:
4316 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4317 renamed_entity, len, renaming_expr);
4318 case LOC_LOCAL:
4319 case LOC_STATIC:
4320 case LOC_COMPUTED:
4321 case LOC_OPTIMIZED_OUT:
4322 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4323 if (info == NULL)
4324 return ADA_NOT_RENAMING;
4325 switch (info[5])
4326 {
4327 case '_':
4328 kind = ADA_OBJECT_RENAMING;
4329 info += 6;
4330 break;
4331 case 'E':
4332 kind = ADA_EXCEPTION_RENAMING;
4333 info += 7;
4334 break;
4335 case 'P':
4336 kind = ADA_PACKAGE_RENAMING;
4337 info += 7;
4338 break;
4339 case 'S':
4340 kind = ADA_SUBPROGRAM_RENAMING;
4341 info += 7;
4342 break;
4343 default:
4344 return ADA_NOT_RENAMING;
4345 }
4346 }
4347
4348 if (renamed_entity != NULL)
4349 *renamed_entity = info;
4350 suffix = strstr (info, "___XE");
4351 if (suffix == NULL || suffix == info)
4352 return ADA_NOT_RENAMING;
4353 if (len != NULL)
4354 *len = strlen (info) - strlen (suffix);
4355 suffix += 5;
4356 if (renaming_expr != NULL)
4357 *renaming_expr = suffix;
4358 return kind;
4359 }
4360
4361 /* Assuming TYPE encodes a renaming according to the old encoding in
4362 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4363 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4364 ADA_NOT_RENAMING otherwise. */
4365 static enum ada_renaming_category
4366 parse_old_style_renaming (struct type *type,
4367 const char **renamed_entity, int *len,
4368 const char **renaming_expr)
4369 {
4370 enum ada_renaming_category kind;
4371 const char *name;
4372 const char *info;
4373 const char *suffix;
4374
4375 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4376 || TYPE_NFIELDS (type) != 1)
4377 return ADA_NOT_RENAMING;
4378
4379 name = TYPE_NAME (type);
4380 if (name == NULL)
4381 return ADA_NOT_RENAMING;
4382
4383 name = strstr (name, "___XR");
4384 if (name == NULL)
4385 return ADA_NOT_RENAMING;
4386 switch (name[5])
4387 {
4388 case '\0':
4389 case '_':
4390 kind = ADA_OBJECT_RENAMING;
4391 break;
4392 case 'E':
4393 kind = ADA_EXCEPTION_RENAMING;
4394 break;
4395 case 'P':
4396 kind = ADA_PACKAGE_RENAMING;
4397 break;
4398 case 'S':
4399 kind = ADA_SUBPROGRAM_RENAMING;
4400 break;
4401 default:
4402 return ADA_NOT_RENAMING;
4403 }
4404
4405 info = TYPE_FIELD_NAME (type, 0);
4406 if (info == NULL)
4407 return ADA_NOT_RENAMING;
4408 if (renamed_entity != NULL)
4409 *renamed_entity = info;
4410 suffix = strstr (info, "___XE");
4411 if (renaming_expr != NULL)
4412 *renaming_expr = suffix + 5;
4413 if (suffix == NULL || suffix == info)
4414 return ADA_NOT_RENAMING;
4415 if (len != NULL)
4416 *len = suffix - info;
4417 return kind;
4418 }
4419
4420 /* Compute the value of the given RENAMING_SYM, which is expected to
4421 be a symbol encoding a renaming expression. BLOCK is the block
4422 used to evaluate the renaming. */
4423
4424 static struct value *
4425 ada_read_renaming_var_value (struct symbol *renaming_sym,
4426 const struct block *block)
4427 {
4428 const char *sym_name;
4429
4430 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4431 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4432 return evaluate_expression (expr.get ());
4433 }
4434 \f
4435
4436 /* Evaluation: Function Calls */
4437
4438 /* Return an lvalue containing the value VAL. This is the identity on
4439 lvalues, and otherwise has the side-effect of allocating memory
4440 in the inferior where a copy of the value contents is copied. */
4441
4442 static struct value *
4443 ensure_lval (struct value *val)
4444 {
4445 if (VALUE_LVAL (val) == not_lval
4446 || VALUE_LVAL (val) == lval_internalvar)
4447 {
4448 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4449 const CORE_ADDR addr =
4450 value_as_long (value_allocate_space_in_inferior (len));
4451
4452 VALUE_LVAL (val) = lval_memory;
4453 set_value_address (val, addr);
4454 write_memory (addr, value_contents (val), len);
4455 }
4456
4457 return val;
4458 }
4459
4460 /* Return the value ACTUAL, converted to be an appropriate value for a
4461 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4462 allocating any necessary descriptors (fat pointers), or copies of
4463 values not residing in memory, updating it as needed. */
4464
4465 struct value *
4466 ada_convert_actual (struct value *actual, struct type *formal_type0)
4467 {
4468 struct type *actual_type = ada_check_typedef (value_type (actual));
4469 struct type *formal_type = ada_check_typedef (formal_type0);
4470 struct type *formal_target =
4471 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4472 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4473 struct type *actual_target =
4474 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4475 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4476
4477 if (ada_is_array_descriptor_type (formal_target)
4478 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4479 return make_array_descriptor (formal_type, actual);
4480 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4481 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4482 {
4483 struct value *result;
4484
4485 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4486 && ada_is_array_descriptor_type (actual_target))
4487 result = desc_data (actual);
4488 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4489 {
4490 if (VALUE_LVAL (actual) != lval_memory)
4491 {
4492 struct value *val;
4493
4494 actual_type = ada_check_typedef (value_type (actual));
4495 val = allocate_value (actual_type);
4496 memcpy ((char *) value_contents_raw (val),
4497 (char *) value_contents (actual),
4498 TYPE_LENGTH (actual_type));
4499 actual = ensure_lval (val);
4500 }
4501 result = value_addr (actual);
4502 }
4503 else
4504 return actual;
4505 return value_cast_pointers (formal_type, result, 0);
4506 }
4507 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4508 return ada_value_ind (actual);
4509 else if (ada_is_aligner_type (formal_type))
4510 {
4511 /* We need to turn this parameter into an aligner type
4512 as well. */
4513 struct value *aligner = allocate_value (formal_type);
4514 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4515
4516 value_assign_to_component (aligner, component, actual);
4517 return aligner;
4518 }
4519
4520 return actual;
4521 }
4522
4523 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4524 type TYPE. This is usually an inefficient no-op except on some targets
4525 (such as AVR) where the representation of a pointer and an address
4526 differs. */
4527
4528 static CORE_ADDR
4529 value_pointer (struct value *value, struct type *type)
4530 {
4531 struct gdbarch *gdbarch = get_type_arch (type);
4532 unsigned len = TYPE_LENGTH (type);
4533 gdb_byte *buf = (gdb_byte *) alloca (len);
4534 CORE_ADDR addr;
4535
4536 addr = value_address (value);
4537 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4538 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4539 return addr;
4540 }
4541
4542
4543 /* Push a descriptor of type TYPE for array value ARR on the stack at
4544 *SP, updating *SP to reflect the new descriptor. Return either
4545 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4546 to-descriptor type rather than a descriptor type), a struct value *
4547 representing a pointer to this descriptor. */
4548
4549 static struct value *
4550 make_array_descriptor (struct type *type, struct value *arr)
4551 {
4552 struct type *bounds_type = desc_bounds_type (type);
4553 struct type *desc_type = desc_base_type (type);
4554 struct value *descriptor = allocate_value (desc_type);
4555 struct value *bounds = allocate_value (bounds_type);
4556 int i;
4557
4558 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4559 i > 0; i -= 1)
4560 {
4561 modify_field (value_type (bounds), value_contents_writeable (bounds),
4562 ada_array_bound (arr, i, 0),
4563 desc_bound_bitpos (bounds_type, i, 0),
4564 desc_bound_bitsize (bounds_type, i, 0));
4565 modify_field (value_type (bounds), value_contents_writeable (bounds),
4566 ada_array_bound (arr, i, 1),
4567 desc_bound_bitpos (bounds_type, i, 1),
4568 desc_bound_bitsize (bounds_type, i, 1));
4569 }
4570
4571 bounds = ensure_lval (bounds);
4572
4573 modify_field (value_type (descriptor),
4574 value_contents_writeable (descriptor),
4575 value_pointer (ensure_lval (arr),
4576 TYPE_FIELD_TYPE (desc_type, 0)),
4577 fat_pntr_data_bitpos (desc_type),
4578 fat_pntr_data_bitsize (desc_type));
4579
4580 modify_field (value_type (descriptor),
4581 value_contents_writeable (descriptor),
4582 value_pointer (bounds,
4583 TYPE_FIELD_TYPE (desc_type, 1)),
4584 fat_pntr_bounds_bitpos (desc_type),
4585 fat_pntr_bounds_bitsize (desc_type));
4586
4587 descriptor = ensure_lval (descriptor);
4588
4589 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4590 return value_addr (descriptor);
4591 else
4592 return descriptor;
4593 }
4594 \f
4595 /* Symbol Cache Module */
4596
4597 /* Performance measurements made as of 2010-01-15 indicate that
4598 this cache does bring some noticeable improvements. Depending
4599 on the type of entity being printed, the cache can make it as much
4600 as an order of magnitude faster than without it.
4601
4602 The descriptive type DWARF extension has significantly reduced
4603 the need for this cache, at least when DWARF is being used. However,
4604 even in this case, some expensive name-based symbol searches are still
4605 sometimes necessary - to find an XVZ variable, mostly. */
4606
4607 /* Initialize the contents of SYM_CACHE. */
4608
4609 static void
4610 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4611 {
4612 obstack_init (&sym_cache->cache_space);
4613 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4614 }
4615
4616 /* Free the memory used by SYM_CACHE. */
4617
4618 static void
4619 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4620 {
4621 obstack_free (&sym_cache->cache_space, NULL);
4622 xfree (sym_cache);
4623 }
4624
4625 /* Return the symbol cache associated to the given program space PSPACE.
4626 If not allocated for this PSPACE yet, allocate and initialize one. */
4627
4628 static struct ada_symbol_cache *
4629 ada_get_symbol_cache (struct program_space *pspace)
4630 {
4631 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4632
4633 if (pspace_data->sym_cache == NULL)
4634 {
4635 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4636 ada_init_symbol_cache (pspace_data->sym_cache);
4637 }
4638
4639 return pspace_data->sym_cache;
4640 }
4641
4642 /* Clear all entries from the symbol cache. */
4643
4644 static void
4645 ada_clear_symbol_cache (void)
4646 {
4647 struct ada_symbol_cache *sym_cache
4648 = ada_get_symbol_cache (current_program_space);
4649
4650 obstack_free (&sym_cache->cache_space, NULL);
4651 ada_init_symbol_cache (sym_cache);
4652 }
4653
4654 /* Search our cache for an entry matching NAME and DOMAIN.
4655 Return it if found, or NULL otherwise. */
4656
4657 static struct cache_entry **
4658 find_entry (const char *name, domain_enum domain)
4659 {
4660 struct ada_symbol_cache *sym_cache
4661 = ada_get_symbol_cache (current_program_space);
4662 int h = msymbol_hash (name) % HASH_SIZE;
4663 struct cache_entry **e;
4664
4665 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4666 {
4667 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4668 return e;
4669 }
4670 return NULL;
4671 }
4672
4673 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4674 Return 1 if found, 0 otherwise.
4675
4676 If an entry was found and SYM is not NULL, set *SYM to the entry's
4677 SYM. Same principle for BLOCK if not NULL. */
4678
4679 static int
4680 lookup_cached_symbol (const char *name, domain_enum domain,
4681 struct symbol **sym, const struct block **block)
4682 {
4683 struct cache_entry **e = find_entry (name, domain);
4684
4685 if (e == NULL)
4686 return 0;
4687 if (sym != NULL)
4688 *sym = (*e)->sym;
4689 if (block != NULL)
4690 *block = (*e)->block;
4691 return 1;
4692 }
4693
4694 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4695 in domain DOMAIN, save this result in our symbol cache. */
4696
4697 static void
4698 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4699 const struct block *block)
4700 {
4701 struct ada_symbol_cache *sym_cache
4702 = ada_get_symbol_cache (current_program_space);
4703 int h;
4704 char *copy;
4705 struct cache_entry *e;
4706
4707 /* Symbols for builtin types don't have a block.
4708 For now don't cache such symbols. */
4709 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4710 return;
4711
4712 /* If the symbol is a local symbol, then do not cache it, as a search
4713 for that symbol depends on the context. To determine whether
4714 the symbol is local or not, we check the block where we found it
4715 against the global and static blocks of its associated symtab. */
4716 if (sym
4717 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4718 GLOBAL_BLOCK) != block
4719 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4720 STATIC_BLOCK) != block)
4721 return;
4722
4723 h = msymbol_hash (name) % HASH_SIZE;
4724 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4725 e->next = sym_cache->root[h];
4726 sym_cache->root[h] = e;
4727 e->name = copy
4728 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4729 strcpy (copy, name);
4730 e->sym = sym;
4731 e->domain = domain;
4732 e->block = block;
4733 }
4734 \f
4735 /* Symbol Lookup */
4736
4737 /* Return the symbol name match type that should be used used when
4738 searching for all symbols matching LOOKUP_NAME.
4739
4740 LOOKUP_NAME is expected to be a symbol name after transformation
4741 for Ada lookups. */
4742
4743 static symbol_name_match_type
4744 name_match_type_from_name (const char *lookup_name)
4745 {
4746 return (strstr (lookup_name, "__") == NULL
4747 ? symbol_name_match_type::WILD
4748 : symbol_name_match_type::FULL);
4749 }
4750
4751 /* Return the result of a standard (literal, C-like) lookup of NAME in
4752 given DOMAIN, visible from lexical block BLOCK. */
4753
4754 static struct symbol *
4755 standard_lookup (const char *name, const struct block *block,
4756 domain_enum domain)
4757 {
4758 /* Initialize it just to avoid a GCC false warning. */
4759 struct block_symbol sym = {NULL, NULL};
4760
4761 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4762 return sym.symbol;
4763 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4764 cache_symbol (name, domain, sym.symbol, sym.block);
4765 return sym.symbol;
4766 }
4767
4768
4769 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4770 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4771 since they contend in overloading in the same way. */
4772 static int
4773 is_nonfunction (struct block_symbol syms[], int n)
4774 {
4775 int i;
4776
4777 for (i = 0; i < n; i += 1)
4778 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4779 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4780 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4781 return 1;
4782
4783 return 0;
4784 }
4785
4786 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4787 struct types. Otherwise, they may not. */
4788
4789 static int
4790 equiv_types (struct type *type0, struct type *type1)
4791 {
4792 if (type0 == type1)
4793 return 1;
4794 if (type0 == NULL || type1 == NULL
4795 || TYPE_CODE (type0) != TYPE_CODE (type1))
4796 return 0;
4797 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4798 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4799 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4800 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4801 return 1;
4802
4803 return 0;
4804 }
4805
4806 /* True iff SYM0 represents the same entity as SYM1, or one that is
4807 no more defined than that of SYM1. */
4808
4809 static int
4810 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4811 {
4812 if (sym0 == sym1)
4813 return 1;
4814 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4815 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4816 return 0;
4817
4818 switch (SYMBOL_CLASS (sym0))
4819 {
4820 case LOC_UNDEF:
4821 return 1;
4822 case LOC_TYPEDEF:
4823 {
4824 struct type *type0 = SYMBOL_TYPE (sym0);
4825 struct type *type1 = SYMBOL_TYPE (sym1);
4826 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4827 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4828 int len0 = strlen (name0);
4829
4830 return
4831 TYPE_CODE (type0) == TYPE_CODE (type1)
4832 && (equiv_types (type0, type1)
4833 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4834 && startswith (name1 + len0, "___XV")));
4835 }
4836 case LOC_CONST:
4837 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4838 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4839 default:
4840 return 0;
4841 }
4842 }
4843
4844 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4845 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4846
4847 static void
4848 add_defn_to_vec (struct obstack *obstackp,
4849 struct symbol *sym,
4850 const struct block *block)
4851 {
4852 int i;
4853 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4854
4855 /* Do not try to complete stub types, as the debugger is probably
4856 already scanning all symbols matching a certain name at the
4857 time when this function is called. Trying to replace the stub
4858 type by its associated full type will cause us to restart a scan
4859 which may lead to an infinite recursion. Instead, the client
4860 collecting the matching symbols will end up collecting several
4861 matches, with at least one of them complete. It can then filter
4862 out the stub ones if needed. */
4863
4864 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4865 {
4866 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4867 return;
4868 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4869 {
4870 prevDefns[i].symbol = sym;
4871 prevDefns[i].block = block;
4872 return;
4873 }
4874 }
4875
4876 {
4877 struct block_symbol info;
4878
4879 info.symbol = sym;
4880 info.block = block;
4881 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4882 }
4883 }
4884
4885 /* Number of block_symbol structures currently collected in current vector in
4886 OBSTACKP. */
4887
4888 static int
4889 num_defns_collected (struct obstack *obstackp)
4890 {
4891 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4892 }
4893
4894 /* Vector of block_symbol structures currently collected in current vector in
4895 OBSTACKP. If FINISH, close off the vector and return its final address. */
4896
4897 static struct block_symbol *
4898 defns_collected (struct obstack *obstackp, int finish)
4899 {
4900 if (finish)
4901 return (struct block_symbol *) obstack_finish (obstackp);
4902 else
4903 return (struct block_symbol *) obstack_base (obstackp);
4904 }
4905
4906 /* Return a bound minimal symbol matching NAME according to Ada
4907 decoding rules. Returns an invalid symbol if there is no such
4908 minimal symbol. Names prefixed with "standard__" are handled
4909 specially: "standard__" is first stripped off, and only static and
4910 global symbols are searched. */
4911
4912 struct bound_minimal_symbol
4913 ada_lookup_simple_minsym (const char *name)
4914 {
4915 struct bound_minimal_symbol result;
4916 struct objfile *objfile;
4917 struct minimal_symbol *msymbol;
4918
4919 memset (&result, 0, sizeof (result));
4920
4921 symbol_name_match_type match_type = name_match_type_from_name (name);
4922 lookup_name_info lookup_name (name, match_type);
4923
4924 symbol_name_matcher_ftype *match_name
4925 = ada_get_symbol_name_matcher (lookup_name);
4926
4927 ALL_MSYMBOLS (objfile, msymbol)
4928 {
4929 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4930 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4931 {
4932 result.minsym = msymbol;
4933 result.objfile = objfile;
4934 break;
4935 }
4936 }
4937
4938 return result;
4939 }
4940
4941 /* For all subprograms that statically enclose the subprogram of the
4942 selected frame, add symbols matching identifier NAME in DOMAIN
4943 and their blocks to the list of data in OBSTACKP, as for
4944 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4945 with a wildcard prefix. */
4946
4947 static void
4948 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4949 const lookup_name_info &lookup_name,
4950 domain_enum domain)
4951 {
4952 }
4953
4954 /* True if TYPE is definitely an artificial type supplied to a symbol
4955 for which no debugging information was given in the symbol file. */
4956
4957 static int
4958 is_nondebugging_type (struct type *type)
4959 {
4960 const char *name = ada_type_name (type);
4961
4962 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4963 }
4964
4965 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4966 that are deemed "identical" for practical purposes.
4967
4968 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4969 types and that their number of enumerals is identical (in other
4970 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4971
4972 static int
4973 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4974 {
4975 int i;
4976
4977 /* The heuristic we use here is fairly conservative. We consider
4978 that 2 enumerate types are identical if they have the same
4979 number of enumerals and that all enumerals have the same
4980 underlying value and name. */
4981
4982 /* All enums in the type should have an identical underlying value. */
4983 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4984 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4985 return 0;
4986
4987 /* All enumerals should also have the same name (modulo any numerical
4988 suffix). */
4989 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4990 {
4991 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4992 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4993 int len_1 = strlen (name_1);
4994 int len_2 = strlen (name_2);
4995
4996 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4997 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4998 if (len_1 != len_2
4999 || strncmp (TYPE_FIELD_NAME (type1, i),
5000 TYPE_FIELD_NAME (type2, i),
5001 len_1) != 0)
5002 return 0;
5003 }
5004
5005 return 1;
5006 }
5007
5008 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5009 that are deemed "identical" for practical purposes. Sometimes,
5010 enumerals are not strictly identical, but their types are so similar
5011 that they can be considered identical.
5012
5013 For instance, consider the following code:
5014
5015 type Color is (Black, Red, Green, Blue, White);
5016 type RGB_Color is new Color range Red .. Blue;
5017
5018 Type RGB_Color is a subrange of an implicit type which is a copy
5019 of type Color. If we call that implicit type RGB_ColorB ("B" is
5020 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5021 As a result, when an expression references any of the enumeral
5022 by name (Eg. "print green"), the expression is technically
5023 ambiguous and the user should be asked to disambiguate. But
5024 doing so would only hinder the user, since it wouldn't matter
5025 what choice he makes, the outcome would always be the same.
5026 So, for practical purposes, we consider them as the same. */
5027
5028 static int
5029 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5030 {
5031 int i;
5032
5033 /* Before performing a thorough comparison check of each type,
5034 we perform a series of inexpensive checks. We expect that these
5035 checks will quickly fail in the vast majority of cases, and thus
5036 help prevent the unnecessary use of a more expensive comparison.
5037 Said comparison also expects us to make some of these checks
5038 (see ada_identical_enum_types_p). */
5039
5040 /* Quick check: All symbols should have an enum type. */
5041 for (i = 0; i < syms.size (); i++)
5042 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5043 return 0;
5044
5045 /* Quick check: They should all have the same value. */
5046 for (i = 1; i < syms.size (); i++)
5047 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5048 return 0;
5049
5050 /* Quick check: They should all have the same number of enumerals. */
5051 for (i = 1; i < syms.size (); i++)
5052 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5053 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5054 return 0;
5055
5056 /* All the sanity checks passed, so we might have a set of
5057 identical enumeration types. Perform a more complete
5058 comparison of the type of each symbol. */
5059 for (i = 1; i < syms.size (); i++)
5060 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5061 SYMBOL_TYPE (syms[0].symbol)))
5062 return 0;
5063
5064 return 1;
5065 }
5066
5067 /* Remove any non-debugging symbols in SYMS that definitely
5068 duplicate other symbols in the list (The only case I know of where
5069 this happens is when object files containing stabs-in-ecoff are
5070 linked with files containing ordinary ecoff debugging symbols (or no
5071 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5072 Returns the number of items in the modified list. */
5073
5074 static int
5075 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5076 {
5077 int i, j;
5078
5079 /* We should never be called with less than 2 symbols, as there
5080 cannot be any extra symbol in that case. But it's easy to
5081 handle, since we have nothing to do in that case. */
5082 if (syms->size () < 2)
5083 return syms->size ();
5084
5085 i = 0;
5086 while (i < syms->size ())
5087 {
5088 int remove_p = 0;
5089
5090 /* If two symbols have the same name and one of them is a stub type,
5091 the get rid of the stub. */
5092
5093 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5094 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5095 {
5096 for (j = 0; j < syms->size (); j++)
5097 {
5098 if (j != i
5099 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5100 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5101 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5102 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5103 remove_p = 1;
5104 }
5105 }
5106
5107 /* Two symbols with the same name, same class and same address
5108 should be identical. */
5109
5110 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5111 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5112 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5113 {
5114 for (j = 0; j < syms->size (); j += 1)
5115 {
5116 if (i != j
5117 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5118 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5119 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5120 && SYMBOL_CLASS ((*syms)[i].symbol)
5121 == SYMBOL_CLASS ((*syms)[j].symbol)
5122 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5123 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5124 remove_p = 1;
5125 }
5126 }
5127
5128 if (remove_p)
5129 syms->erase (syms->begin () + i);
5130
5131 i += 1;
5132 }
5133
5134 /* If all the remaining symbols are identical enumerals, then
5135 just keep the first one and discard the rest.
5136
5137 Unlike what we did previously, we do not discard any entry
5138 unless they are ALL identical. This is because the symbol
5139 comparison is not a strict comparison, but rather a practical
5140 comparison. If all symbols are considered identical, then
5141 we can just go ahead and use the first one and discard the rest.
5142 But if we cannot reduce the list to a single element, we have
5143 to ask the user to disambiguate anyways. And if we have to
5144 present a multiple-choice menu, it's less confusing if the list
5145 isn't missing some choices that were identical and yet distinct. */
5146 if (symbols_are_identical_enums (*syms))
5147 syms->resize (1);
5148
5149 return syms->size ();
5150 }
5151
5152 /* Given a type that corresponds to a renaming entity, use the type name
5153 to extract the scope (package name or function name, fully qualified,
5154 and following the GNAT encoding convention) where this renaming has been
5155 defined. */
5156
5157 static std::string
5158 xget_renaming_scope (struct type *renaming_type)
5159 {
5160 /* The renaming types adhere to the following convention:
5161 <scope>__<rename>___<XR extension>.
5162 So, to extract the scope, we search for the "___XR" extension,
5163 and then backtrack until we find the first "__". */
5164
5165 const char *name = TYPE_NAME (renaming_type);
5166 const char *suffix = strstr (name, "___XR");
5167 const char *last;
5168
5169 /* Now, backtrack a bit until we find the first "__". Start looking
5170 at suffix - 3, as the <rename> part is at least one character long. */
5171
5172 for (last = suffix - 3; last > name; last--)
5173 if (last[0] == '_' && last[1] == '_')
5174 break;
5175
5176 /* Make a copy of scope and return it. */
5177 return std::string (name, last);
5178 }
5179
5180 /* Return nonzero if NAME corresponds to a package name. */
5181
5182 static int
5183 is_package_name (const char *name)
5184 {
5185 /* Here, We take advantage of the fact that no symbols are generated
5186 for packages, while symbols are generated for each function.
5187 So the condition for NAME represent a package becomes equivalent
5188 to NAME not existing in our list of symbols. There is only one
5189 small complication with library-level functions (see below). */
5190
5191 /* If it is a function that has not been defined at library level,
5192 then we should be able to look it up in the symbols. */
5193 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5194 return 0;
5195
5196 /* Library-level function names start with "_ada_". See if function
5197 "_ada_" followed by NAME can be found. */
5198
5199 /* Do a quick check that NAME does not contain "__", since library-level
5200 functions names cannot contain "__" in them. */
5201 if (strstr (name, "__") != NULL)
5202 return 0;
5203
5204 std::string fun_name = string_printf ("_ada_%s", name);
5205
5206 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5207 }
5208
5209 /* Return nonzero if SYM corresponds to a renaming entity that is
5210 not visible from FUNCTION_NAME. */
5211
5212 static int
5213 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5214 {
5215 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5216 return 0;
5217
5218 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5219
5220 /* If the rename has been defined in a package, then it is visible. */
5221 if (is_package_name (scope.c_str ()))
5222 return 0;
5223
5224 /* Check that the rename is in the current function scope by checking
5225 that its name starts with SCOPE. */
5226
5227 /* If the function name starts with "_ada_", it means that it is
5228 a library-level function. Strip this prefix before doing the
5229 comparison, as the encoding for the renaming does not contain
5230 this prefix. */
5231 if (startswith (function_name, "_ada_"))
5232 function_name += 5;
5233
5234 return !startswith (function_name, scope.c_str ());
5235 }
5236
5237 /* Remove entries from SYMS that corresponds to a renaming entity that
5238 is not visible from the function associated with CURRENT_BLOCK or
5239 that is superfluous due to the presence of more specific renaming
5240 information. Places surviving symbols in the initial entries of
5241 SYMS and returns the number of surviving symbols.
5242
5243 Rationale:
5244 First, in cases where an object renaming is implemented as a
5245 reference variable, GNAT may produce both the actual reference
5246 variable and the renaming encoding. In this case, we discard the
5247 latter.
5248
5249 Second, GNAT emits a type following a specified encoding for each renaming
5250 entity. Unfortunately, STABS currently does not support the definition
5251 of types that are local to a given lexical block, so all renamings types
5252 are emitted at library level. As a consequence, if an application
5253 contains two renaming entities using the same name, and a user tries to
5254 print the value of one of these entities, the result of the ada symbol
5255 lookup will also contain the wrong renaming type.
5256
5257 This function partially covers for this limitation by attempting to
5258 remove from the SYMS list renaming symbols that should be visible
5259 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5260 method with the current information available. The implementation
5261 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5262
5263 - When the user tries to print a rename in a function while there
5264 is another rename entity defined in a package: Normally, the
5265 rename in the function has precedence over the rename in the
5266 package, so the latter should be removed from the list. This is
5267 currently not the case.
5268
5269 - This function will incorrectly remove valid renames if
5270 the CURRENT_BLOCK corresponds to a function which symbol name
5271 has been changed by an "Export" pragma. As a consequence,
5272 the user will be unable to print such rename entities. */
5273
5274 static int
5275 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5276 const struct block *current_block)
5277 {
5278 struct symbol *current_function;
5279 const char *current_function_name;
5280 int i;
5281 int is_new_style_renaming;
5282
5283 /* If there is both a renaming foo___XR... encoded as a variable and
5284 a simple variable foo in the same block, discard the latter.
5285 First, zero out such symbols, then compress. */
5286 is_new_style_renaming = 0;
5287 for (i = 0; i < syms->size (); i += 1)
5288 {
5289 struct symbol *sym = (*syms)[i].symbol;
5290 const struct block *block = (*syms)[i].block;
5291 const char *name;
5292 const char *suffix;
5293
5294 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5295 continue;
5296 name = SYMBOL_LINKAGE_NAME (sym);
5297 suffix = strstr (name, "___XR");
5298
5299 if (suffix != NULL)
5300 {
5301 int name_len = suffix - name;
5302 int j;
5303
5304 is_new_style_renaming = 1;
5305 for (j = 0; j < syms->size (); j += 1)
5306 if (i != j && (*syms)[j].symbol != NULL
5307 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5308 name_len) == 0
5309 && block == (*syms)[j].block)
5310 (*syms)[j].symbol = NULL;
5311 }
5312 }
5313 if (is_new_style_renaming)
5314 {
5315 int j, k;
5316
5317 for (j = k = 0; j < syms->size (); j += 1)
5318 if ((*syms)[j].symbol != NULL)
5319 {
5320 (*syms)[k] = (*syms)[j];
5321 k += 1;
5322 }
5323 return k;
5324 }
5325
5326 /* Extract the function name associated to CURRENT_BLOCK.
5327 Abort if unable to do so. */
5328
5329 if (current_block == NULL)
5330 return syms->size ();
5331
5332 current_function = block_linkage_function (current_block);
5333 if (current_function == NULL)
5334 return syms->size ();
5335
5336 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5337 if (current_function_name == NULL)
5338 return syms->size ();
5339
5340 /* Check each of the symbols, and remove it from the list if it is
5341 a type corresponding to a renaming that is out of the scope of
5342 the current block. */
5343
5344 i = 0;
5345 while (i < syms->size ())
5346 {
5347 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5348 == ADA_OBJECT_RENAMING
5349 && old_renaming_is_invisible ((*syms)[i].symbol,
5350 current_function_name))
5351 syms->erase (syms->begin () + i);
5352 else
5353 i += 1;
5354 }
5355
5356 return syms->size ();
5357 }
5358
5359 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5360 whose name and domain match NAME and DOMAIN respectively.
5361 If no match was found, then extend the search to "enclosing"
5362 routines (in other words, if we're inside a nested function,
5363 search the symbols defined inside the enclosing functions).
5364 If WILD_MATCH_P is nonzero, perform the naming matching in
5365 "wild" mode (see function "wild_match" for more info).
5366
5367 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5368
5369 static void
5370 ada_add_local_symbols (struct obstack *obstackp,
5371 const lookup_name_info &lookup_name,
5372 const struct block *block, domain_enum domain)
5373 {
5374 int block_depth = 0;
5375
5376 while (block != NULL)
5377 {
5378 block_depth += 1;
5379 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5380
5381 /* If we found a non-function match, assume that's the one. */
5382 if (is_nonfunction (defns_collected (obstackp, 0),
5383 num_defns_collected (obstackp)))
5384 return;
5385
5386 block = BLOCK_SUPERBLOCK (block);
5387 }
5388
5389 /* If no luck so far, try to find NAME as a local symbol in some lexically
5390 enclosing subprogram. */
5391 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5392 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5393 }
5394
5395 /* An object of this type is used as the user_data argument when
5396 calling the map_matching_symbols method. */
5397
5398 struct match_data
5399 {
5400 struct objfile *objfile;
5401 struct obstack *obstackp;
5402 struct symbol *arg_sym;
5403 int found_sym;
5404 };
5405
5406 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5407 to a list of symbols. DATA0 is a pointer to a struct match_data *
5408 containing the obstack that collects the symbol list, the file that SYM
5409 must come from, a flag indicating whether a non-argument symbol has
5410 been found in the current block, and the last argument symbol
5411 passed in SYM within the current block (if any). When SYM is null,
5412 marking the end of a block, the argument symbol is added if no
5413 other has been found. */
5414
5415 static int
5416 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5417 {
5418 struct match_data *data = (struct match_data *) data0;
5419
5420 if (sym == NULL)
5421 {
5422 if (!data->found_sym && data->arg_sym != NULL)
5423 add_defn_to_vec (data->obstackp,
5424 fixup_symbol_section (data->arg_sym, data->objfile),
5425 block);
5426 data->found_sym = 0;
5427 data->arg_sym = NULL;
5428 }
5429 else
5430 {
5431 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5432 return 0;
5433 else if (SYMBOL_IS_ARGUMENT (sym))
5434 data->arg_sym = sym;
5435 else
5436 {
5437 data->found_sym = 1;
5438 add_defn_to_vec (data->obstackp,
5439 fixup_symbol_section (sym, data->objfile),
5440 block);
5441 }
5442 }
5443 return 0;
5444 }
5445
5446 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5447 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5448 symbols to OBSTACKP. Return whether we found such symbols. */
5449
5450 static int
5451 ada_add_block_renamings (struct obstack *obstackp,
5452 const struct block *block,
5453 const lookup_name_info &lookup_name,
5454 domain_enum domain)
5455 {
5456 struct using_direct *renaming;
5457 int defns_mark = num_defns_collected (obstackp);
5458
5459 symbol_name_matcher_ftype *name_match
5460 = ada_get_symbol_name_matcher (lookup_name);
5461
5462 for (renaming = block_using (block);
5463 renaming != NULL;
5464 renaming = renaming->next)
5465 {
5466 const char *r_name;
5467
5468 /* Avoid infinite recursions: skip this renaming if we are actually
5469 already traversing it.
5470
5471 Currently, symbol lookup in Ada don't use the namespace machinery from
5472 C++/Fortran support: skip namespace imports that use them. */
5473 if (renaming->searched
5474 || (renaming->import_src != NULL
5475 && renaming->import_src[0] != '\0')
5476 || (renaming->import_dest != NULL
5477 && renaming->import_dest[0] != '\0'))
5478 continue;
5479 renaming->searched = 1;
5480
5481 /* TODO: here, we perform another name-based symbol lookup, which can
5482 pull its own multiple overloads. In theory, we should be able to do
5483 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5484 not a simple name. But in order to do this, we would need to enhance
5485 the DWARF reader to associate a symbol to this renaming, instead of a
5486 name. So, for now, we do something simpler: re-use the C++/Fortran
5487 namespace machinery. */
5488 r_name = (renaming->alias != NULL
5489 ? renaming->alias
5490 : renaming->declaration);
5491 if (name_match (r_name, lookup_name, NULL))
5492 {
5493 lookup_name_info decl_lookup_name (renaming->declaration,
5494 lookup_name.match_type ());
5495 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5496 1, NULL);
5497 }
5498 renaming->searched = 0;
5499 }
5500 return num_defns_collected (obstackp) != defns_mark;
5501 }
5502
5503 /* Implements compare_names, but only applying the comparision using
5504 the given CASING. */
5505
5506 static int
5507 compare_names_with_case (const char *string1, const char *string2,
5508 enum case_sensitivity casing)
5509 {
5510 while (*string1 != '\0' && *string2 != '\0')
5511 {
5512 char c1, c2;
5513
5514 if (isspace (*string1) || isspace (*string2))
5515 return strcmp_iw_ordered (string1, string2);
5516
5517 if (casing == case_sensitive_off)
5518 {
5519 c1 = tolower (*string1);
5520 c2 = tolower (*string2);
5521 }
5522 else
5523 {
5524 c1 = *string1;
5525 c2 = *string2;
5526 }
5527 if (c1 != c2)
5528 break;
5529
5530 string1 += 1;
5531 string2 += 1;
5532 }
5533
5534 switch (*string1)
5535 {
5536 case '(':
5537 return strcmp_iw_ordered (string1, string2);
5538 case '_':
5539 if (*string2 == '\0')
5540 {
5541 if (is_name_suffix (string1))
5542 return 0;
5543 else
5544 return 1;
5545 }
5546 /* FALLTHROUGH */
5547 default:
5548 if (*string2 == '(')
5549 return strcmp_iw_ordered (string1, string2);
5550 else
5551 {
5552 if (casing == case_sensitive_off)
5553 return tolower (*string1) - tolower (*string2);
5554 else
5555 return *string1 - *string2;
5556 }
5557 }
5558 }
5559
5560 /* Compare STRING1 to STRING2, with results as for strcmp.
5561 Compatible with strcmp_iw_ordered in that...
5562
5563 strcmp_iw_ordered (STRING1, STRING2) <= 0
5564
5565 ... implies...
5566
5567 compare_names (STRING1, STRING2) <= 0
5568
5569 (they may differ as to what symbols compare equal). */
5570
5571 static int
5572 compare_names (const char *string1, const char *string2)
5573 {
5574 int result;
5575
5576 /* Similar to what strcmp_iw_ordered does, we need to perform
5577 a case-insensitive comparison first, and only resort to
5578 a second, case-sensitive, comparison if the first one was
5579 not sufficient to differentiate the two strings. */
5580
5581 result = compare_names_with_case (string1, string2, case_sensitive_off);
5582 if (result == 0)
5583 result = compare_names_with_case (string1, string2, case_sensitive_on);
5584
5585 return result;
5586 }
5587
5588 /* Convenience function to get at the Ada encoded lookup name for
5589 LOOKUP_NAME, as a C string. */
5590
5591 static const char *
5592 ada_lookup_name (const lookup_name_info &lookup_name)
5593 {
5594 return lookup_name.ada ().lookup_name ().c_str ();
5595 }
5596
5597 /* Add to OBSTACKP all non-local symbols whose name and domain match
5598 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5599 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5600 symbols otherwise. */
5601
5602 static void
5603 add_nonlocal_symbols (struct obstack *obstackp,
5604 const lookup_name_info &lookup_name,
5605 domain_enum domain, int global)
5606 {
5607 struct compunit_symtab *cu;
5608 struct match_data data;
5609
5610 memset (&data, 0, sizeof data);
5611 data.obstackp = obstackp;
5612
5613 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5614
5615 for (objfile *objfile : all_objfiles (current_program_space))
5616 {
5617 data.objfile = objfile;
5618
5619 if (is_wild_match)
5620 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5621 domain, global,
5622 aux_add_nonlocal_symbols, &data,
5623 symbol_name_match_type::WILD,
5624 NULL);
5625 else
5626 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5627 domain, global,
5628 aux_add_nonlocal_symbols, &data,
5629 symbol_name_match_type::FULL,
5630 compare_names);
5631
5632 ALL_OBJFILE_COMPUNITS (objfile, cu)
5633 {
5634 const struct block *global_block
5635 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5636
5637 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5638 domain))
5639 data.found_sym = 1;
5640 }
5641 }
5642
5643 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5644 {
5645 const char *name = ada_lookup_name (lookup_name);
5646 std::string name1 = std::string ("<_ada_") + name + '>';
5647
5648 for (objfile *objfile : all_objfiles (current_program_space))
5649 {
5650 data.objfile = objfile;
5651 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5652 domain, global,
5653 aux_add_nonlocal_symbols,
5654 &data,
5655 symbol_name_match_type::FULL,
5656 compare_names);
5657 }
5658 }
5659 }
5660
5661 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5662 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5663 returning the number of matches. Add these to OBSTACKP.
5664
5665 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5666 symbol match within the nest of blocks whose innermost member is BLOCK,
5667 is the one match returned (no other matches in that or
5668 enclosing blocks is returned). If there are any matches in or
5669 surrounding BLOCK, then these alone are returned.
5670
5671 Names prefixed with "standard__" are handled specially:
5672 "standard__" is first stripped off (by the lookup_name
5673 constructor), and only static and global symbols are searched.
5674
5675 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5676 to lookup global symbols. */
5677
5678 static void
5679 ada_add_all_symbols (struct obstack *obstackp,
5680 const struct block *block,
5681 const lookup_name_info &lookup_name,
5682 domain_enum domain,
5683 int full_search,
5684 int *made_global_lookup_p)
5685 {
5686 struct symbol *sym;
5687
5688 if (made_global_lookup_p)
5689 *made_global_lookup_p = 0;
5690
5691 /* Special case: If the user specifies a symbol name inside package
5692 Standard, do a non-wild matching of the symbol name without
5693 the "standard__" prefix. This was primarily introduced in order
5694 to allow the user to specifically access the standard exceptions
5695 using, for instance, Standard.Constraint_Error when Constraint_Error
5696 is ambiguous (due to the user defining its own Constraint_Error
5697 entity inside its program). */
5698 if (lookup_name.ada ().standard_p ())
5699 block = NULL;
5700
5701 /* Check the non-global symbols. If we have ANY match, then we're done. */
5702
5703 if (block != NULL)
5704 {
5705 if (full_search)
5706 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5707 else
5708 {
5709 /* In the !full_search case we're are being called by
5710 ada_iterate_over_symbols, and we don't want to search
5711 superblocks. */
5712 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5713 }
5714 if (num_defns_collected (obstackp) > 0 || !full_search)
5715 return;
5716 }
5717
5718 /* No non-global symbols found. Check our cache to see if we have
5719 already performed this search before. If we have, then return
5720 the same result. */
5721
5722 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5723 domain, &sym, &block))
5724 {
5725 if (sym != NULL)
5726 add_defn_to_vec (obstackp, sym, block);
5727 return;
5728 }
5729
5730 if (made_global_lookup_p)
5731 *made_global_lookup_p = 1;
5732
5733 /* Search symbols from all global blocks. */
5734
5735 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5736
5737 /* Now add symbols from all per-file blocks if we've gotten no hits
5738 (not strictly correct, but perhaps better than an error). */
5739
5740 if (num_defns_collected (obstackp) == 0)
5741 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5742 }
5743
5744 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5745 is non-zero, enclosing scope and in global scopes, returning the number of
5746 matches.
5747 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5748 found and the blocks and symbol tables (if any) in which they were
5749 found.
5750
5751 When full_search is non-zero, any non-function/non-enumeral
5752 symbol match within the nest of blocks whose innermost member is BLOCK,
5753 is the one match returned (no other matches in that or
5754 enclosing blocks is returned). If there are any matches in or
5755 surrounding BLOCK, then these alone are returned.
5756
5757 Names prefixed with "standard__" are handled specially: "standard__"
5758 is first stripped off, and only static and global symbols are searched. */
5759
5760 static int
5761 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5762 const struct block *block,
5763 domain_enum domain,
5764 std::vector<struct block_symbol> *results,
5765 int full_search)
5766 {
5767 int syms_from_global_search;
5768 int ndefns;
5769 auto_obstack obstack;
5770
5771 ada_add_all_symbols (&obstack, block, lookup_name,
5772 domain, full_search, &syms_from_global_search);
5773
5774 ndefns = num_defns_collected (&obstack);
5775
5776 struct block_symbol *base = defns_collected (&obstack, 1);
5777 for (int i = 0; i < ndefns; ++i)
5778 results->push_back (base[i]);
5779
5780 ndefns = remove_extra_symbols (results);
5781
5782 if (ndefns == 0 && full_search && syms_from_global_search)
5783 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5784
5785 if (ndefns == 1 && full_search && syms_from_global_search)
5786 cache_symbol (ada_lookup_name (lookup_name), domain,
5787 (*results)[0].symbol, (*results)[0].block);
5788
5789 ndefns = remove_irrelevant_renamings (results, block);
5790
5791 return ndefns;
5792 }
5793
5794 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5795 in global scopes, returning the number of matches, and filling *RESULTS
5796 with (SYM,BLOCK) tuples.
5797
5798 See ada_lookup_symbol_list_worker for further details. */
5799
5800 int
5801 ada_lookup_symbol_list (const char *name, const struct block *block,
5802 domain_enum domain,
5803 std::vector<struct block_symbol> *results)
5804 {
5805 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5806 lookup_name_info lookup_name (name, name_match_type);
5807
5808 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5809 }
5810
5811 /* Implementation of the la_iterate_over_symbols method. */
5812
5813 static void
5814 ada_iterate_over_symbols
5815 (const struct block *block, const lookup_name_info &name,
5816 domain_enum domain,
5817 gdb::function_view<symbol_found_callback_ftype> callback)
5818 {
5819 int ndefs, i;
5820 std::vector<struct block_symbol> results;
5821
5822 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5823
5824 for (i = 0; i < ndefs; ++i)
5825 {
5826 if (!callback (&results[i]))
5827 break;
5828 }
5829 }
5830
5831 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5832 to 1, but choosing the first symbol found if there are multiple
5833 choices.
5834
5835 The result is stored in *INFO, which must be non-NULL.
5836 If no match is found, INFO->SYM is set to NULL. */
5837
5838 void
5839 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5840 domain_enum domain,
5841 struct block_symbol *info)
5842 {
5843 /* Since we already have an encoded name, wrap it in '<>' to force a
5844 verbatim match. Otherwise, if the name happens to not look like
5845 an encoded name (because it doesn't include a "__"),
5846 ada_lookup_name_info would re-encode/fold it again, and that
5847 would e.g., incorrectly lowercase object renaming names like
5848 "R28b" -> "r28b". */
5849 std::string verbatim = std::string ("<") + name + '>';
5850
5851 gdb_assert (info != NULL);
5852 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5853 }
5854
5855 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5856 scope and in global scopes, or NULL if none. NAME is folded and
5857 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5858 choosing the first symbol if there are multiple choices.
5859 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5860
5861 struct block_symbol
5862 ada_lookup_symbol (const char *name, const struct block *block0,
5863 domain_enum domain, int *is_a_field_of_this)
5864 {
5865 if (is_a_field_of_this != NULL)
5866 *is_a_field_of_this = 0;
5867
5868 std::vector<struct block_symbol> candidates;
5869 int n_candidates;
5870
5871 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5872
5873 if (n_candidates == 0)
5874 return {};
5875
5876 block_symbol info = candidates[0];
5877 info.symbol = fixup_symbol_section (info.symbol, NULL);
5878 return info;
5879 }
5880
5881 static struct block_symbol
5882 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5883 const char *name,
5884 const struct block *block,
5885 const domain_enum domain)
5886 {
5887 struct block_symbol sym;
5888
5889 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5890 if (sym.symbol != NULL)
5891 return sym;
5892
5893 /* If we haven't found a match at this point, try the primitive
5894 types. In other languages, this search is performed before
5895 searching for global symbols in order to short-circuit that
5896 global-symbol search if it happens that the name corresponds
5897 to a primitive type. But we cannot do the same in Ada, because
5898 it is perfectly legitimate for a program to declare a type which
5899 has the same name as a standard type. If looking up a type in
5900 that situation, we have traditionally ignored the primitive type
5901 in favor of user-defined types. This is why, unlike most other
5902 languages, we search the primitive types this late and only after
5903 having searched the global symbols without success. */
5904
5905 if (domain == VAR_DOMAIN)
5906 {
5907 struct gdbarch *gdbarch;
5908
5909 if (block == NULL)
5910 gdbarch = target_gdbarch ();
5911 else
5912 gdbarch = block_gdbarch (block);
5913 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5914 if (sym.symbol != NULL)
5915 return sym;
5916 }
5917
5918 return (struct block_symbol) {NULL, NULL};
5919 }
5920
5921
5922 /* True iff STR is a possible encoded suffix of a normal Ada name
5923 that is to be ignored for matching purposes. Suffixes of parallel
5924 names (e.g., XVE) are not included here. Currently, the possible suffixes
5925 are given by any of the regular expressions:
5926
5927 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5928 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5929 TKB [subprogram suffix for task bodies]
5930 _E[0-9]+[bs]$ [protected object entry suffixes]
5931 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5932
5933 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5934 match is performed. This sequence is used to differentiate homonyms,
5935 is an optional part of a valid name suffix. */
5936
5937 static int
5938 is_name_suffix (const char *str)
5939 {
5940 int k;
5941 const char *matching;
5942 const int len = strlen (str);
5943
5944 /* Skip optional leading __[0-9]+. */
5945
5946 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5947 {
5948 str += 3;
5949 while (isdigit (str[0]))
5950 str += 1;
5951 }
5952
5953 /* [.$][0-9]+ */
5954
5955 if (str[0] == '.' || str[0] == '$')
5956 {
5957 matching = str + 1;
5958 while (isdigit (matching[0]))
5959 matching += 1;
5960 if (matching[0] == '\0')
5961 return 1;
5962 }
5963
5964 /* ___[0-9]+ */
5965
5966 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5967 {
5968 matching = str + 3;
5969 while (isdigit (matching[0]))
5970 matching += 1;
5971 if (matching[0] == '\0')
5972 return 1;
5973 }
5974
5975 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5976
5977 if (strcmp (str, "TKB") == 0)
5978 return 1;
5979
5980 #if 0
5981 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5982 with a N at the end. Unfortunately, the compiler uses the same
5983 convention for other internal types it creates. So treating
5984 all entity names that end with an "N" as a name suffix causes
5985 some regressions. For instance, consider the case of an enumerated
5986 type. To support the 'Image attribute, it creates an array whose
5987 name ends with N.
5988 Having a single character like this as a suffix carrying some
5989 information is a bit risky. Perhaps we should change the encoding
5990 to be something like "_N" instead. In the meantime, do not do
5991 the following check. */
5992 /* Protected Object Subprograms */
5993 if (len == 1 && str [0] == 'N')
5994 return 1;
5995 #endif
5996
5997 /* _E[0-9]+[bs]$ */
5998 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5999 {
6000 matching = str + 3;
6001 while (isdigit (matching[0]))
6002 matching += 1;
6003 if ((matching[0] == 'b' || matching[0] == 's')
6004 && matching [1] == '\0')
6005 return 1;
6006 }
6007
6008 /* ??? We should not modify STR directly, as we are doing below. This
6009 is fine in this case, but may become problematic later if we find
6010 that this alternative did not work, and want to try matching
6011 another one from the begining of STR. Since we modified it, we
6012 won't be able to find the begining of the string anymore! */
6013 if (str[0] == 'X')
6014 {
6015 str += 1;
6016 while (str[0] != '_' && str[0] != '\0')
6017 {
6018 if (str[0] != 'n' && str[0] != 'b')
6019 return 0;
6020 str += 1;
6021 }
6022 }
6023
6024 if (str[0] == '\000')
6025 return 1;
6026
6027 if (str[0] == '_')
6028 {
6029 if (str[1] != '_' || str[2] == '\000')
6030 return 0;
6031 if (str[2] == '_')
6032 {
6033 if (strcmp (str + 3, "JM") == 0)
6034 return 1;
6035 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6036 the LJM suffix in favor of the JM one. But we will
6037 still accept LJM as a valid suffix for a reasonable
6038 amount of time, just to allow ourselves to debug programs
6039 compiled using an older version of GNAT. */
6040 if (strcmp (str + 3, "LJM") == 0)
6041 return 1;
6042 if (str[3] != 'X')
6043 return 0;
6044 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6045 || str[4] == 'U' || str[4] == 'P')
6046 return 1;
6047 if (str[4] == 'R' && str[5] != 'T')
6048 return 1;
6049 return 0;
6050 }
6051 if (!isdigit (str[2]))
6052 return 0;
6053 for (k = 3; str[k] != '\0'; k += 1)
6054 if (!isdigit (str[k]) && str[k] != '_')
6055 return 0;
6056 return 1;
6057 }
6058 if (str[0] == '$' && isdigit (str[1]))
6059 {
6060 for (k = 2; str[k] != '\0'; k += 1)
6061 if (!isdigit (str[k]) && str[k] != '_')
6062 return 0;
6063 return 1;
6064 }
6065 return 0;
6066 }
6067
6068 /* Return non-zero if the string starting at NAME and ending before
6069 NAME_END contains no capital letters. */
6070
6071 static int
6072 is_valid_name_for_wild_match (const char *name0)
6073 {
6074 const char *decoded_name = ada_decode (name0);
6075 int i;
6076
6077 /* If the decoded name starts with an angle bracket, it means that
6078 NAME0 does not follow the GNAT encoding format. It should then
6079 not be allowed as a possible wild match. */
6080 if (decoded_name[0] == '<')
6081 return 0;
6082
6083 for (i=0; decoded_name[i] != '\0'; i++)
6084 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6085 return 0;
6086
6087 return 1;
6088 }
6089
6090 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6091 that could start a simple name. Assumes that *NAMEP points into
6092 the string beginning at NAME0. */
6093
6094 static int
6095 advance_wild_match (const char **namep, const char *name0, int target0)
6096 {
6097 const char *name = *namep;
6098
6099 while (1)
6100 {
6101 int t0, t1;
6102
6103 t0 = *name;
6104 if (t0 == '_')
6105 {
6106 t1 = name[1];
6107 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6108 {
6109 name += 1;
6110 if (name == name0 + 5 && startswith (name0, "_ada"))
6111 break;
6112 else
6113 name += 1;
6114 }
6115 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6116 || name[2] == target0))
6117 {
6118 name += 2;
6119 break;
6120 }
6121 else
6122 return 0;
6123 }
6124 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6125 name += 1;
6126 else
6127 return 0;
6128 }
6129
6130 *namep = name;
6131 return 1;
6132 }
6133
6134 /* Return true iff NAME encodes a name of the form prefix.PATN.
6135 Ignores any informational suffixes of NAME (i.e., for which
6136 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6137 simple name. */
6138
6139 static bool
6140 wild_match (const char *name, const char *patn)
6141 {
6142 const char *p;
6143 const char *name0 = name;
6144
6145 while (1)
6146 {
6147 const char *match = name;
6148
6149 if (*name == *patn)
6150 {
6151 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6152 if (*p != *name)
6153 break;
6154 if (*p == '\0' && is_name_suffix (name))
6155 return match == name0 || is_valid_name_for_wild_match (name0);
6156
6157 if (name[-1] == '_')
6158 name -= 1;
6159 }
6160 if (!advance_wild_match (&name, name0, *patn))
6161 return false;
6162 }
6163 }
6164
6165 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6166 any trailing suffixes that encode debugging information or leading
6167 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6168 information that is ignored). */
6169
6170 static bool
6171 full_match (const char *sym_name, const char *search_name)
6172 {
6173 size_t search_name_len = strlen (search_name);
6174
6175 if (strncmp (sym_name, search_name, search_name_len) == 0
6176 && is_name_suffix (sym_name + search_name_len))
6177 return true;
6178
6179 if (startswith (sym_name, "_ada_")
6180 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6181 && is_name_suffix (sym_name + search_name_len + 5))
6182 return true;
6183
6184 return false;
6185 }
6186
6187 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6188 *defn_symbols, updating the list of symbols in OBSTACKP (if
6189 necessary). OBJFILE is the section containing BLOCK. */
6190
6191 static void
6192 ada_add_block_symbols (struct obstack *obstackp,
6193 const struct block *block,
6194 const lookup_name_info &lookup_name,
6195 domain_enum domain, struct objfile *objfile)
6196 {
6197 struct block_iterator iter;
6198 /* A matching argument symbol, if any. */
6199 struct symbol *arg_sym;
6200 /* Set true when we find a matching non-argument symbol. */
6201 int found_sym;
6202 struct symbol *sym;
6203
6204 arg_sym = NULL;
6205 found_sym = 0;
6206 for (sym = block_iter_match_first (block, lookup_name, &iter);
6207 sym != NULL;
6208 sym = block_iter_match_next (lookup_name, &iter))
6209 {
6210 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6211 SYMBOL_DOMAIN (sym), domain))
6212 {
6213 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6214 {
6215 if (SYMBOL_IS_ARGUMENT (sym))
6216 arg_sym = sym;
6217 else
6218 {
6219 found_sym = 1;
6220 add_defn_to_vec (obstackp,
6221 fixup_symbol_section (sym, objfile),
6222 block);
6223 }
6224 }
6225 }
6226 }
6227
6228 /* Handle renamings. */
6229
6230 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6231 found_sym = 1;
6232
6233 if (!found_sym && arg_sym != NULL)
6234 {
6235 add_defn_to_vec (obstackp,
6236 fixup_symbol_section (arg_sym, objfile),
6237 block);
6238 }
6239
6240 if (!lookup_name.ada ().wild_match_p ())
6241 {
6242 arg_sym = NULL;
6243 found_sym = 0;
6244 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6245 const char *name = ada_lookup_name.c_str ();
6246 size_t name_len = ada_lookup_name.size ();
6247
6248 ALL_BLOCK_SYMBOLS (block, iter, sym)
6249 {
6250 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6251 SYMBOL_DOMAIN (sym), domain))
6252 {
6253 int cmp;
6254
6255 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6256 if (cmp == 0)
6257 {
6258 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6259 if (cmp == 0)
6260 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6261 name_len);
6262 }
6263
6264 if (cmp == 0
6265 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6266 {
6267 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6268 {
6269 if (SYMBOL_IS_ARGUMENT (sym))
6270 arg_sym = sym;
6271 else
6272 {
6273 found_sym = 1;
6274 add_defn_to_vec (obstackp,
6275 fixup_symbol_section (sym, objfile),
6276 block);
6277 }
6278 }
6279 }
6280 }
6281 }
6282
6283 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6284 They aren't parameters, right? */
6285 if (!found_sym && arg_sym != NULL)
6286 {
6287 add_defn_to_vec (obstackp,
6288 fixup_symbol_section (arg_sym, objfile),
6289 block);
6290 }
6291 }
6292 }
6293 \f
6294
6295 /* Symbol Completion */
6296
6297 /* See symtab.h. */
6298
6299 bool
6300 ada_lookup_name_info::matches
6301 (const char *sym_name,
6302 symbol_name_match_type match_type,
6303 completion_match_result *comp_match_res) const
6304 {
6305 bool match = false;
6306 const char *text = m_encoded_name.c_str ();
6307 size_t text_len = m_encoded_name.size ();
6308
6309 /* First, test against the fully qualified name of the symbol. */
6310
6311 if (strncmp (sym_name, text, text_len) == 0)
6312 match = true;
6313
6314 if (match && !m_encoded_p)
6315 {
6316 /* One needed check before declaring a positive match is to verify
6317 that iff we are doing a verbatim match, the decoded version
6318 of the symbol name starts with '<'. Otherwise, this symbol name
6319 is not a suitable completion. */
6320 const char *sym_name_copy = sym_name;
6321 bool has_angle_bracket;
6322
6323 sym_name = ada_decode (sym_name);
6324 has_angle_bracket = (sym_name[0] == '<');
6325 match = (has_angle_bracket == m_verbatim_p);
6326 sym_name = sym_name_copy;
6327 }
6328
6329 if (match && !m_verbatim_p)
6330 {
6331 /* When doing non-verbatim match, another check that needs to
6332 be done is to verify that the potentially matching symbol name
6333 does not include capital letters, because the ada-mode would
6334 not be able to understand these symbol names without the
6335 angle bracket notation. */
6336 const char *tmp;
6337
6338 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6339 if (*tmp != '\0')
6340 match = false;
6341 }
6342
6343 /* Second: Try wild matching... */
6344
6345 if (!match && m_wild_match_p)
6346 {
6347 /* Since we are doing wild matching, this means that TEXT
6348 may represent an unqualified symbol name. We therefore must
6349 also compare TEXT against the unqualified name of the symbol. */
6350 sym_name = ada_unqualified_name (ada_decode (sym_name));
6351
6352 if (strncmp (sym_name, text, text_len) == 0)
6353 match = true;
6354 }
6355
6356 /* Finally: If we found a match, prepare the result to return. */
6357
6358 if (!match)
6359 return false;
6360
6361 if (comp_match_res != NULL)
6362 {
6363 std::string &match_str = comp_match_res->match.storage ();
6364
6365 if (!m_encoded_p)
6366 match_str = ada_decode (sym_name);
6367 else
6368 {
6369 if (m_verbatim_p)
6370 match_str = add_angle_brackets (sym_name);
6371 else
6372 match_str = sym_name;
6373
6374 }
6375
6376 comp_match_res->set_match (match_str.c_str ());
6377 }
6378
6379 return true;
6380 }
6381
6382 /* Add the list of possible symbol names completing TEXT to TRACKER.
6383 WORD is the entire command on which completion is made. */
6384
6385 static void
6386 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6387 complete_symbol_mode mode,
6388 symbol_name_match_type name_match_type,
6389 const char *text, const char *word,
6390 enum type_code code)
6391 {
6392 struct symbol *sym;
6393 struct compunit_symtab *s;
6394 struct minimal_symbol *msymbol;
6395 struct objfile *objfile;
6396 const struct block *b, *surrounding_static_block = 0;
6397 struct block_iterator iter;
6398
6399 gdb_assert (code == TYPE_CODE_UNDEF);
6400
6401 lookup_name_info lookup_name (text, name_match_type, true);
6402
6403 /* First, look at the partial symtab symbols. */
6404 expand_symtabs_matching (NULL,
6405 lookup_name,
6406 NULL,
6407 NULL,
6408 ALL_DOMAIN);
6409
6410 /* At this point scan through the misc symbol vectors and add each
6411 symbol you find to the list. Eventually we want to ignore
6412 anything that isn't a text symbol (everything else will be
6413 handled by the psymtab code above). */
6414
6415 ALL_MSYMBOLS (objfile, msymbol)
6416 {
6417 QUIT;
6418
6419 if (completion_skip_symbol (mode, msymbol))
6420 continue;
6421
6422 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6423
6424 /* Ada minimal symbols won't have their language set to Ada. If
6425 we let completion_list_add_name compare using the
6426 default/C-like matcher, then when completing e.g., symbols in a
6427 package named "pck", we'd match internal Ada symbols like
6428 "pckS", which are invalid in an Ada expression, unless you wrap
6429 them in '<' '>' to request a verbatim match.
6430
6431 Unfortunately, some Ada encoded names successfully demangle as
6432 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6433 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6434 with the wrong language set. Paper over that issue here. */
6435 if (symbol_language == language_auto
6436 || symbol_language == language_cplus)
6437 symbol_language = language_ada;
6438
6439 completion_list_add_name (tracker,
6440 symbol_language,
6441 MSYMBOL_LINKAGE_NAME (msymbol),
6442 lookup_name, text, word);
6443 }
6444
6445 /* Search upwards from currently selected frame (so that we can
6446 complete on local vars. */
6447
6448 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6449 {
6450 if (!BLOCK_SUPERBLOCK (b))
6451 surrounding_static_block = b; /* For elmin of dups */
6452
6453 ALL_BLOCK_SYMBOLS (b, iter, sym)
6454 {
6455 if (completion_skip_symbol (mode, sym))
6456 continue;
6457
6458 completion_list_add_name (tracker,
6459 SYMBOL_LANGUAGE (sym),
6460 SYMBOL_LINKAGE_NAME (sym),
6461 lookup_name, text, word);
6462 }
6463 }
6464
6465 /* Go through the symtabs and check the externs and statics for
6466 symbols which match. */
6467
6468 ALL_COMPUNITS (objfile, s)
6469 {
6470 QUIT;
6471 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6472 ALL_BLOCK_SYMBOLS (b, iter, sym)
6473 {
6474 if (completion_skip_symbol (mode, sym))
6475 continue;
6476
6477 completion_list_add_name (tracker,
6478 SYMBOL_LANGUAGE (sym),
6479 SYMBOL_LINKAGE_NAME (sym),
6480 lookup_name, text, word);
6481 }
6482 }
6483
6484 ALL_COMPUNITS (objfile, s)
6485 {
6486 QUIT;
6487 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6488 /* Don't do this block twice. */
6489 if (b == surrounding_static_block)
6490 continue;
6491 ALL_BLOCK_SYMBOLS (b, iter, sym)
6492 {
6493 if (completion_skip_symbol (mode, sym))
6494 continue;
6495
6496 completion_list_add_name (tracker,
6497 SYMBOL_LANGUAGE (sym),
6498 SYMBOL_LINKAGE_NAME (sym),
6499 lookup_name, text, word);
6500 }
6501 }
6502 }
6503
6504 /* Field Access */
6505
6506 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6507 for tagged types. */
6508
6509 static int
6510 ada_is_dispatch_table_ptr_type (struct type *type)
6511 {
6512 const char *name;
6513
6514 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6515 return 0;
6516
6517 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6518 if (name == NULL)
6519 return 0;
6520
6521 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6522 }
6523
6524 /* Return non-zero if TYPE is an interface tag. */
6525
6526 static int
6527 ada_is_interface_tag (struct type *type)
6528 {
6529 const char *name = TYPE_NAME (type);
6530
6531 if (name == NULL)
6532 return 0;
6533
6534 return (strcmp (name, "ada__tags__interface_tag") == 0);
6535 }
6536
6537 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6538 to be invisible to users. */
6539
6540 int
6541 ada_is_ignored_field (struct type *type, int field_num)
6542 {
6543 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6544 return 1;
6545
6546 /* Check the name of that field. */
6547 {
6548 const char *name = TYPE_FIELD_NAME (type, field_num);
6549
6550 /* Anonymous field names should not be printed.
6551 brobecker/2007-02-20: I don't think this can actually happen
6552 but we don't want to print the value of annonymous fields anyway. */
6553 if (name == NULL)
6554 return 1;
6555
6556 /* Normally, fields whose name start with an underscore ("_")
6557 are fields that have been internally generated by the compiler,
6558 and thus should not be printed. The "_parent" field is special,
6559 however: This is a field internally generated by the compiler
6560 for tagged types, and it contains the components inherited from
6561 the parent type. This field should not be printed as is, but
6562 should not be ignored either. */
6563 if (name[0] == '_' && !startswith (name, "_parent"))
6564 return 1;
6565 }
6566
6567 /* If this is the dispatch table of a tagged type or an interface tag,
6568 then ignore. */
6569 if (ada_is_tagged_type (type, 1)
6570 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6571 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6572 return 1;
6573
6574 /* Not a special field, so it should not be ignored. */
6575 return 0;
6576 }
6577
6578 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6579 pointer or reference type whose ultimate target has a tag field. */
6580
6581 int
6582 ada_is_tagged_type (struct type *type, int refok)
6583 {
6584 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6585 }
6586
6587 /* True iff TYPE represents the type of X'Tag */
6588
6589 int
6590 ada_is_tag_type (struct type *type)
6591 {
6592 type = ada_check_typedef (type);
6593
6594 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6595 return 0;
6596 else
6597 {
6598 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6599
6600 return (name != NULL
6601 && strcmp (name, "ada__tags__dispatch_table") == 0);
6602 }
6603 }
6604
6605 /* The type of the tag on VAL. */
6606
6607 struct type *
6608 ada_tag_type (struct value *val)
6609 {
6610 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6611 }
6612
6613 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6614 retired at Ada 05). */
6615
6616 static int
6617 is_ada95_tag (struct value *tag)
6618 {
6619 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6620 }
6621
6622 /* The value of the tag on VAL. */
6623
6624 struct value *
6625 ada_value_tag (struct value *val)
6626 {
6627 return ada_value_struct_elt (val, "_tag", 0);
6628 }
6629
6630 /* The value of the tag on the object of type TYPE whose contents are
6631 saved at VALADDR, if it is non-null, or is at memory address
6632 ADDRESS. */
6633
6634 static struct value *
6635 value_tag_from_contents_and_address (struct type *type,
6636 const gdb_byte *valaddr,
6637 CORE_ADDR address)
6638 {
6639 int tag_byte_offset;
6640 struct type *tag_type;
6641
6642 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6643 NULL, NULL, NULL))
6644 {
6645 const gdb_byte *valaddr1 = ((valaddr == NULL)
6646 ? NULL
6647 : valaddr + tag_byte_offset);
6648 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6649
6650 return value_from_contents_and_address (tag_type, valaddr1, address1);
6651 }
6652 return NULL;
6653 }
6654
6655 static struct type *
6656 type_from_tag (struct value *tag)
6657 {
6658 const char *type_name = ada_tag_name (tag);
6659
6660 if (type_name != NULL)
6661 return ada_find_any_type (ada_encode (type_name));
6662 return NULL;
6663 }
6664
6665 /* Given a value OBJ of a tagged type, return a value of this
6666 type at the base address of the object. The base address, as
6667 defined in Ada.Tags, it is the address of the primary tag of
6668 the object, and therefore where the field values of its full
6669 view can be fetched. */
6670
6671 struct value *
6672 ada_tag_value_at_base_address (struct value *obj)
6673 {
6674 struct value *val;
6675 LONGEST offset_to_top = 0;
6676 struct type *ptr_type, *obj_type;
6677 struct value *tag;
6678 CORE_ADDR base_address;
6679
6680 obj_type = value_type (obj);
6681
6682 /* It is the responsability of the caller to deref pointers. */
6683
6684 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6685 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6686 return obj;
6687
6688 tag = ada_value_tag (obj);
6689 if (!tag)
6690 return obj;
6691
6692 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6693
6694 if (is_ada95_tag (tag))
6695 return obj;
6696
6697 ptr_type = language_lookup_primitive_type
6698 (language_def (language_ada), target_gdbarch(), "storage_offset");
6699 ptr_type = lookup_pointer_type (ptr_type);
6700 val = value_cast (ptr_type, tag);
6701 if (!val)
6702 return obj;
6703
6704 /* It is perfectly possible that an exception be raised while
6705 trying to determine the base address, just like for the tag;
6706 see ada_tag_name for more details. We do not print the error
6707 message for the same reason. */
6708
6709 TRY
6710 {
6711 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6712 }
6713
6714 CATCH (e, RETURN_MASK_ERROR)
6715 {
6716 return obj;
6717 }
6718 END_CATCH
6719
6720 /* If offset is null, nothing to do. */
6721
6722 if (offset_to_top == 0)
6723 return obj;
6724
6725 /* -1 is a special case in Ada.Tags; however, what should be done
6726 is not quite clear from the documentation. So do nothing for
6727 now. */
6728
6729 if (offset_to_top == -1)
6730 return obj;
6731
6732 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6733 from the base address. This was however incompatible with
6734 C++ dispatch table: C++ uses a *negative* value to *add*
6735 to the base address. Ada's convention has therefore been
6736 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6737 use the same convention. Here, we support both cases by
6738 checking the sign of OFFSET_TO_TOP. */
6739
6740 if (offset_to_top > 0)
6741 offset_to_top = -offset_to_top;
6742
6743 base_address = value_address (obj) + offset_to_top;
6744 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6745
6746 /* Make sure that we have a proper tag at the new address.
6747 Otherwise, offset_to_top is bogus (which can happen when
6748 the object is not initialized yet). */
6749
6750 if (!tag)
6751 return obj;
6752
6753 obj_type = type_from_tag (tag);
6754
6755 if (!obj_type)
6756 return obj;
6757
6758 return value_from_contents_and_address (obj_type, NULL, base_address);
6759 }
6760
6761 /* Return the "ada__tags__type_specific_data" type. */
6762
6763 static struct type *
6764 ada_get_tsd_type (struct inferior *inf)
6765 {
6766 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6767
6768 if (data->tsd_type == 0)
6769 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6770 return data->tsd_type;
6771 }
6772
6773 /* Return the TSD (type-specific data) associated to the given TAG.
6774 TAG is assumed to be the tag of a tagged-type entity.
6775
6776 May return NULL if we are unable to get the TSD. */
6777
6778 static struct value *
6779 ada_get_tsd_from_tag (struct value *tag)
6780 {
6781 struct value *val;
6782 struct type *type;
6783
6784 /* First option: The TSD is simply stored as a field of our TAG.
6785 Only older versions of GNAT would use this format, but we have
6786 to test it first, because there are no visible markers for
6787 the current approach except the absence of that field. */
6788
6789 val = ada_value_struct_elt (tag, "tsd", 1);
6790 if (val)
6791 return val;
6792
6793 /* Try the second representation for the dispatch table (in which
6794 there is no explicit 'tsd' field in the referent of the tag pointer,
6795 and instead the tsd pointer is stored just before the dispatch
6796 table. */
6797
6798 type = ada_get_tsd_type (current_inferior());
6799 if (type == NULL)
6800 return NULL;
6801 type = lookup_pointer_type (lookup_pointer_type (type));
6802 val = value_cast (type, tag);
6803 if (val == NULL)
6804 return NULL;
6805 return value_ind (value_ptradd (val, -1));
6806 }
6807
6808 /* Given the TSD of a tag (type-specific data), return a string
6809 containing the name of the associated type.
6810
6811 The returned value is good until the next call. May return NULL
6812 if we are unable to determine the tag name. */
6813
6814 static char *
6815 ada_tag_name_from_tsd (struct value *tsd)
6816 {
6817 static char name[1024];
6818 char *p;
6819 struct value *val;
6820
6821 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6822 if (val == NULL)
6823 return NULL;
6824 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6825 for (p = name; *p != '\0'; p += 1)
6826 if (isalpha (*p))
6827 *p = tolower (*p);
6828 return name;
6829 }
6830
6831 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6832 a C string.
6833
6834 Return NULL if the TAG is not an Ada tag, or if we were unable to
6835 determine the name of that tag. The result is good until the next
6836 call. */
6837
6838 const char *
6839 ada_tag_name (struct value *tag)
6840 {
6841 char *name = NULL;
6842
6843 if (!ada_is_tag_type (value_type (tag)))
6844 return NULL;
6845
6846 /* It is perfectly possible that an exception be raised while trying
6847 to determine the TAG's name, even under normal circumstances:
6848 The associated variable may be uninitialized or corrupted, for
6849 instance. We do not let any exception propagate past this point.
6850 instead we return NULL.
6851
6852 We also do not print the error message either (which often is very
6853 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6854 the caller print a more meaningful message if necessary. */
6855 TRY
6856 {
6857 struct value *tsd = ada_get_tsd_from_tag (tag);
6858
6859 if (tsd != NULL)
6860 name = ada_tag_name_from_tsd (tsd);
6861 }
6862 CATCH (e, RETURN_MASK_ERROR)
6863 {
6864 }
6865 END_CATCH
6866
6867 return name;
6868 }
6869
6870 /* The parent type of TYPE, or NULL if none. */
6871
6872 struct type *
6873 ada_parent_type (struct type *type)
6874 {
6875 int i;
6876
6877 type = ada_check_typedef (type);
6878
6879 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6880 return NULL;
6881
6882 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6883 if (ada_is_parent_field (type, i))
6884 {
6885 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6886
6887 /* If the _parent field is a pointer, then dereference it. */
6888 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6889 parent_type = TYPE_TARGET_TYPE (parent_type);
6890 /* If there is a parallel XVS type, get the actual base type. */
6891 parent_type = ada_get_base_type (parent_type);
6892
6893 return ada_check_typedef (parent_type);
6894 }
6895
6896 return NULL;
6897 }
6898
6899 /* True iff field number FIELD_NUM of structure type TYPE contains the
6900 parent-type (inherited) fields of a derived type. Assumes TYPE is
6901 a structure type with at least FIELD_NUM+1 fields. */
6902
6903 int
6904 ada_is_parent_field (struct type *type, int field_num)
6905 {
6906 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6907
6908 return (name != NULL
6909 && (startswith (name, "PARENT")
6910 || startswith (name, "_parent")));
6911 }
6912
6913 /* True iff field number FIELD_NUM of structure type TYPE is a
6914 transparent wrapper field (which should be silently traversed when doing
6915 field selection and flattened when printing). Assumes TYPE is a
6916 structure type with at least FIELD_NUM+1 fields. Such fields are always
6917 structures. */
6918
6919 int
6920 ada_is_wrapper_field (struct type *type, int field_num)
6921 {
6922 const char *name = TYPE_FIELD_NAME (type, field_num);
6923
6924 if (name != NULL && strcmp (name, "RETVAL") == 0)
6925 {
6926 /* This happens in functions with "out" or "in out" parameters
6927 which are passed by copy. For such functions, GNAT describes
6928 the function's return type as being a struct where the return
6929 value is in a field called RETVAL, and where the other "out"
6930 or "in out" parameters are fields of that struct. This is not
6931 a wrapper. */
6932 return 0;
6933 }
6934
6935 return (name != NULL
6936 && (startswith (name, "PARENT")
6937 || strcmp (name, "REP") == 0
6938 || startswith (name, "_parent")
6939 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6940 }
6941
6942 /* True iff field number FIELD_NUM of structure or union type TYPE
6943 is a variant wrapper. Assumes TYPE is a structure type with at least
6944 FIELD_NUM+1 fields. */
6945
6946 int
6947 ada_is_variant_part (struct type *type, int field_num)
6948 {
6949 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6950
6951 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6952 || (is_dynamic_field (type, field_num)
6953 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6954 == TYPE_CODE_UNION)));
6955 }
6956
6957 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6958 whose discriminants are contained in the record type OUTER_TYPE,
6959 returns the type of the controlling discriminant for the variant.
6960 May return NULL if the type could not be found. */
6961
6962 struct type *
6963 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6964 {
6965 const char *name = ada_variant_discrim_name (var_type);
6966
6967 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6968 }
6969
6970 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6971 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6972 represents a 'when others' clause; otherwise 0. */
6973
6974 int
6975 ada_is_others_clause (struct type *type, int field_num)
6976 {
6977 const char *name = TYPE_FIELD_NAME (type, field_num);
6978
6979 return (name != NULL && name[0] == 'O');
6980 }
6981
6982 /* Assuming that TYPE0 is the type of the variant part of a record,
6983 returns the name of the discriminant controlling the variant.
6984 The value is valid until the next call to ada_variant_discrim_name. */
6985
6986 const char *
6987 ada_variant_discrim_name (struct type *type0)
6988 {
6989 static char *result = NULL;
6990 static size_t result_len = 0;
6991 struct type *type;
6992 const char *name;
6993 const char *discrim_end;
6994 const char *discrim_start;
6995
6996 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6997 type = TYPE_TARGET_TYPE (type0);
6998 else
6999 type = type0;
7000
7001 name = ada_type_name (type);
7002
7003 if (name == NULL || name[0] == '\000')
7004 return "";
7005
7006 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7007 discrim_end -= 1)
7008 {
7009 if (startswith (discrim_end, "___XVN"))
7010 break;
7011 }
7012 if (discrim_end == name)
7013 return "";
7014
7015 for (discrim_start = discrim_end; discrim_start != name + 3;
7016 discrim_start -= 1)
7017 {
7018 if (discrim_start == name + 1)
7019 return "";
7020 if ((discrim_start > name + 3
7021 && startswith (discrim_start - 3, "___"))
7022 || discrim_start[-1] == '.')
7023 break;
7024 }
7025
7026 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7027 strncpy (result, discrim_start, discrim_end - discrim_start);
7028 result[discrim_end - discrim_start] = '\0';
7029 return result;
7030 }
7031
7032 /* Scan STR for a subtype-encoded number, beginning at position K.
7033 Put the position of the character just past the number scanned in
7034 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7035 Return 1 if there was a valid number at the given position, and 0
7036 otherwise. A "subtype-encoded" number consists of the absolute value
7037 in decimal, followed by the letter 'm' to indicate a negative number.
7038 Assumes 0m does not occur. */
7039
7040 int
7041 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7042 {
7043 ULONGEST RU;
7044
7045 if (!isdigit (str[k]))
7046 return 0;
7047
7048 /* Do it the hard way so as not to make any assumption about
7049 the relationship of unsigned long (%lu scan format code) and
7050 LONGEST. */
7051 RU = 0;
7052 while (isdigit (str[k]))
7053 {
7054 RU = RU * 10 + (str[k] - '0');
7055 k += 1;
7056 }
7057
7058 if (str[k] == 'm')
7059 {
7060 if (R != NULL)
7061 *R = (-(LONGEST) (RU - 1)) - 1;
7062 k += 1;
7063 }
7064 else if (R != NULL)
7065 *R = (LONGEST) RU;
7066
7067 /* NOTE on the above: Technically, C does not say what the results of
7068 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7069 number representable as a LONGEST (although either would probably work
7070 in most implementations). When RU>0, the locution in the then branch
7071 above is always equivalent to the negative of RU. */
7072
7073 if (new_k != NULL)
7074 *new_k = k;
7075 return 1;
7076 }
7077
7078 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7079 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7080 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7081
7082 int
7083 ada_in_variant (LONGEST val, struct type *type, int field_num)
7084 {
7085 const char *name = TYPE_FIELD_NAME (type, field_num);
7086 int p;
7087
7088 p = 0;
7089 while (1)
7090 {
7091 switch (name[p])
7092 {
7093 case '\0':
7094 return 0;
7095 case 'S':
7096 {
7097 LONGEST W;
7098
7099 if (!ada_scan_number (name, p + 1, &W, &p))
7100 return 0;
7101 if (val == W)
7102 return 1;
7103 break;
7104 }
7105 case 'R':
7106 {
7107 LONGEST L, U;
7108
7109 if (!ada_scan_number (name, p + 1, &L, &p)
7110 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7111 return 0;
7112 if (val >= L && val <= U)
7113 return 1;
7114 break;
7115 }
7116 case 'O':
7117 return 1;
7118 default:
7119 return 0;
7120 }
7121 }
7122 }
7123
7124 /* FIXME: Lots of redundancy below. Try to consolidate. */
7125
7126 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7127 ARG_TYPE, extract and return the value of one of its (non-static)
7128 fields. FIELDNO says which field. Differs from value_primitive_field
7129 only in that it can handle packed values of arbitrary type. */
7130
7131 static struct value *
7132 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7133 struct type *arg_type)
7134 {
7135 struct type *type;
7136
7137 arg_type = ada_check_typedef (arg_type);
7138 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7139
7140 /* Handle packed fields. */
7141
7142 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7143 {
7144 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7145 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7146
7147 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7148 offset + bit_pos / 8,
7149 bit_pos % 8, bit_size, type);
7150 }
7151 else
7152 return value_primitive_field (arg1, offset, fieldno, arg_type);
7153 }
7154
7155 /* Find field with name NAME in object of type TYPE. If found,
7156 set the following for each argument that is non-null:
7157 - *FIELD_TYPE_P to the field's type;
7158 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7159 an object of that type;
7160 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7161 - *BIT_SIZE_P to its size in bits if the field is packed, and
7162 0 otherwise;
7163 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7164 fields up to but not including the desired field, or by the total
7165 number of fields if not found. A NULL value of NAME never
7166 matches; the function just counts visible fields in this case.
7167
7168 Notice that we need to handle when a tagged record hierarchy
7169 has some components with the same name, like in this scenario:
7170
7171 type Top_T is tagged record
7172 N : Integer := 1;
7173 U : Integer := 974;
7174 A : Integer := 48;
7175 end record;
7176
7177 type Middle_T is new Top.Top_T with record
7178 N : Character := 'a';
7179 C : Integer := 3;
7180 end record;
7181
7182 type Bottom_T is new Middle.Middle_T with record
7183 N : Float := 4.0;
7184 C : Character := '5';
7185 X : Integer := 6;
7186 A : Character := 'J';
7187 end record;
7188
7189 Let's say we now have a variable declared and initialized as follow:
7190
7191 TC : Top_A := new Bottom_T;
7192
7193 And then we use this variable to call this function
7194
7195 procedure Assign (Obj: in out Top_T; TV : Integer);
7196
7197 as follow:
7198
7199 Assign (Top_T (B), 12);
7200
7201 Now, we're in the debugger, and we're inside that procedure
7202 then and we want to print the value of obj.c:
7203
7204 Usually, the tagged record or one of the parent type owns the
7205 component to print and there's no issue but in this particular
7206 case, what does it mean to ask for Obj.C? Since the actual
7207 type for object is type Bottom_T, it could mean two things: type
7208 component C from the Middle_T view, but also component C from
7209 Bottom_T. So in that "undefined" case, when the component is
7210 not found in the non-resolved type (which includes all the
7211 components of the parent type), then resolve it and see if we
7212 get better luck once expanded.
7213
7214 In the case of homonyms in the derived tagged type, we don't
7215 guaranty anything, and pick the one that's easiest for us
7216 to program.
7217
7218 Returns 1 if found, 0 otherwise. */
7219
7220 static int
7221 find_struct_field (const char *name, struct type *type, int offset,
7222 struct type **field_type_p,
7223 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7224 int *index_p)
7225 {
7226 int i;
7227 int parent_offset = -1;
7228
7229 type = ada_check_typedef (type);
7230
7231 if (field_type_p != NULL)
7232 *field_type_p = NULL;
7233 if (byte_offset_p != NULL)
7234 *byte_offset_p = 0;
7235 if (bit_offset_p != NULL)
7236 *bit_offset_p = 0;
7237 if (bit_size_p != NULL)
7238 *bit_size_p = 0;
7239
7240 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7241 {
7242 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7243 int fld_offset = offset + bit_pos / 8;
7244 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7245
7246 if (t_field_name == NULL)
7247 continue;
7248
7249 else if (ada_is_parent_field (type, i))
7250 {
7251 /* This is a field pointing us to the parent type of a tagged
7252 type. As hinted in this function's documentation, we give
7253 preference to fields in the current record first, so what
7254 we do here is just record the index of this field before
7255 we skip it. If it turns out we couldn't find our field
7256 in the current record, then we'll get back to it and search
7257 inside it whether the field might exist in the parent. */
7258
7259 parent_offset = i;
7260 continue;
7261 }
7262
7263 else if (name != NULL && field_name_match (t_field_name, name))
7264 {
7265 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7266
7267 if (field_type_p != NULL)
7268 *field_type_p = TYPE_FIELD_TYPE (type, i);
7269 if (byte_offset_p != NULL)
7270 *byte_offset_p = fld_offset;
7271 if (bit_offset_p != NULL)
7272 *bit_offset_p = bit_pos % 8;
7273 if (bit_size_p != NULL)
7274 *bit_size_p = bit_size;
7275 return 1;
7276 }
7277 else if (ada_is_wrapper_field (type, i))
7278 {
7279 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7280 field_type_p, byte_offset_p, bit_offset_p,
7281 bit_size_p, index_p))
7282 return 1;
7283 }
7284 else if (ada_is_variant_part (type, i))
7285 {
7286 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7287 fixed type?? */
7288 int j;
7289 struct type *field_type
7290 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7291
7292 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7293 {
7294 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7295 fld_offset
7296 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7297 field_type_p, byte_offset_p,
7298 bit_offset_p, bit_size_p, index_p))
7299 return 1;
7300 }
7301 }
7302 else if (index_p != NULL)
7303 *index_p += 1;
7304 }
7305
7306 /* Field not found so far. If this is a tagged type which
7307 has a parent, try finding that field in the parent now. */
7308
7309 if (parent_offset != -1)
7310 {
7311 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7312 int fld_offset = offset + bit_pos / 8;
7313
7314 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7315 fld_offset, field_type_p, byte_offset_p,
7316 bit_offset_p, bit_size_p, index_p))
7317 return 1;
7318 }
7319
7320 return 0;
7321 }
7322
7323 /* Number of user-visible fields in record type TYPE. */
7324
7325 static int
7326 num_visible_fields (struct type *type)
7327 {
7328 int n;
7329
7330 n = 0;
7331 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7332 return n;
7333 }
7334
7335 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7336 and search in it assuming it has (class) type TYPE.
7337 If found, return value, else return NULL.
7338
7339 Searches recursively through wrapper fields (e.g., '_parent').
7340
7341 In the case of homonyms in the tagged types, please refer to the
7342 long explanation in find_struct_field's function documentation. */
7343
7344 static struct value *
7345 ada_search_struct_field (const char *name, struct value *arg, int offset,
7346 struct type *type)
7347 {
7348 int i;
7349 int parent_offset = -1;
7350
7351 type = ada_check_typedef (type);
7352 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7353 {
7354 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7355
7356 if (t_field_name == NULL)
7357 continue;
7358
7359 else if (ada_is_parent_field (type, i))
7360 {
7361 /* This is a field pointing us to the parent type of a tagged
7362 type. As hinted in this function's documentation, we give
7363 preference to fields in the current record first, so what
7364 we do here is just record the index of this field before
7365 we skip it. If it turns out we couldn't find our field
7366 in the current record, then we'll get back to it and search
7367 inside it whether the field might exist in the parent. */
7368
7369 parent_offset = i;
7370 continue;
7371 }
7372
7373 else if (field_name_match (t_field_name, name))
7374 return ada_value_primitive_field (arg, offset, i, type);
7375
7376 else if (ada_is_wrapper_field (type, i))
7377 {
7378 struct value *v = /* Do not let indent join lines here. */
7379 ada_search_struct_field (name, arg,
7380 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7381 TYPE_FIELD_TYPE (type, i));
7382
7383 if (v != NULL)
7384 return v;
7385 }
7386
7387 else if (ada_is_variant_part (type, i))
7388 {
7389 /* PNH: Do we ever get here? See find_struct_field. */
7390 int j;
7391 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7392 i));
7393 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7394
7395 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7396 {
7397 struct value *v = ada_search_struct_field /* Force line
7398 break. */
7399 (name, arg,
7400 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7401 TYPE_FIELD_TYPE (field_type, j));
7402
7403 if (v != NULL)
7404 return v;
7405 }
7406 }
7407 }
7408
7409 /* Field not found so far. If this is a tagged type which
7410 has a parent, try finding that field in the parent now. */
7411
7412 if (parent_offset != -1)
7413 {
7414 struct value *v = ada_search_struct_field (
7415 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7416 TYPE_FIELD_TYPE (type, parent_offset));
7417
7418 if (v != NULL)
7419 return v;
7420 }
7421
7422 return NULL;
7423 }
7424
7425 static struct value *ada_index_struct_field_1 (int *, struct value *,
7426 int, struct type *);
7427
7428
7429 /* Return field #INDEX in ARG, where the index is that returned by
7430 * find_struct_field through its INDEX_P argument. Adjust the address
7431 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7432 * If found, return value, else return NULL. */
7433
7434 static struct value *
7435 ada_index_struct_field (int index, struct value *arg, int offset,
7436 struct type *type)
7437 {
7438 return ada_index_struct_field_1 (&index, arg, offset, type);
7439 }
7440
7441
7442 /* Auxiliary function for ada_index_struct_field. Like
7443 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7444 * *INDEX_P. */
7445
7446 static struct value *
7447 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7448 struct type *type)
7449 {
7450 int i;
7451 type = ada_check_typedef (type);
7452
7453 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7454 {
7455 if (TYPE_FIELD_NAME (type, i) == NULL)
7456 continue;
7457 else if (ada_is_wrapper_field (type, i))
7458 {
7459 struct value *v = /* Do not let indent join lines here. */
7460 ada_index_struct_field_1 (index_p, arg,
7461 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7462 TYPE_FIELD_TYPE (type, i));
7463
7464 if (v != NULL)
7465 return v;
7466 }
7467
7468 else if (ada_is_variant_part (type, i))
7469 {
7470 /* PNH: Do we ever get here? See ada_search_struct_field,
7471 find_struct_field. */
7472 error (_("Cannot assign this kind of variant record"));
7473 }
7474 else if (*index_p == 0)
7475 return ada_value_primitive_field (arg, offset, i, type);
7476 else
7477 *index_p -= 1;
7478 }
7479 return NULL;
7480 }
7481
7482 /* Given ARG, a value of type (pointer or reference to a)*
7483 structure/union, extract the component named NAME from the ultimate
7484 target structure/union and return it as a value with its
7485 appropriate type.
7486
7487 The routine searches for NAME among all members of the structure itself
7488 and (recursively) among all members of any wrapper members
7489 (e.g., '_parent').
7490
7491 If NO_ERR, then simply return NULL in case of error, rather than
7492 calling error. */
7493
7494 struct value *
7495 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7496 {
7497 struct type *t, *t1;
7498 struct value *v;
7499 int check_tag;
7500
7501 v = NULL;
7502 t1 = t = ada_check_typedef (value_type (arg));
7503 if (TYPE_CODE (t) == TYPE_CODE_REF)
7504 {
7505 t1 = TYPE_TARGET_TYPE (t);
7506 if (t1 == NULL)
7507 goto BadValue;
7508 t1 = ada_check_typedef (t1);
7509 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7510 {
7511 arg = coerce_ref (arg);
7512 t = t1;
7513 }
7514 }
7515
7516 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7517 {
7518 t1 = TYPE_TARGET_TYPE (t);
7519 if (t1 == NULL)
7520 goto BadValue;
7521 t1 = ada_check_typedef (t1);
7522 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7523 {
7524 arg = value_ind (arg);
7525 t = t1;
7526 }
7527 else
7528 break;
7529 }
7530
7531 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7532 goto BadValue;
7533
7534 if (t1 == t)
7535 v = ada_search_struct_field (name, arg, 0, t);
7536 else
7537 {
7538 int bit_offset, bit_size, byte_offset;
7539 struct type *field_type;
7540 CORE_ADDR address;
7541
7542 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7543 address = value_address (ada_value_ind (arg));
7544 else
7545 address = value_address (ada_coerce_ref (arg));
7546
7547 /* Check to see if this is a tagged type. We also need to handle
7548 the case where the type is a reference to a tagged type, but
7549 we have to be careful to exclude pointers to tagged types.
7550 The latter should be shown as usual (as a pointer), whereas
7551 a reference should mostly be transparent to the user. */
7552
7553 if (ada_is_tagged_type (t1, 0)
7554 || (TYPE_CODE (t1) == TYPE_CODE_REF
7555 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7556 {
7557 /* We first try to find the searched field in the current type.
7558 If not found then let's look in the fixed type. */
7559
7560 if (!find_struct_field (name, t1, 0,
7561 &field_type, &byte_offset, &bit_offset,
7562 &bit_size, NULL))
7563 check_tag = 1;
7564 else
7565 check_tag = 0;
7566 }
7567 else
7568 check_tag = 0;
7569
7570 /* Convert to fixed type in all cases, so that we have proper
7571 offsets to each field in unconstrained record types. */
7572 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7573 address, NULL, check_tag);
7574
7575 if (find_struct_field (name, t1, 0,
7576 &field_type, &byte_offset, &bit_offset,
7577 &bit_size, NULL))
7578 {
7579 if (bit_size != 0)
7580 {
7581 if (TYPE_CODE (t) == TYPE_CODE_REF)
7582 arg = ada_coerce_ref (arg);
7583 else
7584 arg = ada_value_ind (arg);
7585 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7586 bit_offset, bit_size,
7587 field_type);
7588 }
7589 else
7590 v = value_at_lazy (field_type, address + byte_offset);
7591 }
7592 }
7593
7594 if (v != NULL || no_err)
7595 return v;
7596 else
7597 error (_("There is no member named %s."), name);
7598
7599 BadValue:
7600 if (no_err)
7601 return NULL;
7602 else
7603 error (_("Attempt to extract a component of "
7604 "a value that is not a record."));
7605 }
7606
7607 /* Return a string representation of type TYPE. */
7608
7609 static std::string
7610 type_as_string (struct type *type)
7611 {
7612 string_file tmp_stream;
7613
7614 type_print (type, "", &tmp_stream, -1);
7615
7616 return std::move (tmp_stream.string ());
7617 }
7618
7619 /* Given a type TYPE, look up the type of the component of type named NAME.
7620 If DISPP is non-null, add its byte displacement from the beginning of a
7621 structure (pointed to by a value) of type TYPE to *DISPP (does not
7622 work for packed fields).
7623
7624 Matches any field whose name has NAME as a prefix, possibly
7625 followed by "___".
7626
7627 TYPE can be either a struct or union. If REFOK, TYPE may also
7628 be a (pointer or reference)+ to a struct or union, and the
7629 ultimate target type will be searched.
7630
7631 Looks recursively into variant clauses and parent types.
7632
7633 In the case of homonyms in the tagged types, please refer to the
7634 long explanation in find_struct_field's function documentation.
7635
7636 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7637 TYPE is not a type of the right kind. */
7638
7639 static struct type *
7640 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7641 int noerr)
7642 {
7643 int i;
7644 int parent_offset = -1;
7645
7646 if (name == NULL)
7647 goto BadName;
7648
7649 if (refok && type != NULL)
7650 while (1)
7651 {
7652 type = ada_check_typedef (type);
7653 if (TYPE_CODE (type) != TYPE_CODE_PTR
7654 && TYPE_CODE (type) != TYPE_CODE_REF)
7655 break;
7656 type = TYPE_TARGET_TYPE (type);
7657 }
7658
7659 if (type == NULL
7660 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7661 && TYPE_CODE (type) != TYPE_CODE_UNION))
7662 {
7663 if (noerr)
7664 return NULL;
7665
7666 error (_("Type %s is not a structure or union type"),
7667 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7668 }
7669
7670 type = to_static_fixed_type (type);
7671
7672 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7673 {
7674 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7675 struct type *t;
7676
7677 if (t_field_name == NULL)
7678 continue;
7679
7680 else if (ada_is_parent_field (type, i))
7681 {
7682 /* This is a field pointing us to the parent type of a tagged
7683 type. As hinted in this function's documentation, we give
7684 preference to fields in the current record first, so what
7685 we do here is just record the index of this field before
7686 we skip it. If it turns out we couldn't find our field
7687 in the current record, then we'll get back to it and search
7688 inside it whether the field might exist in the parent. */
7689
7690 parent_offset = i;
7691 continue;
7692 }
7693
7694 else if (field_name_match (t_field_name, name))
7695 return TYPE_FIELD_TYPE (type, i);
7696
7697 else if (ada_is_wrapper_field (type, i))
7698 {
7699 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7700 0, 1);
7701 if (t != NULL)
7702 return t;
7703 }
7704
7705 else if (ada_is_variant_part (type, i))
7706 {
7707 int j;
7708 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7709 i));
7710
7711 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7712 {
7713 /* FIXME pnh 2008/01/26: We check for a field that is
7714 NOT wrapped in a struct, since the compiler sometimes
7715 generates these for unchecked variant types. Revisit
7716 if the compiler changes this practice. */
7717 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7718
7719 if (v_field_name != NULL
7720 && field_name_match (v_field_name, name))
7721 t = TYPE_FIELD_TYPE (field_type, j);
7722 else
7723 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7724 j),
7725 name, 0, 1);
7726
7727 if (t != NULL)
7728 return t;
7729 }
7730 }
7731
7732 }
7733
7734 /* Field not found so far. If this is a tagged type which
7735 has a parent, try finding that field in the parent now. */
7736
7737 if (parent_offset != -1)
7738 {
7739 struct type *t;
7740
7741 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7742 name, 0, 1);
7743 if (t != NULL)
7744 return t;
7745 }
7746
7747 BadName:
7748 if (!noerr)
7749 {
7750 const char *name_str = name != NULL ? name : _("<null>");
7751
7752 error (_("Type %s has no component named %s"),
7753 type_as_string (type).c_str (), name_str);
7754 }
7755
7756 return NULL;
7757 }
7758
7759 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7760 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7761 represents an unchecked union (that is, the variant part of a
7762 record that is named in an Unchecked_Union pragma). */
7763
7764 static int
7765 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7766 {
7767 const char *discrim_name = ada_variant_discrim_name (var_type);
7768
7769 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7770 }
7771
7772
7773 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7774 within a value of type OUTER_TYPE that is stored in GDB at
7775 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7776 numbering from 0) is applicable. Returns -1 if none are. */
7777
7778 int
7779 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7780 const gdb_byte *outer_valaddr)
7781 {
7782 int others_clause;
7783 int i;
7784 const char *discrim_name = ada_variant_discrim_name (var_type);
7785 struct value *outer;
7786 struct value *discrim;
7787 LONGEST discrim_val;
7788
7789 /* Using plain value_from_contents_and_address here causes problems
7790 because we will end up trying to resolve a type that is currently
7791 being constructed. */
7792 outer = value_from_contents_and_address_unresolved (outer_type,
7793 outer_valaddr, 0);
7794 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7795 if (discrim == NULL)
7796 return -1;
7797 discrim_val = value_as_long (discrim);
7798
7799 others_clause = -1;
7800 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7801 {
7802 if (ada_is_others_clause (var_type, i))
7803 others_clause = i;
7804 else if (ada_in_variant (discrim_val, var_type, i))
7805 return i;
7806 }
7807
7808 return others_clause;
7809 }
7810 \f
7811
7812
7813 /* Dynamic-Sized Records */
7814
7815 /* Strategy: The type ostensibly attached to a value with dynamic size
7816 (i.e., a size that is not statically recorded in the debugging
7817 data) does not accurately reflect the size or layout of the value.
7818 Our strategy is to convert these values to values with accurate,
7819 conventional types that are constructed on the fly. */
7820
7821 /* There is a subtle and tricky problem here. In general, we cannot
7822 determine the size of dynamic records without its data. However,
7823 the 'struct value' data structure, which GDB uses to represent
7824 quantities in the inferior process (the target), requires the size
7825 of the type at the time of its allocation in order to reserve space
7826 for GDB's internal copy of the data. That's why the
7827 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7828 rather than struct value*s.
7829
7830 However, GDB's internal history variables ($1, $2, etc.) are
7831 struct value*s containing internal copies of the data that are not, in
7832 general, the same as the data at their corresponding addresses in
7833 the target. Fortunately, the types we give to these values are all
7834 conventional, fixed-size types (as per the strategy described
7835 above), so that we don't usually have to perform the
7836 'to_fixed_xxx_type' conversions to look at their values.
7837 Unfortunately, there is one exception: if one of the internal
7838 history variables is an array whose elements are unconstrained
7839 records, then we will need to create distinct fixed types for each
7840 element selected. */
7841
7842 /* The upshot of all of this is that many routines take a (type, host
7843 address, target address) triple as arguments to represent a value.
7844 The host address, if non-null, is supposed to contain an internal
7845 copy of the relevant data; otherwise, the program is to consult the
7846 target at the target address. */
7847
7848 /* Assuming that VAL0 represents a pointer value, the result of
7849 dereferencing it. Differs from value_ind in its treatment of
7850 dynamic-sized types. */
7851
7852 struct value *
7853 ada_value_ind (struct value *val0)
7854 {
7855 struct value *val = value_ind (val0);
7856
7857 if (ada_is_tagged_type (value_type (val), 0))
7858 val = ada_tag_value_at_base_address (val);
7859
7860 return ada_to_fixed_value (val);
7861 }
7862
7863 /* The value resulting from dereferencing any "reference to"
7864 qualifiers on VAL0. */
7865
7866 static struct value *
7867 ada_coerce_ref (struct value *val0)
7868 {
7869 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7870 {
7871 struct value *val = val0;
7872
7873 val = coerce_ref (val);
7874
7875 if (ada_is_tagged_type (value_type (val), 0))
7876 val = ada_tag_value_at_base_address (val);
7877
7878 return ada_to_fixed_value (val);
7879 }
7880 else
7881 return val0;
7882 }
7883
7884 /* Return OFF rounded upward if necessary to a multiple of
7885 ALIGNMENT (a power of 2). */
7886
7887 static unsigned int
7888 align_value (unsigned int off, unsigned int alignment)
7889 {
7890 return (off + alignment - 1) & ~(alignment - 1);
7891 }
7892
7893 /* Return the bit alignment required for field #F of template type TYPE. */
7894
7895 static unsigned int
7896 field_alignment (struct type *type, int f)
7897 {
7898 const char *name = TYPE_FIELD_NAME (type, f);
7899 int len;
7900 int align_offset;
7901
7902 /* The field name should never be null, unless the debugging information
7903 is somehow malformed. In this case, we assume the field does not
7904 require any alignment. */
7905 if (name == NULL)
7906 return 1;
7907
7908 len = strlen (name);
7909
7910 if (!isdigit (name[len - 1]))
7911 return 1;
7912
7913 if (isdigit (name[len - 2]))
7914 align_offset = len - 2;
7915 else
7916 align_offset = len - 1;
7917
7918 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7919 return TARGET_CHAR_BIT;
7920
7921 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7922 }
7923
7924 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7925
7926 static struct symbol *
7927 ada_find_any_type_symbol (const char *name)
7928 {
7929 struct symbol *sym;
7930
7931 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7932 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7933 return sym;
7934
7935 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7936 return sym;
7937 }
7938
7939 /* Find a type named NAME. Ignores ambiguity. This routine will look
7940 solely for types defined by debug info, it will not search the GDB
7941 primitive types. */
7942
7943 static struct type *
7944 ada_find_any_type (const char *name)
7945 {
7946 struct symbol *sym = ada_find_any_type_symbol (name);
7947
7948 if (sym != NULL)
7949 return SYMBOL_TYPE (sym);
7950
7951 return NULL;
7952 }
7953
7954 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7955 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7956 symbol, in which case it is returned. Otherwise, this looks for
7957 symbols whose name is that of NAME_SYM suffixed with "___XR".
7958 Return symbol if found, and NULL otherwise. */
7959
7960 struct symbol *
7961 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7962 {
7963 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7964 struct symbol *sym;
7965
7966 if (strstr (name, "___XR") != NULL)
7967 return name_sym;
7968
7969 sym = find_old_style_renaming_symbol (name, block);
7970
7971 if (sym != NULL)
7972 return sym;
7973
7974 /* Not right yet. FIXME pnh 7/20/2007. */
7975 sym = ada_find_any_type_symbol (name);
7976 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7977 return sym;
7978 else
7979 return NULL;
7980 }
7981
7982 static struct symbol *
7983 find_old_style_renaming_symbol (const char *name, const struct block *block)
7984 {
7985 const struct symbol *function_sym = block_linkage_function (block);
7986 char *rename;
7987
7988 if (function_sym != NULL)
7989 {
7990 /* If the symbol is defined inside a function, NAME is not fully
7991 qualified. This means we need to prepend the function name
7992 as well as adding the ``___XR'' suffix to build the name of
7993 the associated renaming symbol. */
7994 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7995 /* Function names sometimes contain suffixes used
7996 for instance to qualify nested subprograms. When building
7997 the XR type name, we need to make sure that this suffix is
7998 not included. So do not include any suffix in the function
7999 name length below. */
8000 int function_name_len = ada_name_prefix_len (function_name);
8001 const int rename_len = function_name_len + 2 /* "__" */
8002 + strlen (name) + 6 /* "___XR\0" */ ;
8003
8004 /* Strip the suffix if necessary. */
8005 ada_remove_trailing_digits (function_name, &function_name_len);
8006 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8007 ada_remove_Xbn_suffix (function_name, &function_name_len);
8008
8009 /* Library-level functions are a special case, as GNAT adds
8010 a ``_ada_'' prefix to the function name to avoid namespace
8011 pollution. However, the renaming symbols themselves do not
8012 have this prefix, so we need to skip this prefix if present. */
8013 if (function_name_len > 5 /* "_ada_" */
8014 && strstr (function_name, "_ada_") == function_name)
8015 {
8016 function_name += 5;
8017 function_name_len -= 5;
8018 }
8019
8020 rename = (char *) alloca (rename_len * sizeof (char));
8021 strncpy (rename, function_name, function_name_len);
8022 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8023 "__%s___XR", name);
8024 }
8025 else
8026 {
8027 const int rename_len = strlen (name) + 6;
8028
8029 rename = (char *) alloca (rename_len * sizeof (char));
8030 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8031 }
8032
8033 return ada_find_any_type_symbol (rename);
8034 }
8035
8036 /* Because of GNAT encoding conventions, several GDB symbols may match a
8037 given type name. If the type denoted by TYPE0 is to be preferred to
8038 that of TYPE1 for purposes of type printing, return non-zero;
8039 otherwise return 0. */
8040
8041 int
8042 ada_prefer_type (struct type *type0, struct type *type1)
8043 {
8044 if (type1 == NULL)
8045 return 1;
8046 else if (type0 == NULL)
8047 return 0;
8048 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8049 return 1;
8050 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8051 return 0;
8052 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8053 return 1;
8054 else if (ada_is_constrained_packed_array_type (type0))
8055 return 1;
8056 else if (ada_is_array_descriptor_type (type0)
8057 && !ada_is_array_descriptor_type (type1))
8058 return 1;
8059 else
8060 {
8061 const char *type0_name = TYPE_NAME (type0);
8062 const char *type1_name = TYPE_NAME (type1);
8063
8064 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8065 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8066 return 1;
8067 }
8068 return 0;
8069 }
8070
8071 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8072 null. */
8073
8074 const char *
8075 ada_type_name (struct type *type)
8076 {
8077 if (type == NULL)
8078 return NULL;
8079 return TYPE_NAME (type);
8080 }
8081
8082 /* Search the list of "descriptive" types associated to TYPE for a type
8083 whose name is NAME. */
8084
8085 static struct type *
8086 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8087 {
8088 struct type *result, *tmp;
8089
8090 if (ada_ignore_descriptive_types_p)
8091 return NULL;
8092
8093 /* If there no descriptive-type info, then there is no parallel type
8094 to be found. */
8095 if (!HAVE_GNAT_AUX_INFO (type))
8096 return NULL;
8097
8098 result = TYPE_DESCRIPTIVE_TYPE (type);
8099 while (result != NULL)
8100 {
8101 const char *result_name = ada_type_name (result);
8102
8103 if (result_name == NULL)
8104 {
8105 warning (_("unexpected null name on descriptive type"));
8106 return NULL;
8107 }
8108
8109 /* If the names match, stop. */
8110 if (strcmp (result_name, name) == 0)
8111 break;
8112
8113 /* Otherwise, look at the next item on the list, if any. */
8114 if (HAVE_GNAT_AUX_INFO (result))
8115 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8116 else
8117 tmp = NULL;
8118
8119 /* If not found either, try after having resolved the typedef. */
8120 if (tmp != NULL)
8121 result = tmp;
8122 else
8123 {
8124 result = check_typedef (result);
8125 if (HAVE_GNAT_AUX_INFO (result))
8126 result = TYPE_DESCRIPTIVE_TYPE (result);
8127 else
8128 result = NULL;
8129 }
8130 }
8131
8132 /* If we didn't find a match, see whether this is a packed array. With
8133 older compilers, the descriptive type information is either absent or
8134 irrelevant when it comes to packed arrays so the above lookup fails.
8135 Fall back to using a parallel lookup by name in this case. */
8136 if (result == NULL && ada_is_constrained_packed_array_type (type))
8137 return ada_find_any_type (name);
8138
8139 return result;
8140 }
8141
8142 /* Find a parallel type to TYPE with the specified NAME, using the
8143 descriptive type taken from the debugging information, if available,
8144 and otherwise using the (slower) name-based method. */
8145
8146 static struct type *
8147 ada_find_parallel_type_with_name (struct type *type, const char *name)
8148 {
8149 struct type *result = NULL;
8150
8151 if (HAVE_GNAT_AUX_INFO (type))
8152 result = find_parallel_type_by_descriptive_type (type, name);
8153 else
8154 result = ada_find_any_type (name);
8155
8156 return result;
8157 }
8158
8159 /* Same as above, but specify the name of the parallel type by appending
8160 SUFFIX to the name of TYPE. */
8161
8162 struct type *
8163 ada_find_parallel_type (struct type *type, const char *suffix)
8164 {
8165 char *name;
8166 const char *type_name = ada_type_name (type);
8167 int len;
8168
8169 if (type_name == NULL)
8170 return NULL;
8171
8172 len = strlen (type_name);
8173
8174 name = (char *) alloca (len + strlen (suffix) + 1);
8175
8176 strcpy (name, type_name);
8177 strcpy (name + len, suffix);
8178
8179 return ada_find_parallel_type_with_name (type, name);
8180 }
8181
8182 /* If TYPE is a variable-size record type, return the corresponding template
8183 type describing its fields. Otherwise, return NULL. */
8184
8185 static struct type *
8186 dynamic_template_type (struct type *type)
8187 {
8188 type = ada_check_typedef (type);
8189
8190 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8191 || ada_type_name (type) == NULL)
8192 return NULL;
8193 else
8194 {
8195 int len = strlen (ada_type_name (type));
8196
8197 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8198 return type;
8199 else
8200 return ada_find_parallel_type (type, "___XVE");
8201 }
8202 }
8203
8204 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8205 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8206
8207 static int
8208 is_dynamic_field (struct type *templ_type, int field_num)
8209 {
8210 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8211
8212 return name != NULL
8213 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8214 && strstr (name, "___XVL") != NULL;
8215 }
8216
8217 /* The index of the variant field of TYPE, or -1 if TYPE does not
8218 represent a variant record type. */
8219
8220 static int
8221 variant_field_index (struct type *type)
8222 {
8223 int f;
8224
8225 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8226 return -1;
8227
8228 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8229 {
8230 if (ada_is_variant_part (type, f))
8231 return f;
8232 }
8233 return -1;
8234 }
8235
8236 /* A record type with no fields. */
8237
8238 static struct type *
8239 empty_record (struct type *templ)
8240 {
8241 struct type *type = alloc_type_copy (templ);
8242
8243 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8244 TYPE_NFIELDS (type) = 0;
8245 TYPE_FIELDS (type) = NULL;
8246 INIT_CPLUS_SPECIFIC (type);
8247 TYPE_NAME (type) = "<empty>";
8248 TYPE_LENGTH (type) = 0;
8249 return type;
8250 }
8251
8252 /* An ordinary record type (with fixed-length fields) that describes
8253 the value of type TYPE at VALADDR or ADDRESS (see comments at
8254 the beginning of this section) VAL according to GNAT conventions.
8255 DVAL0 should describe the (portion of a) record that contains any
8256 necessary discriminants. It should be NULL if value_type (VAL) is
8257 an outer-level type (i.e., as opposed to a branch of a variant.) A
8258 variant field (unless unchecked) is replaced by a particular branch
8259 of the variant.
8260
8261 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8262 length are not statically known are discarded. As a consequence,
8263 VALADDR, ADDRESS and DVAL0 are ignored.
8264
8265 NOTE: Limitations: For now, we assume that dynamic fields and
8266 variants occupy whole numbers of bytes. However, they need not be
8267 byte-aligned. */
8268
8269 struct type *
8270 ada_template_to_fixed_record_type_1 (struct type *type,
8271 const gdb_byte *valaddr,
8272 CORE_ADDR address, struct value *dval0,
8273 int keep_dynamic_fields)
8274 {
8275 struct value *mark = value_mark ();
8276 struct value *dval;
8277 struct type *rtype;
8278 int nfields, bit_len;
8279 int variant_field;
8280 long off;
8281 int fld_bit_len;
8282 int f;
8283
8284 /* Compute the number of fields in this record type that are going
8285 to be processed: unless keep_dynamic_fields, this includes only
8286 fields whose position and length are static will be processed. */
8287 if (keep_dynamic_fields)
8288 nfields = TYPE_NFIELDS (type);
8289 else
8290 {
8291 nfields = 0;
8292 while (nfields < TYPE_NFIELDS (type)
8293 && !ada_is_variant_part (type, nfields)
8294 && !is_dynamic_field (type, nfields))
8295 nfields++;
8296 }
8297
8298 rtype = alloc_type_copy (type);
8299 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8300 INIT_CPLUS_SPECIFIC (rtype);
8301 TYPE_NFIELDS (rtype) = nfields;
8302 TYPE_FIELDS (rtype) = (struct field *)
8303 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8304 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8305 TYPE_NAME (rtype) = ada_type_name (type);
8306 TYPE_FIXED_INSTANCE (rtype) = 1;
8307
8308 off = 0;
8309 bit_len = 0;
8310 variant_field = -1;
8311
8312 for (f = 0; f < nfields; f += 1)
8313 {
8314 off = align_value (off, field_alignment (type, f))
8315 + TYPE_FIELD_BITPOS (type, f);
8316 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8317 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8318
8319 if (ada_is_variant_part (type, f))
8320 {
8321 variant_field = f;
8322 fld_bit_len = 0;
8323 }
8324 else if (is_dynamic_field (type, f))
8325 {
8326 const gdb_byte *field_valaddr = valaddr;
8327 CORE_ADDR field_address = address;
8328 struct type *field_type =
8329 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8330
8331 if (dval0 == NULL)
8332 {
8333 /* rtype's length is computed based on the run-time
8334 value of discriminants. If the discriminants are not
8335 initialized, the type size may be completely bogus and
8336 GDB may fail to allocate a value for it. So check the
8337 size first before creating the value. */
8338 ada_ensure_varsize_limit (rtype);
8339 /* Using plain value_from_contents_and_address here
8340 causes problems because we will end up trying to
8341 resolve a type that is currently being
8342 constructed. */
8343 dval = value_from_contents_and_address_unresolved (rtype,
8344 valaddr,
8345 address);
8346 rtype = value_type (dval);
8347 }
8348 else
8349 dval = dval0;
8350
8351 /* If the type referenced by this field is an aligner type, we need
8352 to unwrap that aligner type, because its size might not be set.
8353 Keeping the aligner type would cause us to compute the wrong
8354 size for this field, impacting the offset of the all the fields
8355 that follow this one. */
8356 if (ada_is_aligner_type (field_type))
8357 {
8358 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8359
8360 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8361 field_address = cond_offset_target (field_address, field_offset);
8362 field_type = ada_aligned_type (field_type);
8363 }
8364
8365 field_valaddr = cond_offset_host (field_valaddr,
8366 off / TARGET_CHAR_BIT);
8367 field_address = cond_offset_target (field_address,
8368 off / TARGET_CHAR_BIT);
8369
8370 /* Get the fixed type of the field. Note that, in this case,
8371 we do not want to get the real type out of the tag: if
8372 the current field is the parent part of a tagged record,
8373 we will get the tag of the object. Clearly wrong: the real
8374 type of the parent is not the real type of the child. We
8375 would end up in an infinite loop. */
8376 field_type = ada_get_base_type (field_type);
8377 field_type = ada_to_fixed_type (field_type, field_valaddr,
8378 field_address, dval, 0);
8379 /* If the field size is already larger than the maximum
8380 object size, then the record itself will necessarily
8381 be larger than the maximum object size. We need to make
8382 this check now, because the size might be so ridiculously
8383 large (due to an uninitialized variable in the inferior)
8384 that it would cause an overflow when adding it to the
8385 record size. */
8386 ada_ensure_varsize_limit (field_type);
8387
8388 TYPE_FIELD_TYPE (rtype, f) = field_type;
8389 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8390 /* The multiplication can potentially overflow. But because
8391 the field length has been size-checked just above, and
8392 assuming that the maximum size is a reasonable value,
8393 an overflow should not happen in practice. So rather than
8394 adding overflow recovery code to this already complex code,
8395 we just assume that it's not going to happen. */
8396 fld_bit_len =
8397 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8398 }
8399 else
8400 {
8401 /* Note: If this field's type is a typedef, it is important
8402 to preserve the typedef layer.
8403
8404 Otherwise, we might be transforming a typedef to a fat
8405 pointer (encoding a pointer to an unconstrained array),
8406 into a basic fat pointer (encoding an unconstrained
8407 array). As both types are implemented using the same
8408 structure, the typedef is the only clue which allows us
8409 to distinguish between the two options. Stripping it
8410 would prevent us from printing this field appropriately. */
8411 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8412 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8413 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8414 fld_bit_len =
8415 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8416 else
8417 {
8418 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8419
8420 /* We need to be careful of typedefs when computing
8421 the length of our field. If this is a typedef,
8422 get the length of the target type, not the length
8423 of the typedef. */
8424 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8425 field_type = ada_typedef_target_type (field_type);
8426
8427 fld_bit_len =
8428 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8429 }
8430 }
8431 if (off + fld_bit_len > bit_len)
8432 bit_len = off + fld_bit_len;
8433 off += fld_bit_len;
8434 TYPE_LENGTH (rtype) =
8435 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8436 }
8437
8438 /* We handle the variant part, if any, at the end because of certain
8439 odd cases in which it is re-ordered so as NOT to be the last field of
8440 the record. This can happen in the presence of representation
8441 clauses. */
8442 if (variant_field >= 0)
8443 {
8444 struct type *branch_type;
8445
8446 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8447
8448 if (dval0 == NULL)
8449 {
8450 /* Using plain value_from_contents_and_address here causes
8451 problems because we will end up trying to resolve a type
8452 that is currently being constructed. */
8453 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8454 address);
8455 rtype = value_type (dval);
8456 }
8457 else
8458 dval = dval0;
8459
8460 branch_type =
8461 to_fixed_variant_branch_type
8462 (TYPE_FIELD_TYPE (type, variant_field),
8463 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8464 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8465 if (branch_type == NULL)
8466 {
8467 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8468 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8469 TYPE_NFIELDS (rtype) -= 1;
8470 }
8471 else
8472 {
8473 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8474 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8475 fld_bit_len =
8476 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8477 TARGET_CHAR_BIT;
8478 if (off + fld_bit_len > bit_len)
8479 bit_len = off + fld_bit_len;
8480 TYPE_LENGTH (rtype) =
8481 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8482 }
8483 }
8484
8485 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8486 should contain the alignment of that record, which should be a strictly
8487 positive value. If null or negative, then something is wrong, most
8488 probably in the debug info. In that case, we don't round up the size
8489 of the resulting type. If this record is not part of another structure,
8490 the current RTYPE length might be good enough for our purposes. */
8491 if (TYPE_LENGTH (type) <= 0)
8492 {
8493 if (TYPE_NAME (rtype))
8494 warning (_("Invalid type size for `%s' detected: %d."),
8495 TYPE_NAME (rtype), TYPE_LENGTH (type));
8496 else
8497 warning (_("Invalid type size for <unnamed> detected: %d."),
8498 TYPE_LENGTH (type));
8499 }
8500 else
8501 {
8502 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8503 TYPE_LENGTH (type));
8504 }
8505
8506 value_free_to_mark (mark);
8507 if (TYPE_LENGTH (rtype) > varsize_limit)
8508 error (_("record type with dynamic size is larger than varsize-limit"));
8509 return rtype;
8510 }
8511
8512 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8513 of 1. */
8514
8515 static struct type *
8516 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8517 CORE_ADDR address, struct value *dval0)
8518 {
8519 return ada_template_to_fixed_record_type_1 (type, valaddr,
8520 address, dval0, 1);
8521 }
8522
8523 /* An ordinary record type in which ___XVL-convention fields and
8524 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8525 static approximations, containing all possible fields. Uses
8526 no runtime values. Useless for use in values, but that's OK,
8527 since the results are used only for type determinations. Works on both
8528 structs and unions. Representation note: to save space, we memorize
8529 the result of this function in the TYPE_TARGET_TYPE of the
8530 template type. */
8531
8532 static struct type *
8533 template_to_static_fixed_type (struct type *type0)
8534 {
8535 struct type *type;
8536 int nfields;
8537 int f;
8538
8539 /* No need no do anything if the input type is already fixed. */
8540 if (TYPE_FIXED_INSTANCE (type0))
8541 return type0;
8542
8543 /* Likewise if we already have computed the static approximation. */
8544 if (TYPE_TARGET_TYPE (type0) != NULL)
8545 return TYPE_TARGET_TYPE (type0);
8546
8547 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8548 type = type0;
8549 nfields = TYPE_NFIELDS (type0);
8550
8551 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8552 recompute all over next time. */
8553 TYPE_TARGET_TYPE (type0) = type;
8554
8555 for (f = 0; f < nfields; f += 1)
8556 {
8557 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8558 struct type *new_type;
8559
8560 if (is_dynamic_field (type0, f))
8561 {
8562 field_type = ada_check_typedef (field_type);
8563 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8564 }
8565 else
8566 new_type = static_unwrap_type (field_type);
8567
8568 if (new_type != field_type)
8569 {
8570 /* Clone TYPE0 only the first time we get a new field type. */
8571 if (type == type0)
8572 {
8573 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8574 TYPE_CODE (type) = TYPE_CODE (type0);
8575 INIT_CPLUS_SPECIFIC (type);
8576 TYPE_NFIELDS (type) = nfields;
8577 TYPE_FIELDS (type) = (struct field *)
8578 TYPE_ALLOC (type, nfields * sizeof (struct field));
8579 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8580 sizeof (struct field) * nfields);
8581 TYPE_NAME (type) = ada_type_name (type0);
8582 TYPE_FIXED_INSTANCE (type) = 1;
8583 TYPE_LENGTH (type) = 0;
8584 }
8585 TYPE_FIELD_TYPE (type, f) = new_type;
8586 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8587 }
8588 }
8589
8590 return type;
8591 }
8592
8593 /* Given an object of type TYPE whose contents are at VALADDR and
8594 whose address in memory is ADDRESS, returns a revision of TYPE,
8595 which should be a non-dynamic-sized record, in which the variant
8596 part, if any, is replaced with the appropriate branch. Looks
8597 for discriminant values in DVAL0, which can be NULL if the record
8598 contains the necessary discriminant values. */
8599
8600 static struct type *
8601 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8602 CORE_ADDR address, struct value *dval0)
8603 {
8604 struct value *mark = value_mark ();
8605 struct value *dval;
8606 struct type *rtype;
8607 struct type *branch_type;
8608 int nfields = TYPE_NFIELDS (type);
8609 int variant_field = variant_field_index (type);
8610
8611 if (variant_field == -1)
8612 return type;
8613
8614 if (dval0 == NULL)
8615 {
8616 dval = value_from_contents_and_address (type, valaddr, address);
8617 type = value_type (dval);
8618 }
8619 else
8620 dval = dval0;
8621
8622 rtype = alloc_type_copy (type);
8623 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8624 INIT_CPLUS_SPECIFIC (rtype);
8625 TYPE_NFIELDS (rtype) = nfields;
8626 TYPE_FIELDS (rtype) =
8627 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8628 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8629 sizeof (struct field) * nfields);
8630 TYPE_NAME (rtype) = ada_type_name (type);
8631 TYPE_FIXED_INSTANCE (rtype) = 1;
8632 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8633
8634 branch_type = to_fixed_variant_branch_type
8635 (TYPE_FIELD_TYPE (type, variant_field),
8636 cond_offset_host (valaddr,
8637 TYPE_FIELD_BITPOS (type, variant_field)
8638 / TARGET_CHAR_BIT),
8639 cond_offset_target (address,
8640 TYPE_FIELD_BITPOS (type, variant_field)
8641 / TARGET_CHAR_BIT), dval);
8642 if (branch_type == NULL)
8643 {
8644 int f;
8645
8646 for (f = variant_field + 1; f < nfields; f += 1)
8647 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8648 TYPE_NFIELDS (rtype) -= 1;
8649 }
8650 else
8651 {
8652 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8653 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8654 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8655 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8656 }
8657 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8658
8659 value_free_to_mark (mark);
8660 return rtype;
8661 }
8662
8663 /* An ordinary record type (with fixed-length fields) that describes
8664 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8665 beginning of this section]. Any necessary discriminants' values
8666 should be in DVAL, a record value; it may be NULL if the object
8667 at ADDR itself contains any necessary discriminant values.
8668 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8669 values from the record are needed. Except in the case that DVAL,
8670 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8671 unchecked) is replaced by a particular branch of the variant.
8672
8673 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8674 is questionable and may be removed. It can arise during the
8675 processing of an unconstrained-array-of-record type where all the
8676 variant branches have exactly the same size. This is because in
8677 such cases, the compiler does not bother to use the XVS convention
8678 when encoding the record. I am currently dubious of this
8679 shortcut and suspect the compiler should be altered. FIXME. */
8680
8681 static struct type *
8682 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8683 CORE_ADDR address, struct value *dval)
8684 {
8685 struct type *templ_type;
8686
8687 if (TYPE_FIXED_INSTANCE (type0))
8688 return type0;
8689
8690 templ_type = dynamic_template_type (type0);
8691
8692 if (templ_type != NULL)
8693 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8694 else if (variant_field_index (type0) >= 0)
8695 {
8696 if (dval == NULL && valaddr == NULL && address == 0)
8697 return type0;
8698 return to_record_with_fixed_variant_part (type0, valaddr, address,
8699 dval);
8700 }
8701 else
8702 {
8703 TYPE_FIXED_INSTANCE (type0) = 1;
8704 return type0;
8705 }
8706
8707 }
8708
8709 /* An ordinary record type (with fixed-length fields) that describes
8710 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8711 union type. Any necessary discriminants' values should be in DVAL,
8712 a record value. That is, this routine selects the appropriate
8713 branch of the union at ADDR according to the discriminant value
8714 indicated in the union's type name. Returns VAR_TYPE0 itself if
8715 it represents a variant subject to a pragma Unchecked_Union. */
8716
8717 static struct type *
8718 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8719 CORE_ADDR address, struct value *dval)
8720 {
8721 int which;
8722 struct type *templ_type;
8723 struct type *var_type;
8724
8725 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8726 var_type = TYPE_TARGET_TYPE (var_type0);
8727 else
8728 var_type = var_type0;
8729
8730 templ_type = ada_find_parallel_type (var_type, "___XVU");
8731
8732 if (templ_type != NULL)
8733 var_type = templ_type;
8734
8735 if (is_unchecked_variant (var_type, value_type (dval)))
8736 return var_type0;
8737 which =
8738 ada_which_variant_applies (var_type,
8739 value_type (dval), value_contents (dval));
8740
8741 if (which < 0)
8742 return empty_record (var_type);
8743 else if (is_dynamic_field (var_type, which))
8744 return to_fixed_record_type
8745 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8746 valaddr, address, dval);
8747 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8748 return
8749 to_fixed_record_type
8750 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8751 else
8752 return TYPE_FIELD_TYPE (var_type, which);
8753 }
8754
8755 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8756 ENCODING_TYPE, a type following the GNAT conventions for discrete
8757 type encodings, only carries redundant information. */
8758
8759 static int
8760 ada_is_redundant_range_encoding (struct type *range_type,
8761 struct type *encoding_type)
8762 {
8763 const char *bounds_str;
8764 int n;
8765 LONGEST lo, hi;
8766
8767 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8768
8769 if (TYPE_CODE (get_base_type (range_type))
8770 != TYPE_CODE (get_base_type (encoding_type)))
8771 {
8772 /* The compiler probably used a simple base type to describe
8773 the range type instead of the range's actual base type,
8774 expecting us to get the real base type from the encoding
8775 anyway. In this situation, the encoding cannot be ignored
8776 as redundant. */
8777 return 0;
8778 }
8779
8780 if (is_dynamic_type (range_type))
8781 return 0;
8782
8783 if (TYPE_NAME (encoding_type) == NULL)
8784 return 0;
8785
8786 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8787 if (bounds_str == NULL)
8788 return 0;
8789
8790 n = 8; /* Skip "___XDLU_". */
8791 if (!ada_scan_number (bounds_str, n, &lo, &n))
8792 return 0;
8793 if (TYPE_LOW_BOUND (range_type) != lo)
8794 return 0;
8795
8796 n += 2; /* Skip the "__" separator between the two bounds. */
8797 if (!ada_scan_number (bounds_str, n, &hi, &n))
8798 return 0;
8799 if (TYPE_HIGH_BOUND (range_type) != hi)
8800 return 0;
8801
8802 return 1;
8803 }
8804
8805 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8806 a type following the GNAT encoding for describing array type
8807 indices, only carries redundant information. */
8808
8809 static int
8810 ada_is_redundant_index_type_desc (struct type *array_type,
8811 struct type *desc_type)
8812 {
8813 struct type *this_layer = check_typedef (array_type);
8814 int i;
8815
8816 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8817 {
8818 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8819 TYPE_FIELD_TYPE (desc_type, i)))
8820 return 0;
8821 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8822 }
8823
8824 return 1;
8825 }
8826
8827 /* Assuming that TYPE0 is an array type describing the type of a value
8828 at ADDR, and that DVAL describes a record containing any
8829 discriminants used in TYPE0, returns a type for the value that
8830 contains no dynamic components (that is, no components whose sizes
8831 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8832 true, gives an error message if the resulting type's size is over
8833 varsize_limit. */
8834
8835 static struct type *
8836 to_fixed_array_type (struct type *type0, struct value *dval,
8837 int ignore_too_big)
8838 {
8839 struct type *index_type_desc;
8840 struct type *result;
8841 int constrained_packed_array_p;
8842 static const char *xa_suffix = "___XA";
8843
8844 type0 = ada_check_typedef (type0);
8845 if (TYPE_FIXED_INSTANCE (type0))
8846 return type0;
8847
8848 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8849 if (constrained_packed_array_p)
8850 type0 = decode_constrained_packed_array_type (type0);
8851
8852 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8853
8854 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8855 encoding suffixed with 'P' may still be generated. If so,
8856 it should be used to find the XA type. */
8857
8858 if (index_type_desc == NULL)
8859 {
8860 const char *type_name = ada_type_name (type0);
8861
8862 if (type_name != NULL)
8863 {
8864 const int len = strlen (type_name);
8865 char *name = (char *) alloca (len + strlen (xa_suffix));
8866
8867 if (type_name[len - 1] == 'P')
8868 {
8869 strcpy (name, type_name);
8870 strcpy (name + len - 1, xa_suffix);
8871 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8872 }
8873 }
8874 }
8875
8876 ada_fixup_array_indexes_type (index_type_desc);
8877 if (index_type_desc != NULL
8878 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8879 {
8880 /* Ignore this ___XA parallel type, as it does not bring any
8881 useful information. This allows us to avoid creating fixed
8882 versions of the array's index types, which would be identical
8883 to the original ones. This, in turn, can also help avoid
8884 the creation of fixed versions of the array itself. */
8885 index_type_desc = NULL;
8886 }
8887
8888 if (index_type_desc == NULL)
8889 {
8890 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8891
8892 /* NOTE: elt_type---the fixed version of elt_type0---should never
8893 depend on the contents of the array in properly constructed
8894 debugging data. */
8895 /* Create a fixed version of the array element type.
8896 We're not providing the address of an element here,
8897 and thus the actual object value cannot be inspected to do
8898 the conversion. This should not be a problem, since arrays of
8899 unconstrained objects are not allowed. In particular, all
8900 the elements of an array of a tagged type should all be of
8901 the same type specified in the debugging info. No need to
8902 consult the object tag. */
8903 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8904
8905 /* Make sure we always create a new array type when dealing with
8906 packed array types, since we're going to fix-up the array
8907 type length and element bitsize a little further down. */
8908 if (elt_type0 == elt_type && !constrained_packed_array_p)
8909 result = type0;
8910 else
8911 result = create_array_type (alloc_type_copy (type0),
8912 elt_type, TYPE_INDEX_TYPE (type0));
8913 }
8914 else
8915 {
8916 int i;
8917 struct type *elt_type0;
8918
8919 elt_type0 = type0;
8920 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8921 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8922
8923 /* NOTE: result---the fixed version of elt_type0---should never
8924 depend on the contents of the array in properly constructed
8925 debugging data. */
8926 /* Create a fixed version of the array element type.
8927 We're not providing the address of an element here,
8928 and thus the actual object value cannot be inspected to do
8929 the conversion. This should not be a problem, since arrays of
8930 unconstrained objects are not allowed. In particular, all
8931 the elements of an array of a tagged type should all be of
8932 the same type specified in the debugging info. No need to
8933 consult the object tag. */
8934 result =
8935 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8936
8937 elt_type0 = type0;
8938 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8939 {
8940 struct type *range_type =
8941 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8942
8943 result = create_array_type (alloc_type_copy (elt_type0),
8944 result, range_type);
8945 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8946 }
8947 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8948 error (_("array type with dynamic size is larger than varsize-limit"));
8949 }
8950
8951 /* We want to preserve the type name. This can be useful when
8952 trying to get the type name of a value that has already been
8953 printed (for instance, if the user did "print VAR; whatis $". */
8954 TYPE_NAME (result) = TYPE_NAME (type0);
8955
8956 if (constrained_packed_array_p)
8957 {
8958 /* So far, the resulting type has been created as if the original
8959 type was a regular (non-packed) array type. As a result, the
8960 bitsize of the array elements needs to be set again, and the array
8961 length needs to be recomputed based on that bitsize. */
8962 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8963 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8964
8965 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8966 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8967 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8968 TYPE_LENGTH (result)++;
8969 }
8970
8971 TYPE_FIXED_INSTANCE (result) = 1;
8972 return result;
8973 }
8974
8975
8976 /* A standard type (containing no dynamically sized components)
8977 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8978 DVAL describes a record containing any discriminants used in TYPE0,
8979 and may be NULL if there are none, or if the object of type TYPE at
8980 ADDRESS or in VALADDR contains these discriminants.
8981
8982 If CHECK_TAG is not null, in the case of tagged types, this function
8983 attempts to locate the object's tag and use it to compute the actual
8984 type. However, when ADDRESS is null, we cannot use it to determine the
8985 location of the tag, and therefore compute the tagged type's actual type.
8986 So we return the tagged type without consulting the tag. */
8987
8988 static struct type *
8989 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8990 CORE_ADDR address, struct value *dval, int check_tag)
8991 {
8992 type = ada_check_typedef (type);
8993 switch (TYPE_CODE (type))
8994 {
8995 default:
8996 return type;
8997 case TYPE_CODE_STRUCT:
8998 {
8999 struct type *static_type = to_static_fixed_type (type);
9000 struct type *fixed_record_type =
9001 to_fixed_record_type (type, valaddr, address, NULL);
9002
9003 /* If STATIC_TYPE is a tagged type and we know the object's address,
9004 then we can determine its tag, and compute the object's actual
9005 type from there. Note that we have to use the fixed record
9006 type (the parent part of the record may have dynamic fields
9007 and the way the location of _tag is expressed may depend on
9008 them). */
9009
9010 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9011 {
9012 struct value *tag =
9013 value_tag_from_contents_and_address
9014 (fixed_record_type,
9015 valaddr,
9016 address);
9017 struct type *real_type = type_from_tag (tag);
9018 struct value *obj =
9019 value_from_contents_and_address (fixed_record_type,
9020 valaddr,
9021 address);
9022 fixed_record_type = value_type (obj);
9023 if (real_type != NULL)
9024 return to_fixed_record_type
9025 (real_type, NULL,
9026 value_address (ada_tag_value_at_base_address (obj)), NULL);
9027 }
9028
9029 /* Check to see if there is a parallel ___XVZ variable.
9030 If there is, then it provides the actual size of our type. */
9031 else if (ada_type_name (fixed_record_type) != NULL)
9032 {
9033 const char *name = ada_type_name (fixed_record_type);
9034 char *xvz_name
9035 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9036 bool xvz_found = false;
9037 LONGEST size;
9038
9039 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9040 TRY
9041 {
9042 xvz_found = get_int_var_value (xvz_name, size);
9043 }
9044 CATCH (except, RETURN_MASK_ERROR)
9045 {
9046 /* We found the variable, but somehow failed to read
9047 its value. Rethrow the same error, but with a little
9048 bit more information, to help the user understand
9049 what went wrong (Eg: the variable might have been
9050 optimized out). */
9051 throw_error (except.error,
9052 _("unable to read value of %s (%s)"),
9053 xvz_name, except.message);
9054 }
9055 END_CATCH
9056
9057 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9058 {
9059 fixed_record_type = copy_type (fixed_record_type);
9060 TYPE_LENGTH (fixed_record_type) = size;
9061
9062 /* The FIXED_RECORD_TYPE may have be a stub. We have
9063 observed this when the debugging info is STABS, and
9064 apparently it is something that is hard to fix.
9065
9066 In practice, we don't need the actual type definition
9067 at all, because the presence of the XVZ variable allows us
9068 to assume that there must be a XVS type as well, which we
9069 should be able to use later, when we need the actual type
9070 definition.
9071
9072 In the meantime, pretend that the "fixed" type we are
9073 returning is NOT a stub, because this can cause trouble
9074 when using this type to create new types targeting it.
9075 Indeed, the associated creation routines often check
9076 whether the target type is a stub and will try to replace
9077 it, thus using a type with the wrong size. This, in turn,
9078 might cause the new type to have the wrong size too.
9079 Consider the case of an array, for instance, where the size
9080 of the array is computed from the number of elements in
9081 our array multiplied by the size of its element. */
9082 TYPE_STUB (fixed_record_type) = 0;
9083 }
9084 }
9085 return fixed_record_type;
9086 }
9087 case TYPE_CODE_ARRAY:
9088 return to_fixed_array_type (type, dval, 1);
9089 case TYPE_CODE_UNION:
9090 if (dval == NULL)
9091 return type;
9092 else
9093 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9094 }
9095 }
9096
9097 /* The same as ada_to_fixed_type_1, except that it preserves the type
9098 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9099
9100 The typedef layer needs be preserved in order to differentiate between
9101 arrays and array pointers when both types are implemented using the same
9102 fat pointer. In the array pointer case, the pointer is encoded as
9103 a typedef of the pointer type. For instance, considering:
9104
9105 type String_Access is access String;
9106 S1 : String_Access := null;
9107
9108 To the debugger, S1 is defined as a typedef of type String. But
9109 to the user, it is a pointer. So if the user tries to print S1,
9110 we should not dereference the array, but print the array address
9111 instead.
9112
9113 If we didn't preserve the typedef layer, we would lose the fact that
9114 the type is to be presented as a pointer (needs de-reference before
9115 being printed). And we would also use the source-level type name. */
9116
9117 struct type *
9118 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9119 CORE_ADDR address, struct value *dval, int check_tag)
9120
9121 {
9122 struct type *fixed_type =
9123 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9124
9125 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9126 then preserve the typedef layer.
9127
9128 Implementation note: We can only check the main-type portion of
9129 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9130 from TYPE now returns a type that has the same instance flags
9131 as TYPE. For instance, if TYPE is a "typedef const", and its
9132 target type is a "struct", then the typedef elimination will return
9133 a "const" version of the target type. See check_typedef for more
9134 details about how the typedef layer elimination is done.
9135
9136 brobecker/2010-11-19: It seems to me that the only case where it is
9137 useful to preserve the typedef layer is when dealing with fat pointers.
9138 Perhaps, we could add a check for that and preserve the typedef layer
9139 only in that situation. But this seems unecessary so far, probably
9140 because we call check_typedef/ada_check_typedef pretty much everywhere.
9141 */
9142 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9143 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9144 == TYPE_MAIN_TYPE (fixed_type)))
9145 return type;
9146
9147 return fixed_type;
9148 }
9149
9150 /* A standard (static-sized) type corresponding as well as possible to
9151 TYPE0, but based on no runtime data. */
9152
9153 static struct type *
9154 to_static_fixed_type (struct type *type0)
9155 {
9156 struct type *type;
9157
9158 if (type0 == NULL)
9159 return NULL;
9160
9161 if (TYPE_FIXED_INSTANCE (type0))
9162 return type0;
9163
9164 type0 = ada_check_typedef (type0);
9165
9166 switch (TYPE_CODE (type0))
9167 {
9168 default:
9169 return type0;
9170 case TYPE_CODE_STRUCT:
9171 type = dynamic_template_type (type0);
9172 if (type != NULL)
9173 return template_to_static_fixed_type (type);
9174 else
9175 return template_to_static_fixed_type (type0);
9176 case TYPE_CODE_UNION:
9177 type = ada_find_parallel_type (type0, "___XVU");
9178 if (type != NULL)
9179 return template_to_static_fixed_type (type);
9180 else
9181 return template_to_static_fixed_type (type0);
9182 }
9183 }
9184
9185 /* A static approximation of TYPE with all type wrappers removed. */
9186
9187 static struct type *
9188 static_unwrap_type (struct type *type)
9189 {
9190 if (ada_is_aligner_type (type))
9191 {
9192 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9193 if (ada_type_name (type1) == NULL)
9194 TYPE_NAME (type1) = ada_type_name (type);
9195
9196 return static_unwrap_type (type1);
9197 }
9198 else
9199 {
9200 struct type *raw_real_type = ada_get_base_type (type);
9201
9202 if (raw_real_type == type)
9203 return type;
9204 else
9205 return to_static_fixed_type (raw_real_type);
9206 }
9207 }
9208
9209 /* In some cases, incomplete and private types require
9210 cross-references that are not resolved as records (for example,
9211 type Foo;
9212 type FooP is access Foo;
9213 V: FooP;
9214 type Foo is array ...;
9215 ). In these cases, since there is no mechanism for producing
9216 cross-references to such types, we instead substitute for FooP a
9217 stub enumeration type that is nowhere resolved, and whose tag is
9218 the name of the actual type. Call these types "non-record stubs". */
9219
9220 /* A type equivalent to TYPE that is not a non-record stub, if one
9221 exists, otherwise TYPE. */
9222
9223 struct type *
9224 ada_check_typedef (struct type *type)
9225 {
9226 if (type == NULL)
9227 return NULL;
9228
9229 /* If our type is an access to an unconstrained array, which is encoded
9230 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9231 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9232 what allows us to distinguish between fat pointers that represent
9233 array types, and fat pointers that represent array access types
9234 (in both cases, the compiler implements them as fat pointers). */
9235 if (ada_is_access_to_unconstrained_array (type))
9236 return type;
9237
9238 type = check_typedef (type);
9239 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9240 || !TYPE_STUB (type)
9241 || TYPE_NAME (type) == NULL)
9242 return type;
9243 else
9244 {
9245 const char *name = TYPE_NAME (type);
9246 struct type *type1 = ada_find_any_type (name);
9247
9248 if (type1 == NULL)
9249 return type;
9250
9251 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9252 stubs pointing to arrays, as we don't create symbols for array
9253 types, only for the typedef-to-array types). If that's the case,
9254 strip the typedef layer. */
9255 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9256 type1 = ada_check_typedef (type1);
9257
9258 return type1;
9259 }
9260 }
9261
9262 /* A value representing the data at VALADDR/ADDRESS as described by
9263 type TYPE0, but with a standard (static-sized) type that correctly
9264 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9265 type, then return VAL0 [this feature is simply to avoid redundant
9266 creation of struct values]. */
9267
9268 static struct value *
9269 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9270 struct value *val0)
9271 {
9272 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9273
9274 if (type == type0 && val0 != NULL)
9275 return val0;
9276
9277 if (VALUE_LVAL (val0) != lval_memory)
9278 {
9279 /* Our value does not live in memory; it could be a convenience
9280 variable, for instance. Create a not_lval value using val0's
9281 contents. */
9282 return value_from_contents (type, value_contents (val0));
9283 }
9284
9285 return value_from_contents_and_address (type, 0, address);
9286 }
9287
9288 /* A value representing VAL, but with a standard (static-sized) type
9289 that correctly describes it. Does not necessarily create a new
9290 value. */
9291
9292 struct value *
9293 ada_to_fixed_value (struct value *val)
9294 {
9295 val = unwrap_value (val);
9296 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9297 return val;
9298 }
9299 \f
9300
9301 /* Attributes */
9302
9303 /* Table mapping attribute numbers to names.
9304 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9305
9306 static const char *attribute_names[] = {
9307 "<?>",
9308
9309 "first",
9310 "last",
9311 "length",
9312 "image",
9313 "max",
9314 "min",
9315 "modulus",
9316 "pos",
9317 "size",
9318 "tag",
9319 "val",
9320 0
9321 };
9322
9323 const char *
9324 ada_attribute_name (enum exp_opcode n)
9325 {
9326 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9327 return attribute_names[n - OP_ATR_FIRST + 1];
9328 else
9329 return attribute_names[0];
9330 }
9331
9332 /* Evaluate the 'POS attribute applied to ARG. */
9333
9334 static LONGEST
9335 pos_atr (struct value *arg)
9336 {
9337 struct value *val = coerce_ref (arg);
9338 struct type *type = value_type (val);
9339 LONGEST result;
9340
9341 if (!discrete_type_p (type))
9342 error (_("'POS only defined on discrete types"));
9343
9344 if (!discrete_position (type, value_as_long (val), &result))
9345 error (_("enumeration value is invalid: can't find 'POS"));
9346
9347 return result;
9348 }
9349
9350 static struct value *
9351 value_pos_atr (struct type *type, struct value *arg)
9352 {
9353 return value_from_longest (type, pos_atr (arg));
9354 }
9355
9356 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9357
9358 static struct value *
9359 value_val_atr (struct type *type, struct value *arg)
9360 {
9361 if (!discrete_type_p (type))
9362 error (_("'VAL only defined on discrete types"));
9363 if (!integer_type_p (value_type (arg)))
9364 error (_("'VAL requires integral argument"));
9365
9366 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9367 {
9368 long pos = value_as_long (arg);
9369
9370 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9371 error (_("argument to 'VAL out of range"));
9372 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9373 }
9374 else
9375 return value_from_longest (type, value_as_long (arg));
9376 }
9377 \f
9378
9379 /* Evaluation */
9380
9381 /* True if TYPE appears to be an Ada character type.
9382 [At the moment, this is true only for Character and Wide_Character;
9383 It is a heuristic test that could stand improvement]. */
9384
9385 int
9386 ada_is_character_type (struct type *type)
9387 {
9388 const char *name;
9389
9390 /* If the type code says it's a character, then assume it really is,
9391 and don't check any further. */
9392 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9393 return 1;
9394
9395 /* Otherwise, assume it's a character type iff it is a discrete type
9396 with a known character type name. */
9397 name = ada_type_name (type);
9398 return (name != NULL
9399 && (TYPE_CODE (type) == TYPE_CODE_INT
9400 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9401 && (strcmp (name, "character") == 0
9402 || strcmp (name, "wide_character") == 0
9403 || strcmp (name, "wide_wide_character") == 0
9404 || strcmp (name, "unsigned char") == 0));
9405 }
9406
9407 /* True if TYPE appears to be an Ada string type. */
9408
9409 int
9410 ada_is_string_type (struct type *type)
9411 {
9412 type = ada_check_typedef (type);
9413 if (type != NULL
9414 && TYPE_CODE (type) != TYPE_CODE_PTR
9415 && (ada_is_simple_array_type (type)
9416 || ada_is_array_descriptor_type (type))
9417 && ada_array_arity (type) == 1)
9418 {
9419 struct type *elttype = ada_array_element_type (type, 1);
9420
9421 return ada_is_character_type (elttype);
9422 }
9423 else
9424 return 0;
9425 }
9426
9427 /* The compiler sometimes provides a parallel XVS type for a given
9428 PAD type. Normally, it is safe to follow the PAD type directly,
9429 but older versions of the compiler have a bug that causes the offset
9430 of its "F" field to be wrong. Following that field in that case
9431 would lead to incorrect results, but this can be worked around
9432 by ignoring the PAD type and using the associated XVS type instead.
9433
9434 Set to True if the debugger should trust the contents of PAD types.
9435 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9436 static int trust_pad_over_xvs = 1;
9437
9438 /* True if TYPE is a struct type introduced by the compiler to force the
9439 alignment of a value. Such types have a single field with a
9440 distinctive name. */
9441
9442 int
9443 ada_is_aligner_type (struct type *type)
9444 {
9445 type = ada_check_typedef (type);
9446
9447 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9448 return 0;
9449
9450 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9451 && TYPE_NFIELDS (type) == 1
9452 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9453 }
9454
9455 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9456 the parallel type. */
9457
9458 struct type *
9459 ada_get_base_type (struct type *raw_type)
9460 {
9461 struct type *real_type_namer;
9462 struct type *raw_real_type;
9463
9464 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9465 return raw_type;
9466
9467 if (ada_is_aligner_type (raw_type))
9468 /* The encoding specifies that we should always use the aligner type.
9469 So, even if this aligner type has an associated XVS type, we should
9470 simply ignore it.
9471
9472 According to the compiler gurus, an XVS type parallel to an aligner
9473 type may exist because of a stabs limitation. In stabs, aligner
9474 types are empty because the field has a variable-sized type, and
9475 thus cannot actually be used as an aligner type. As a result,
9476 we need the associated parallel XVS type to decode the type.
9477 Since the policy in the compiler is to not change the internal
9478 representation based on the debugging info format, we sometimes
9479 end up having a redundant XVS type parallel to the aligner type. */
9480 return raw_type;
9481
9482 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9483 if (real_type_namer == NULL
9484 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9485 || TYPE_NFIELDS (real_type_namer) != 1)
9486 return raw_type;
9487
9488 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9489 {
9490 /* This is an older encoding form where the base type needs to be
9491 looked up by name. We prefer the newer enconding because it is
9492 more efficient. */
9493 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9494 if (raw_real_type == NULL)
9495 return raw_type;
9496 else
9497 return raw_real_type;
9498 }
9499
9500 /* The field in our XVS type is a reference to the base type. */
9501 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9502 }
9503
9504 /* The type of value designated by TYPE, with all aligners removed. */
9505
9506 struct type *
9507 ada_aligned_type (struct type *type)
9508 {
9509 if (ada_is_aligner_type (type))
9510 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9511 else
9512 return ada_get_base_type (type);
9513 }
9514
9515
9516 /* The address of the aligned value in an object at address VALADDR
9517 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9518
9519 const gdb_byte *
9520 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9521 {
9522 if (ada_is_aligner_type (type))
9523 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9524 valaddr +
9525 TYPE_FIELD_BITPOS (type,
9526 0) / TARGET_CHAR_BIT);
9527 else
9528 return valaddr;
9529 }
9530
9531
9532
9533 /* The printed representation of an enumeration literal with encoded
9534 name NAME. The value is good to the next call of ada_enum_name. */
9535 const char *
9536 ada_enum_name (const char *name)
9537 {
9538 static char *result;
9539 static size_t result_len = 0;
9540 const char *tmp;
9541
9542 /* First, unqualify the enumeration name:
9543 1. Search for the last '.' character. If we find one, then skip
9544 all the preceding characters, the unqualified name starts
9545 right after that dot.
9546 2. Otherwise, we may be debugging on a target where the compiler
9547 translates dots into "__". Search forward for double underscores,
9548 but stop searching when we hit an overloading suffix, which is
9549 of the form "__" followed by digits. */
9550
9551 tmp = strrchr (name, '.');
9552 if (tmp != NULL)
9553 name = tmp + 1;
9554 else
9555 {
9556 while ((tmp = strstr (name, "__")) != NULL)
9557 {
9558 if (isdigit (tmp[2]))
9559 break;
9560 else
9561 name = tmp + 2;
9562 }
9563 }
9564
9565 if (name[0] == 'Q')
9566 {
9567 int v;
9568
9569 if (name[1] == 'U' || name[1] == 'W')
9570 {
9571 if (sscanf (name + 2, "%x", &v) != 1)
9572 return name;
9573 }
9574 else
9575 return name;
9576
9577 GROW_VECT (result, result_len, 16);
9578 if (isascii (v) && isprint (v))
9579 xsnprintf (result, result_len, "'%c'", v);
9580 else if (name[1] == 'U')
9581 xsnprintf (result, result_len, "[\"%02x\"]", v);
9582 else
9583 xsnprintf (result, result_len, "[\"%04x\"]", v);
9584
9585 return result;
9586 }
9587 else
9588 {
9589 tmp = strstr (name, "__");
9590 if (tmp == NULL)
9591 tmp = strstr (name, "$");
9592 if (tmp != NULL)
9593 {
9594 GROW_VECT (result, result_len, tmp - name + 1);
9595 strncpy (result, name, tmp - name);
9596 result[tmp - name] = '\0';
9597 return result;
9598 }
9599
9600 return name;
9601 }
9602 }
9603
9604 /* Evaluate the subexpression of EXP starting at *POS as for
9605 evaluate_type, updating *POS to point just past the evaluated
9606 expression. */
9607
9608 static struct value *
9609 evaluate_subexp_type (struct expression *exp, int *pos)
9610 {
9611 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9612 }
9613
9614 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9615 value it wraps. */
9616
9617 static struct value *
9618 unwrap_value (struct value *val)
9619 {
9620 struct type *type = ada_check_typedef (value_type (val));
9621
9622 if (ada_is_aligner_type (type))
9623 {
9624 struct value *v = ada_value_struct_elt (val, "F", 0);
9625 struct type *val_type = ada_check_typedef (value_type (v));
9626
9627 if (ada_type_name (val_type) == NULL)
9628 TYPE_NAME (val_type) = ada_type_name (type);
9629
9630 return unwrap_value (v);
9631 }
9632 else
9633 {
9634 struct type *raw_real_type =
9635 ada_check_typedef (ada_get_base_type (type));
9636
9637 /* If there is no parallel XVS or XVE type, then the value is
9638 already unwrapped. Return it without further modification. */
9639 if ((type == raw_real_type)
9640 && ada_find_parallel_type (type, "___XVE") == NULL)
9641 return val;
9642
9643 return
9644 coerce_unspec_val_to_type
9645 (val, ada_to_fixed_type (raw_real_type, 0,
9646 value_address (val),
9647 NULL, 1));
9648 }
9649 }
9650
9651 static struct value *
9652 cast_from_fixed (struct type *type, struct value *arg)
9653 {
9654 struct value *scale = ada_scaling_factor (value_type (arg));
9655 arg = value_cast (value_type (scale), arg);
9656
9657 arg = value_binop (arg, scale, BINOP_MUL);
9658 return value_cast (type, arg);
9659 }
9660
9661 static struct value *
9662 cast_to_fixed (struct type *type, struct value *arg)
9663 {
9664 if (type == value_type (arg))
9665 return arg;
9666
9667 struct value *scale = ada_scaling_factor (type);
9668 if (ada_is_fixed_point_type (value_type (arg)))
9669 arg = cast_from_fixed (value_type (scale), arg);
9670 else
9671 arg = value_cast (value_type (scale), arg);
9672
9673 arg = value_binop (arg, scale, BINOP_DIV);
9674 return value_cast (type, arg);
9675 }
9676
9677 /* Given two array types T1 and T2, return nonzero iff both arrays
9678 contain the same number of elements. */
9679
9680 static int
9681 ada_same_array_size_p (struct type *t1, struct type *t2)
9682 {
9683 LONGEST lo1, hi1, lo2, hi2;
9684
9685 /* Get the array bounds in order to verify that the size of
9686 the two arrays match. */
9687 if (!get_array_bounds (t1, &lo1, &hi1)
9688 || !get_array_bounds (t2, &lo2, &hi2))
9689 error (_("unable to determine array bounds"));
9690
9691 /* To make things easier for size comparison, normalize a bit
9692 the case of empty arrays by making sure that the difference
9693 between upper bound and lower bound is always -1. */
9694 if (lo1 > hi1)
9695 hi1 = lo1 - 1;
9696 if (lo2 > hi2)
9697 hi2 = lo2 - 1;
9698
9699 return (hi1 - lo1 == hi2 - lo2);
9700 }
9701
9702 /* Assuming that VAL is an array of integrals, and TYPE represents
9703 an array with the same number of elements, but with wider integral
9704 elements, return an array "casted" to TYPE. In practice, this
9705 means that the returned array is built by casting each element
9706 of the original array into TYPE's (wider) element type. */
9707
9708 static struct value *
9709 ada_promote_array_of_integrals (struct type *type, struct value *val)
9710 {
9711 struct type *elt_type = TYPE_TARGET_TYPE (type);
9712 LONGEST lo, hi;
9713 struct value *res;
9714 LONGEST i;
9715
9716 /* Verify that both val and type are arrays of scalars, and
9717 that the size of val's elements is smaller than the size
9718 of type's element. */
9719 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9720 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9721 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9722 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9723 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9724 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9725
9726 if (!get_array_bounds (type, &lo, &hi))
9727 error (_("unable to determine array bounds"));
9728
9729 res = allocate_value (type);
9730
9731 /* Promote each array element. */
9732 for (i = 0; i < hi - lo + 1; i++)
9733 {
9734 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9735
9736 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9737 value_contents_all (elt), TYPE_LENGTH (elt_type));
9738 }
9739
9740 return res;
9741 }
9742
9743 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9744 return the converted value. */
9745
9746 static struct value *
9747 coerce_for_assign (struct type *type, struct value *val)
9748 {
9749 struct type *type2 = value_type (val);
9750
9751 if (type == type2)
9752 return val;
9753
9754 type2 = ada_check_typedef (type2);
9755 type = ada_check_typedef (type);
9756
9757 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9758 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9759 {
9760 val = ada_value_ind (val);
9761 type2 = value_type (val);
9762 }
9763
9764 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9765 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9766 {
9767 if (!ada_same_array_size_p (type, type2))
9768 error (_("cannot assign arrays of different length"));
9769
9770 if (is_integral_type (TYPE_TARGET_TYPE (type))
9771 && is_integral_type (TYPE_TARGET_TYPE (type2))
9772 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9773 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9774 {
9775 /* Allow implicit promotion of the array elements to
9776 a wider type. */
9777 return ada_promote_array_of_integrals (type, val);
9778 }
9779
9780 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9781 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9782 error (_("Incompatible types in assignment"));
9783 deprecated_set_value_type (val, type);
9784 }
9785 return val;
9786 }
9787
9788 static struct value *
9789 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9790 {
9791 struct value *val;
9792 struct type *type1, *type2;
9793 LONGEST v, v1, v2;
9794
9795 arg1 = coerce_ref (arg1);
9796 arg2 = coerce_ref (arg2);
9797 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9798 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9799
9800 if (TYPE_CODE (type1) != TYPE_CODE_INT
9801 || TYPE_CODE (type2) != TYPE_CODE_INT)
9802 return value_binop (arg1, arg2, op);
9803
9804 switch (op)
9805 {
9806 case BINOP_MOD:
9807 case BINOP_DIV:
9808 case BINOP_REM:
9809 break;
9810 default:
9811 return value_binop (arg1, arg2, op);
9812 }
9813
9814 v2 = value_as_long (arg2);
9815 if (v2 == 0)
9816 error (_("second operand of %s must not be zero."), op_string (op));
9817
9818 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9819 return value_binop (arg1, arg2, op);
9820
9821 v1 = value_as_long (arg1);
9822 switch (op)
9823 {
9824 case BINOP_DIV:
9825 v = v1 / v2;
9826 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9827 v += v > 0 ? -1 : 1;
9828 break;
9829 case BINOP_REM:
9830 v = v1 % v2;
9831 if (v * v1 < 0)
9832 v -= v2;
9833 break;
9834 default:
9835 /* Should not reach this point. */
9836 v = 0;
9837 }
9838
9839 val = allocate_value (type1);
9840 store_unsigned_integer (value_contents_raw (val),
9841 TYPE_LENGTH (value_type (val)),
9842 gdbarch_byte_order (get_type_arch (type1)), v);
9843 return val;
9844 }
9845
9846 static int
9847 ada_value_equal (struct value *arg1, struct value *arg2)
9848 {
9849 if (ada_is_direct_array_type (value_type (arg1))
9850 || ada_is_direct_array_type (value_type (arg2)))
9851 {
9852 struct type *arg1_type, *arg2_type;
9853
9854 /* Automatically dereference any array reference before
9855 we attempt to perform the comparison. */
9856 arg1 = ada_coerce_ref (arg1);
9857 arg2 = ada_coerce_ref (arg2);
9858
9859 arg1 = ada_coerce_to_simple_array (arg1);
9860 arg2 = ada_coerce_to_simple_array (arg2);
9861
9862 arg1_type = ada_check_typedef (value_type (arg1));
9863 arg2_type = ada_check_typedef (value_type (arg2));
9864
9865 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9866 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9867 error (_("Attempt to compare array with non-array"));
9868 /* FIXME: The following works only for types whose
9869 representations use all bits (no padding or undefined bits)
9870 and do not have user-defined equality. */
9871 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9872 && memcmp (value_contents (arg1), value_contents (arg2),
9873 TYPE_LENGTH (arg1_type)) == 0);
9874 }
9875 return value_equal (arg1, arg2);
9876 }
9877
9878 /* Total number of component associations in the aggregate starting at
9879 index PC in EXP. Assumes that index PC is the start of an
9880 OP_AGGREGATE. */
9881
9882 static int
9883 num_component_specs (struct expression *exp, int pc)
9884 {
9885 int n, m, i;
9886
9887 m = exp->elts[pc + 1].longconst;
9888 pc += 3;
9889 n = 0;
9890 for (i = 0; i < m; i += 1)
9891 {
9892 switch (exp->elts[pc].opcode)
9893 {
9894 default:
9895 n += 1;
9896 break;
9897 case OP_CHOICES:
9898 n += exp->elts[pc + 1].longconst;
9899 break;
9900 }
9901 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9902 }
9903 return n;
9904 }
9905
9906 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9907 component of LHS (a simple array or a record), updating *POS past
9908 the expression, assuming that LHS is contained in CONTAINER. Does
9909 not modify the inferior's memory, nor does it modify LHS (unless
9910 LHS == CONTAINER). */
9911
9912 static void
9913 assign_component (struct value *container, struct value *lhs, LONGEST index,
9914 struct expression *exp, int *pos)
9915 {
9916 struct value *mark = value_mark ();
9917 struct value *elt;
9918 struct type *lhs_type = check_typedef (value_type (lhs));
9919
9920 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9921 {
9922 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9923 struct value *index_val = value_from_longest (index_type, index);
9924
9925 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9926 }
9927 else
9928 {
9929 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9930 elt = ada_to_fixed_value (elt);
9931 }
9932
9933 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9934 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9935 else
9936 value_assign_to_component (container, elt,
9937 ada_evaluate_subexp (NULL, exp, pos,
9938 EVAL_NORMAL));
9939
9940 value_free_to_mark (mark);
9941 }
9942
9943 /* Assuming that LHS represents an lvalue having a record or array
9944 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9945 of that aggregate's value to LHS, advancing *POS past the
9946 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9947 lvalue containing LHS (possibly LHS itself). Does not modify
9948 the inferior's memory, nor does it modify the contents of
9949 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9950
9951 static struct value *
9952 assign_aggregate (struct value *container,
9953 struct value *lhs, struct expression *exp,
9954 int *pos, enum noside noside)
9955 {
9956 struct type *lhs_type;
9957 int n = exp->elts[*pos+1].longconst;
9958 LONGEST low_index, high_index;
9959 int num_specs;
9960 LONGEST *indices;
9961 int max_indices, num_indices;
9962 int i;
9963
9964 *pos += 3;
9965 if (noside != EVAL_NORMAL)
9966 {
9967 for (i = 0; i < n; i += 1)
9968 ada_evaluate_subexp (NULL, exp, pos, noside);
9969 return container;
9970 }
9971
9972 container = ada_coerce_ref (container);
9973 if (ada_is_direct_array_type (value_type (container)))
9974 container = ada_coerce_to_simple_array (container);
9975 lhs = ada_coerce_ref (lhs);
9976 if (!deprecated_value_modifiable (lhs))
9977 error (_("Left operand of assignment is not a modifiable lvalue."));
9978
9979 lhs_type = check_typedef (value_type (lhs));
9980 if (ada_is_direct_array_type (lhs_type))
9981 {
9982 lhs = ada_coerce_to_simple_array (lhs);
9983 lhs_type = check_typedef (value_type (lhs));
9984 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9985 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9986 }
9987 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9988 {
9989 low_index = 0;
9990 high_index = num_visible_fields (lhs_type) - 1;
9991 }
9992 else
9993 error (_("Left-hand side must be array or record."));
9994
9995 num_specs = num_component_specs (exp, *pos - 3);
9996 max_indices = 4 * num_specs + 4;
9997 indices = XALLOCAVEC (LONGEST, max_indices);
9998 indices[0] = indices[1] = low_index - 1;
9999 indices[2] = indices[3] = high_index + 1;
10000 num_indices = 4;
10001
10002 for (i = 0; i < n; i += 1)
10003 {
10004 switch (exp->elts[*pos].opcode)
10005 {
10006 case OP_CHOICES:
10007 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10008 &num_indices, max_indices,
10009 low_index, high_index);
10010 break;
10011 case OP_POSITIONAL:
10012 aggregate_assign_positional (container, lhs, exp, pos, indices,
10013 &num_indices, max_indices,
10014 low_index, high_index);
10015 break;
10016 case OP_OTHERS:
10017 if (i != n-1)
10018 error (_("Misplaced 'others' clause"));
10019 aggregate_assign_others (container, lhs, exp, pos, indices,
10020 num_indices, low_index, high_index);
10021 break;
10022 default:
10023 error (_("Internal error: bad aggregate clause"));
10024 }
10025 }
10026
10027 return container;
10028 }
10029
10030 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10031 construct at *POS, updating *POS past the construct, given that
10032 the positions are relative to lower bound LOW, where HIGH is the
10033 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10034 updating *NUM_INDICES as needed. CONTAINER is as for
10035 assign_aggregate. */
10036 static void
10037 aggregate_assign_positional (struct value *container,
10038 struct value *lhs, struct expression *exp,
10039 int *pos, LONGEST *indices, int *num_indices,
10040 int max_indices, LONGEST low, LONGEST high)
10041 {
10042 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10043
10044 if (ind - 1 == high)
10045 warning (_("Extra components in aggregate ignored."));
10046 if (ind <= high)
10047 {
10048 add_component_interval (ind, ind, indices, num_indices, max_indices);
10049 *pos += 3;
10050 assign_component (container, lhs, ind, exp, pos);
10051 }
10052 else
10053 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10054 }
10055
10056 /* Assign into the components of LHS indexed by the OP_CHOICES
10057 construct at *POS, updating *POS past the construct, given that
10058 the allowable indices are LOW..HIGH. Record the indices assigned
10059 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10060 needed. CONTAINER is as for assign_aggregate. */
10061 static void
10062 aggregate_assign_from_choices (struct value *container,
10063 struct value *lhs, struct expression *exp,
10064 int *pos, LONGEST *indices, int *num_indices,
10065 int max_indices, LONGEST low, LONGEST high)
10066 {
10067 int j;
10068 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10069 int choice_pos, expr_pc;
10070 int is_array = ada_is_direct_array_type (value_type (lhs));
10071
10072 choice_pos = *pos += 3;
10073
10074 for (j = 0; j < n_choices; j += 1)
10075 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10076 expr_pc = *pos;
10077 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10078
10079 for (j = 0; j < n_choices; j += 1)
10080 {
10081 LONGEST lower, upper;
10082 enum exp_opcode op = exp->elts[choice_pos].opcode;
10083
10084 if (op == OP_DISCRETE_RANGE)
10085 {
10086 choice_pos += 1;
10087 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10088 EVAL_NORMAL));
10089 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10090 EVAL_NORMAL));
10091 }
10092 else if (is_array)
10093 {
10094 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10095 EVAL_NORMAL));
10096 upper = lower;
10097 }
10098 else
10099 {
10100 int ind;
10101 const char *name;
10102
10103 switch (op)
10104 {
10105 case OP_NAME:
10106 name = &exp->elts[choice_pos + 2].string;
10107 break;
10108 case OP_VAR_VALUE:
10109 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10110 break;
10111 default:
10112 error (_("Invalid record component association."));
10113 }
10114 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10115 ind = 0;
10116 if (! find_struct_field (name, value_type (lhs), 0,
10117 NULL, NULL, NULL, NULL, &ind))
10118 error (_("Unknown component name: %s."), name);
10119 lower = upper = ind;
10120 }
10121
10122 if (lower <= upper && (lower < low || upper > high))
10123 error (_("Index in component association out of bounds."));
10124
10125 add_component_interval (lower, upper, indices, num_indices,
10126 max_indices);
10127 while (lower <= upper)
10128 {
10129 int pos1;
10130
10131 pos1 = expr_pc;
10132 assign_component (container, lhs, lower, exp, &pos1);
10133 lower += 1;
10134 }
10135 }
10136 }
10137
10138 /* Assign the value of the expression in the OP_OTHERS construct in
10139 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10140 have not been previously assigned. The index intervals already assigned
10141 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10142 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10143 static void
10144 aggregate_assign_others (struct value *container,
10145 struct value *lhs, struct expression *exp,
10146 int *pos, LONGEST *indices, int num_indices,
10147 LONGEST low, LONGEST high)
10148 {
10149 int i;
10150 int expr_pc = *pos + 1;
10151
10152 for (i = 0; i < num_indices - 2; i += 2)
10153 {
10154 LONGEST ind;
10155
10156 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10157 {
10158 int localpos;
10159
10160 localpos = expr_pc;
10161 assign_component (container, lhs, ind, exp, &localpos);
10162 }
10163 }
10164 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10165 }
10166
10167 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10168 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10169 modifying *SIZE as needed. It is an error if *SIZE exceeds
10170 MAX_SIZE. The resulting intervals do not overlap. */
10171 static void
10172 add_component_interval (LONGEST low, LONGEST high,
10173 LONGEST* indices, int *size, int max_size)
10174 {
10175 int i, j;
10176
10177 for (i = 0; i < *size; i += 2) {
10178 if (high >= indices[i] && low <= indices[i + 1])
10179 {
10180 int kh;
10181
10182 for (kh = i + 2; kh < *size; kh += 2)
10183 if (high < indices[kh])
10184 break;
10185 if (low < indices[i])
10186 indices[i] = low;
10187 indices[i + 1] = indices[kh - 1];
10188 if (high > indices[i + 1])
10189 indices[i + 1] = high;
10190 memcpy (indices + i + 2, indices + kh, *size - kh);
10191 *size -= kh - i - 2;
10192 return;
10193 }
10194 else if (high < indices[i])
10195 break;
10196 }
10197
10198 if (*size == max_size)
10199 error (_("Internal error: miscounted aggregate components."));
10200 *size += 2;
10201 for (j = *size-1; j >= i+2; j -= 1)
10202 indices[j] = indices[j - 2];
10203 indices[i] = low;
10204 indices[i + 1] = high;
10205 }
10206
10207 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10208 is different. */
10209
10210 static struct value *
10211 ada_value_cast (struct type *type, struct value *arg2)
10212 {
10213 if (type == ada_check_typedef (value_type (arg2)))
10214 return arg2;
10215
10216 if (ada_is_fixed_point_type (type))
10217 return cast_to_fixed (type, arg2);
10218
10219 if (ada_is_fixed_point_type (value_type (arg2)))
10220 return cast_from_fixed (type, arg2);
10221
10222 return value_cast (type, arg2);
10223 }
10224
10225 /* Evaluating Ada expressions, and printing their result.
10226 ------------------------------------------------------
10227
10228 1. Introduction:
10229 ----------------
10230
10231 We usually evaluate an Ada expression in order to print its value.
10232 We also evaluate an expression in order to print its type, which
10233 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10234 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10235 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10236 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10237 similar.
10238
10239 Evaluating expressions is a little more complicated for Ada entities
10240 than it is for entities in languages such as C. The main reason for
10241 this is that Ada provides types whose definition might be dynamic.
10242 One example of such types is variant records. Or another example
10243 would be an array whose bounds can only be known at run time.
10244
10245 The following description is a general guide as to what should be
10246 done (and what should NOT be done) in order to evaluate an expression
10247 involving such types, and when. This does not cover how the semantic
10248 information is encoded by GNAT as this is covered separatly. For the
10249 document used as the reference for the GNAT encoding, see exp_dbug.ads
10250 in the GNAT sources.
10251
10252 Ideally, we should embed each part of this description next to its
10253 associated code. Unfortunately, the amount of code is so vast right
10254 now that it's hard to see whether the code handling a particular
10255 situation might be duplicated or not. One day, when the code is
10256 cleaned up, this guide might become redundant with the comments
10257 inserted in the code, and we might want to remove it.
10258
10259 2. ``Fixing'' an Entity, the Simple Case:
10260 -----------------------------------------
10261
10262 When evaluating Ada expressions, the tricky issue is that they may
10263 reference entities whose type contents and size are not statically
10264 known. Consider for instance a variant record:
10265
10266 type Rec (Empty : Boolean := True) is record
10267 case Empty is
10268 when True => null;
10269 when False => Value : Integer;
10270 end case;
10271 end record;
10272 Yes : Rec := (Empty => False, Value => 1);
10273 No : Rec := (empty => True);
10274
10275 The size and contents of that record depends on the value of the
10276 descriminant (Rec.Empty). At this point, neither the debugging
10277 information nor the associated type structure in GDB are able to
10278 express such dynamic types. So what the debugger does is to create
10279 "fixed" versions of the type that applies to the specific object.
10280 We also informally refer to this opperation as "fixing" an object,
10281 which means creating its associated fixed type.
10282
10283 Example: when printing the value of variable "Yes" above, its fixed
10284 type would look like this:
10285
10286 type Rec is record
10287 Empty : Boolean;
10288 Value : Integer;
10289 end record;
10290
10291 On the other hand, if we printed the value of "No", its fixed type
10292 would become:
10293
10294 type Rec is record
10295 Empty : Boolean;
10296 end record;
10297
10298 Things become a little more complicated when trying to fix an entity
10299 with a dynamic type that directly contains another dynamic type,
10300 such as an array of variant records, for instance. There are
10301 two possible cases: Arrays, and records.
10302
10303 3. ``Fixing'' Arrays:
10304 ---------------------
10305
10306 The type structure in GDB describes an array in terms of its bounds,
10307 and the type of its elements. By design, all elements in the array
10308 have the same type and we cannot represent an array of variant elements
10309 using the current type structure in GDB. When fixing an array,
10310 we cannot fix the array element, as we would potentially need one
10311 fixed type per element of the array. As a result, the best we can do
10312 when fixing an array is to produce an array whose bounds and size
10313 are correct (allowing us to read it from memory), but without having
10314 touched its element type. Fixing each element will be done later,
10315 when (if) necessary.
10316
10317 Arrays are a little simpler to handle than records, because the same
10318 amount of memory is allocated for each element of the array, even if
10319 the amount of space actually used by each element differs from element
10320 to element. Consider for instance the following array of type Rec:
10321
10322 type Rec_Array is array (1 .. 2) of Rec;
10323
10324 The actual amount of memory occupied by each element might be different
10325 from element to element, depending on the value of their discriminant.
10326 But the amount of space reserved for each element in the array remains
10327 fixed regardless. So we simply need to compute that size using
10328 the debugging information available, from which we can then determine
10329 the array size (we multiply the number of elements of the array by
10330 the size of each element).
10331
10332 The simplest case is when we have an array of a constrained element
10333 type. For instance, consider the following type declarations:
10334
10335 type Bounded_String (Max_Size : Integer) is
10336 Length : Integer;
10337 Buffer : String (1 .. Max_Size);
10338 end record;
10339 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10340
10341 In this case, the compiler describes the array as an array of
10342 variable-size elements (identified by its XVS suffix) for which
10343 the size can be read in the parallel XVZ variable.
10344
10345 In the case of an array of an unconstrained element type, the compiler
10346 wraps the array element inside a private PAD type. This type should not
10347 be shown to the user, and must be "unwrap"'ed before printing. Note
10348 that we also use the adjective "aligner" in our code to designate
10349 these wrapper types.
10350
10351 In some cases, the size allocated for each element is statically
10352 known. In that case, the PAD type already has the correct size,
10353 and the array element should remain unfixed.
10354
10355 But there are cases when this size is not statically known.
10356 For instance, assuming that "Five" is an integer variable:
10357
10358 type Dynamic is array (1 .. Five) of Integer;
10359 type Wrapper (Has_Length : Boolean := False) is record
10360 Data : Dynamic;
10361 case Has_Length is
10362 when True => Length : Integer;
10363 when False => null;
10364 end case;
10365 end record;
10366 type Wrapper_Array is array (1 .. 2) of Wrapper;
10367
10368 Hello : Wrapper_Array := (others => (Has_Length => True,
10369 Data => (others => 17),
10370 Length => 1));
10371
10372
10373 The debugging info would describe variable Hello as being an
10374 array of a PAD type. The size of that PAD type is not statically
10375 known, but can be determined using a parallel XVZ variable.
10376 In that case, a copy of the PAD type with the correct size should
10377 be used for the fixed array.
10378
10379 3. ``Fixing'' record type objects:
10380 ----------------------------------
10381
10382 Things are slightly different from arrays in the case of dynamic
10383 record types. In this case, in order to compute the associated
10384 fixed type, we need to determine the size and offset of each of
10385 its components. This, in turn, requires us to compute the fixed
10386 type of each of these components.
10387
10388 Consider for instance the example:
10389
10390 type Bounded_String (Max_Size : Natural) is record
10391 Str : String (1 .. Max_Size);
10392 Length : Natural;
10393 end record;
10394 My_String : Bounded_String (Max_Size => 10);
10395
10396 In that case, the position of field "Length" depends on the size
10397 of field Str, which itself depends on the value of the Max_Size
10398 discriminant. In order to fix the type of variable My_String,
10399 we need to fix the type of field Str. Therefore, fixing a variant
10400 record requires us to fix each of its components.
10401
10402 However, if a component does not have a dynamic size, the component
10403 should not be fixed. In particular, fields that use a PAD type
10404 should not fixed. Here is an example where this might happen
10405 (assuming type Rec above):
10406
10407 type Container (Big : Boolean) is record
10408 First : Rec;
10409 After : Integer;
10410 case Big is
10411 when True => Another : Integer;
10412 when False => null;
10413 end case;
10414 end record;
10415 My_Container : Container := (Big => False,
10416 First => (Empty => True),
10417 After => 42);
10418
10419 In that example, the compiler creates a PAD type for component First,
10420 whose size is constant, and then positions the component After just
10421 right after it. The offset of component After is therefore constant
10422 in this case.
10423
10424 The debugger computes the position of each field based on an algorithm
10425 that uses, among other things, the actual position and size of the field
10426 preceding it. Let's now imagine that the user is trying to print
10427 the value of My_Container. If the type fixing was recursive, we would
10428 end up computing the offset of field After based on the size of the
10429 fixed version of field First. And since in our example First has
10430 only one actual field, the size of the fixed type is actually smaller
10431 than the amount of space allocated to that field, and thus we would
10432 compute the wrong offset of field After.
10433
10434 To make things more complicated, we need to watch out for dynamic
10435 components of variant records (identified by the ___XVL suffix in
10436 the component name). Even if the target type is a PAD type, the size
10437 of that type might not be statically known. So the PAD type needs
10438 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10439 we might end up with the wrong size for our component. This can be
10440 observed with the following type declarations:
10441
10442 type Octal is new Integer range 0 .. 7;
10443 type Octal_Array is array (Positive range <>) of Octal;
10444 pragma Pack (Octal_Array);
10445
10446 type Octal_Buffer (Size : Positive) is record
10447 Buffer : Octal_Array (1 .. Size);
10448 Length : Integer;
10449 end record;
10450
10451 In that case, Buffer is a PAD type whose size is unset and needs
10452 to be computed by fixing the unwrapped type.
10453
10454 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10455 ----------------------------------------------------------
10456
10457 Lastly, when should the sub-elements of an entity that remained unfixed
10458 thus far, be actually fixed?
10459
10460 The answer is: Only when referencing that element. For instance
10461 when selecting one component of a record, this specific component
10462 should be fixed at that point in time. Or when printing the value
10463 of a record, each component should be fixed before its value gets
10464 printed. Similarly for arrays, the element of the array should be
10465 fixed when printing each element of the array, or when extracting
10466 one element out of that array. On the other hand, fixing should
10467 not be performed on the elements when taking a slice of an array!
10468
10469 Note that one of the side effects of miscomputing the offset and
10470 size of each field is that we end up also miscomputing the size
10471 of the containing type. This can have adverse results when computing
10472 the value of an entity. GDB fetches the value of an entity based
10473 on the size of its type, and thus a wrong size causes GDB to fetch
10474 the wrong amount of memory. In the case where the computed size is
10475 too small, GDB fetches too little data to print the value of our
10476 entity. Results in this case are unpredictable, as we usually read
10477 past the buffer containing the data =:-o. */
10478
10479 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10480 for that subexpression cast to TO_TYPE. Advance *POS over the
10481 subexpression. */
10482
10483 static value *
10484 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10485 enum noside noside, struct type *to_type)
10486 {
10487 int pc = *pos;
10488
10489 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10490 || exp->elts[pc].opcode == OP_VAR_VALUE)
10491 {
10492 (*pos) += 4;
10493
10494 value *val;
10495 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10496 {
10497 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10498 return value_zero (to_type, not_lval);
10499
10500 val = evaluate_var_msym_value (noside,
10501 exp->elts[pc + 1].objfile,
10502 exp->elts[pc + 2].msymbol);
10503 }
10504 else
10505 val = evaluate_var_value (noside,
10506 exp->elts[pc + 1].block,
10507 exp->elts[pc + 2].symbol);
10508
10509 if (noside == EVAL_SKIP)
10510 return eval_skip_value (exp);
10511
10512 val = ada_value_cast (to_type, val);
10513
10514 /* Follow the Ada language semantics that do not allow taking
10515 an address of the result of a cast (view conversion in Ada). */
10516 if (VALUE_LVAL (val) == lval_memory)
10517 {
10518 if (value_lazy (val))
10519 value_fetch_lazy (val);
10520 VALUE_LVAL (val) = not_lval;
10521 }
10522 return val;
10523 }
10524
10525 value *val = evaluate_subexp (to_type, exp, pos, noside);
10526 if (noside == EVAL_SKIP)
10527 return eval_skip_value (exp);
10528 return ada_value_cast (to_type, val);
10529 }
10530
10531 /* Implement the evaluate_exp routine in the exp_descriptor structure
10532 for the Ada language. */
10533
10534 static struct value *
10535 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10536 int *pos, enum noside noside)
10537 {
10538 enum exp_opcode op;
10539 int tem;
10540 int pc;
10541 int preeval_pos;
10542 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10543 struct type *type;
10544 int nargs, oplen;
10545 struct value **argvec;
10546
10547 pc = *pos;
10548 *pos += 1;
10549 op = exp->elts[pc].opcode;
10550
10551 switch (op)
10552 {
10553 default:
10554 *pos -= 1;
10555 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10556
10557 if (noside == EVAL_NORMAL)
10558 arg1 = unwrap_value (arg1);
10559
10560 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10561 then we need to perform the conversion manually, because
10562 evaluate_subexp_standard doesn't do it. This conversion is
10563 necessary in Ada because the different kinds of float/fixed
10564 types in Ada have different representations.
10565
10566 Similarly, we need to perform the conversion from OP_LONG
10567 ourselves. */
10568 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10569 arg1 = ada_value_cast (expect_type, arg1);
10570
10571 return arg1;
10572
10573 case OP_STRING:
10574 {
10575 struct value *result;
10576
10577 *pos -= 1;
10578 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10579 /* The result type will have code OP_STRING, bashed there from
10580 OP_ARRAY. Bash it back. */
10581 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10582 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10583 return result;
10584 }
10585
10586 case UNOP_CAST:
10587 (*pos) += 2;
10588 type = exp->elts[pc + 1].type;
10589 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10590
10591 case UNOP_QUAL:
10592 (*pos) += 2;
10593 type = exp->elts[pc + 1].type;
10594 return ada_evaluate_subexp (type, exp, pos, noside);
10595
10596 case BINOP_ASSIGN:
10597 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10598 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10599 {
10600 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10601 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10602 return arg1;
10603 return ada_value_assign (arg1, arg1);
10604 }
10605 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10606 except if the lhs of our assignment is a convenience variable.
10607 In the case of assigning to a convenience variable, the lhs
10608 should be exactly the result of the evaluation of the rhs. */
10609 type = value_type (arg1);
10610 if (VALUE_LVAL (arg1) == lval_internalvar)
10611 type = NULL;
10612 arg2 = evaluate_subexp (type, exp, pos, noside);
10613 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10614 return arg1;
10615 if (ada_is_fixed_point_type (value_type (arg1)))
10616 arg2 = cast_to_fixed (value_type (arg1), arg2);
10617 else if (ada_is_fixed_point_type (value_type (arg2)))
10618 error
10619 (_("Fixed-point values must be assigned to fixed-point variables"));
10620 else
10621 arg2 = coerce_for_assign (value_type (arg1), arg2);
10622 return ada_value_assign (arg1, arg2);
10623
10624 case BINOP_ADD:
10625 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10626 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10627 if (noside == EVAL_SKIP)
10628 goto nosideret;
10629 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10630 return (value_from_longest
10631 (value_type (arg1),
10632 value_as_long (arg1) + value_as_long (arg2)));
10633 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10634 return (value_from_longest
10635 (value_type (arg2),
10636 value_as_long (arg1) + value_as_long (arg2)));
10637 if ((ada_is_fixed_point_type (value_type (arg1))
10638 || ada_is_fixed_point_type (value_type (arg2)))
10639 && value_type (arg1) != value_type (arg2))
10640 error (_("Operands of fixed-point addition must have the same type"));
10641 /* Do the addition, and cast the result to the type of the first
10642 argument. We cannot cast the result to a reference type, so if
10643 ARG1 is a reference type, find its underlying type. */
10644 type = value_type (arg1);
10645 while (TYPE_CODE (type) == TYPE_CODE_REF)
10646 type = TYPE_TARGET_TYPE (type);
10647 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10648 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10649
10650 case BINOP_SUB:
10651 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10652 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10653 if (noside == EVAL_SKIP)
10654 goto nosideret;
10655 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10656 return (value_from_longest
10657 (value_type (arg1),
10658 value_as_long (arg1) - value_as_long (arg2)));
10659 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10660 return (value_from_longest
10661 (value_type (arg2),
10662 value_as_long (arg1) - value_as_long (arg2)));
10663 if ((ada_is_fixed_point_type (value_type (arg1))
10664 || ada_is_fixed_point_type (value_type (arg2)))
10665 && value_type (arg1) != value_type (arg2))
10666 error (_("Operands of fixed-point subtraction "
10667 "must have the same type"));
10668 /* Do the substraction, and cast the result to the type of the first
10669 argument. We cannot cast the result to a reference type, so if
10670 ARG1 is a reference type, find its underlying type. */
10671 type = value_type (arg1);
10672 while (TYPE_CODE (type) == TYPE_CODE_REF)
10673 type = TYPE_TARGET_TYPE (type);
10674 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10675 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10676
10677 case BINOP_MUL:
10678 case BINOP_DIV:
10679 case BINOP_REM:
10680 case BINOP_MOD:
10681 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10682 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10683 if (noside == EVAL_SKIP)
10684 goto nosideret;
10685 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10686 {
10687 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10688 return value_zero (value_type (arg1), not_lval);
10689 }
10690 else
10691 {
10692 type = builtin_type (exp->gdbarch)->builtin_double;
10693 if (ada_is_fixed_point_type (value_type (arg1)))
10694 arg1 = cast_from_fixed (type, arg1);
10695 if (ada_is_fixed_point_type (value_type (arg2)))
10696 arg2 = cast_from_fixed (type, arg2);
10697 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10698 return ada_value_binop (arg1, arg2, op);
10699 }
10700
10701 case BINOP_EQUAL:
10702 case BINOP_NOTEQUAL:
10703 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10704 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10705 if (noside == EVAL_SKIP)
10706 goto nosideret;
10707 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10708 tem = 0;
10709 else
10710 {
10711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10712 tem = ada_value_equal (arg1, arg2);
10713 }
10714 if (op == BINOP_NOTEQUAL)
10715 tem = !tem;
10716 type = language_bool_type (exp->language_defn, exp->gdbarch);
10717 return value_from_longest (type, (LONGEST) tem);
10718
10719 case UNOP_NEG:
10720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10721 if (noside == EVAL_SKIP)
10722 goto nosideret;
10723 else if (ada_is_fixed_point_type (value_type (arg1)))
10724 return value_cast (value_type (arg1), value_neg (arg1));
10725 else
10726 {
10727 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10728 return value_neg (arg1);
10729 }
10730
10731 case BINOP_LOGICAL_AND:
10732 case BINOP_LOGICAL_OR:
10733 case UNOP_LOGICAL_NOT:
10734 {
10735 struct value *val;
10736
10737 *pos -= 1;
10738 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10739 type = language_bool_type (exp->language_defn, exp->gdbarch);
10740 return value_cast (type, val);
10741 }
10742
10743 case BINOP_BITWISE_AND:
10744 case BINOP_BITWISE_IOR:
10745 case BINOP_BITWISE_XOR:
10746 {
10747 struct value *val;
10748
10749 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10750 *pos = pc;
10751 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10752
10753 return value_cast (value_type (arg1), val);
10754 }
10755
10756 case OP_VAR_VALUE:
10757 *pos -= 1;
10758
10759 if (noside == EVAL_SKIP)
10760 {
10761 *pos += 4;
10762 goto nosideret;
10763 }
10764
10765 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10766 /* Only encountered when an unresolved symbol occurs in a
10767 context other than a function call, in which case, it is
10768 invalid. */
10769 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10770 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10771
10772 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10773 {
10774 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10775 /* Check to see if this is a tagged type. We also need to handle
10776 the case where the type is a reference to a tagged type, but
10777 we have to be careful to exclude pointers to tagged types.
10778 The latter should be shown as usual (as a pointer), whereas
10779 a reference should mostly be transparent to the user. */
10780 if (ada_is_tagged_type (type, 0)
10781 || (TYPE_CODE (type) == TYPE_CODE_REF
10782 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10783 {
10784 /* Tagged types are a little special in the fact that the real
10785 type is dynamic and can only be determined by inspecting the
10786 object's tag. This means that we need to get the object's
10787 value first (EVAL_NORMAL) and then extract the actual object
10788 type from its tag.
10789
10790 Note that we cannot skip the final step where we extract
10791 the object type from its tag, because the EVAL_NORMAL phase
10792 results in dynamic components being resolved into fixed ones.
10793 This can cause problems when trying to print the type
10794 description of tagged types whose parent has a dynamic size:
10795 We use the type name of the "_parent" component in order
10796 to print the name of the ancestor type in the type description.
10797 If that component had a dynamic size, the resolution into
10798 a fixed type would result in the loss of that type name,
10799 thus preventing us from printing the name of the ancestor
10800 type in the type description. */
10801 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10802
10803 if (TYPE_CODE (type) != TYPE_CODE_REF)
10804 {
10805 struct type *actual_type;
10806
10807 actual_type = type_from_tag (ada_value_tag (arg1));
10808 if (actual_type == NULL)
10809 /* If, for some reason, we were unable to determine
10810 the actual type from the tag, then use the static
10811 approximation that we just computed as a fallback.
10812 This can happen if the debugging information is
10813 incomplete, for instance. */
10814 actual_type = type;
10815 return value_zero (actual_type, not_lval);
10816 }
10817 else
10818 {
10819 /* In the case of a ref, ada_coerce_ref takes care
10820 of determining the actual type. But the evaluation
10821 should return a ref as it should be valid to ask
10822 for its address; so rebuild a ref after coerce. */
10823 arg1 = ada_coerce_ref (arg1);
10824 return value_ref (arg1, TYPE_CODE_REF);
10825 }
10826 }
10827
10828 /* Records and unions for which GNAT encodings have been
10829 generated need to be statically fixed as well.
10830 Otherwise, non-static fixing produces a type where
10831 all dynamic properties are removed, which prevents "ptype"
10832 from being able to completely describe the type.
10833 For instance, a case statement in a variant record would be
10834 replaced by the relevant components based on the actual
10835 value of the discriminants. */
10836 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10837 && dynamic_template_type (type) != NULL)
10838 || (TYPE_CODE (type) == TYPE_CODE_UNION
10839 && ada_find_parallel_type (type, "___XVU") != NULL))
10840 {
10841 *pos += 4;
10842 return value_zero (to_static_fixed_type (type), not_lval);
10843 }
10844 }
10845
10846 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10847 return ada_to_fixed_value (arg1);
10848
10849 case OP_FUNCALL:
10850 (*pos) += 2;
10851
10852 /* Allocate arg vector, including space for the function to be
10853 called in argvec[0] and a terminating NULL. */
10854 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10855 argvec = XALLOCAVEC (struct value *, nargs + 2);
10856
10857 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10858 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10859 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10860 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10861 else
10862 {
10863 for (tem = 0; tem <= nargs; tem += 1)
10864 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10865 argvec[tem] = 0;
10866
10867 if (noside == EVAL_SKIP)
10868 goto nosideret;
10869 }
10870
10871 if (ada_is_constrained_packed_array_type
10872 (desc_base_type (value_type (argvec[0]))))
10873 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10874 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10875 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10876 /* This is a packed array that has already been fixed, and
10877 therefore already coerced to a simple array. Nothing further
10878 to do. */
10879 ;
10880 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10881 {
10882 /* Make sure we dereference references so that all the code below
10883 feels like it's really handling the referenced value. Wrapping
10884 types (for alignment) may be there, so make sure we strip them as
10885 well. */
10886 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10887 }
10888 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10889 && VALUE_LVAL (argvec[0]) == lval_memory)
10890 argvec[0] = value_addr (argvec[0]);
10891
10892 type = ada_check_typedef (value_type (argvec[0]));
10893
10894 /* Ada allows us to implicitly dereference arrays when subscripting
10895 them. So, if this is an array typedef (encoding use for array
10896 access types encoded as fat pointers), strip it now. */
10897 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10898 type = ada_typedef_target_type (type);
10899
10900 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10901 {
10902 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10903 {
10904 case TYPE_CODE_FUNC:
10905 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10906 break;
10907 case TYPE_CODE_ARRAY:
10908 break;
10909 case TYPE_CODE_STRUCT:
10910 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10911 argvec[0] = ada_value_ind (argvec[0]);
10912 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10913 break;
10914 default:
10915 error (_("cannot subscript or call something of type `%s'"),
10916 ada_type_name (value_type (argvec[0])));
10917 break;
10918 }
10919 }
10920
10921 switch (TYPE_CODE (type))
10922 {
10923 case TYPE_CODE_FUNC:
10924 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10925 {
10926 if (TYPE_TARGET_TYPE (type) == NULL)
10927 error_call_unknown_return_type (NULL);
10928 return allocate_value (TYPE_TARGET_TYPE (type));
10929 }
10930 return call_function_by_hand (argvec[0], NULL,
10931 gdb::make_array_view (argvec + 1,
10932 nargs));
10933 case TYPE_CODE_INTERNAL_FUNCTION:
10934 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10935 /* We don't know anything about what the internal
10936 function might return, but we have to return
10937 something. */
10938 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10939 not_lval);
10940 else
10941 return call_internal_function (exp->gdbarch, exp->language_defn,
10942 argvec[0], nargs, argvec + 1);
10943
10944 case TYPE_CODE_STRUCT:
10945 {
10946 int arity;
10947
10948 arity = ada_array_arity (type);
10949 type = ada_array_element_type (type, nargs);
10950 if (type == NULL)
10951 error (_("cannot subscript or call a record"));
10952 if (arity != nargs)
10953 error (_("wrong number of subscripts; expecting %d"), arity);
10954 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10955 return value_zero (ada_aligned_type (type), lval_memory);
10956 return
10957 unwrap_value (ada_value_subscript
10958 (argvec[0], nargs, argvec + 1));
10959 }
10960 case TYPE_CODE_ARRAY:
10961 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10962 {
10963 type = ada_array_element_type (type, nargs);
10964 if (type == NULL)
10965 error (_("element type of array unknown"));
10966 else
10967 return value_zero (ada_aligned_type (type), lval_memory);
10968 }
10969 return
10970 unwrap_value (ada_value_subscript
10971 (ada_coerce_to_simple_array (argvec[0]),
10972 nargs, argvec + 1));
10973 case TYPE_CODE_PTR: /* Pointer to array */
10974 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10975 {
10976 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10977 type = ada_array_element_type (type, nargs);
10978 if (type == NULL)
10979 error (_("element type of array unknown"));
10980 else
10981 return value_zero (ada_aligned_type (type), lval_memory);
10982 }
10983 return
10984 unwrap_value (ada_value_ptr_subscript (argvec[0],
10985 nargs, argvec + 1));
10986
10987 default:
10988 error (_("Attempt to index or call something other than an "
10989 "array or function"));
10990 }
10991
10992 case TERNOP_SLICE:
10993 {
10994 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10995 struct value *low_bound_val =
10996 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10997 struct value *high_bound_val =
10998 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10999 LONGEST low_bound;
11000 LONGEST high_bound;
11001
11002 low_bound_val = coerce_ref (low_bound_val);
11003 high_bound_val = coerce_ref (high_bound_val);
11004 low_bound = value_as_long (low_bound_val);
11005 high_bound = value_as_long (high_bound_val);
11006
11007 if (noside == EVAL_SKIP)
11008 goto nosideret;
11009
11010 /* If this is a reference to an aligner type, then remove all
11011 the aligners. */
11012 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11013 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11014 TYPE_TARGET_TYPE (value_type (array)) =
11015 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11016
11017 if (ada_is_constrained_packed_array_type (value_type (array)))
11018 error (_("cannot slice a packed array"));
11019
11020 /* If this is a reference to an array or an array lvalue,
11021 convert to a pointer. */
11022 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11023 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11024 && VALUE_LVAL (array) == lval_memory))
11025 array = value_addr (array);
11026
11027 if (noside == EVAL_AVOID_SIDE_EFFECTS
11028 && ada_is_array_descriptor_type (ada_check_typedef
11029 (value_type (array))))
11030 return empty_array (ada_type_of_array (array, 0), low_bound);
11031
11032 array = ada_coerce_to_simple_array_ptr (array);
11033
11034 /* If we have more than one level of pointer indirection,
11035 dereference the value until we get only one level. */
11036 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11037 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11038 == TYPE_CODE_PTR))
11039 array = value_ind (array);
11040
11041 /* Make sure we really do have an array type before going further,
11042 to avoid a SEGV when trying to get the index type or the target
11043 type later down the road if the debug info generated by
11044 the compiler is incorrect or incomplete. */
11045 if (!ada_is_simple_array_type (value_type (array)))
11046 error (_("cannot take slice of non-array"));
11047
11048 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11049 == TYPE_CODE_PTR)
11050 {
11051 struct type *type0 = ada_check_typedef (value_type (array));
11052
11053 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11054 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11055 else
11056 {
11057 struct type *arr_type0 =
11058 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11059
11060 return ada_value_slice_from_ptr (array, arr_type0,
11061 longest_to_int (low_bound),
11062 longest_to_int (high_bound));
11063 }
11064 }
11065 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11066 return array;
11067 else if (high_bound < low_bound)
11068 return empty_array (value_type (array), low_bound);
11069 else
11070 return ada_value_slice (array, longest_to_int (low_bound),
11071 longest_to_int (high_bound));
11072 }
11073
11074 case UNOP_IN_RANGE:
11075 (*pos) += 2;
11076 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11077 type = check_typedef (exp->elts[pc + 1].type);
11078
11079 if (noside == EVAL_SKIP)
11080 goto nosideret;
11081
11082 switch (TYPE_CODE (type))
11083 {
11084 default:
11085 lim_warning (_("Membership test incompletely implemented; "
11086 "always returns true"));
11087 type = language_bool_type (exp->language_defn, exp->gdbarch);
11088 return value_from_longest (type, (LONGEST) 1);
11089
11090 case TYPE_CODE_RANGE:
11091 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11092 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11093 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11095 type = language_bool_type (exp->language_defn, exp->gdbarch);
11096 return
11097 value_from_longest (type,
11098 (value_less (arg1, arg3)
11099 || value_equal (arg1, arg3))
11100 && (value_less (arg2, arg1)
11101 || value_equal (arg2, arg1)));
11102 }
11103
11104 case BINOP_IN_BOUNDS:
11105 (*pos) += 2;
11106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11107 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11108
11109 if (noside == EVAL_SKIP)
11110 goto nosideret;
11111
11112 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11113 {
11114 type = language_bool_type (exp->language_defn, exp->gdbarch);
11115 return value_zero (type, not_lval);
11116 }
11117
11118 tem = longest_to_int (exp->elts[pc + 1].longconst);
11119
11120 type = ada_index_type (value_type (arg2), tem, "range");
11121 if (!type)
11122 type = value_type (arg1);
11123
11124 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11125 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11126
11127 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11128 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11129 type = language_bool_type (exp->language_defn, exp->gdbarch);
11130 return
11131 value_from_longest (type,
11132 (value_less (arg1, arg3)
11133 || value_equal (arg1, arg3))
11134 && (value_less (arg2, arg1)
11135 || value_equal (arg2, arg1)));
11136
11137 case TERNOP_IN_RANGE:
11138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11139 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11140 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11141
11142 if (noside == EVAL_SKIP)
11143 goto nosideret;
11144
11145 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11146 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11147 type = language_bool_type (exp->language_defn, exp->gdbarch);
11148 return
11149 value_from_longest (type,
11150 (value_less (arg1, arg3)
11151 || value_equal (arg1, arg3))
11152 && (value_less (arg2, arg1)
11153 || value_equal (arg2, arg1)));
11154
11155 case OP_ATR_FIRST:
11156 case OP_ATR_LAST:
11157 case OP_ATR_LENGTH:
11158 {
11159 struct type *type_arg;
11160
11161 if (exp->elts[*pos].opcode == OP_TYPE)
11162 {
11163 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11164 arg1 = NULL;
11165 type_arg = check_typedef (exp->elts[pc + 2].type);
11166 }
11167 else
11168 {
11169 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11170 type_arg = NULL;
11171 }
11172
11173 if (exp->elts[*pos].opcode != OP_LONG)
11174 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11175 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11176 *pos += 4;
11177
11178 if (noside == EVAL_SKIP)
11179 goto nosideret;
11180
11181 if (type_arg == NULL)
11182 {
11183 arg1 = ada_coerce_ref (arg1);
11184
11185 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11186 arg1 = ada_coerce_to_simple_array (arg1);
11187
11188 if (op == OP_ATR_LENGTH)
11189 type = builtin_type (exp->gdbarch)->builtin_int;
11190 else
11191 {
11192 type = ada_index_type (value_type (arg1), tem,
11193 ada_attribute_name (op));
11194 if (type == NULL)
11195 type = builtin_type (exp->gdbarch)->builtin_int;
11196 }
11197
11198 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11199 return allocate_value (type);
11200
11201 switch (op)
11202 {
11203 default: /* Should never happen. */
11204 error (_("unexpected attribute encountered"));
11205 case OP_ATR_FIRST:
11206 return value_from_longest
11207 (type, ada_array_bound (arg1, tem, 0));
11208 case OP_ATR_LAST:
11209 return value_from_longest
11210 (type, ada_array_bound (arg1, tem, 1));
11211 case OP_ATR_LENGTH:
11212 return value_from_longest
11213 (type, ada_array_length (arg1, tem));
11214 }
11215 }
11216 else if (discrete_type_p (type_arg))
11217 {
11218 struct type *range_type;
11219 const char *name = ada_type_name (type_arg);
11220
11221 range_type = NULL;
11222 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11223 range_type = to_fixed_range_type (type_arg, NULL);
11224 if (range_type == NULL)
11225 range_type = type_arg;
11226 switch (op)
11227 {
11228 default:
11229 error (_("unexpected attribute encountered"));
11230 case OP_ATR_FIRST:
11231 return value_from_longest
11232 (range_type, ada_discrete_type_low_bound (range_type));
11233 case OP_ATR_LAST:
11234 return value_from_longest
11235 (range_type, ada_discrete_type_high_bound (range_type));
11236 case OP_ATR_LENGTH:
11237 error (_("the 'length attribute applies only to array types"));
11238 }
11239 }
11240 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11241 error (_("unimplemented type attribute"));
11242 else
11243 {
11244 LONGEST low, high;
11245
11246 if (ada_is_constrained_packed_array_type (type_arg))
11247 type_arg = decode_constrained_packed_array_type (type_arg);
11248
11249 if (op == OP_ATR_LENGTH)
11250 type = builtin_type (exp->gdbarch)->builtin_int;
11251 else
11252 {
11253 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11254 if (type == NULL)
11255 type = builtin_type (exp->gdbarch)->builtin_int;
11256 }
11257
11258 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11259 return allocate_value (type);
11260
11261 switch (op)
11262 {
11263 default:
11264 error (_("unexpected attribute encountered"));
11265 case OP_ATR_FIRST:
11266 low = ada_array_bound_from_type (type_arg, tem, 0);
11267 return value_from_longest (type, low);
11268 case OP_ATR_LAST:
11269 high = ada_array_bound_from_type (type_arg, tem, 1);
11270 return value_from_longest (type, high);
11271 case OP_ATR_LENGTH:
11272 low = ada_array_bound_from_type (type_arg, tem, 0);
11273 high = ada_array_bound_from_type (type_arg, tem, 1);
11274 return value_from_longest (type, high - low + 1);
11275 }
11276 }
11277 }
11278
11279 case OP_ATR_TAG:
11280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11281 if (noside == EVAL_SKIP)
11282 goto nosideret;
11283
11284 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11285 return value_zero (ada_tag_type (arg1), not_lval);
11286
11287 return ada_value_tag (arg1);
11288
11289 case OP_ATR_MIN:
11290 case OP_ATR_MAX:
11291 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11293 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11294 if (noside == EVAL_SKIP)
11295 goto nosideret;
11296 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11297 return value_zero (value_type (arg1), not_lval);
11298 else
11299 {
11300 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11301 return value_binop (arg1, arg2,
11302 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11303 }
11304
11305 case OP_ATR_MODULUS:
11306 {
11307 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11308
11309 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11310 if (noside == EVAL_SKIP)
11311 goto nosideret;
11312
11313 if (!ada_is_modular_type (type_arg))
11314 error (_("'modulus must be applied to modular type"));
11315
11316 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11317 ada_modulus (type_arg));
11318 }
11319
11320
11321 case OP_ATR_POS:
11322 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11324 if (noside == EVAL_SKIP)
11325 goto nosideret;
11326 type = builtin_type (exp->gdbarch)->builtin_int;
11327 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11328 return value_zero (type, not_lval);
11329 else
11330 return value_pos_atr (type, arg1);
11331
11332 case OP_ATR_SIZE:
11333 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11334 type = value_type (arg1);
11335
11336 /* If the argument is a reference, then dereference its type, since
11337 the user is really asking for the size of the actual object,
11338 not the size of the pointer. */
11339 if (TYPE_CODE (type) == TYPE_CODE_REF)
11340 type = TYPE_TARGET_TYPE (type);
11341
11342 if (noside == EVAL_SKIP)
11343 goto nosideret;
11344 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11345 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11346 else
11347 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11348 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11349
11350 case OP_ATR_VAL:
11351 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11352 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11353 type = exp->elts[pc + 2].type;
11354 if (noside == EVAL_SKIP)
11355 goto nosideret;
11356 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11357 return value_zero (type, not_lval);
11358 else
11359 return value_val_atr (type, arg1);
11360
11361 case BINOP_EXP:
11362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11363 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11364 if (noside == EVAL_SKIP)
11365 goto nosideret;
11366 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11367 return value_zero (value_type (arg1), not_lval);
11368 else
11369 {
11370 /* For integer exponentiation operations,
11371 only promote the first argument. */
11372 if (is_integral_type (value_type (arg2)))
11373 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11374 else
11375 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11376
11377 return value_binop (arg1, arg2, op);
11378 }
11379
11380 case UNOP_PLUS:
11381 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11382 if (noside == EVAL_SKIP)
11383 goto nosideret;
11384 else
11385 return arg1;
11386
11387 case UNOP_ABS:
11388 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11389 if (noside == EVAL_SKIP)
11390 goto nosideret;
11391 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11392 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11393 return value_neg (arg1);
11394 else
11395 return arg1;
11396
11397 case UNOP_IND:
11398 preeval_pos = *pos;
11399 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11400 if (noside == EVAL_SKIP)
11401 goto nosideret;
11402 type = ada_check_typedef (value_type (arg1));
11403 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11404 {
11405 if (ada_is_array_descriptor_type (type))
11406 /* GDB allows dereferencing GNAT array descriptors. */
11407 {
11408 struct type *arrType = ada_type_of_array (arg1, 0);
11409
11410 if (arrType == NULL)
11411 error (_("Attempt to dereference null array pointer."));
11412 return value_at_lazy (arrType, 0);
11413 }
11414 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11415 || TYPE_CODE (type) == TYPE_CODE_REF
11416 /* In C you can dereference an array to get the 1st elt. */
11417 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11418 {
11419 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11420 only be determined by inspecting the object's tag.
11421 This means that we need to evaluate completely the
11422 expression in order to get its type. */
11423
11424 if ((TYPE_CODE (type) == TYPE_CODE_REF
11425 || TYPE_CODE (type) == TYPE_CODE_PTR)
11426 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11427 {
11428 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11429 EVAL_NORMAL);
11430 type = value_type (ada_value_ind (arg1));
11431 }
11432 else
11433 {
11434 type = to_static_fixed_type
11435 (ada_aligned_type
11436 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11437 }
11438 ada_ensure_varsize_limit (type);
11439 return value_zero (type, lval_memory);
11440 }
11441 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11442 {
11443 /* GDB allows dereferencing an int. */
11444 if (expect_type == NULL)
11445 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11446 lval_memory);
11447 else
11448 {
11449 expect_type =
11450 to_static_fixed_type (ada_aligned_type (expect_type));
11451 return value_zero (expect_type, lval_memory);
11452 }
11453 }
11454 else
11455 error (_("Attempt to take contents of a non-pointer value."));
11456 }
11457 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11458 type = ada_check_typedef (value_type (arg1));
11459
11460 if (TYPE_CODE (type) == TYPE_CODE_INT)
11461 /* GDB allows dereferencing an int. If we were given
11462 the expect_type, then use that as the target type.
11463 Otherwise, assume that the target type is an int. */
11464 {
11465 if (expect_type != NULL)
11466 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11467 arg1));
11468 else
11469 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11470 (CORE_ADDR) value_as_address (arg1));
11471 }
11472
11473 if (ada_is_array_descriptor_type (type))
11474 /* GDB allows dereferencing GNAT array descriptors. */
11475 return ada_coerce_to_simple_array (arg1);
11476 else
11477 return ada_value_ind (arg1);
11478
11479 case STRUCTOP_STRUCT:
11480 tem = longest_to_int (exp->elts[pc + 1].longconst);
11481 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11482 preeval_pos = *pos;
11483 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11484 if (noside == EVAL_SKIP)
11485 goto nosideret;
11486 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11487 {
11488 struct type *type1 = value_type (arg1);
11489
11490 if (ada_is_tagged_type (type1, 1))
11491 {
11492 type = ada_lookup_struct_elt_type (type1,
11493 &exp->elts[pc + 2].string,
11494 1, 1);
11495
11496 /* If the field is not found, check if it exists in the
11497 extension of this object's type. This means that we
11498 need to evaluate completely the expression. */
11499
11500 if (type == NULL)
11501 {
11502 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11503 EVAL_NORMAL);
11504 arg1 = ada_value_struct_elt (arg1,
11505 &exp->elts[pc + 2].string,
11506 0);
11507 arg1 = unwrap_value (arg1);
11508 type = value_type (ada_to_fixed_value (arg1));
11509 }
11510 }
11511 else
11512 type =
11513 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11514 0);
11515
11516 return value_zero (ada_aligned_type (type), lval_memory);
11517 }
11518 else
11519 {
11520 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11521 arg1 = unwrap_value (arg1);
11522 return ada_to_fixed_value (arg1);
11523 }
11524
11525 case OP_TYPE:
11526 /* The value is not supposed to be used. This is here to make it
11527 easier to accommodate expressions that contain types. */
11528 (*pos) += 2;
11529 if (noside == EVAL_SKIP)
11530 goto nosideret;
11531 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11532 return allocate_value (exp->elts[pc + 1].type);
11533 else
11534 error (_("Attempt to use a type name as an expression"));
11535
11536 case OP_AGGREGATE:
11537 case OP_CHOICES:
11538 case OP_OTHERS:
11539 case OP_DISCRETE_RANGE:
11540 case OP_POSITIONAL:
11541 case OP_NAME:
11542 if (noside == EVAL_NORMAL)
11543 switch (op)
11544 {
11545 case OP_NAME:
11546 error (_("Undefined name, ambiguous name, or renaming used in "
11547 "component association: %s."), &exp->elts[pc+2].string);
11548 case OP_AGGREGATE:
11549 error (_("Aggregates only allowed on the right of an assignment"));
11550 default:
11551 internal_error (__FILE__, __LINE__,
11552 _("aggregate apparently mangled"));
11553 }
11554
11555 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11556 *pos += oplen - 1;
11557 for (tem = 0; tem < nargs; tem += 1)
11558 ada_evaluate_subexp (NULL, exp, pos, noside);
11559 goto nosideret;
11560 }
11561
11562 nosideret:
11563 return eval_skip_value (exp);
11564 }
11565 \f
11566
11567 /* Fixed point */
11568
11569 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11570 type name that encodes the 'small and 'delta information.
11571 Otherwise, return NULL. */
11572
11573 static const char *
11574 fixed_type_info (struct type *type)
11575 {
11576 const char *name = ada_type_name (type);
11577 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11578
11579 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11580 {
11581 const char *tail = strstr (name, "___XF_");
11582
11583 if (tail == NULL)
11584 return NULL;
11585 else
11586 return tail + 5;
11587 }
11588 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11589 return fixed_type_info (TYPE_TARGET_TYPE (type));
11590 else
11591 return NULL;
11592 }
11593
11594 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11595
11596 int
11597 ada_is_fixed_point_type (struct type *type)
11598 {
11599 return fixed_type_info (type) != NULL;
11600 }
11601
11602 /* Return non-zero iff TYPE represents a System.Address type. */
11603
11604 int
11605 ada_is_system_address_type (struct type *type)
11606 {
11607 return (TYPE_NAME (type)
11608 && strcmp (TYPE_NAME (type), "system__address") == 0);
11609 }
11610
11611 /* Assuming that TYPE is the representation of an Ada fixed-point
11612 type, return the target floating-point type to be used to represent
11613 of this type during internal computation. */
11614
11615 static struct type *
11616 ada_scaling_type (struct type *type)
11617 {
11618 return builtin_type (get_type_arch (type))->builtin_long_double;
11619 }
11620
11621 /* Assuming that TYPE is the representation of an Ada fixed-point
11622 type, return its delta, or NULL if the type is malformed and the
11623 delta cannot be determined. */
11624
11625 struct value *
11626 ada_delta (struct type *type)
11627 {
11628 const char *encoding = fixed_type_info (type);
11629 struct type *scale_type = ada_scaling_type (type);
11630
11631 long long num, den;
11632
11633 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11634 return nullptr;
11635 else
11636 return value_binop (value_from_longest (scale_type, num),
11637 value_from_longest (scale_type, den), BINOP_DIV);
11638 }
11639
11640 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11641 factor ('SMALL value) associated with the type. */
11642
11643 struct value *
11644 ada_scaling_factor (struct type *type)
11645 {
11646 const char *encoding = fixed_type_info (type);
11647 struct type *scale_type = ada_scaling_type (type);
11648
11649 long long num0, den0, num1, den1;
11650 int n;
11651
11652 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11653 &num0, &den0, &num1, &den1);
11654
11655 if (n < 2)
11656 return value_from_longest (scale_type, 1);
11657 else if (n == 4)
11658 return value_binop (value_from_longest (scale_type, num1),
11659 value_from_longest (scale_type, den1), BINOP_DIV);
11660 else
11661 return value_binop (value_from_longest (scale_type, num0),
11662 value_from_longest (scale_type, den0), BINOP_DIV);
11663 }
11664
11665 \f
11666
11667 /* Range types */
11668
11669 /* Scan STR beginning at position K for a discriminant name, and
11670 return the value of that discriminant field of DVAL in *PX. If
11671 PNEW_K is not null, put the position of the character beyond the
11672 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11673 not alter *PX and *PNEW_K if unsuccessful. */
11674
11675 static int
11676 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11677 int *pnew_k)
11678 {
11679 static char *bound_buffer = NULL;
11680 static size_t bound_buffer_len = 0;
11681 const char *pstart, *pend, *bound;
11682 struct value *bound_val;
11683
11684 if (dval == NULL || str == NULL || str[k] == '\0')
11685 return 0;
11686
11687 pstart = str + k;
11688 pend = strstr (pstart, "__");
11689 if (pend == NULL)
11690 {
11691 bound = pstart;
11692 k += strlen (bound);
11693 }
11694 else
11695 {
11696 int len = pend - pstart;
11697
11698 /* Strip __ and beyond. */
11699 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11700 strncpy (bound_buffer, pstart, len);
11701 bound_buffer[len] = '\0';
11702
11703 bound = bound_buffer;
11704 k = pend - str;
11705 }
11706
11707 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11708 if (bound_val == NULL)
11709 return 0;
11710
11711 *px = value_as_long (bound_val);
11712 if (pnew_k != NULL)
11713 *pnew_k = k;
11714 return 1;
11715 }
11716
11717 /* Value of variable named NAME in the current environment. If
11718 no such variable found, then if ERR_MSG is null, returns 0, and
11719 otherwise causes an error with message ERR_MSG. */
11720
11721 static struct value *
11722 get_var_value (const char *name, const char *err_msg)
11723 {
11724 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11725
11726 std::vector<struct block_symbol> syms;
11727 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11728 get_selected_block (0),
11729 VAR_DOMAIN, &syms, 1);
11730
11731 if (nsyms != 1)
11732 {
11733 if (err_msg == NULL)
11734 return 0;
11735 else
11736 error (("%s"), err_msg);
11737 }
11738
11739 return value_of_variable (syms[0].symbol, syms[0].block);
11740 }
11741
11742 /* Value of integer variable named NAME in the current environment.
11743 If no such variable is found, returns false. Otherwise, sets VALUE
11744 to the variable's value and returns true. */
11745
11746 bool
11747 get_int_var_value (const char *name, LONGEST &value)
11748 {
11749 struct value *var_val = get_var_value (name, 0);
11750
11751 if (var_val == 0)
11752 return false;
11753
11754 value = value_as_long (var_val);
11755 return true;
11756 }
11757
11758
11759 /* Return a range type whose base type is that of the range type named
11760 NAME in the current environment, and whose bounds are calculated
11761 from NAME according to the GNAT range encoding conventions.
11762 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11763 corresponding range type from debug information; fall back to using it
11764 if symbol lookup fails. If a new type must be created, allocate it
11765 like ORIG_TYPE was. The bounds information, in general, is encoded
11766 in NAME, the base type given in the named range type. */
11767
11768 static struct type *
11769 to_fixed_range_type (struct type *raw_type, struct value *dval)
11770 {
11771 const char *name;
11772 struct type *base_type;
11773 const char *subtype_info;
11774
11775 gdb_assert (raw_type != NULL);
11776 gdb_assert (TYPE_NAME (raw_type) != NULL);
11777
11778 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11779 base_type = TYPE_TARGET_TYPE (raw_type);
11780 else
11781 base_type = raw_type;
11782
11783 name = TYPE_NAME (raw_type);
11784 subtype_info = strstr (name, "___XD");
11785 if (subtype_info == NULL)
11786 {
11787 LONGEST L = ada_discrete_type_low_bound (raw_type);
11788 LONGEST U = ada_discrete_type_high_bound (raw_type);
11789
11790 if (L < INT_MIN || U > INT_MAX)
11791 return raw_type;
11792 else
11793 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11794 L, U);
11795 }
11796 else
11797 {
11798 static char *name_buf = NULL;
11799 static size_t name_len = 0;
11800 int prefix_len = subtype_info - name;
11801 LONGEST L, U;
11802 struct type *type;
11803 const char *bounds_str;
11804 int n;
11805
11806 GROW_VECT (name_buf, name_len, prefix_len + 5);
11807 strncpy (name_buf, name, prefix_len);
11808 name_buf[prefix_len] = '\0';
11809
11810 subtype_info += 5;
11811 bounds_str = strchr (subtype_info, '_');
11812 n = 1;
11813
11814 if (*subtype_info == 'L')
11815 {
11816 if (!ada_scan_number (bounds_str, n, &L, &n)
11817 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11818 return raw_type;
11819 if (bounds_str[n] == '_')
11820 n += 2;
11821 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11822 n += 1;
11823 subtype_info += 1;
11824 }
11825 else
11826 {
11827 strcpy (name_buf + prefix_len, "___L");
11828 if (!get_int_var_value (name_buf, L))
11829 {
11830 lim_warning (_("Unknown lower bound, using 1."));
11831 L = 1;
11832 }
11833 }
11834
11835 if (*subtype_info == 'U')
11836 {
11837 if (!ada_scan_number (bounds_str, n, &U, &n)
11838 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11839 return raw_type;
11840 }
11841 else
11842 {
11843 strcpy (name_buf + prefix_len, "___U");
11844 if (!get_int_var_value (name_buf, U))
11845 {
11846 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11847 U = L;
11848 }
11849 }
11850
11851 type = create_static_range_type (alloc_type_copy (raw_type),
11852 base_type, L, U);
11853 /* create_static_range_type alters the resulting type's length
11854 to match the size of the base_type, which is not what we want.
11855 Set it back to the original range type's length. */
11856 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11857 TYPE_NAME (type) = name;
11858 return type;
11859 }
11860 }
11861
11862 /* True iff NAME is the name of a range type. */
11863
11864 int
11865 ada_is_range_type_name (const char *name)
11866 {
11867 return (name != NULL && strstr (name, "___XD"));
11868 }
11869 \f
11870
11871 /* Modular types */
11872
11873 /* True iff TYPE is an Ada modular type. */
11874
11875 int
11876 ada_is_modular_type (struct type *type)
11877 {
11878 struct type *subranged_type = get_base_type (type);
11879
11880 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11881 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11882 && TYPE_UNSIGNED (subranged_type));
11883 }
11884
11885 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11886
11887 ULONGEST
11888 ada_modulus (struct type *type)
11889 {
11890 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11891 }
11892 \f
11893
11894 /* Ada exception catchpoint support:
11895 ---------------------------------
11896
11897 We support 3 kinds of exception catchpoints:
11898 . catchpoints on Ada exceptions
11899 . catchpoints on unhandled Ada exceptions
11900 . catchpoints on failed assertions
11901
11902 Exceptions raised during failed assertions, or unhandled exceptions
11903 could perfectly be caught with the general catchpoint on Ada exceptions.
11904 However, we can easily differentiate these two special cases, and having
11905 the option to distinguish these two cases from the rest can be useful
11906 to zero-in on certain situations.
11907
11908 Exception catchpoints are a specialized form of breakpoint,
11909 since they rely on inserting breakpoints inside known routines
11910 of the GNAT runtime. The implementation therefore uses a standard
11911 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11912 of breakpoint_ops.
11913
11914 Support in the runtime for exception catchpoints have been changed
11915 a few times already, and these changes affect the implementation
11916 of these catchpoints. In order to be able to support several
11917 variants of the runtime, we use a sniffer that will determine
11918 the runtime variant used by the program being debugged. */
11919
11920 /* Ada's standard exceptions.
11921
11922 The Ada 83 standard also defined Numeric_Error. But there so many
11923 situations where it was unclear from the Ada 83 Reference Manual
11924 (RM) whether Constraint_Error or Numeric_Error should be raised,
11925 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11926 Interpretation saying that anytime the RM says that Numeric_Error
11927 should be raised, the implementation may raise Constraint_Error.
11928 Ada 95 went one step further and pretty much removed Numeric_Error
11929 from the list of standard exceptions (it made it a renaming of
11930 Constraint_Error, to help preserve compatibility when compiling
11931 an Ada83 compiler). As such, we do not include Numeric_Error from
11932 this list of standard exceptions. */
11933
11934 static const char *standard_exc[] = {
11935 "constraint_error",
11936 "program_error",
11937 "storage_error",
11938 "tasking_error"
11939 };
11940
11941 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11942
11943 /* A structure that describes how to support exception catchpoints
11944 for a given executable. */
11945
11946 struct exception_support_info
11947 {
11948 /* The name of the symbol to break on in order to insert
11949 a catchpoint on exceptions. */
11950 const char *catch_exception_sym;
11951
11952 /* The name of the symbol to break on in order to insert
11953 a catchpoint on unhandled exceptions. */
11954 const char *catch_exception_unhandled_sym;
11955
11956 /* The name of the symbol to break on in order to insert
11957 a catchpoint on failed assertions. */
11958 const char *catch_assert_sym;
11959
11960 /* The name of the symbol to break on in order to insert
11961 a catchpoint on exception handling. */
11962 const char *catch_handlers_sym;
11963
11964 /* Assuming that the inferior just triggered an unhandled exception
11965 catchpoint, this function is responsible for returning the address
11966 in inferior memory where the name of that exception is stored.
11967 Return zero if the address could not be computed. */
11968 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11969 };
11970
11971 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11972 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11973
11974 /* The following exception support info structure describes how to
11975 implement exception catchpoints with the latest version of the
11976 Ada runtime (as of 2007-03-06). */
11977
11978 static const struct exception_support_info default_exception_support_info =
11979 {
11980 "__gnat_debug_raise_exception", /* catch_exception_sym */
11981 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11982 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11983 "__gnat_begin_handler", /* catch_handlers_sym */
11984 ada_unhandled_exception_name_addr
11985 };
11986
11987 /* The following exception support info structure describes how to
11988 implement exception catchpoints with a slightly older version
11989 of the Ada runtime. */
11990
11991 static const struct exception_support_info exception_support_info_fallback =
11992 {
11993 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11994 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11995 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11996 "__gnat_begin_handler", /* catch_handlers_sym */
11997 ada_unhandled_exception_name_addr_from_raise
11998 };
11999
12000 /* Return nonzero if we can detect the exception support routines
12001 described in EINFO.
12002
12003 This function errors out if an abnormal situation is detected
12004 (for instance, if we find the exception support routines, but
12005 that support is found to be incomplete). */
12006
12007 static int
12008 ada_has_this_exception_support (const struct exception_support_info *einfo)
12009 {
12010 struct symbol *sym;
12011
12012 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12013 that should be compiled with debugging information. As a result, we
12014 expect to find that symbol in the symtabs. */
12015
12016 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12017 if (sym == NULL)
12018 {
12019 /* Perhaps we did not find our symbol because the Ada runtime was
12020 compiled without debugging info, or simply stripped of it.
12021 It happens on some GNU/Linux distributions for instance, where
12022 users have to install a separate debug package in order to get
12023 the runtime's debugging info. In that situation, let the user
12024 know why we cannot insert an Ada exception catchpoint.
12025
12026 Note: Just for the purpose of inserting our Ada exception
12027 catchpoint, we could rely purely on the associated minimal symbol.
12028 But we would be operating in degraded mode anyway, since we are
12029 still lacking the debugging info needed later on to extract
12030 the name of the exception being raised (this name is printed in
12031 the catchpoint message, and is also used when trying to catch
12032 a specific exception). We do not handle this case for now. */
12033 struct bound_minimal_symbol msym
12034 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12035
12036 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12037 error (_("Your Ada runtime appears to be missing some debugging "
12038 "information.\nCannot insert Ada exception catchpoint "
12039 "in this configuration."));
12040
12041 return 0;
12042 }
12043
12044 /* Make sure that the symbol we found corresponds to a function. */
12045
12046 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12047 error (_("Symbol \"%s\" is not a function (class = %d)"),
12048 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12049
12050 return 1;
12051 }
12052
12053 /* Inspect the Ada runtime and determine which exception info structure
12054 should be used to provide support for exception catchpoints.
12055
12056 This function will always set the per-inferior exception_info,
12057 or raise an error. */
12058
12059 static void
12060 ada_exception_support_info_sniffer (void)
12061 {
12062 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12063
12064 /* If the exception info is already known, then no need to recompute it. */
12065 if (data->exception_info != NULL)
12066 return;
12067
12068 /* Check the latest (default) exception support info. */
12069 if (ada_has_this_exception_support (&default_exception_support_info))
12070 {
12071 data->exception_info = &default_exception_support_info;
12072 return;
12073 }
12074
12075 /* Try our fallback exception suport info. */
12076 if (ada_has_this_exception_support (&exception_support_info_fallback))
12077 {
12078 data->exception_info = &exception_support_info_fallback;
12079 return;
12080 }
12081
12082 /* Sometimes, it is normal for us to not be able to find the routine
12083 we are looking for. This happens when the program is linked with
12084 the shared version of the GNAT runtime, and the program has not been
12085 started yet. Inform the user of these two possible causes if
12086 applicable. */
12087
12088 if (ada_update_initial_language (language_unknown) != language_ada)
12089 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12090
12091 /* If the symbol does not exist, then check that the program is
12092 already started, to make sure that shared libraries have been
12093 loaded. If it is not started, this may mean that the symbol is
12094 in a shared library. */
12095
12096 if (inferior_ptid.pid () == 0)
12097 error (_("Unable to insert catchpoint. Try to start the program first."));
12098
12099 /* At this point, we know that we are debugging an Ada program and
12100 that the inferior has been started, but we still are not able to
12101 find the run-time symbols. That can mean that we are in
12102 configurable run time mode, or that a-except as been optimized
12103 out by the linker... In any case, at this point it is not worth
12104 supporting this feature. */
12105
12106 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12107 }
12108
12109 /* True iff FRAME is very likely to be that of a function that is
12110 part of the runtime system. This is all very heuristic, but is
12111 intended to be used as advice as to what frames are uninteresting
12112 to most users. */
12113
12114 static int
12115 is_known_support_routine (struct frame_info *frame)
12116 {
12117 enum language func_lang;
12118 int i;
12119 const char *fullname;
12120
12121 /* If this code does not have any debugging information (no symtab),
12122 This cannot be any user code. */
12123
12124 symtab_and_line sal = find_frame_sal (frame);
12125 if (sal.symtab == NULL)
12126 return 1;
12127
12128 /* If there is a symtab, but the associated source file cannot be
12129 located, then assume this is not user code: Selecting a frame
12130 for which we cannot display the code would not be very helpful
12131 for the user. This should also take care of case such as VxWorks
12132 where the kernel has some debugging info provided for a few units. */
12133
12134 fullname = symtab_to_fullname (sal.symtab);
12135 if (access (fullname, R_OK) != 0)
12136 return 1;
12137
12138 /* Check the unit filename againt the Ada runtime file naming.
12139 We also check the name of the objfile against the name of some
12140 known system libraries that sometimes come with debugging info
12141 too. */
12142
12143 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12144 {
12145 re_comp (known_runtime_file_name_patterns[i]);
12146 if (re_exec (lbasename (sal.symtab->filename)))
12147 return 1;
12148 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12149 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12150 return 1;
12151 }
12152
12153 /* Check whether the function is a GNAT-generated entity. */
12154
12155 gdb::unique_xmalloc_ptr<char> func_name
12156 = find_frame_funname (frame, &func_lang, NULL);
12157 if (func_name == NULL)
12158 return 1;
12159
12160 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12161 {
12162 re_comp (known_auxiliary_function_name_patterns[i]);
12163 if (re_exec (func_name.get ()))
12164 return 1;
12165 }
12166
12167 return 0;
12168 }
12169
12170 /* Find the first frame that contains debugging information and that is not
12171 part of the Ada run-time, starting from FI and moving upward. */
12172
12173 void
12174 ada_find_printable_frame (struct frame_info *fi)
12175 {
12176 for (; fi != NULL; fi = get_prev_frame (fi))
12177 {
12178 if (!is_known_support_routine (fi))
12179 {
12180 select_frame (fi);
12181 break;
12182 }
12183 }
12184
12185 }
12186
12187 /* Assuming that the inferior just triggered an unhandled exception
12188 catchpoint, return the address in inferior memory where the name
12189 of the exception is stored.
12190
12191 Return zero if the address could not be computed. */
12192
12193 static CORE_ADDR
12194 ada_unhandled_exception_name_addr (void)
12195 {
12196 return parse_and_eval_address ("e.full_name");
12197 }
12198
12199 /* Same as ada_unhandled_exception_name_addr, except that this function
12200 should be used when the inferior uses an older version of the runtime,
12201 where the exception name needs to be extracted from a specific frame
12202 several frames up in the callstack. */
12203
12204 static CORE_ADDR
12205 ada_unhandled_exception_name_addr_from_raise (void)
12206 {
12207 int frame_level;
12208 struct frame_info *fi;
12209 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12210
12211 /* To determine the name of this exception, we need to select
12212 the frame corresponding to RAISE_SYM_NAME. This frame is
12213 at least 3 levels up, so we simply skip the first 3 frames
12214 without checking the name of their associated function. */
12215 fi = get_current_frame ();
12216 for (frame_level = 0; frame_level < 3; frame_level += 1)
12217 if (fi != NULL)
12218 fi = get_prev_frame (fi);
12219
12220 while (fi != NULL)
12221 {
12222 enum language func_lang;
12223
12224 gdb::unique_xmalloc_ptr<char> func_name
12225 = find_frame_funname (fi, &func_lang, NULL);
12226 if (func_name != NULL)
12227 {
12228 if (strcmp (func_name.get (),
12229 data->exception_info->catch_exception_sym) == 0)
12230 break; /* We found the frame we were looking for... */
12231 }
12232 fi = get_prev_frame (fi);
12233 }
12234
12235 if (fi == NULL)
12236 return 0;
12237
12238 select_frame (fi);
12239 return parse_and_eval_address ("id.full_name");
12240 }
12241
12242 /* Assuming the inferior just triggered an Ada exception catchpoint
12243 (of any type), return the address in inferior memory where the name
12244 of the exception is stored, if applicable.
12245
12246 Assumes the selected frame is the current frame.
12247
12248 Return zero if the address could not be computed, or if not relevant. */
12249
12250 static CORE_ADDR
12251 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12252 struct breakpoint *b)
12253 {
12254 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12255
12256 switch (ex)
12257 {
12258 case ada_catch_exception:
12259 return (parse_and_eval_address ("e.full_name"));
12260 break;
12261
12262 case ada_catch_exception_unhandled:
12263 return data->exception_info->unhandled_exception_name_addr ();
12264 break;
12265
12266 case ada_catch_handlers:
12267 return 0; /* The runtimes does not provide access to the exception
12268 name. */
12269 break;
12270
12271 case ada_catch_assert:
12272 return 0; /* Exception name is not relevant in this case. */
12273 break;
12274
12275 default:
12276 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12277 break;
12278 }
12279
12280 return 0; /* Should never be reached. */
12281 }
12282
12283 /* Assuming the inferior is stopped at an exception catchpoint,
12284 return the message which was associated to the exception, if
12285 available. Return NULL if the message could not be retrieved.
12286
12287 Note: The exception message can be associated to an exception
12288 either through the use of the Raise_Exception function, or
12289 more simply (Ada 2005 and later), via:
12290
12291 raise Exception_Name with "exception message";
12292
12293 */
12294
12295 static gdb::unique_xmalloc_ptr<char>
12296 ada_exception_message_1 (void)
12297 {
12298 struct value *e_msg_val;
12299 int e_msg_len;
12300
12301 /* For runtimes that support this feature, the exception message
12302 is passed as an unbounded string argument called "message". */
12303 e_msg_val = parse_and_eval ("message");
12304 if (e_msg_val == NULL)
12305 return NULL; /* Exception message not supported. */
12306
12307 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12308 gdb_assert (e_msg_val != NULL);
12309 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12310
12311 /* If the message string is empty, then treat it as if there was
12312 no exception message. */
12313 if (e_msg_len <= 0)
12314 return NULL;
12315
12316 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12317 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12318 e_msg.get ()[e_msg_len] = '\0';
12319
12320 return e_msg;
12321 }
12322
12323 /* Same as ada_exception_message_1, except that all exceptions are
12324 contained here (returning NULL instead). */
12325
12326 static gdb::unique_xmalloc_ptr<char>
12327 ada_exception_message (void)
12328 {
12329 gdb::unique_xmalloc_ptr<char> e_msg;
12330
12331 TRY
12332 {
12333 e_msg = ada_exception_message_1 ();
12334 }
12335 CATCH (e, RETURN_MASK_ERROR)
12336 {
12337 e_msg.reset (nullptr);
12338 }
12339 END_CATCH
12340
12341 return e_msg;
12342 }
12343
12344 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12345 any error that ada_exception_name_addr_1 might cause to be thrown.
12346 When an error is intercepted, a warning with the error message is printed,
12347 and zero is returned. */
12348
12349 static CORE_ADDR
12350 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12351 struct breakpoint *b)
12352 {
12353 CORE_ADDR result = 0;
12354
12355 TRY
12356 {
12357 result = ada_exception_name_addr_1 (ex, b);
12358 }
12359
12360 CATCH (e, RETURN_MASK_ERROR)
12361 {
12362 warning (_("failed to get exception name: %s"), e.message);
12363 return 0;
12364 }
12365 END_CATCH
12366
12367 return result;
12368 }
12369
12370 static std::string ada_exception_catchpoint_cond_string
12371 (const char *excep_string,
12372 enum ada_exception_catchpoint_kind ex);
12373
12374 /* Ada catchpoints.
12375
12376 In the case of catchpoints on Ada exceptions, the catchpoint will
12377 stop the target on every exception the program throws. When a user
12378 specifies the name of a specific exception, we translate this
12379 request into a condition expression (in text form), and then parse
12380 it into an expression stored in each of the catchpoint's locations.
12381 We then use this condition to check whether the exception that was
12382 raised is the one the user is interested in. If not, then the
12383 target is resumed again. We store the name of the requested
12384 exception, in order to be able to re-set the condition expression
12385 when symbols change. */
12386
12387 /* An instance of this type is used to represent an Ada catchpoint
12388 breakpoint location. */
12389
12390 class ada_catchpoint_location : public bp_location
12391 {
12392 public:
12393 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12394 : bp_location (ops, owner)
12395 {}
12396
12397 /* The condition that checks whether the exception that was raised
12398 is the specific exception the user specified on catchpoint
12399 creation. */
12400 expression_up excep_cond_expr;
12401 };
12402
12403 /* Implement the DTOR method in the bp_location_ops structure for all
12404 Ada exception catchpoint kinds. */
12405
12406 static void
12407 ada_catchpoint_location_dtor (struct bp_location *bl)
12408 {
12409 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12410
12411 al->excep_cond_expr.reset ();
12412 }
12413
12414 /* The vtable to be used in Ada catchpoint locations. */
12415
12416 static const struct bp_location_ops ada_catchpoint_location_ops =
12417 {
12418 ada_catchpoint_location_dtor
12419 };
12420
12421 /* An instance of this type is used to represent an Ada catchpoint. */
12422
12423 struct ada_catchpoint : public breakpoint
12424 {
12425 /* The name of the specific exception the user specified. */
12426 std::string excep_string;
12427 };
12428
12429 /* Parse the exception condition string in the context of each of the
12430 catchpoint's locations, and store them for later evaluation. */
12431
12432 static void
12433 create_excep_cond_exprs (struct ada_catchpoint *c,
12434 enum ada_exception_catchpoint_kind ex)
12435 {
12436 struct bp_location *bl;
12437
12438 /* Nothing to do if there's no specific exception to catch. */
12439 if (c->excep_string.empty ())
12440 return;
12441
12442 /* Same if there are no locations... */
12443 if (c->loc == NULL)
12444 return;
12445
12446 /* Compute the condition expression in text form, from the specific
12447 expection we want to catch. */
12448 std::string cond_string
12449 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12450
12451 /* Iterate over all the catchpoint's locations, and parse an
12452 expression for each. */
12453 for (bl = c->loc; bl != NULL; bl = bl->next)
12454 {
12455 struct ada_catchpoint_location *ada_loc
12456 = (struct ada_catchpoint_location *) bl;
12457 expression_up exp;
12458
12459 if (!bl->shlib_disabled)
12460 {
12461 const char *s;
12462
12463 s = cond_string.c_str ();
12464 TRY
12465 {
12466 exp = parse_exp_1 (&s, bl->address,
12467 block_for_pc (bl->address),
12468 0);
12469 }
12470 CATCH (e, RETURN_MASK_ERROR)
12471 {
12472 warning (_("failed to reevaluate internal exception condition "
12473 "for catchpoint %d: %s"),
12474 c->number, e.message);
12475 }
12476 END_CATCH
12477 }
12478
12479 ada_loc->excep_cond_expr = std::move (exp);
12480 }
12481 }
12482
12483 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12484 structure for all exception catchpoint kinds. */
12485
12486 static struct bp_location *
12487 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12488 struct breakpoint *self)
12489 {
12490 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12491 }
12492
12493 /* Implement the RE_SET method in the breakpoint_ops structure for all
12494 exception catchpoint kinds. */
12495
12496 static void
12497 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12498 {
12499 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12500
12501 /* Call the base class's method. This updates the catchpoint's
12502 locations. */
12503 bkpt_breakpoint_ops.re_set (b);
12504
12505 /* Reparse the exception conditional expressions. One for each
12506 location. */
12507 create_excep_cond_exprs (c, ex);
12508 }
12509
12510 /* Returns true if we should stop for this breakpoint hit. If the
12511 user specified a specific exception, we only want to cause a stop
12512 if the program thrown that exception. */
12513
12514 static int
12515 should_stop_exception (const struct bp_location *bl)
12516 {
12517 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12518 const struct ada_catchpoint_location *ada_loc
12519 = (const struct ada_catchpoint_location *) bl;
12520 int stop;
12521
12522 /* With no specific exception, should always stop. */
12523 if (c->excep_string.empty ())
12524 return 1;
12525
12526 if (ada_loc->excep_cond_expr == NULL)
12527 {
12528 /* We will have a NULL expression if back when we were creating
12529 the expressions, this location's had failed to parse. */
12530 return 1;
12531 }
12532
12533 stop = 1;
12534 TRY
12535 {
12536 struct value *mark;
12537
12538 mark = value_mark ();
12539 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12540 value_free_to_mark (mark);
12541 }
12542 CATCH (ex, RETURN_MASK_ALL)
12543 {
12544 exception_fprintf (gdb_stderr, ex,
12545 _("Error in testing exception condition:\n"));
12546 }
12547 END_CATCH
12548
12549 return stop;
12550 }
12551
12552 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12553 for all exception catchpoint kinds. */
12554
12555 static void
12556 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12557 {
12558 bs->stop = should_stop_exception (bs->bp_location_at);
12559 }
12560
12561 /* Implement the PRINT_IT method in the breakpoint_ops structure
12562 for all exception catchpoint kinds. */
12563
12564 static enum print_stop_action
12565 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12566 {
12567 struct ui_out *uiout = current_uiout;
12568 struct breakpoint *b = bs->breakpoint_at;
12569
12570 annotate_catchpoint (b->number);
12571
12572 if (uiout->is_mi_like_p ())
12573 {
12574 uiout->field_string ("reason",
12575 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12576 uiout->field_string ("disp", bpdisp_text (b->disposition));
12577 }
12578
12579 uiout->text (b->disposition == disp_del
12580 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12581 uiout->field_int ("bkptno", b->number);
12582 uiout->text (", ");
12583
12584 /* ada_exception_name_addr relies on the selected frame being the
12585 current frame. Need to do this here because this function may be
12586 called more than once when printing a stop, and below, we'll
12587 select the first frame past the Ada run-time (see
12588 ada_find_printable_frame). */
12589 select_frame (get_current_frame ());
12590
12591 switch (ex)
12592 {
12593 case ada_catch_exception:
12594 case ada_catch_exception_unhandled:
12595 case ada_catch_handlers:
12596 {
12597 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12598 char exception_name[256];
12599
12600 if (addr != 0)
12601 {
12602 read_memory (addr, (gdb_byte *) exception_name,
12603 sizeof (exception_name) - 1);
12604 exception_name [sizeof (exception_name) - 1] = '\0';
12605 }
12606 else
12607 {
12608 /* For some reason, we were unable to read the exception
12609 name. This could happen if the Runtime was compiled
12610 without debugging info, for instance. In that case,
12611 just replace the exception name by the generic string
12612 "exception" - it will read as "an exception" in the
12613 notification we are about to print. */
12614 memcpy (exception_name, "exception", sizeof ("exception"));
12615 }
12616 /* In the case of unhandled exception breakpoints, we print
12617 the exception name as "unhandled EXCEPTION_NAME", to make
12618 it clearer to the user which kind of catchpoint just got
12619 hit. We used ui_out_text to make sure that this extra
12620 info does not pollute the exception name in the MI case. */
12621 if (ex == ada_catch_exception_unhandled)
12622 uiout->text ("unhandled ");
12623 uiout->field_string ("exception-name", exception_name);
12624 }
12625 break;
12626 case ada_catch_assert:
12627 /* In this case, the name of the exception is not really
12628 important. Just print "failed assertion" to make it clearer
12629 that his program just hit an assertion-failure catchpoint.
12630 We used ui_out_text because this info does not belong in
12631 the MI output. */
12632 uiout->text ("failed assertion");
12633 break;
12634 }
12635
12636 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12637 if (exception_message != NULL)
12638 {
12639 uiout->text (" (");
12640 uiout->field_string ("exception-message", exception_message.get ());
12641 uiout->text (")");
12642 }
12643
12644 uiout->text (" at ");
12645 ada_find_printable_frame (get_current_frame ());
12646
12647 return PRINT_SRC_AND_LOC;
12648 }
12649
12650 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12651 for all exception catchpoint kinds. */
12652
12653 static void
12654 print_one_exception (enum ada_exception_catchpoint_kind ex,
12655 struct breakpoint *b, struct bp_location **last_loc)
12656 {
12657 struct ui_out *uiout = current_uiout;
12658 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12659 struct value_print_options opts;
12660
12661 get_user_print_options (&opts);
12662 if (opts.addressprint)
12663 {
12664 annotate_field (4);
12665 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12666 }
12667
12668 annotate_field (5);
12669 *last_loc = b->loc;
12670 switch (ex)
12671 {
12672 case ada_catch_exception:
12673 if (!c->excep_string.empty ())
12674 {
12675 std::string msg = string_printf (_("`%s' Ada exception"),
12676 c->excep_string.c_str ());
12677
12678 uiout->field_string ("what", msg);
12679 }
12680 else
12681 uiout->field_string ("what", "all Ada exceptions");
12682
12683 break;
12684
12685 case ada_catch_exception_unhandled:
12686 uiout->field_string ("what", "unhandled Ada exceptions");
12687 break;
12688
12689 case ada_catch_handlers:
12690 if (!c->excep_string.empty ())
12691 {
12692 uiout->field_fmt ("what",
12693 _("`%s' Ada exception handlers"),
12694 c->excep_string.c_str ());
12695 }
12696 else
12697 uiout->field_string ("what", "all Ada exceptions handlers");
12698 break;
12699
12700 case ada_catch_assert:
12701 uiout->field_string ("what", "failed Ada assertions");
12702 break;
12703
12704 default:
12705 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12706 break;
12707 }
12708 }
12709
12710 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12711 for all exception catchpoint kinds. */
12712
12713 static void
12714 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12715 struct breakpoint *b)
12716 {
12717 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12718 struct ui_out *uiout = current_uiout;
12719
12720 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12721 : _("Catchpoint "));
12722 uiout->field_int ("bkptno", b->number);
12723 uiout->text (": ");
12724
12725 switch (ex)
12726 {
12727 case ada_catch_exception:
12728 if (!c->excep_string.empty ())
12729 {
12730 std::string info = string_printf (_("`%s' Ada exception"),
12731 c->excep_string.c_str ());
12732 uiout->text (info.c_str ());
12733 }
12734 else
12735 uiout->text (_("all Ada exceptions"));
12736 break;
12737
12738 case ada_catch_exception_unhandled:
12739 uiout->text (_("unhandled Ada exceptions"));
12740 break;
12741
12742 case ada_catch_handlers:
12743 if (!c->excep_string.empty ())
12744 {
12745 std::string info
12746 = string_printf (_("`%s' Ada exception handlers"),
12747 c->excep_string.c_str ());
12748 uiout->text (info.c_str ());
12749 }
12750 else
12751 uiout->text (_("all Ada exceptions handlers"));
12752 break;
12753
12754 case ada_catch_assert:
12755 uiout->text (_("failed Ada assertions"));
12756 break;
12757
12758 default:
12759 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12760 break;
12761 }
12762 }
12763
12764 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12765 for all exception catchpoint kinds. */
12766
12767 static void
12768 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12769 struct breakpoint *b, struct ui_file *fp)
12770 {
12771 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12772
12773 switch (ex)
12774 {
12775 case ada_catch_exception:
12776 fprintf_filtered (fp, "catch exception");
12777 if (!c->excep_string.empty ())
12778 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12779 break;
12780
12781 case ada_catch_exception_unhandled:
12782 fprintf_filtered (fp, "catch exception unhandled");
12783 break;
12784
12785 case ada_catch_handlers:
12786 fprintf_filtered (fp, "catch handlers");
12787 break;
12788
12789 case ada_catch_assert:
12790 fprintf_filtered (fp, "catch assert");
12791 break;
12792
12793 default:
12794 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12795 }
12796 print_recreate_thread (b, fp);
12797 }
12798
12799 /* Virtual table for "catch exception" breakpoints. */
12800
12801 static struct bp_location *
12802 allocate_location_catch_exception (struct breakpoint *self)
12803 {
12804 return allocate_location_exception (ada_catch_exception, self);
12805 }
12806
12807 static void
12808 re_set_catch_exception (struct breakpoint *b)
12809 {
12810 re_set_exception (ada_catch_exception, b);
12811 }
12812
12813 static void
12814 check_status_catch_exception (bpstat bs)
12815 {
12816 check_status_exception (ada_catch_exception, bs);
12817 }
12818
12819 static enum print_stop_action
12820 print_it_catch_exception (bpstat bs)
12821 {
12822 return print_it_exception (ada_catch_exception, bs);
12823 }
12824
12825 static void
12826 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12827 {
12828 print_one_exception (ada_catch_exception, b, last_loc);
12829 }
12830
12831 static void
12832 print_mention_catch_exception (struct breakpoint *b)
12833 {
12834 print_mention_exception (ada_catch_exception, b);
12835 }
12836
12837 static void
12838 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12839 {
12840 print_recreate_exception (ada_catch_exception, b, fp);
12841 }
12842
12843 static struct breakpoint_ops catch_exception_breakpoint_ops;
12844
12845 /* Virtual table for "catch exception unhandled" breakpoints. */
12846
12847 static struct bp_location *
12848 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12849 {
12850 return allocate_location_exception (ada_catch_exception_unhandled, self);
12851 }
12852
12853 static void
12854 re_set_catch_exception_unhandled (struct breakpoint *b)
12855 {
12856 re_set_exception (ada_catch_exception_unhandled, b);
12857 }
12858
12859 static void
12860 check_status_catch_exception_unhandled (bpstat bs)
12861 {
12862 check_status_exception (ada_catch_exception_unhandled, bs);
12863 }
12864
12865 static enum print_stop_action
12866 print_it_catch_exception_unhandled (bpstat bs)
12867 {
12868 return print_it_exception (ada_catch_exception_unhandled, bs);
12869 }
12870
12871 static void
12872 print_one_catch_exception_unhandled (struct breakpoint *b,
12873 struct bp_location **last_loc)
12874 {
12875 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12876 }
12877
12878 static void
12879 print_mention_catch_exception_unhandled (struct breakpoint *b)
12880 {
12881 print_mention_exception (ada_catch_exception_unhandled, b);
12882 }
12883
12884 static void
12885 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12886 struct ui_file *fp)
12887 {
12888 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12889 }
12890
12891 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12892
12893 /* Virtual table for "catch assert" breakpoints. */
12894
12895 static struct bp_location *
12896 allocate_location_catch_assert (struct breakpoint *self)
12897 {
12898 return allocate_location_exception (ada_catch_assert, self);
12899 }
12900
12901 static void
12902 re_set_catch_assert (struct breakpoint *b)
12903 {
12904 re_set_exception (ada_catch_assert, b);
12905 }
12906
12907 static void
12908 check_status_catch_assert (bpstat bs)
12909 {
12910 check_status_exception (ada_catch_assert, bs);
12911 }
12912
12913 static enum print_stop_action
12914 print_it_catch_assert (bpstat bs)
12915 {
12916 return print_it_exception (ada_catch_assert, bs);
12917 }
12918
12919 static void
12920 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12921 {
12922 print_one_exception (ada_catch_assert, b, last_loc);
12923 }
12924
12925 static void
12926 print_mention_catch_assert (struct breakpoint *b)
12927 {
12928 print_mention_exception (ada_catch_assert, b);
12929 }
12930
12931 static void
12932 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12933 {
12934 print_recreate_exception (ada_catch_assert, b, fp);
12935 }
12936
12937 static struct breakpoint_ops catch_assert_breakpoint_ops;
12938
12939 /* Virtual table for "catch handlers" breakpoints. */
12940
12941 static struct bp_location *
12942 allocate_location_catch_handlers (struct breakpoint *self)
12943 {
12944 return allocate_location_exception (ada_catch_handlers, self);
12945 }
12946
12947 static void
12948 re_set_catch_handlers (struct breakpoint *b)
12949 {
12950 re_set_exception (ada_catch_handlers, b);
12951 }
12952
12953 static void
12954 check_status_catch_handlers (bpstat bs)
12955 {
12956 check_status_exception (ada_catch_handlers, bs);
12957 }
12958
12959 static enum print_stop_action
12960 print_it_catch_handlers (bpstat bs)
12961 {
12962 return print_it_exception (ada_catch_handlers, bs);
12963 }
12964
12965 static void
12966 print_one_catch_handlers (struct breakpoint *b,
12967 struct bp_location **last_loc)
12968 {
12969 print_one_exception (ada_catch_handlers, b, last_loc);
12970 }
12971
12972 static void
12973 print_mention_catch_handlers (struct breakpoint *b)
12974 {
12975 print_mention_exception (ada_catch_handlers, b);
12976 }
12977
12978 static void
12979 print_recreate_catch_handlers (struct breakpoint *b,
12980 struct ui_file *fp)
12981 {
12982 print_recreate_exception (ada_catch_handlers, b, fp);
12983 }
12984
12985 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12986
12987 /* Split the arguments specified in a "catch exception" command.
12988 Set EX to the appropriate catchpoint type.
12989 Set EXCEP_STRING to the name of the specific exception if
12990 specified by the user.
12991 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12992 "catch handlers" command. False otherwise.
12993 If a condition is found at the end of the arguments, the condition
12994 expression is stored in COND_STRING (memory must be deallocated
12995 after use). Otherwise COND_STRING is set to NULL. */
12996
12997 static void
12998 catch_ada_exception_command_split (const char *args,
12999 bool is_catch_handlers_cmd,
13000 enum ada_exception_catchpoint_kind *ex,
13001 std::string *excep_string,
13002 std::string *cond_string)
13003 {
13004 std::string exception_name;
13005
13006 exception_name = extract_arg (&args);
13007 if (exception_name == "if")
13008 {
13009 /* This is not an exception name; this is the start of a condition
13010 expression for a catchpoint on all exceptions. So, "un-get"
13011 this token, and set exception_name to NULL. */
13012 exception_name.clear ();
13013 args -= 2;
13014 }
13015
13016 /* Check to see if we have a condition. */
13017
13018 args = skip_spaces (args);
13019 if (startswith (args, "if")
13020 && (isspace (args[2]) || args[2] == '\0'))
13021 {
13022 args += 2;
13023 args = skip_spaces (args);
13024
13025 if (args[0] == '\0')
13026 error (_("Condition missing after `if' keyword"));
13027 *cond_string = args;
13028
13029 args += strlen (args);
13030 }
13031
13032 /* Check that we do not have any more arguments. Anything else
13033 is unexpected. */
13034
13035 if (args[0] != '\0')
13036 error (_("Junk at end of expression"));
13037
13038 if (is_catch_handlers_cmd)
13039 {
13040 /* Catch handling of exceptions. */
13041 *ex = ada_catch_handlers;
13042 *excep_string = exception_name;
13043 }
13044 else if (exception_name.empty ())
13045 {
13046 /* Catch all exceptions. */
13047 *ex = ada_catch_exception;
13048 excep_string->clear ();
13049 }
13050 else if (exception_name == "unhandled")
13051 {
13052 /* Catch unhandled exceptions. */
13053 *ex = ada_catch_exception_unhandled;
13054 excep_string->clear ();
13055 }
13056 else
13057 {
13058 /* Catch a specific exception. */
13059 *ex = ada_catch_exception;
13060 *excep_string = exception_name;
13061 }
13062 }
13063
13064 /* Return the name of the symbol on which we should break in order to
13065 implement a catchpoint of the EX kind. */
13066
13067 static const char *
13068 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13069 {
13070 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13071
13072 gdb_assert (data->exception_info != NULL);
13073
13074 switch (ex)
13075 {
13076 case ada_catch_exception:
13077 return (data->exception_info->catch_exception_sym);
13078 break;
13079 case ada_catch_exception_unhandled:
13080 return (data->exception_info->catch_exception_unhandled_sym);
13081 break;
13082 case ada_catch_assert:
13083 return (data->exception_info->catch_assert_sym);
13084 break;
13085 case ada_catch_handlers:
13086 return (data->exception_info->catch_handlers_sym);
13087 break;
13088 default:
13089 internal_error (__FILE__, __LINE__,
13090 _("unexpected catchpoint kind (%d)"), ex);
13091 }
13092 }
13093
13094 /* Return the breakpoint ops "virtual table" used for catchpoints
13095 of the EX kind. */
13096
13097 static const struct breakpoint_ops *
13098 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13099 {
13100 switch (ex)
13101 {
13102 case ada_catch_exception:
13103 return (&catch_exception_breakpoint_ops);
13104 break;
13105 case ada_catch_exception_unhandled:
13106 return (&catch_exception_unhandled_breakpoint_ops);
13107 break;
13108 case ada_catch_assert:
13109 return (&catch_assert_breakpoint_ops);
13110 break;
13111 case ada_catch_handlers:
13112 return (&catch_handlers_breakpoint_ops);
13113 break;
13114 default:
13115 internal_error (__FILE__, __LINE__,
13116 _("unexpected catchpoint kind (%d)"), ex);
13117 }
13118 }
13119
13120 /* Return the condition that will be used to match the current exception
13121 being raised with the exception that the user wants to catch. This
13122 assumes that this condition is used when the inferior just triggered
13123 an exception catchpoint.
13124 EX: the type of catchpoints used for catching Ada exceptions. */
13125
13126 static std::string
13127 ada_exception_catchpoint_cond_string (const char *excep_string,
13128 enum ada_exception_catchpoint_kind ex)
13129 {
13130 int i;
13131 bool is_standard_exc = false;
13132 std::string result;
13133
13134 if (ex == ada_catch_handlers)
13135 {
13136 /* For exception handlers catchpoints, the condition string does
13137 not use the same parameter as for the other exceptions. */
13138 result = ("long_integer (GNAT_GCC_exception_Access"
13139 "(gcc_exception).all.occurrence.id)");
13140 }
13141 else
13142 result = "long_integer (e)";
13143
13144 /* The standard exceptions are a special case. They are defined in
13145 runtime units that have been compiled without debugging info; if
13146 EXCEP_STRING is the not-fully-qualified name of a standard
13147 exception (e.g. "constraint_error") then, during the evaluation
13148 of the condition expression, the symbol lookup on this name would
13149 *not* return this standard exception. The catchpoint condition
13150 may then be set only on user-defined exceptions which have the
13151 same not-fully-qualified name (e.g. my_package.constraint_error).
13152
13153 To avoid this unexcepted behavior, these standard exceptions are
13154 systematically prefixed by "standard". This means that "catch
13155 exception constraint_error" is rewritten into "catch exception
13156 standard.constraint_error".
13157
13158 If an exception named contraint_error is defined in another package of
13159 the inferior program, then the only way to specify this exception as a
13160 breakpoint condition is to use its fully-qualified named:
13161 e.g. my_package.constraint_error. */
13162
13163 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13164 {
13165 if (strcmp (standard_exc [i], excep_string) == 0)
13166 {
13167 is_standard_exc = true;
13168 break;
13169 }
13170 }
13171
13172 result += " = ";
13173
13174 if (is_standard_exc)
13175 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13176 else
13177 string_appendf (result, "long_integer (&%s)", excep_string);
13178
13179 return result;
13180 }
13181
13182 /* Return the symtab_and_line that should be used to insert an exception
13183 catchpoint of the TYPE kind.
13184
13185 ADDR_STRING returns the name of the function where the real
13186 breakpoint that implements the catchpoints is set, depending on the
13187 type of catchpoint we need to create. */
13188
13189 static struct symtab_and_line
13190 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13191 const char **addr_string, const struct breakpoint_ops **ops)
13192 {
13193 const char *sym_name;
13194 struct symbol *sym;
13195
13196 /* First, find out which exception support info to use. */
13197 ada_exception_support_info_sniffer ();
13198
13199 /* Then lookup the function on which we will break in order to catch
13200 the Ada exceptions requested by the user. */
13201 sym_name = ada_exception_sym_name (ex);
13202 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13203
13204 if (sym == NULL)
13205 error (_("Catchpoint symbol not found: %s"), sym_name);
13206
13207 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13208 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13209
13210 /* Set ADDR_STRING. */
13211 *addr_string = xstrdup (sym_name);
13212
13213 /* Set OPS. */
13214 *ops = ada_exception_breakpoint_ops (ex);
13215
13216 return find_function_start_sal (sym, 1);
13217 }
13218
13219 /* Create an Ada exception catchpoint.
13220
13221 EX_KIND is the kind of exception catchpoint to be created.
13222
13223 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13224 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13225 of the exception to which this catchpoint applies.
13226
13227 COND_STRING, if not empty, is the catchpoint condition.
13228
13229 TEMPFLAG, if nonzero, means that the underlying breakpoint
13230 should be temporary.
13231
13232 FROM_TTY is the usual argument passed to all commands implementations. */
13233
13234 void
13235 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13236 enum ada_exception_catchpoint_kind ex_kind,
13237 const std::string &excep_string,
13238 const std::string &cond_string,
13239 int tempflag,
13240 int disabled,
13241 int from_tty)
13242 {
13243 const char *addr_string = NULL;
13244 const struct breakpoint_ops *ops = NULL;
13245 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13246
13247 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13248 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13249 ops, tempflag, disabled, from_tty);
13250 c->excep_string = excep_string;
13251 create_excep_cond_exprs (c.get (), ex_kind);
13252 if (!cond_string.empty ())
13253 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13254 install_breakpoint (0, std::move (c), 1);
13255 }
13256
13257 /* Implement the "catch exception" command. */
13258
13259 static void
13260 catch_ada_exception_command (const char *arg_entry, int from_tty,
13261 struct cmd_list_element *command)
13262 {
13263 const char *arg = arg_entry;
13264 struct gdbarch *gdbarch = get_current_arch ();
13265 int tempflag;
13266 enum ada_exception_catchpoint_kind ex_kind;
13267 std::string excep_string;
13268 std::string cond_string;
13269
13270 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13271
13272 if (!arg)
13273 arg = "";
13274 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13275 &cond_string);
13276 create_ada_exception_catchpoint (gdbarch, ex_kind,
13277 excep_string, cond_string,
13278 tempflag, 1 /* enabled */,
13279 from_tty);
13280 }
13281
13282 /* Implement the "catch handlers" command. */
13283
13284 static void
13285 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13286 struct cmd_list_element *command)
13287 {
13288 const char *arg = arg_entry;
13289 struct gdbarch *gdbarch = get_current_arch ();
13290 int tempflag;
13291 enum ada_exception_catchpoint_kind ex_kind;
13292 std::string excep_string;
13293 std::string cond_string;
13294
13295 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13296
13297 if (!arg)
13298 arg = "";
13299 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13300 &cond_string);
13301 create_ada_exception_catchpoint (gdbarch, ex_kind,
13302 excep_string, cond_string,
13303 tempflag, 1 /* enabled */,
13304 from_tty);
13305 }
13306
13307 /* Split the arguments specified in a "catch assert" command.
13308
13309 ARGS contains the command's arguments (or the empty string if
13310 no arguments were passed).
13311
13312 If ARGS contains a condition, set COND_STRING to that condition
13313 (the memory needs to be deallocated after use). */
13314
13315 static void
13316 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13317 {
13318 args = skip_spaces (args);
13319
13320 /* Check whether a condition was provided. */
13321 if (startswith (args, "if")
13322 && (isspace (args[2]) || args[2] == '\0'))
13323 {
13324 args += 2;
13325 args = skip_spaces (args);
13326 if (args[0] == '\0')
13327 error (_("condition missing after `if' keyword"));
13328 cond_string.assign (args);
13329 }
13330
13331 /* Otherwise, there should be no other argument at the end of
13332 the command. */
13333 else if (args[0] != '\0')
13334 error (_("Junk at end of arguments."));
13335 }
13336
13337 /* Implement the "catch assert" command. */
13338
13339 static void
13340 catch_assert_command (const char *arg_entry, int from_tty,
13341 struct cmd_list_element *command)
13342 {
13343 const char *arg = arg_entry;
13344 struct gdbarch *gdbarch = get_current_arch ();
13345 int tempflag;
13346 std::string cond_string;
13347
13348 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13349
13350 if (!arg)
13351 arg = "";
13352 catch_ada_assert_command_split (arg, cond_string);
13353 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13354 "", cond_string,
13355 tempflag, 1 /* enabled */,
13356 from_tty);
13357 }
13358
13359 /* Return non-zero if the symbol SYM is an Ada exception object. */
13360
13361 static int
13362 ada_is_exception_sym (struct symbol *sym)
13363 {
13364 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13365
13366 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13367 && SYMBOL_CLASS (sym) != LOC_BLOCK
13368 && SYMBOL_CLASS (sym) != LOC_CONST
13369 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13370 && type_name != NULL && strcmp (type_name, "exception") == 0);
13371 }
13372
13373 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13374 Ada exception object. This matches all exceptions except the ones
13375 defined by the Ada language. */
13376
13377 static int
13378 ada_is_non_standard_exception_sym (struct symbol *sym)
13379 {
13380 int i;
13381
13382 if (!ada_is_exception_sym (sym))
13383 return 0;
13384
13385 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13386 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13387 return 0; /* A standard exception. */
13388
13389 /* Numeric_Error is also a standard exception, so exclude it.
13390 See the STANDARD_EXC description for more details as to why
13391 this exception is not listed in that array. */
13392 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13393 return 0;
13394
13395 return 1;
13396 }
13397
13398 /* A helper function for std::sort, comparing two struct ada_exc_info
13399 objects.
13400
13401 The comparison is determined first by exception name, and then
13402 by exception address. */
13403
13404 bool
13405 ada_exc_info::operator< (const ada_exc_info &other) const
13406 {
13407 int result;
13408
13409 result = strcmp (name, other.name);
13410 if (result < 0)
13411 return true;
13412 if (result == 0 && addr < other.addr)
13413 return true;
13414 return false;
13415 }
13416
13417 bool
13418 ada_exc_info::operator== (const ada_exc_info &other) const
13419 {
13420 return addr == other.addr && strcmp (name, other.name) == 0;
13421 }
13422
13423 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13424 routine, but keeping the first SKIP elements untouched.
13425
13426 All duplicates are also removed. */
13427
13428 static void
13429 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13430 int skip)
13431 {
13432 std::sort (exceptions->begin () + skip, exceptions->end ());
13433 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13434 exceptions->end ());
13435 }
13436
13437 /* Add all exceptions defined by the Ada standard whose name match
13438 a regular expression.
13439
13440 If PREG is not NULL, then this regexp_t object is used to
13441 perform the symbol name matching. Otherwise, no name-based
13442 filtering is performed.
13443
13444 EXCEPTIONS is a vector of exceptions to which matching exceptions
13445 gets pushed. */
13446
13447 static void
13448 ada_add_standard_exceptions (compiled_regex *preg,
13449 std::vector<ada_exc_info> *exceptions)
13450 {
13451 int i;
13452
13453 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13454 {
13455 if (preg == NULL
13456 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13457 {
13458 struct bound_minimal_symbol msymbol
13459 = ada_lookup_simple_minsym (standard_exc[i]);
13460
13461 if (msymbol.minsym != NULL)
13462 {
13463 struct ada_exc_info info
13464 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13465
13466 exceptions->push_back (info);
13467 }
13468 }
13469 }
13470 }
13471
13472 /* Add all Ada exceptions defined locally and accessible from the given
13473 FRAME.
13474
13475 If PREG is not NULL, then this regexp_t object is used to
13476 perform the symbol name matching. Otherwise, no name-based
13477 filtering is performed.
13478
13479 EXCEPTIONS is a vector of exceptions to which matching exceptions
13480 gets pushed. */
13481
13482 static void
13483 ada_add_exceptions_from_frame (compiled_regex *preg,
13484 struct frame_info *frame,
13485 std::vector<ada_exc_info> *exceptions)
13486 {
13487 const struct block *block = get_frame_block (frame, 0);
13488
13489 while (block != 0)
13490 {
13491 struct block_iterator iter;
13492 struct symbol *sym;
13493
13494 ALL_BLOCK_SYMBOLS (block, iter, sym)
13495 {
13496 switch (SYMBOL_CLASS (sym))
13497 {
13498 case LOC_TYPEDEF:
13499 case LOC_BLOCK:
13500 case LOC_CONST:
13501 break;
13502 default:
13503 if (ada_is_exception_sym (sym))
13504 {
13505 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13506 SYMBOL_VALUE_ADDRESS (sym)};
13507
13508 exceptions->push_back (info);
13509 }
13510 }
13511 }
13512 if (BLOCK_FUNCTION (block) != NULL)
13513 break;
13514 block = BLOCK_SUPERBLOCK (block);
13515 }
13516 }
13517
13518 /* Return true if NAME matches PREG or if PREG is NULL. */
13519
13520 static bool
13521 name_matches_regex (const char *name, compiled_regex *preg)
13522 {
13523 return (preg == NULL
13524 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13525 }
13526
13527 /* Add all exceptions defined globally whose name name match
13528 a regular expression, excluding standard exceptions.
13529
13530 The reason we exclude standard exceptions is that they need
13531 to be handled separately: Standard exceptions are defined inside
13532 a runtime unit which is normally not compiled with debugging info,
13533 and thus usually do not show up in our symbol search. However,
13534 if the unit was in fact built with debugging info, we need to
13535 exclude them because they would duplicate the entry we found
13536 during the special loop that specifically searches for those
13537 standard exceptions.
13538
13539 If PREG is not NULL, then this regexp_t object is used to
13540 perform the symbol name matching. Otherwise, no name-based
13541 filtering is performed.
13542
13543 EXCEPTIONS is a vector of exceptions to which matching exceptions
13544 gets pushed. */
13545
13546 static void
13547 ada_add_global_exceptions (compiled_regex *preg,
13548 std::vector<ada_exc_info> *exceptions)
13549 {
13550 struct objfile *objfile;
13551 struct compunit_symtab *s;
13552
13553 /* In Ada, the symbol "search name" is a linkage name, whereas the
13554 regular expression used to do the matching refers to the natural
13555 name. So match against the decoded name. */
13556 expand_symtabs_matching (NULL,
13557 lookup_name_info::match_any (),
13558 [&] (const char *search_name)
13559 {
13560 const char *decoded = ada_decode (search_name);
13561 return name_matches_regex (decoded, preg);
13562 },
13563 NULL,
13564 VARIABLES_DOMAIN);
13565
13566 ALL_COMPUNITS (objfile, s)
13567 {
13568 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13569 int i;
13570
13571 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13572 {
13573 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13574 struct block_iterator iter;
13575 struct symbol *sym;
13576
13577 ALL_BLOCK_SYMBOLS (b, iter, sym)
13578 if (ada_is_non_standard_exception_sym (sym)
13579 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13580 {
13581 struct ada_exc_info info
13582 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13583
13584 exceptions->push_back (info);
13585 }
13586 }
13587 }
13588 }
13589
13590 /* Implements ada_exceptions_list with the regular expression passed
13591 as a regex_t, rather than a string.
13592
13593 If not NULL, PREG is used to filter out exceptions whose names
13594 do not match. Otherwise, all exceptions are listed. */
13595
13596 static std::vector<ada_exc_info>
13597 ada_exceptions_list_1 (compiled_regex *preg)
13598 {
13599 std::vector<ada_exc_info> result;
13600 int prev_len;
13601
13602 /* First, list the known standard exceptions. These exceptions
13603 need to be handled separately, as they are usually defined in
13604 runtime units that have been compiled without debugging info. */
13605
13606 ada_add_standard_exceptions (preg, &result);
13607
13608 /* Next, find all exceptions whose scope is local and accessible
13609 from the currently selected frame. */
13610
13611 if (has_stack_frames ())
13612 {
13613 prev_len = result.size ();
13614 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13615 &result);
13616 if (result.size () > prev_len)
13617 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13618 }
13619
13620 /* Add all exceptions whose scope is global. */
13621
13622 prev_len = result.size ();
13623 ada_add_global_exceptions (preg, &result);
13624 if (result.size () > prev_len)
13625 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13626
13627 return result;
13628 }
13629
13630 /* Return a vector of ada_exc_info.
13631
13632 If REGEXP is NULL, all exceptions are included in the result.
13633 Otherwise, it should contain a valid regular expression,
13634 and only the exceptions whose names match that regular expression
13635 are included in the result.
13636
13637 The exceptions are sorted in the following order:
13638 - Standard exceptions (defined by the Ada language), in
13639 alphabetical order;
13640 - Exceptions only visible from the current frame, in
13641 alphabetical order;
13642 - Exceptions whose scope is global, in alphabetical order. */
13643
13644 std::vector<ada_exc_info>
13645 ada_exceptions_list (const char *regexp)
13646 {
13647 if (regexp == NULL)
13648 return ada_exceptions_list_1 (NULL);
13649
13650 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13651 return ada_exceptions_list_1 (&reg);
13652 }
13653
13654 /* Implement the "info exceptions" command. */
13655
13656 static void
13657 info_exceptions_command (const char *regexp, int from_tty)
13658 {
13659 struct gdbarch *gdbarch = get_current_arch ();
13660
13661 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13662
13663 if (regexp != NULL)
13664 printf_filtered
13665 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13666 else
13667 printf_filtered (_("All defined Ada exceptions:\n"));
13668
13669 for (const ada_exc_info &info : exceptions)
13670 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13671 }
13672
13673 /* Operators */
13674 /* Information about operators given special treatment in functions
13675 below. */
13676 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13677
13678 #define ADA_OPERATORS \
13679 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13680 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13681 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13682 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13683 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13684 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13685 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13686 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13687 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13688 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13689 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13690 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13691 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13692 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13693 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13694 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13695 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13696 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13697 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13698
13699 static void
13700 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13701 int *argsp)
13702 {
13703 switch (exp->elts[pc - 1].opcode)
13704 {
13705 default:
13706 operator_length_standard (exp, pc, oplenp, argsp);
13707 break;
13708
13709 #define OP_DEFN(op, len, args, binop) \
13710 case op: *oplenp = len; *argsp = args; break;
13711 ADA_OPERATORS;
13712 #undef OP_DEFN
13713
13714 case OP_AGGREGATE:
13715 *oplenp = 3;
13716 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13717 break;
13718
13719 case OP_CHOICES:
13720 *oplenp = 3;
13721 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13722 break;
13723 }
13724 }
13725
13726 /* Implementation of the exp_descriptor method operator_check. */
13727
13728 static int
13729 ada_operator_check (struct expression *exp, int pos,
13730 int (*objfile_func) (struct objfile *objfile, void *data),
13731 void *data)
13732 {
13733 const union exp_element *const elts = exp->elts;
13734 struct type *type = NULL;
13735
13736 switch (elts[pos].opcode)
13737 {
13738 case UNOP_IN_RANGE:
13739 case UNOP_QUAL:
13740 type = elts[pos + 1].type;
13741 break;
13742
13743 default:
13744 return operator_check_standard (exp, pos, objfile_func, data);
13745 }
13746
13747 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13748
13749 if (type && TYPE_OBJFILE (type)
13750 && (*objfile_func) (TYPE_OBJFILE (type), data))
13751 return 1;
13752
13753 return 0;
13754 }
13755
13756 static const char *
13757 ada_op_name (enum exp_opcode opcode)
13758 {
13759 switch (opcode)
13760 {
13761 default:
13762 return op_name_standard (opcode);
13763
13764 #define OP_DEFN(op, len, args, binop) case op: return #op;
13765 ADA_OPERATORS;
13766 #undef OP_DEFN
13767
13768 case OP_AGGREGATE:
13769 return "OP_AGGREGATE";
13770 case OP_CHOICES:
13771 return "OP_CHOICES";
13772 case OP_NAME:
13773 return "OP_NAME";
13774 }
13775 }
13776
13777 /* As for operator_length, but assumes PC is pointing at the first
13778 element of the operator, and gives meaningful results only for the
13779 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13780
13781 static void
13782 ada_forward_operator_length (struct expression *exp, int pc,
13783 int *oplenp, int *argsp)
13784 {
13785 switch (exp->elts[pc].opcode)
13786 {
13787 default:
13788 *oplenp = *argsp = 0;
13789 break;
13790
13791 #define OP_DEFN(op, len, args, binop) \
13792 case op: *oplenp = len; *argsp = args; break;
13793 ADA_OPERATORS;
13794 #undef OP_DEFN
13795
13796 case OP_AGGREGATE:
13797 *oplenp = 3;
13798 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13799 break;
13800
13801 case OP_CHOICES:
13802 *oplenp = 3;
13803 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13804 break;
13805
13806 case OP_STRING:
13807 case OP_NAME:
13808 {
13809 int len = longest_to_int (exp->elts[pc + 1].longconst);
13810
13811 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13812 *argsp = 0;
13813 break;
13814 }
13815 }
13816 }
13817
13818 static int
13819 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13820 {
13821 enum exp_opcode op = exp->elts[elt].opcode;
13822 int oplen, nargs;
13823 int pc = elt;
13824 int i;
13825
13826 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13827
13828 switch (op)
13829 {
13830 /* Ada attributes ('Foo). */
13831 case OP_ATR_FIRST:
13832 case OP_ATR_LAST:
13833 case OP_ATR_LENGTH:
13834 case OP_ATR_IMAGE:
13835 case OP_ATR_MAX:
13836 case OP_ATR_MIN:
13837 case OP_ATR_MODULUS:
13838 case OP_ATR_POS:
13839 case OP_ATR_SIZE:
13840 case OP_ATR_TAG:
13841 case OP_ATR_VAL:
13842 break;
13843
13844 case UNOP_IN_RANGE:
13845 case UNOP_QUAL:
13846 /* XXX: gdb_sprint_host_address, type_sprint */
13847 fprintf_filtered (stream, _("Type @"));
13848 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13849 fprintf_filtered (stream, " (");
13850 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13851 fprintf_filtered (stream, ")");
13852 break;
13853 case BINOP_IN_BOUNDS:
13854 fprintf_filtered (stream, " (%d)",
13855 longest_to_int (exp->elts[pc + 2].longconst));
13856 break;
13857 case TERNOP_IN_RANGE:
13858 break;
13859
13860 case OP_AGGREGATE:
13861 case OP_OTHERS:
13862 case OP_DISCRETE_RANGE:
13863 case OP_POSITIONAL:
13864 case OP_CHOICES:
13865 break;
13866
13867 case OP_NAME:
13868 case OP_STRING:
13869 {
13870 char *name = &exp->elts[elt + 2].string;
13871 int len = longest_to_int (exp->elts[elt + 1].longconst);
13872
13873 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13874 break;
13875 }
13876
13877 default:
13878 return dump_subexp_body_standard (exp, stream, elt);
13879 }
13880
13881 elt += oplen;
13882 for (i = 0; i < nargs; i += 1)
13883 elt = dump_subexp (exp, stream, elt);
13884
13885 return elt;
13886 }
13887
13888 /* The Ada extension of print_subexp (q.v.). */
13889
13890 static void
13891 ada_print_subexp (struct expression *exp, int *pos,
13892 struct ui_file *stream, enum precedence prec)
13893 {
13894 int oplen, nargs, i;
13895 int pc = *pos;
13896 enum exp_opcode op = exp->elts[pc].opcode;
13897
13898 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13899
13900 *pos += oplen;
13901 switch (op)
13902 {
13903 default:
13904 *pos -= oplen;
13905 print_subexp_standard (exp, pos, stream, prec);
13906 return;
13907
13908 case OP_VAR_VALUE:
13909 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13910 return;
13911
13912 case BINOP_IN_BOUNDS:
13913 /* XXX: sprint_subexp */
13914 print_subexp (exp, pos, stream, PREC_SUFFIX);
13915 fputs_filtered (" in ", stream);
13916 print_subexp (exp, pos, stream, PREC_SUFFIX);
13917 fputs_filtered ("'range", stream);
13918 if (exp->elts[pc + 1].longconst > 1)
13919 fprintf_filtered (stream, "(%ld)",
13920 (long) exp->elts[pc + 1].longconst);
13921 return;
13922
13923 case TERNOP_IN_RANGE:
13924 if (prec >= PREC_EQUAL)
13925 fputs_filtered ("(", stream);
13926 /* XXX: sprint_subexp */
13927 print_subexp (exp, pos, stream, PREC_SUFFIX);
13928 fputs_filtered (" in ", stream);
13929 print_subexp (exp, pos, stream, PREC_EQUAL);
13930 fputs_filtered (" .. ", stream);
13931 print_subexp (exp, pos, stream, PREC_EQUAL);
13932 if (prec >= PREC_EQUAL)
13933 fputs_filtered (")", stream);
13934 return;
13935
13936 case OP_ATR_FIRST:
13937 case OP_ATR_LAST:
13938 case OP_ATR_LENGTH:
13939 case OP_ATR_IMAGE:
13940 case OP_ATR_MAX:
13941 case OP_ATR_MIN:
13942 case OP_ATR_MODULUS:
13943 case OP_ATR_POS:
13944 case OP_ATR_SIZE:
13945 case OP_ATR_TAG:
13946 case OP_ATR_VAL:
13947 if (exp->elts[*pos].opcode == OP_TYPE)
13948 {
13949 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13950 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13951 &type_print_raw_options);
13952 *pos += 3;
13953 }
13954 else
13955 print_subexp (exp, pos, stream, PREC_SUFFIX);
13956 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13957 if (nargs > 1)
13958 {
13959 int tem;
13960
13961 for (tem = 1; tem < nargs; tem += 1)
13962 {
13963 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13964 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13965 }
13966 fputs_filtered (")", stream);
13967 }
13968 return;
13969
13970 case UNOP_QUAL:
13971 type_print (exp->elts[pc + 1].type, "", stream, 0);
13972 fputs_filtered ("'(", stream);
13973 print_subexp (exp, pos, stream, PREC_PREFIX);
13974 fputs_filtered (")", stream);
13975 return;
13976
13977 case UNOP_IN_RANGE:
13978 /* XXX: sprint_subexp */
13979 print_subexp (exp, pos, stream, PREC_SUFFIX);
13980 fputs_filtered (" in ", stream);
13981 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13982 &type_print_raw_options);
13983 return;
13984
13985 case OP_DISCRETE_RANGE:
13986 print_subexp (exp, pos, stream, PREC_SUFFIX);
13987 fputs_filtered ("..", stream);
13988 print_subexp (exp, pos, stream, PREC_SUFFIX);
13989 return;
13990
13991 case OP_OTHERS:
13992 fputs_filtered ("others => ", stream);
13993 print_subexp (exp, pos, stream, PREC_SUFFIX);
13994 return;
13995
13996 case OP_CHOICES:
13997 for (i = 0; i < nargs-1; i += 1)
13998 {
13999 if (i > 0)
14000 fputs_filtered ("|", stream);
14001 print_subexp (exp, pos, stream, PREC_SUFFIX);
14002 }
14003 fputs_filtered (" => ", stream);
14004 print_subexp (exp, pos, stream, PREC_SUFFIX);
14005 return;
14006
14007 case OP_POSITIONAL:
14008 print_subexp (exp, pos, stream, PREC_SUFFIX);
14009 return;
14010
14011 case OP_AGGREGATE:
14012 fputs_filtered ("(", stream);
14013 for (i = 0; i < nargs; i += 1)
14014 {
14015 if (i > 0)
14016 fputs_filtered (", ", stream);
14017 print_subexp (exp, pos, stream, PREC_SUFFIX);
14018 }
14019 fputs_filtered (")", stream);
14020 return;
14021 }
14022 }
14023
14024 /* Table mapping opcodes into strings for printing operators
14025 and precedences of the operators. */
14026
14027 static const struct op_print ada_op_print_tab[] = {
14028 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14029 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14030 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14031 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14032 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14033 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14034 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14035 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14036 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14037 {">=", BINOP_GEQ, PREC_ORDER, 0},
14038 {">", BINOP_GTR, PREC_ORDER, 0},
14039 {"<", BINOP_LESS, PREC_ORDER, 0},
14040 {">>", BINOP_RSH, PREC_SHIFT, 0},
14041 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14042 {"+", BINOP_ADD, PREC_ADD, 0},
14043 {"-", BINOP_SUB, PREC_ADD, 0},
14044 {"&", BINOP_CONCAT, PREC_ADD, 0},
14045 {"*", BINOP_MUL, PREC_MUL, 0},
14046 {"/", BINOP_DIV, PREC_MUL, 0},
14047 {"rem", BINOP_REM, PREC_MUL, 0},
14048 {"mod", BINOP_MOD, PREC_MUL, 0},
14049 {"**", BINOP_EXP, PREC_REPEAT, 0},
14050 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14051 {"-", UNOP_NEG, PREC_PREFIX, 0},
14052 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14053 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14054 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14055 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14056 {".all", UNOP_IND, PREC_SUFFIX, 1},
14057 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14058 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14059 {NULL, OP_NULL, PREC_SUFFIX, 0}
14060 };
14061 \f
14062 enum ada_primitive_types {
14063 ada_primitive_type_int,
14064 ada_primitive_type_long,
14065 ada_primitive_type_short,
14066 ada_primitive_type_char,
14067 ada_primitive_type_float,
14068 ada_primitive_type_double,
14069 ada_primitive_type_void,
14070 ada_primitive_type_long_long,
14071 ada_primitive_type_long_double,
14072 ada_primitive_type_natural,
14073 ada_primitive_type_positive,
14074 ada_primitive_type_system_address,
14075 ada_primitive_type_storage_offset,
14076 nr_ada_primitive_types
14077 };
14078
14079 static void
14080 ada_language_arch_info (struct gdbarch *gdbarch,
14081 struct language_arch_info *lai)
14082 {
14083 const struct builtin_type *builtin = builtin_type (gdbarch);
14084
14085 lai->primitive_type_vector
14086 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14087 struct type *);
14088
14089 lai->primitive_type_vector [ada_primitive_type_int]
14090 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14091 0, "integer");
14092 lai->primitive_type_vector [ada_primitive_type_long]
14093 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14094 0, "long_integer");
14095 lai->primitive_type_vector [ada_primitive_type_short]
14096 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14097 0, "short_integer");
14098 lai->string_char_type
14099 = lai->primitive_type_vector [ada_primitive_type_char]
14100 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14101 lai->primitive_type_vector [ada_primitive_type_float]
14102 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14103 "float", gdbarch_float_format (gdbarch));
14104 lai->primitive_type_vector [ada_primitive_type_double]
14105 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14106 "long_float", gdbarch_double_format (gdbarch));
14107 lai->primitive_type_vector [ada_primitive_type_long_long]
14108 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14109 0, "long_long_integer");
14110 lai->primitive_type_vector [ada_primitive_type_long_double]
14111 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14112 "long_long_float", gdbarch_long_double_format (gdbarch));
14113 lai->primitive_type_vector [ada_primitive_type_natural]
14114 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14115 0, "natural");
14116 lai->primitive_type_vector [ada_primitive_type_positive]
14117 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14118 0, "positive");
14119 lai->primitive_type_vector [ada_primitive_type_void]
14120 = builtin->builtin_void;
14121
14122 lai->primitive_type_vector [ada_primitive_type_system_address]
14123 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14124 "void"));
14125 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14126 = "system__address";
14127
14128 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14129 type. This is a signed integral type whose size is the same as
14130 the size of addresses. */
14131 {
14132 unsigned int addr_length = TYPE_LENGTH
14133 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14134
14135 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14136 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14137 "storage_offset");
14138 }
14139
14140 lai->bool_type_symbol = NULL;
14141 lai->bool_type_default = builtin->builtin_bool;
14142 }
14143 \f
14144 /* Language vector */
14145
14146 /* Not really used, but needed in the ada_language_defn. */
14147
14148 static void
14149 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14150 {
14151 ada_emit_char (c, type, stream, quoter, 1);
14152 }
14153
14154 static int
14155 parse (struct parser_state *ps)
14156 {
14157 warnings_issued = 0;
14158 return ada_parse (ps);
14159 }
14160
14161 static const struct exp_descriptor ada_exp_descriptor = {
14162 ada_print_subexp,
14163 ada_operator_length,
14164 ada_operator_check,
14165 ada_op_name,
14166 ada_dump_subexp_body,
14167 ada_evaluate_subexp
14168 };
14169
14170 /* symbol_name_matcher_ftype adapter for wild_match. */
14171
14172 static bool
14173 do_wild_match (const char *symbol_search_name,
14174 const lookup_name_info &lookup_name,
14175 completion_match_result *comp_match_res)
14176 {
14177 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14178 }
14179
14180 /* symbol_name_matcher_ftype adapter for full_match. */
14181
14182 static bool
14183 do_full_match (const char *symbol_search_name,
14184 const lookup_name_info &lookup_name,
14185 completion_match_result *comp_match_res)
14186 {
14187 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14188 }
14189
14190 /* Build the Ada lookup name for LOOKUP_NAME. */
14191
14192 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14193 {
14194 const std::string &user_name = lookup_name.name ();
14195
14196 if (user_name[0] == '<')
14197 {
14198 if (user_name.back () == '>')
14199 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14200 else
14201 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14202 m_encoded_p = true;
14203 m_verbatim_p = true;
14204 m_wild_match_p = false;
14205 m_standard_p = false;
14206 }
14207 else
14208 {
14209 m_verbatim_p = false;
14210
14211 m_encoded_p = user_name.find ("__") != std::string::npos;
14212
14213 if (!m_encoded_p)
14214 {
14215 const char *folded = ada_fold_name (user_name.c_str ());
14216 const char *encoded = ada_encode_1 (folded, false);
14217 if (encoded != NULL)
14218 m_encoded_name = encoded;
14219 else
14220 m_encoded_name = user_name;
14221 }
14222 else
14223 m_encoded_name = user_name;
14224
14225 /* Handle the 'package Standard' special case. See description
14226 of m_standard_p. */
14227 if (startswith (m_encoded_name.c_str (), "standard__"))
14228 {
14229 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14230 m_standard_p = true;
14231 }
14232 else
14233 m_standard_p = false;
14234
14235 /* If the name contains a ".", then the user is entering a fully
14236 qualified entity name, and the match must not be done in wild
14237 mode. Similarly, if the user wants to complete what looks
14238 like an encoded name, the match must not be done in wild
14239 mode. Also, in the standard__ special case always do
14240 non-wild matching. */
14241 m_wild_match_p
14242 = (lookup_name.match_type () != symbol_name_match_type::FULL
14243 && !m_encoded_p
14244 && !m_standard_p
14245 && user_name.find ('.') == std::string::npos);
14246 }
14247 }
14248
14249 /* symbol_name_matcher_ftype method for Ada. This only handles
14250 completion mode. */
14251
14252 static bool
14253 ada_symbol_name_matches (const char *symbol_search_name,
14254 const lookup_name_info &lookup_name,
14255 completion_match_result *comp_match_res)
14256 {
14257 return lookup_name.ada ().matches (symbol_search_name,
14258 lookup_name.match_type (),
14259 comp_match_res);
14260 }
14261
14262 /* A name matcher that matches the symbol name exactly, with
14263 strcmp. */
14264
14265 static bool
14266 literal_symbol_name_matcher (const char *symbol_search_name,
14267 const lookup_name_info &lookup_name,
14268 completion_match_result *comp_match_res)
14269 {
14270 const std::string &name = lookup_name.name ();
14271
14272 int cmp = (lookup_name.completion_mode ()
14273 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14274 : strcmp (symbol_search_name, name.c_str ()));
14275 if (cmp == 0)
14276 {
14277 if (comp_match_res != NULL)
14278 comp_match_res->set_match (symbol_search_name);
14279 return true;
14280 }
14281 else
14282 return false;
14283 }
14284
14285 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14286 Ada. */
14287
14288 static symbol_name_matcher_ftype *
14289 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14290 {
14291 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14292 return literal_symbol_name_matcher;
14293
14294 if (lookup_name.completion_mode ())
14295 return ada_symbol_name_matches;
14296 else
14297 {
14298 if (lookup_name.ada ().wild_match_p ())
14299 return do_wild_match;
14300 else
14301 return do_full_match;
14302 }
14303 }
14304
14305 /* Implement the "la_read_var_value" language_defn method for Ada. */
14306
14307 static struct value *
14308 ada_read_var_value (struct symbol *var, const struct block *var_block,
14309 struct frame_info *frame)
14310 {
14311 const struct block *frame_block = NULL;
14312 struct symbol *renaming_sym = NULL;
14313
14314 /* The only case where default_read_var_value is not sufficient
14315 is when VAR is a renaming... */
14316 if (frame)
14317 frame_block = get_frame_block (frame, NULL);
14318 if (frame_block)
14319 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14320 if (renaming_sym != NULL)
14321 return ada_read_renaming_var_value (renaming_sym, frame_block);
14322
14323 /* This is a typical case where we expect the default_read_var_value
14324 function to work. */
14325 return default_read_var_value (var, var_block, frame);
14326 }
14327
14328 static const char *ada_extensions[] =
14329 {
14330 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14331 };
14332
14333 extern const struct language_defn ada_language_defn = {
14334 "ada", /* Language name */
14335 "Ada",
14336 language_ada,
14337 range_check_off,
14338 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14339 that's not quite what this means. */
14340 array_row_major,
14341 macro_expansion_no,
14342 ada_extensions,
14343 &ada_exp_descriptor,
14344 parse,
14345 resolve,
14346 ada_printchar, /* Print a character constant */
14347 ada_printstr, /* Function to print string constant */
14348 emit_char, /* Function to print single char (not used) */
14349 ada_print_type, /* Print a type using appropriate syntax */
14350 ada_print_typedef, /* Print a typedef using appropriate syntax */
14351 ada_val_print, /* Print a value using appropriate syntax */
14352 ada_value_print, /* Print a top-level value */
14353 ada_read_var_value, /* la_read_var_value */
14354 NULL, /* Language specific skip_trampoline */
14355 NULL, /* name_of_this */
14356 true, /* la_store_sym_names_in_linkage_form_p */
14357 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14358 basic_lookup_transparent_type, /* lookup_transparent_type */
14359 ada_la_decode, /* Language specific symbol demangler */
14360 ada_sniff_from_mangled_name,
14361 NULL, /* Language specific
14362 class_name_from_physname */
14363 ada_op_print_tab, /* expression operators for printing */
14364 0, /* c-style arrays */
14365 1, /* String lower bound */
14366 ada_get_gdb_completer_word_break_characters,
14367 ada_collect_symbol_completion_matches,
14368 ada_language_arch_info,
14369 ada_print_array_index,
14370 default_pass_by_reference,
14371 c_get_string,
14372 ada_watch_location_expression,
14373 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14374 ada_iterate_over_symbols,
14375 default_search_name_hash,
14376 &ada_varobj_ops,
14377 NULL,
14378 NULL,
14379 LANG_MAGIC
14380 };
14381
14382 /* Command-list for the "set/show ada" prefix command. */
14383 static struct cmd_list_element *set_ada_list;
14384 static struct cmd_list_element *show_ada_list;
14385
14386 /* Implement the "set ada" prefix command. */
14387
14388 static void
14389 set_ada_command (const char *arg, int from_tty)
14390 {
14391 printf_unfiltered (_(\
14392 "\"set ada\" must be followed by the name of a setting.\n"));
14393 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14394 }
14395
14396 /* Implement the "show ada" prefix command. */
14397
14398 static void
14399 show_ada_command (const char *args, int from_tty)
14400 {
14401 cmd_show_list (show_ada_list, from_tty, "");
14402 }
14403
14404 static void
14405 initialize_ada_catchpoint_ops (void)
14406 {
14407 struct breakpoint_ops *ops;
14408
14409 initialize_breakpoint_ops ();
14410
14411 ops = &catch_exception_breakpoint_ops;
14412 *ops = bkpt_breakpoint_ops;
14413 ops->allocate_location = allocate_location_catch_exception;
14414 ops->re_set = re_set_catch_exception;
14415 ops->check_status = check_status_catch_exception;
14416 ops->print_it = print_it_catch_exception;
14417 ops->print_one = print_one_catch_exception;
14418 ops->print_mention = print_mention_catch_exception;
14419 ops->print_recreate = print_recreate_catch_exception;
14420
14421 ops = &catch_exception_unhandled_breakpoint_ops;
14422 *ops = bkpt_breakpoint_ops;
14423 ops->allocate_location = allocate_location_catch_exception_unhandled;
14424 ops->re_set = re_set_catch_exception_unhandled;
14425 ops->check_status = check_status_catch_exception_unhandled;
14426 ops->print_it = print_it_catch_exception_unhandled;
14427 ops->print_one = print_one_catch_exception_unhandled;
14428 ops->print_mention = print_mention_catch_exception_unhandled;
14429 ops->print_recreate = print_recreate_catch_exception_unhandled;
14430
14431 ops = &catch_assert_breakpoint_ops;
14432 *ops = bkpt_breakpoint_ops;
14433 ops->allocate_location = allocate_location_catch_assert;
14434 ops->re_set = re_set_catch_assert;
14435 ops->check_status = check_status_catch_assert;
14436 ops->print_it = print_it_catch_assert;
14437 ops->print_one = print_one_catch_assert;
14438 ops->print_mention = print_mention_catch_assert;
14439 ops->print_recreate = print_recreate_catch_assert;
14440
14441 ops = &catch_handlers_breakpoint_ops;
14442 *ops = bkpt_breakpoint_ops;
14443 ops->allocate_location = allocate_location_catch_handlers;
14444 ops->re_set = re_set_catch_handlers;
14445 ops->check_status = check_status_catch_handlers;
14446 ops->print_it = print_it_catch_handlers;
14447 ops->print_one = print_one_catch_handlers;
14448 ops->print_mention = print_mention_catch_handlers;
14449 ops->print_recreate = print_recreate_catch_handlers;
14450 }
14451
14452 /* This module's 'new_objfile' observer. */
14453
14454 static void
14455 ada_new_objfile_observer (struct objfile *objfile)
14456 {
14457 ada_clear_symbol_cache ();
14458 }
14459
14460 /* This module's 'free_objfile' observer. */
14461
14462 static void
14463 ada_free_objfile_observer (struct objfile *objfile)
14464 {
14465 ada_clear_symbol_cache ();
14466 }
14467
14468 void
14469 _initialize_ada_language (void)
14470 {
14471 initialize_ada_catchpoint_ops ();
14472
14473 add_prefix_cmd ("ada", no_class, set_ada_command,
14474 _("Prefix command for changing Ada-specific settings"),
14475 &set_ada_list, "set ada ", 0, &setlist);
14476
14477 add_prefix_cmd ("ada", no_class, show_ada_command,
14478 _("Generic command for showing Ada-specific settings."),
14479 &show_ada_list, "show ada ", 0, &showlist);
14480
14481 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14482 &trust_pad_over_xvs, _("\
14483 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14484 Show whether an optimization trusting PAD types over XVS types is activated"),
14485 _("\
14486 This is related to the encoding used by the GNAT compiler. The debugger\n\
14487 should normally trust the contents of PAD types, but certain older versions\n\
14488 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14489 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14490 work around this bug. It is always safe to turn this option \"off\", but\n\
14491 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14492 this option to \"off\" unless necessary."),
14493 NULL, NULL, &set_ada_list, &show_ada_list);
14494
14495 add_setshow_boolean_cmd ("print-signatures", class_vars,
14496 &print_signatures, _("\
14497 Enable or disable the output of formal and return types for functions in the \
14498 overloads selection menu"), _("\
14499 Show whether the output of formal and return types for functions in the \
14500 overloads selection menu is activated"),
14501 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14502
14503 add_catch_command ("exception", _("\
14504 Catch Ada exceptions, when raised.\n\
14505 With an argument, catch only exceptions with the given name."),
14506 catch_ada_exception_command,
14507 NULL,
14508 CATCH_PERMANENT,
14509 CATCH_TEMPORARY);
14510
14511 add_catch_command ("handlers", _("\
14512 Catch Ada exceptions, when handled.\n\
14513 With an argument, catch only exceptions with the given name."),
14514 catch_ada_handlers_command,
14515 NULL,
14516 CATCH_PERMANENT,
14517 CATCH_TEMPORARY);
14518 add_catch_command ("assert", _("\
14519 Catch failed Ada assertions, when raised.\n\
14520 With an argument, catch only exceptions with the given name."),
14521 catch_assert_command,
14522 NULL,
14523 CATCH_PERMANENT,
14524 CATCH_TEMPORARY);
14525
14526 varsize_limit = 65536;
14527 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14528 &varsize_limit, _("\
14529 Set the maximum number of bytes allowed in a variable-size object."), _("\
14530 Show the maximum number of bytes allowed in a variable-size object."), _("\
14531 Attempts to access an object whose size is not a compile-time constant\n\
14532 and exceeds this limit will cause an error."),
14533 NULL, NULL, &setlist, &showlist);
14534
14535 add_info ("exceptions", info_exceptions_command,
14536 _("\
14537 List all Ada exception names.\n\
14538 If a regular expression is passed as an argument, only those matching\n\
14539 the regular expression are listed."));
14540
14541 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14542 _("Set Ada maintenance-related variables."),
14543 &maint_set_ada_cmdlist, "maintenance set ada ",
14544 0/*allow-unknown*/, &maintenance_set_cmdlist);
14545
14546 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14547 _("Show Ada maintenance-related variables"),
14548 &maint_show_ada_cmdlist, "maintenance show ada ",
14549 0/*allow-unknown*/, &maintenance_show_cmdlist);
14550
14551 add_setshow_boolean_cmd
14552 ("ignore-descriptive-types", class_maintenance,
14553 &ada_ignore_descriptive_types_p,
14554 _("Set whether descriptive types generated by GNAT should be ignored."),
14555 _("Show whether descriptive types generated by GNAT should be ignored."),
14556 _("\
14557 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14558 DWARF attribute."),
14559 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14560
14561 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14562 NULL, xcalloc, xfree);
14563
14564 /* The ada-lang observers. */
14565 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14566 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14567 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14568
14569 /* Setup various context-specific data. */
14570 ada_inferior_data
14571 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14572 ada_pspace_data_handle
14573 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14574 }
This page took 0.341994 seconds and 5 git commands to generate.