Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-2021 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "observable.h"
20 #include "gdbcmd.h"
21 #include "target.h"
22 #include "ada-lang.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "progspace.h"
27 #include "objfiles.h"
28 #include "cli/cli-style.h"
29
30 static int ada_build_task_list ();
31
32 /* The name of the array in the GNAT runtime where the Ada Task Control
33 Block of each task is stored. */
34 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
35
36 /* The maximum number of tasks known to the Ada runtime. */
37 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
38
39 /* The name of the variable in the GNAT runtime where the head of a task
40 chain is saved. This is an alternate mechanism to find the list of known
41 tasks. */
42 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
43
44 enum task_states
45 {
46 Unactivated,
47 Runnable,
48 Terminated,
49 Activator_Sleep,
50 Acceptor_Sleep,
51 Entry_Caller_Sleep,
52 Async_Select_Sleep,
53 Delay_Sleep,
54 Master_Completion_Sleep,
55 Master_Phase_2_Sleep,
56 Interrupt_Server_Idle_Sleep,
57 Interrupt_Server_Blocked_Interrupt_Sleep,
58 Timer_Server_Sleep,
59 AST_Server_Sleep,
60 Asynchronous_Hold,
61 Interrupt_Server_Blocked_On_Event_Flag,
62 Activating,
63 Acceptor_Delay_Sleep
64 };
65
66 /* A short description corresponding to each possible task state. */
67 static const char * const task_states[] = {
68 N_("Unactivated"),
69 N_("Runnable"),
70 N_("Terminated"),
71 N_("Child Activation Wait"),
72 N_("Accept or Select Term"),
73 N_("Waiting on entry call"),
74 N_("Async Select Wait"),
75 N_("Delay Sleep"),
76 N_("Child Termination Wait"),
77 N_("Wait Child in Term Alt"),
78 "",
79 "",
80 "",
81 "",
82 N_("Asynchronous Hold"),
83 "",
84 N_("Activating"),
85 N_("Selective Wait")
86 };
87
88 /* A longer description corresponding to each possible task state. */
89 static const char * const long_task_states[] = {
90 N_("Unactivated"),
91 N_("Runnable"),
92 N_("Terminated"),
93 N_("Waiting for child activation"),
94 N_("Blocked in accept or select with terminate"),
95 N_("Waiting on entry call"),
96 N_("Asynchronous Selective Wait"),
97 N_("Delay Sleep"),
98 N_("Waiting for children termination"),
99 N_("Waiting for children in terminate alternative"),
100 "",
101 "",
102 "",
103 "",
104 N_("Asynchronous Hold"),
105 "",
106 N_("Activating"),
107 N_("Blocked in selective wait statement")
108 };
109
110 /* The index of certain important fields in the Ada Task Control Block
111 record and sub-records. */
112
113 struct atcb_fieldnos
114 {
115 /* Fields in record Ada_Task_Control_Block. */
116 int common;
117 int entry_calls;
118 int atc_nesting_level;
119
120 /* Fields in record Common_ATCB. */
121 int state;
122 int parent;
123 int priority;
124 int image;
125 int image_len; /* This field may be missing. */
126 int activation_link;
127 int call;
128 int ll;
129 int base_cpu;
130
131 /* Fields in Task_Primitives.Private_Data. */
132 int ll_thread;
133 int ll_lwp; /* This field may be missing. */
134
135 /* Fields in Common_ATCB.Call.all. */
136 int call_self;
137 };
138
139 /* This module's per-program-space data. */
140
141 struct ada_tasks_pspace_data
142 {
143 /* Nonzero if the data has been initialized. If set to zero,
144 it means that the data has either not been initialized, or
145 has potentially become stale. */
146 int initialized_p = 0;
147
148 /* The ATCB record type. */
149 struct type *atcb_type = nullptr;
150
151 /* The ATCB "Common" component type. */
152 struct type *atcb_common_type = nullptr;
153
154 /* The type of the "ll" field, from the atcb_common_type. */
155 struct type *atcb_ll_type = nullptr;
156
157 /* The type of the "call" field, from the atcb_common_type. */
158 struct type *atcb_call_type = nullptr;
159
160 /* The index of various fields in the ATCB record and sub-records. */
161 struct atcb_fieldnos atcb_fieldno {};
162
163 /* On some systems, gdbserver applies an offset to the CPU that is
164 reported. */
165 unsigned int cpu_id_offset = 0;
166 };
167
168 /* Key to our per-program-space data. */
169 static const struct program_space_key<ada_tasks_pspace_data>
170 ada_tasks_pspace_data_handle;
171
172 /* The kind of data structure used by the runtime to store the list
173 of Ada tasks. */
174
175 enum ada_known_tasks_kind
176 {
177 /* Use this value when we haven't determined which kind of structure
178 is being used, or when we need to recompute it.
179
180 We set the value of this enumerate to zero on purpose: This allows
181 us to use this enumerate in a structure where setting all fields
182 to zero will result in this kind being set to unknown. */
183 ADA_TASKS_UNKNOWN = 0,
184
185 /* This value means that we did not find any task list. Unless
186 there is a bug somewhere, this means that the inferior does not
187 use tasking. */
188 ADA_TASKS_NOT_FOUND,
189
190 /* This value means that the task list is stored as an array.
191 This is the usual method, as it causes very little overhead.
192 But this method is not always used, as it does use a certain
193 amount of memory, which might be scarse in certain environments. */
194 ADA_TASKS_ARRAY,
195
196 /* This value means that the task list is stored as a linked list.
197 This has more runtime overhead than the array approach, but
198 also require less memory when the number of tasks is small. */
199 ADA_TASKS_LIST,
200 };
201
202 /* This module's per-inferior data. */
203
204 struct ada_tasks_inferior_data
205 {
206 /* The type of data structure used by the runtime to store
207 the list of Ada tasks. The value of this field influences
208 the interpretation of the known_tasks_addr field below:
209 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
210 been determined yet;
211 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
212 and the known_tasks_addr is irrelevant;
213 - ADA_TASKS_ARRAY: The known_tasks is an array;
214 - ADA_TASKS_LIST: The known_tasks is a list. */
215 enum ada_known_tasks_kind known_tasks_kind = ADA_TASKS_UNKNOWN;
216
217 /* The address of the known_tasks structure. This is where
218 the runtime stores the information for all Ada tasks.
219 The interpretation of this field depends on KNOWN_TASKS_KIND
220 above. */
221 CORE_ADDR known_tasks_addr = 0;
222
223 /* Type of elements of the known task. Usually a pointer. */
224 struct type *known_tasks_element = nullptr;
225
226 /* Number of elements in the known tasks array. */
227 unsigned int known_tasks_length = 0;
228
229 /* When nonzero, this flag indicates that the task_list field
230 below is up to date. When set to zero, the list has either
231 not been initialized, or has potentially become stale. */
232 bool task_list_valid_p = false;
233
234 /* The list of Ada tasks.
235
236 Note: To each task we associate a number that the user can use to
237 reference it - this number is printed beside each task in the tasks
238 info listing displayed by "info tasks". This number is equal to
239 its index in the vector + 1. Reciprocally, to compute the index
240 of a task in the vector, we need to substract 1 from its number. */
241 std::vector<ada_task_info> task_list;
242 };
243
244 /* Key to our per-inferior data. */
245 static const struct inferior_key<ada_tasks_inferior_data>
246 ada_tasks_inferior_data_handle;
247
248 /* Return a string with TASKNO followed by the task name if TASK_INFO
249 contains a name. */
250
251 static std::string
252 task_to_str (int taskno, const ada_task_info *task_info)
253 {
254 if (task_info->name[0] == '\0')
255 return string_printf ("%d", taskno);
256 else
257 return string_printf ("%d \"%s\"", taskno, task_info->name);
258 }
259
260 /* Return the ada-tasks module's data for the given program space (PSPACE).
261 If none is found, add a zero'ed one now.
262
263 This function always returns a valid object. */
264
265 static struct ada_tasks_pspace_data *
266 get_ada_tasks_pspace_data (struct program_space *pspace)
267 {
268 struct ada_tasks_pspace_data *data;
269
270 data = ada_tasks_pspace_data_handle.get (pspace);
271 if (data == NULL)
272 data = ada_tasks_pspace_data_handle.emplace (pspace);
273
274 return data;
275 }
276
277 /* Return the ada-tasks module's data for the given inferior (INF).
278 If none is found, add a zero'ed one now.
279
280 This function always returns a valid object.
281
282 Note that we could use an observer of the inferior-created event
283 to make sure that the ada-tasks per-inferior data always exists.
284 But we prefered this approach, as it avoids this entirely as long
285 as the user does not use any of the tasking features. This is
286 quite possible, particularly in the case where the inferior does
287 not use tasking. */
288
289 static struct ada_tasks_inferior_data *
290 get_ada_tasks_inferior_data (struct inferior *inf)
291 {
292 struct ada_tasks_inferior_data *data;
293
294 data = ada_tasks_inferior_data_handle.get (inf);
295 if (data == NULL)
296 data = ada_tasks_inferior_data_handle.emplace (inf);
297
298 return data;
299 }
300
301 /* Return the task number of the task whose thread is THREAD, or zero
302 if the task could not be found. */
303
304 int
305 ada_get_task_number (thread_info *thread)
306 {
307 struct inferior *inf = thread->inf;
308 struct ada_tasks_inferior_data *data;
309
310 gdb_assert (inf != NULL);
311 data = get_ada_tasks_inferior_data (inf);
312
313 for (int i = 0; i < data->task_list.size (); i++)
314 if (data->task_list[i].ptid == thread->ptid)
315 return i + 1;
316
317 return 0; /* No matching task found. */
318 }
319
320 /* Return the task number of the task running in inferior INF which
321 matches TASK_ID , or zero if the task could not be found. */
322
323 static int
324 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
325 {
326 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
327
328 for (int i = 0; i < data->task_list.size (); i++)
329 {
330 if (data->task_list[i].task_id == task_id)
331 return i + 1;
332 }
333
334 /* Task not found. Return 0. */
335 return 0;
336 }
337
338 /* Return non-zero if TASK_NUM is a valid task number. */
339
340 int
341 valid_task_id (int task_num)
342 {
343 struct ada_tasks_inferior_data *data;
344
345 ada_build_task_list ();
346 data = get_ada_tasks_inferior_data (current_inferior ());
347 return task_num > 0 && task_num <= data->task_list.size ();
348 }
349
350 /* Return non-zero iff the task STATE corresponds to a non-terminated
351 task state. */
352
353 static int
354 ada_task_is_alive (const struct ada_task_info *task_info)
355 {
356 return (task_info->state != Terminated);
357 }
358
359 /* Search through the list of known tasks for the one whose ptid is
360 PTID, and return it. Return NULL if the task was not found. */
361
362 struct ada_task_info *
363 ada_get_task_info_from_ptid (ptid_t ptid)
364 {
365 struct ada_tasks_inferior_data *data;
366
367 ada_build_task_list ();
368 data = get_ada_tasks_inferior_data (current_inferior ());
369
370 for (ada_task_info &task : data->task_list)
371 {
372 if (task.ptid == ptid)
373 return &task;
374 }
375
376 return NULL;
377 }
378
379 /* Call the ITERATOR function once for each Ada task that hasn't been
380 terminated yet. */
381
382 void
383 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype iterator)
384 {
385 struct ada_tasks_inferior_data *data;
386
387 ada_build_task_list ();
388 data = get_ada_tasks_inferior_data (current_inferior ());
389
390 for (ada_task_info &task : data->task_list)
391 {
392 if (!ada_task_is_alive (&task))
393 continue;
394 iterator (&task);
395 }
396 }
397
398 /* Extract the contents of the value as a string whose length is LENGTH,
399 and store the result in DEST. */
400
401 static void
402 value_as_string (char *dest, struct value *val, int length)
403 {
404 memcpy (dest, value_contents (val), length);
405 dest[length] = '\0';
406 }
407
408 /* Extract the string image from the fat string corresponding to VAL,
409 and store it in DEST. If the string length is greater than MAX_LEN,
410 then truncate the result to the first MAX_LEN characters of the fat
411 string. */
412
413 static void
414 read_fat_string_value (char *dest, struct value *val, int max_len)
415 {
416 struct value *array_val;
417 struct value *bounds_val;
418 int len;
419
420 /* The following variables are made static to avoid recomputing them
421 each time this function is called. */
422 static int initialize_fieldnos = 1;
423 static int array_fieldno;
424 static int bounds_fieldno;
425 static int upper_bound_fieldno;
426
427 /* Get the index of the fields that we will need to read in order
428 to extract the string from the fat string. */
429 if (initialize_fieldnos)
430 {
431 struct type *type = value_type (val);
432 struct type *bounds_type;
433
434 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
435 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
436
437 bounds_type = type->field (bounds_fieldno).type ();
438 if (bounds_type->code () == TYPE_CODE_PTR)
439 bounds_type = TYPE_TARGET_TYPE (bounds_type);
440 if (bounds_type->code () != TYPE_CODE_STRUCT)
441 error (_("Unknown task name format. Aborting"));
442 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
443
444 initialize_fieldnos = 0;
445 }
446
447 /* Get the size of the task image by checking the value of the bounds.
448 The lower bound is always 1, so we only need to read the upper bound. */
449 bounds_val = value_ind (value_field (val, bounds_fieldno));
450 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
451
452 /* Make sure that we do not read more than max_len characters... */
453 if (len > max_len)
454 len = max_len;
455
456 /* Extract LEN characters from the fat string. */
457 array_val = value_ind (value_field (val, array_fieldno));
458 read_memory (value_address (array_val), (gdb_byte *) dest, len);
459
460 /* Add the NUL character to close the string. */
461 dest[len] = '\0';
462 }
463
464 /* Get, from the debugging information, the type description of all types
465 related to the Ada Task Control Block that are needed in order to
466 read the list of known tasks in the Ada runtime. If all of the info
467 needed to do so is found, then save that info in the module's per-
468 program-space data, and return NULL. Otherwise, if any information
469 cannot be found, leave the per-program-space data untouched, and
470 return an error message explaining what was missing (that error
471 message does NOT need to be deallocated). */
472
473 const char *
474 ada_get_tcb_types_info (void)
475 {
476 struct type *type;
477 struct type *common_type;
478 struct type *ll_type;
479 struct type *call_type;
480 struct atcb_fieldnos fieldnos;
481 struct ada_tasks_pspace_data *pspace_data;
482
483 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
484 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
485 const char *common_atcb_name = "system__tasking__common_atcb";
486 const char *private_data_name = "system__task_primitives__private_data";
487 const char *entry_call_record_name = "system__tasking__entry_call_record";
488
489 /* ATCB symbols may be found in several compilation units. As we
490 are only interested in one instance, use standard (literal,
491 C-like) lookups to get the first match. */
492
493 struct symbol *atcb_sym =
494 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN,
495 language_c, NULL).symbol;
496 const struct symbol *common_atcb_sym =
497 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN,
498 language_c, NULL).symbol;
499 const struct symbol *private_data_sym =
500 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN,
501 language_c, NULL).symbol;
502 const struct symbol *entry_call_record_sym =
503 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN,
504 language_c, NULL).symbol;
505
506 if (atcb_sym == NULL || atcb_sym->type == NULL)
507 {
508 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
509 size, so the symbol name differs. */
510 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
511 STRUCT_DOMAIN, language_c,
512 NULL).symbol;
513
514 if (atcb_sym == NULL || atcb_sym->type == NULL)
515 return _("Cannot find Ada_Task_Control_Block type");
516
517 type = atcb_sym->type;
518 }
519 else
520 {
521 /* Get a static representation of the type record
522 Ada_Task_Control_Block. */
523 type = atcb_sym->type;
524 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
525 }
526
527 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
528 return _("Cannot find Common_ATCB type");
529 if (private_data_sym == NULL || private_data_sym->type == NULL)
530 return _("Cannot find Private_Data type");
531 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
532 return _("Cannot find Entry_Call_Record type");
533
534 /* Get the type for Ada_Task_Control_Block.Common. */
535 common_type = common_atcb_sym->type;
536
537 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
538 ll_type = private_data_sym->type;
539
540 /* Get the type for Common_ATCB.Call.all. */
541 call_type = entry_call_record_sym->type;
542
543 /* Get the field indices. */
544 fieldnos.common = ada_get_field_index (type, "common", 0);
545 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
546 fieldnos.atc_nesting_level =
547 ada_get_field_index (type, "atc_nesting_level", 1);
548 fieldnos.state = ada_get_field_index (common_type, "state", 0);
549 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
550 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
551 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
552 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
553 fieldnos.activation_link = ada_get_field_index (common_type,
554 "activation_link", 1);
555 fieldnos.call = ada_get_field_index (common_type, "call", 1);
556 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
557 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0);
558 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
559 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
560 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
561
562 /* On certain platforms such as x86-windows, the "lwp" field has been
563 named "thread_id". This field will likely be renamed in the future,
564 but we need to support both possibilities to avoid an unnecessary
565 dependency on a recent compiler. We therefore try locating the
566 "thread_id" field in place of the "lwp" field if we did not find
567 the latter. */
568 if (fieldnos.ll_lwp < 0)
569 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
570
571 /* Check for the CPU offset. */
572 bound_minimal_symbol first_id_sym
573 = lookup_bound_minimal_symbol ("__gnat_gdb_cpu_first_id");
574 unsigned int first_id = 0;
575 if (first_id_sym.minsym != nullptr)
576 {
577 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (first_id_sym);
578 /* This symbol always has type uint32_t. */
579 struct type *u32type = builtin_type (target_gdbarch ())->builtin_uint32;
580 first_id = value_as_long (value_at (u32type, addr));
581 }
582
583 /* Set all the out parameters all at once, now that we are certain
584 that there are no potential error() anymore. */
585 pspace_data = get_ada_tasks_pspace_data (current_program_space);
586 pspace_data->initialized_p = 1;
587 pspace_data->atcb_type = type;
588 pspace_data->atcb_common_type = common_type;
589 pspace_data->atcb_ll_type = ll_type;
590 pspace_data->atcb_call_type = call_type;
591 pspace_data->atcb_fieldno = fieldnos;
592 pspace_data->cpu_id_offset = first_id;
593 return NULL;
594 }
595
596 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
597 component of its ATCB record. This PTID needs to match the PTID used
598 by the thread layer. */
599
600 static ptid_t
601 ptid_from_atcb_common (struct value *common_value)
602 {
603 long thread = 0;
604 CORE_ADDR lwp = 0;
605 struct value *ll_value;
606 ptid_t ptid;
607 const struct ada_tasks_pspace_data *pspace_data
608 = get_ada_tasks_pspace_data (current_program_space);
609
610 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
611
612 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
613 lwp = value_as_address (value_field (ll_value,
614 pspace_data->atcb_fieldno.ll_lwp));
615 thread = value_as_long (value_field (ll_value,
616 pspace_data->atcb_fieldno.ll_thread));
617
618 ptid = target_get_ada_task_ptid (lwp, thread);
619
620 return ptid;
621 }
622
623 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
624 the address of its associated ATCB record), and store the result inside
625 TASK_INFO. */
626
627 static void
628 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
629 {
630 struct value *tcb_value;
631 struct value *common_value;
632 struct value *atc_nesting_level_value;
633 struct value *entry_calls_value;
634 struct value *entry_calls_value_element;
635 int called_task_fieldno = -1;
636 static const char ravenscar_task_name[] = "Ravenscar task";
637 const struct ada_tasks_pspace_data *pspace_data
638 = get_ada_tasks_pspace_data (current_program_space);
639
640 /* Clear the whole structure to start with, so that everything
641 is always initialized the same. */
642 memset (task_info, 0, sizeof (struct ada_task_info));
643
644 if (!pspace_data->initialized_p)
645 {
646 const char *err_msg = ada_get_tcb_types_info ();
647
648 if (err_msg != NULL)
649 error (_("%s. Aborting"), err_msg);
650 }
651
652 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
653 NULL, task_id);
654 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
655
656 /* Fill in the task_id. */
657
658 task_info->task_id = task_id;
659
660 /* Compute the name of the task.
661
662 Depending on the GNAT version used, the task image is either a fat
663 string, or a thin array of characters. Older versions of GNAT used
664 to use fat strings, and therefore did not need an extra field in
665 the ATCB to store the string length. For efficiency reasons, newer
666 versions of GNAT replaced the fat string by a static buffer, but this
667 also required the addition of a new field named "Image_Len" containing
668 the length of the task name. The method used to extract the task name
669 is selected depending on the existence of this field.
670
671 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
672 we may want to get it from the first user frame of the stack. For now,
673 we just give a dummy name. */
674
675 if (pspace_data->atcb_fieldno.image_len == -1)
676 {
677 if (pspace_data->atcb_fieldno.image >= 0)
678 read_fat_string_value (task_info->name,
679 value_field (common_value,
680 pspace_data->atcb_fieldno.image),
681 sizeof (task_info->name) - 1);
682 else
683 {
684 struct bound_minimal_symbol msym;
685
686 msym = lookup_minimal_symbol_by_pc (task_id);
687 if (msym.minsym)
688 {
689 const char *full_name = msym.minsym->linkage_name ();
690 const char *task_name = full_name;
691 const char *p;
692
693 /* Strip the prefix. */
694 for (p = full_name; *p; p++)
695 if (p[0] == '_' && p[1] == '_')
696 task_name = p + 2;
697
698 /* Copy the task name. */
699 strncpy (task_info->name, task_name,
700 sizeof (task_info->name) - 1);
701 task_info->name[sizeof (task_info->name) - 1] = 0;
702 }
703 else
704 {
705 /* No symbol found. Use a default name. */
706 strcpy (task_info->name, ravenscar_task_name);
707 }
708 }
709 }
710 else
711 {
712 int len = value_as_long
713 (value_field (common_value,
714 pspace_data->atcb_fieldno.image_len));
715
716 value_as_string (task_info->name,
717 value_field (common_value,
718 pspace_data->atcb_fieldno.image),
719 len);
720 }
721
722 /* Compute the task state and priority. */
723
724 task_info->state =
725 value_as_long (value_field (common_value,
726 pspace_data->atcb_fieldno.state));
727 task_info->priority =
728 value_as_long (value_field (common_value,
729 pspace_data->atcb_fieldno.priority));
730
731 /* If the ATCB contains some information about the parent task,
732 then compute it as well. Otherwise, zero. */
733
734 if (pspace_data->atcb_fieldno.parent >= 0)
735 task_info->parent =
736 value_as_address (value_field (common_value,
737 pspace_data->atcb_fieldno.parent));
738
739 /* If the task is in an entry call waiting for another task,
740 then determine which task it is. */
741
742 if (task_info->state == Entry_Caller_Sleep
743 && pspace_data->atcb_fieldno.atc_nesting_level > 0
744 && pspace_data->atcb_fieldno.entry_calls > 0)
745 {
746 /* Let My_ATCB be the Ada task control block of a task calling the
747 entry of another task; then the Task_Id of the called task is
748 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
749 atc_nesting_level_value =
750 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
751 entry_calls_value =
752 ada_coerce_to_simple_array_ptr
753 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
754 entry_calls_value_element =
755 value_subscript (entry_calls_value,
756 value_as_long (atc_nesting_level_value));
757 called_task_fieldno =
758 ada_get_field_index (value_type (entry_calls_value_element),
759 "called_task", 0);
760 task_info->called_task =
761 value_as_address (value_field (entry_calls_value_element,
762 called_task_fieldno));
763 }
764
765 /* If the ATCB contains some information about RV callers, then
766 compute the "caller_task". Otherwise, leave it as zero. */
767
768 if (pspace_data->atcb_fieldno.call >= 0)
769 {
770 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
771 If Common_ATCB.Call is null, then there is no caller. */
772 const CORE_ADDR call =
773 value_as_address (value_field (common_value,
774 pspace_data->atcb_fieldno.call));
775 struct value *call_val;
776
777 if (call != 0)
778 {
779 call_val =
780 value_from_contents_and_address (pspace_data->atcb_call_type,
781 NULL, call);
782 task_info->caller_task =
783 value_as_address
784 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
785 }
786 }
787
788 task_info->base_cpu
789 = (pspace_data->cpu_id_offset
790 + value_as_long (value_field (common_value,
791 pspace_data->atcb_fieldno.base_cpu)));
792
793 /* And finally, compute the task ptid. Note that there is not point
794 in computing it if the task is no longer alive, in which case
795 it is good enough to set its ptid to the null_ptid. */
796 if (ada_task_is_alive (task_info))
797 task_info->ptid = ptid_from_atcb_common (common_value);
798 else
799 task_info->ptid = null_ptid;
800 }
801
802 /* Read the ATCB info of the given task (identified by TASK_ID), and
803 add the result to the given inferior's TASK_LIST. */
804
805 static void
806 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
807 {
808 struct ada_task_info task_info;
809 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
810
811 read_atcb (task_id, &task_info);
812 data->task_list.push_back (task_info);
813 }
814
815 /* Read the Known_Tasks array from the inferior memory, and store
816 it in the current inferior's TASK_LIST. Return true upon success. */
817
818 static bool
819 read_known_tasks_array (struct ada_tasks_inferior_data *data)
820 {
821 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
822 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
823 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size);
824 int i;
825
826 /* Build a new list by reading the ATCBs from the Known_Tasks array
827 in the Ada runtime. */
828 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
829 for (i = 0; i < data->known_tasks_length; i++)
830 {
831 CORE_ADDR task_id =
832 extract_typed_address (known_tasks + i * target_ptr_byte,
833 data->known_tasks_element);
834
835 if (task_id != 0)
836 add_ada_task (task_id, current_inferior ());
837 }
838
839 return true;
840 }
841
842 /* Read the known tasks from the inferior memory, and store it in
843 the current inferior's TASK_LIST. Return true upon success. */
844
845 static bool
846 read_known_tasks_list (struct ada_tasks_inferior_data *data)
847 {
848 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
849 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte);
850 CORE_ADDR task_id;
851 const struct ada_tasks_pspace_data *pspace_data
852 = get_ada_tasks_pspace_data (current_program_space);
853
854 /* Sanity check. */
855 if (pspace_data->atcb_fieldno.activation_link < 0)
856 return false;
857
858 /* Build a new list by reading the ATCBs. Read head of the list. */
859 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
860 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
861 while (task_id != 0)
862 {
863 struct value *tcb_value;
864 struct value *common_value;
865
866 add_ada_task (task_id, current_inferior ());
867
868 /* Read the chain. */
869 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
870 NULL, task_id);
871 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
872 task_id = value_as_address
873 (value_field (common_value,
874 pspace_data->atcb_fieldno.activation_link));
875 }
876
877 return true;
878 }
879
880 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
881 Do nothing if those fields are already set and still up to date. */
882
883 static void
884 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
885 {
886 struct bound_minimal_symbol msym;
887 struct symbol *sym;
888
889 /* Return now if already set. */
890 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
891 return;
892
893 /* Try array. */
894
895 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
896 if (msym.minsym != NULL)
897 {
898 data->known_tasks_kind = ADA_TASKS_ARRAY;
899 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
900
901 /* Try to get pointer type and array length from the symtab. */
902 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
903 language_c, NULL).symbol;
904 if (sym != NULL)
905 {
906 /* Validate. */
907 struct type *type = check_typedef (SYMBOL_TYPE (sym));
908 struct type *eltype = NULL;
909 struct type *idxtype = NULL;
910
911 if (type->code () == TYPE_CODE_ARRAY)
912 eltype = check_typedef (TYPE_TARGET_TYPE (type));
913 if (eltype != NULL
914 && eltype->code () == TYPE_CODE_PTR)
915 idxtype = check_typedef (type->index_type ());
916 if (idxtype != NULL
917 && idxtype->bounds ()->low.kind () != PROP_UNDEFINED
918 && idxtype->bounds ()->high.kind () != PROP_UNDEFINED)
919 {
920 data->known_tasks_element = eltype;
921 data->known_tasks_length =
922 (idxtype->bounds ()->high.const_val ()
923 - idxtype->bounds ()->low.const_val () + 1);
924 return;
925 }
926 }
927
928 /* Fallback to default values. The runtime may have been stripped (as
929 in some distributions), but it is likely that the executable still
930 contains debug information on the task type (due to implicit with of
931 Ada.Tasking). */
932 data->known_tasks_element =
933 builtin_type (target_gdbarch ())->builtin_data_ptr;
934 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
935 return;
936 }
937
938
939 /* Try list. */
940
941 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
942 if (msym.minsym != NULL)
943 {
944 data->known_tasks_kind = ADA_TASKS_LIST;
945 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
946 data->known_tasks_length = 1;
947
948 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
949 language_c, NULL).symbol;
950 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
951 {
952 /* Validate. */
953 struct type *type = check_typedef (SYMBOL_TYPE (sym));
954
955 if (type->code () == TYPE_CODE_PTR)
956 {
957 data->known_tasks_element = type;
958 return;
959 }
960 }
961
962 /* Fallback to default values. */
963 data->known_tasks_element =
964 builtin_type (target_gdbarch ())->builtin_data_ptr;
965 data->known_tasks_length = 1;
966 return;
967 }
968
969 /* Can't find tasks. */
970
971 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
972 data->known_tasks_addr = 0;
973 }
974
975 /* Read the known tasks from the current inferior's memory, and store it
976 in the current inferior's data TASK_LIST. */
977
978 static void
979 read_known_tasks ()
980 {
981 struct ada_tasks_inferior_data *data =
982 get_ada_tasks_inferior_data (current_inferior ());
983
984 /* Step 1: Clear the current list, if necessary. */
985 data->task_list.clear ();
986
987 /* Step 2: do the real work.
988 If the application does not use task, then no more needs to be done.
989 It is important to have the task list cleared (see above) before we
990 return, as we don't want a stale task list to be used... This can
991 happen for instance when debugging a non-multitasking program after
992 having debugged a multitasking one. */
993 ada_tasks_inferior_data_sniffer (data);
994 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
995
996 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
997 array unless needed. */
998 switch (data->known_tasks_kind)
999 {
1000 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
1001 break;
1002 case ADA_TASKS_ARRAY:
1003 data->task_list_valid_p = read_known_tasks_array (data);
1004 break;
1005 case ADA_TASKS_LIST:
1006 data->task_list_valid_p = read_known_tasks_list (data);
1007 break;
1008 }
1009 }
1010
1011 /* Build the task_list by reading the Known_Tasks array from
1012 the inferior, and return the number of tasks in that list
1013 (zero means that the program is not using tasking at all). */
1014
1015 static int
1016 ada_build_task_list ()
1017 {
1018 struct ada_tasks_inferior_data *data;
1019
1020 if (!target_has_stack ())
1021 error (_("Cannot inspect Ada tasks when program is not running"));
1022
1023 data = get_ada_tasks_inferior_data (current_inferior ());
1024 if (!data->task_list_valid_p)
1025 read_known_tasks ();
1026
1027 return data->task_list.size ();
1028 }
1029
1030 /* Print a table providing a short description of all Ada tasks
1031 running inside inferior INF. If ARG_STR is set, it will be
1032 interpreted as a task number, and the table will be limited to
1033 that task only. */
1034
1035 void
1036 print_ada_task_info (struct ui_out *uiout,
1037 const char *arg_str,
1038 struct inferior *inf)
1039 {
1040 struct ada_tasks_inferior_data *data;
1041 int taskno, nb_tasks;
1042 int taskno_arg = 0;
1043 int nb_columns;
1044
1045 if (ada_build_task_list () == 0)
1046 {
1047 uiout->message (_("Your application does not use any Ada tasks.\n"));
1048 return;
1049 }
1050
1051 if (arg_str != NULL && arg_str[0] != '\0')
1052 taskno_arg = value_as_long (parse_and_eval (arg_str));
1053
1054 if (uiout->is_mi_like_p ())
1055 /* In GDB/MI mode, we want to provide the thread ID corresponding
1056 to each task. This allows clients to quickly find the thread
1057 associated to any task, which is helpful for commands that
1058 take a --thread argument. However, in order to be able to
1059 provide that thread ID, the thread list must be up to date
1060 first. */
1061 target_update_thread_list ();
1062
1063 data = get_ada_tasks_inferior_data (inf);
1064
1065 /* Compute the number of tasks that are going to be displayed
1066 in the output. If an argument was given, there will be
1067 at most 1 entry. Otherwise, there will be as many entries
1068 as we have tasks. */
1069 if (taskno_arg)
1070 {
1071 if (taskno_arg > 0 && taskno_arg <= data->task_list.size ())
1072 nb_tasks = 1;
1073 else
1074 nb_tasks = 0;
1075 }
1076 else
1077 nb_tasks = data->task_list.size ();
1078
1079 nb_columns = uiout->is_mi_like_p () ? 8 : 7;
1080 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks");
1081 uiout->table_header (1, ui_left, "current", "");
1082 uiout->table_header (3, ui_right, "id", "ID");
1083 {
1084 size_t tid_width = 9;
1085 /* Grown below in case the largest entry is bigger. */
1086
1087 if (!uiout->is_mi_like_p ())
1088 {
1089 for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1090 {
1091 const struct ada_task_info *const task_info
1092 = &data->task_list[taskno - 1];
1093
1094 gdb_assert (task_info != NULL);
1095
1096 tid_width = std::max (tid_width,
1097 1 + strlen (phex_nz (task_info->task_id,
1098 sizeof (CORE_ADDR))));
1099 }
1100 }
1101 uiout->table_header (tid_width, ui_right, "task-id", "TID");
1102 }
1103 /* The following column is provided in GDB/MI mode only because
1104 it is only really useful in that mode, and also because it
1105 allows us to keep the CLI output shorter and more compact. */
1106 if (uiout->is_mi_like_p ())
1107 uiout->table_header (4, ui_right, "thread-id", "");
1108 uiout->table_header (4, ui_right, "parent-id", "P-ID");
1109 uiout->table_header (3, ui_right, "priority", "Pri");
1110 uiout->table_header (22, ui_left, "state", "State");
1111 /* Use ui_noalign for the last column, to prevent the CLI uiout
1112 from printing an extra space at the end of each row. This
1113 is a bit of a hack, but does get the job done. */
1114 uiout->table_header (1, ui_noalign, "name", "Name");
1115 uiout->table_body ();
1116
1117 for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1118 {
1119 const struct ada_task_info *const task_info =
1120 &data->task_list[taskno - 1];
1121 int parent_id;
1122
1123 gdb_assert (task_info != NULL);
1124
1125 /* If the user asked for the output to be restricted
1126 to one task only, and this is not the task, skip
1127 to the next one. */
1128 if (taskno_arg && taskno != taskno_arg)
1129 continue;
1130
1131 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1132
1133 /* Print a star if this task is the current task (or the task
1134 currently selected). */
1135 if (task_info->ptid == inferior_ptid)
1136 uiout->field_string ("current", "*");
1137 else
1138 uiout->field_skip ("current");
1139
1140 /* Print the task number. */
1141 uiout->field_signed ("id", taskno);
1142
1143 /* Print the Task ID. */
1144 uiout->field_string ("task-id", phex_nz (task_info->task_id,
1145 sizeof (CORE_ADDR)));
1146
1147 /* Print the associated Thread ID. */
1148 if (uiout->is_mi_like_p ())
1149 {
1150 thread_info *thread = (ada_task_is_alive (task_info)
1151 ? find_thread_ptid (inf, task_info->ptid)
1152 : nullptr);
1153
1154 if (thread != NULL)
1155 uiout->field_signed ("thread-id", thread->global_num);
1156 else
1157 {
1158 /* This can happen if the thread is no longer alive. */
1159 uiout->field_skip ("thread-id");
1160 }
1161 }
1162
1163 /* Print the ID of the parent task. */
1164 parent_id = get_task_number_from_id (task_info->parent, inf);
1165 if (parent_id)
1166 uiout->field_signed ("parent-id", parent_id);
1167 else
1168 uiout->field_skip ("parent-id");
1169
1170 /* Print the base priority of the task. */
1171 uiout->field_signed ("priority", task_info->priority);
1172
1173 /* Print the task current state. */
1174 if (task_info->caller_task)
1175 uiout->field_fmt ("state",
1176 _("Accepting RV with %-4d"),
1177 get_task_number_from_id (task_info->caller_task,
1178 inf));
1179 else if (task_info->called_task)
1180 uiout->field_fmt ("state",
1181 _("Waiting on RV with %-3d"),
1182 get_task_number_from_id (task_info->called_task,
1183 inf));
1184 else
1185 uiout->field_string ("state", task_states[task_info->state]);
1186
1187 /* Finally, print the task name, without quotes around it, as mi like
1188 is not expecting quotes, and in non mi-like no need for quotes
1189 as there is a specific column for the name. */
1190 uiout->field_fmt ("name",
1191 (task_info->name[0] != '\0'
1192 ? ui_file_style ()
1193 : metadata_style.style ()),
1194 "%s",
1195 (task_info->name[0] != '\0'
1196 ? task_info->name
1197 : _("<no name>")));
1198
1199 uiout->text ("\n");
1200 }
1201 }
1202
1203 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1204 for the given inferior (INF). */
1205
1206 static void
1207 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf)
1208 {
1209 const int taskno = value_as_long (parse_and_eval (taskno_str));
1210 struct ada_task_info *task_info;
1211 int parent_taskno = 0;
1212 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1213
1214 if (ada_build_task_list () == 0)
1215 {
1216 uiout->message (_("Your application does not use any Ada tasks.\n"));
1217 return;
1218 }
1219
1220 if (taskno <= 0 || taskno > data->task_list.size ())
1221 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1222 "see the IDs of currently known tasks"), taskno);
1223 task_info = &data->task_list[taskno - 1];
1224
1225 /* Print the Ada task ID. */
1226 printf_filtered (_("Ada Task: %s\n"),
1227 paddress (target_gdbarch (), task_info->task_id));
1228
1229 /* Print the name of the task. */
1230 if (task_info->name[0] != '\0')
1231 printf_filtered (_("Name: %s\n"), task_info->name);
1232 else
1233 fprintf_styled (gdb_stdout, metadata_style.style (), _("<no name>\n"));
1234
1235 /* Print the TID and LWP. */
1236 printf_filtered (_("Thread: %#lx\n"), task_info->ptid.tid ());
1237 printf_filtered (_("LWP: %#lx\n"), task_info->ptid.lwp ());
1238
1239 /* If set, print the base CPU. */
1240 if (task_info->base_cpu != 0)
1241 printf_filtered (_("Base CPU: %d\n"), task_info->base_cpu);
1242
1243 /* Print who is the parent (if any). */
1244 if (task_info->parent != 0)
1245 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1246 if (parent_taskno)
1247 {
1248 struct ada_task_info *parent = &data->task_list[parent_taskno - 1];
1249
1250 printf_filtered (_("Parent: %d"), parent_taskno);
1251 if (parent->name[0] != '\0')
1252 printf_filtered (" (%s)", parent->name);
1253 printf_filtered ("\n");
1254 }
1255 else
1256 printf_filtered (_("No parent\n"));
1257
1258 /* Print the base priority. */
1259 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1260
1261 /* print the task current state. */
1262 {
1263 int target_taskno = 0;
1264
1265 if (task_info->caller_task)
1266 {
1267 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1268 printf_filtered (_("State: Accepting rendezvous with %d"),
1269 target_taskno);
1270 }
1271 else if (task_info->called_task)
1272 {
1273 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1274 printf_filtered (_("State: Waiting on task %d's entry"),
1275 target_taskno);
1276 }
1277 else
1278 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1279
1280 if (target_taskno)
1281 {
1282 ada_task_info *target_task_info = &data->task_list[target_taskno - 1];
1283
1284 if (target_task_info->name[0] != '\0')
1285 printf_filtered (" (%s)", target_task_info->name);
1286 }
1287
1288 printf_filtered ("\n");
1289 }
1290 }
1291
1292 /* If ARG is empty or null, then print a list of all Ada tasks.
1293 Otherwise, print detailed information about the task whose ID
1294 is ARG.
1295
1296 Does nothing if the program doesn't use Ada tasking. */
1297
1298 static void
1299 info_tasks_command (const char *arg, int from_tty)
1300 {
1301 struct ui_out *uiout = current_uiout;
1302
1303 if (arg == NULL || *arg == '\0')
1304 print_ada_task_info (uiout, NULL, current_inferior ());
1305 else
1306 info_task (uiout, arg, current_inferior ());
1307 }
1308
1309 /* Print a message telling the user id of the current task.
1310 This function assumes that tasking is in use in the inferior. */
1311
1312 static void
1313 display_current_task_id (void)
1314 {
1315 const int current_task = ada_get_task_number (inferior_thread ());
1316
1317 if (current_task == 0)
1318 printf_filtered (_("[Current task is unknown]\n"));
1319 else
1320 {
1321 struct ada_tasks_inferior_data *data
1322 = get_ada_tasks_inferior_data (current_inferior ());
1323 struct ada_task_info *task_info = &data->task_list[current_task - 1];
1324
1325 printf_filtered (_("[Current task is %s]\n"),
1326 task_to_str (current_task, task_info).c_str ());
1327 }
1328 }
1329
1330 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1331 that task. Print an error message if the task switch failed. */
1332
1333 static void
1334 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf)
1335 {
1336 const int taskno = value_as_long (parse_and_eval (taskno_str));
1337 struct ada_task_info *task_info;
1338 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1339
1340 if (taskno <= 0 || taskno > data->task_list.size ())
1341 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1342 "see the IDs of currently known tasks"), taskno);
1343 task_info = &data->task_list[taskno - 1];
1344
1345 if (!ada_task_is_alive (task_info))
1346 error (_("Cannot switch to task %s: Task is no longer running"),
1347 task_to_str (taskno, task_info).c_str ());
1348
1349 /* On some platforms, the thread list is not updated until the user
1350 performs a thread-related operation (by using the "info threads"
1351 command, for instance). So this thread list may not be up to date
1352 when the user attempts this task switch. Since we cannot switch
1353 to the thread associated to our task if GDB does not know about
1354 that thread, we need to make sure that any new threads gets added
1355 to the thread list. */
1356 target_update_thread_list ();
1357
1358 /* Verify that the ptid of the task we want to switch to is valid
1359 (in other words, a ptid that GDB knows about). Otherwise, we will
1360 cause an assertion failure later on, when we try to determine
1361 the ptid associated thread_info data. We should normally never
1362 encounter such an error, but the wrong ptid can actually easily be
1363 computed if target_get_ada_task_ptid has not been implemented for
1364 our target (yet). Rather than cause an assertion error in that case,
1365 it's nicer for the user to just refuse to perform the task switch. */
1366 thread_info *tp = find_thread_ptid (inf, task_info->ptid);
1367 if (tp == NULL)
1368 error (_("Unable to compute thread ID for task %s.\n"
1369 "Cannot switch to this task."),
1370 task_to_str (taskno, task_info).c_str ());
1371
1372 switch_to_thread (tp);
1373 ada_find_printable_frame (get_selected_frame (NULL));
1374 printf_filtered (_("[Switching to task %s]\n"),
1375 task_to_str (taskno, task_info).c_str ());
1376 print_stack_frame (get_selected_frame (NULL),
1377 frame_relative_level (get_selected_frame (NULL)),
1378 SRC_AND_LOC, 1);
1379 }
1380
1381
1382 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1383 Otherwise, switch to the task indicated by TASKNO_STR. */
1384
1385 static void
1386 task_command (const char *taskno_str, int from_tty)
1387 {
1388 struct ui_out *uiout = current_uiout;
1389
1390 if (ada_build_task_list () == 0)
1391 {
1392 uiout->message (_("Your application does not use any Ada tasks.\n"));
1393 return;
1394 }
1395
1396 if (taskno_str == NULL || taskno_str[0] == '\0')
1397 display_current_task_id ();
1398 else
1399 task_command_1 (taskno_str, from_tty, current_inferior ());
1400 }
1401
1402 /* Indicate that the given inferior's task list may have changed,
1403 so invalidate the cache. */
1404
1405 static void
1406 ada_task_list_changed (struct inferior *inf)
1407 {
1408 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1409
1410 data->task_list_valid_p = false;
1411 }
1412
1413 /* Invalidate the per-program-space data. */
1414
1415 static void
1416 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1417 {
1418 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1419 }
1420
1421 /* Invalidate the per-inferior data. */
1422
1423 static void
1424 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1425 {
1426 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1427
1428 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1429 data->task_list_valid_p = false;
1430 }
1431
1432 /* The 'normal_stop' observer notification callback. */
1433
1434 static void
1435 ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1436 {
1437 /* The inferior has been resumed, and just stopped. This means that
1438 our task_list needs to be recomputed before it can be used again. */
1439 ada_task_list_changed (current_inferior ());
1440 }
1441
1442 /* A routine to be called when the objfiles have changed. */
1443
1444 static void
1445 ada_tasks_new_objfile_observer (struct objfile *objfile)
1446 {
1447 struct inferior *inf;
1448
1449 /* Invalidate the relevant data in our program-space data. */
1450
1451 if (objfile == NULL)
1452 {
1453 /* All objfiles are being cleared, so we should clear all
1454 our caches for all program spaces. */
1455 for (struct program_space *pspace : program_spaces)
1456 ada_tasks_invalidate_pspace_data (pspace);
1457 }
1458 else
1459 {
1460 /* The associated program-space data might have changed after
1461 this objfile was added. Invalidate all cached data. */
1462 ada_tasks_invalidate_pspace_data (objfile->pspace);
1463 }
1464
1465 /* Invalidate the per-inferior cache for all inferiors using
1466 this objfile (or, in other words, for all inferiors who have
1467 the same program-space as the objfile's program space).
1468 If all objfiles are being cleared (OBJFILE is NULL), then
1469 clear the caches for all inferiors. */
1470
1471 for (inf = inferior_list; inf != NULL; inf = inf->next)
1472 if (objfile == NULL || inf->pspace == objfile->pspace)
1473 ada_tasks_invalidate_inferior_data (inf);
1474 }
1475
1476 void _initialize_tasks ();
1477 void
1478 _initialize_tasks ()
1479 {
1480 /* Attach various observers. */
1481 gdb::observers::normal_stop.attach (ada_tasks_normal_stop_observer,
1482 "ada-tasks");
1483 gdb::observers::new_objfile.attach (ada_tasks_new_objfile_observer,
1484 "ada-tasks");
1485
1486 /* Some new commands provided by this module. */
1487 add_info ("tasks", info_tasks_command,
1488 _("Provide information about all known Ada tasks."));
1489 add_cmd ("task", class_run, task_command,
1490 _("Use this command to switch between Ada tasks.\n\
1491 Without argument, this command simply prints the current task ID."),
1492 &cmdlist);
1493 }
This page took 0.059447 seconds and 4 git commands to generate.