[Ada] Re-implement `info tasks' command using ui-out
[deliverable/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005,
2 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "observer.h"
21 #include "gdbcmd.h"
22 #include "target.h"
23 #include "ada-lang.h"
24 #include "gdbcore.h"
25 #include "inferior.h"
26 #include "gdbthread.h"
27 #include "progspace.h"
28 #include "objfiles.h"
29
30 /* The name of the array in the GNAT runtime where the Ada Task Control
31 Block of each task is stored. */
32 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
33
34 /* The maximum number of tasks known to the Ada runtime. */
35 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
36
37 /* The name of the variable in the GNAT runtime where the head of a task
38 chain is saved. This is an alternate mechanism to find the list of known
39 tasks. */
40 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
41
42 enum task_states
43 {
44 Unactivated,
45 Runnable,
46 Terminated,
47 Activator_Sleep,
48 Acceptor_Sleep,
49 Entry_Caller_Sleep,
50 Async_Select_Sleep,
51 Delay_Sleep,
52 Master_Completion_Sleep,
53 Master_Phase_2_Sleep,
54 Interrupt_Server_Idle_Sleep,
55 Interrupt_Server_Blocked_Interrupt_Sleep,
56 Timer_Server_Sleep,
57 AST_Server_Sleep,
58 Asynchronous_Hold,
59 Interrupt_Server_Blocked_On_Event_Flag,
60 Activating,
61 Acceptor_Delay_Sleep
62 };
63
64 /* A short description corresponding to each possible task state. */
65 static const char *task_states[] = {
66 N_("Unactivated"),
67 N_("Runnable"),
68 N_("Terminated"),
69 N_("Child Activation Wait"),
70 N_("Accept or Select Term"),
71 N_("Waiting on entry call"),
72 N_("Async Select Wait"),
73 N_("Delay Sleep"),
74 N_("Child Termination Wait"),
75 N_("Wait Child in Term Alt"),
76 "",
77 "",
78 "",
79 "",
80 N_("Asynchronous Hold"),
81 "",
82 N_("Activating"),
83 N_("Selective Wait")
84 };
85
86 /* A longer description corresponding to each possible task state. */
87 static const char *long_task_states[] = {
88 N_("Unactivated"),
89 N_("Runnable"),
90 N_("Terminated"),
91 N_("Waiting for child activation"),
92 N_("Blocked in accept or select with terminate"),
93 N_("Waiting on entry call"),
94 N_("Asynchronous Selective Wait"),
95 N_("Delay Sleep"),
96 N_("Waiting for children termination"),
97 N_("Waiting for children in terminate alternative"),
98 "",
99 "",
100 "",
101 "",
102 N_("Asynchronous Hold"),
103 "",
104 N_("Activating"),
105 N_("Blocked in selective wait statement")
106 };
107
108 /* The index of certain important fields in the Ada Task Control Block
109 record and sub-records. */
110
111 struct atcb_fieldnos
112 {
113 /* Fields in record Ada_Task_Control_Block. */
114 int common;
115 int entry_calls;
116 int atc_nesting_level;
117
118 /* Fields in record Common_ATCB. */
119 int state;
120 int parent;
121 int priority;
122 int image;
123 int image_len; /* This field may be missing. */
124 int activation_link;
125 int call;
126 int ll;
127
128 /* Fields in Task_Primitives.Private_Data. */
129 int ll_thread;
130 int ll_lwp; /* This field may be missing. */
131
132 /* Fields in Common_ATCB.Call.all. */
133 int call_self;
134 };
135
136 /* This module's per-program-space data. */
137
138 struct ada_tasks_pspace_data
139 {
140 /* Nonzero if the data has been initialized. If set to zero,
141 it means that the data has either not been initialized, or
142 has potentially become stale. */
143 int initialized_p;
144
145 /* The ATCB record type. */
146 struct type *atcb_type;
147
148 /* The ATCB "Common" component type. */
149 struct type *atcb_common_type;
150
151 /* The type of the "ll" field, from the atcb_common_type. */
152 struct type *atcb_ll_type;
153
154 /* The type of the "call" field, from the atcb_common_type. */
155 struct type *atcb_call_type;
156
157 /* The index of various fields in the ATCB record and sub-records. */
158 struct atcb_fieldnos atcb_fieldno;
159 };
160
161 /* Key to our per-program-space data. */
162 static const struct program_space_data *ada_tasks_pspace_data_handle;
163
164 typedef struct ada_task_info ada_task_info_s;
165 DEF_VEC_O(ada_task_info_s);
166
167 /* The kind of data structure used by the runtime to store the list
168 of Ada tasks. */
169
170 enum ada_known_tasks_kind
171 {
172 /* Use this value when we haven't determined which kind of structure
173 is being used, or when we need to recompute it.
174
175 We set the value of this enumerate to zero on purpose: This allows
176 us to use this enumerate in a structure where setting all fields
177 to zero will result in this kind being set to unknown. */
178 ADA_TASKS_UNKNOWN = 0,
179
180 /* This value means that we did not find any task list. Unless
181 there is a bug somewhere, this means that the inferior does not
182 use tasking. */
183 ADA_TASKS_NOT_FOUND,
184
185 /* This value means that the task list is stored as an array.
186 This is the usual method, as it causes very little overhead.
187 But this method is not always used, as it does use a certain
188 amount of memory, which might be scarse in certain environments. */
189 ADA_TASKS_ARRAY,
190
191 /* This value means that the task list is stored as a linked list.
192 This has more runtime overhead than the array approach, but
193 also require less memory when the number of tasks is small. */
194 ADA_TASKS_LIST,
195 };
196
197 /* This module's per-inferior data. */
198
199 struct ada_tasks_inferior_data
200 {
201 /* The type of data structure used by the runtime to store
202 the list of Ada tasks. The value of this field influences
203 the interpretation of the known_tasks_addr field below:
204 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
205 been determined yet;
206 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
207 and the known_tasks_addr is irrelevant;
208 - ADA_TASKS_ARRAY: The known_tasks is an array;
209 - ADA_TASKS_LIST: The known_tasks is a list. */
210 enum ada_known_tasks_kind known_tasks_kind;
211
212 /* The address of the known_tasks structure. This is where
213 the runtime stores the information for all Ada tasks.
214 The interpretation of this field depends on KNOWN_TASKS_KIND
215 above. */
216 CORE_ADDR known_tasks_addr;
217
218 /* When nonzero, this flag indicates that the task_list field
219 below is up to date. When set to zero, the list has either
220 not been initialized, or has potentially become stale. */
221 int task_list_valid_p;
222
223 /* The list of Ada tasks.
224
225 Note: To each task we associate a number that the user can use to
226 reference it - this number is printed beside each task in the tasks
227 info listing displayed by "info tasks". This number is equal to
228 its index in the vector + 1. Reciprocally, to compute the index
229 of a task in the vector, we need to substract 1 from its number. */
230 VEC(ada_task_info_s) *task_list;
231 };
232
233 /* Key to our per-inferior data. */
234 static const struct inferior_data *ada_tasks_inferior_data_handle;
235
236 /* Return the ada-tasks module's data for the given program space (PSPACE).
237 If none is found, add a zero'ed one now.
238
239 This function always returns a valid object. */
240
241 static struct ada_tasks_pspace_data *
242 get_ada_tasks_pspace_data (struct program_space *pspace)
243 {
244 struct ada_tasks_pspace_data *data;
245
246 data = program_space_data (pspace, ada_tasks_pspace_data_handle);
247 if (data == NULL)
248 {
249 data = XZALLOC (struct ada_tasks_pspace_data);
250 set_program_space_data (pspace, ada_tasks_pspace_data_handle, data);
251 }
252
253 return data;
254 }
255
256 /* Return the ada-tasks module's data for the given inferior (INF).
257 If none is found, add a zero'ed one now.
258
259 This function always returns a valid object.
260
261 Note that we could use an observer of the inferior-created event
262 to make sure that the ada-tasks per-inferior data always exists.
263 But we prefered this approach, as it avoids this entirely as long
264 as the user does not use any of the tasking features. This is
265 quite possible, particularly in the case where the inferior does
266 not use tasking. */
267
268 static struct ada_tasks_inferior_data *
269 get_ada_tasks_inferior_data (struct inferior *inf)
270 {
271 struct ada_tasks_inferior_data *data;
272
273 data = inferior_data (inf, ada_tasks_inferior_data_handle);
274 if (data == NULL)
275 {
276 data = XZALLOC (struct ada_tasks_inferior_data);
277 set_inferior_data (inf, ada_tasks_inferior_data_handle, data);
278 }
279
280 return data;
281 }
282
283 /* Return the task number of the task whose ptid is PTID, or zero
284 if the task could not be found. */
285
286 int
287 ada_get_task_number (ptid_t ptid)
288 {
289 int i;
290 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
291 struct ada_tasks_inferior_data *data;
292
293 gdb_assert (inf != NULL);
294 data = get_ada_tasks_inferior_data (inf);
295
296 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
297 if (ptid_equal (VEC_index (ada_task_info_s, data->task_list, i)->ptid,
298 ptid))
299 return i + 1;
300
301 return 0; /* No matching task found. */
302 }
303
304 /* Return the task number of the task running in inferior INF which
305 matches TASK_ID , or zero if the task could not be found. */
306
307 static int
308 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
309 {
310 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
311 int i;
312
313 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
314 {
315 struct ada_task_info *task_info =
316 VEC_index (ada_task_info_s, data->task_list, i);
317
318 if (task_info->task_id == task_id)
319 return i + 1;
320 }
321
322 /* Task not found. Return 0. */
323 return 0;
324 }
325
326 /* Return non-zero if TASK_NUM is a valid task number. */
327
328 int
329 valid_task_id (int task_num)
330 {
331 struct ada_tasks_inferior_data *data;
332
333 ada_build_task_list ();
334 data = get_ada_tasks_inferior_data (current_inferior ());
335 return (task_num > 0
336 && task_num <= VEC_length (ada_task_info_s, data->task_list));
337 }
338
339 /* Return non-zero iff the task STATE corresponds to a non-terminated
340 task state. */
341
342 static int
343 ada_task_is_alive (struct ada_task_info *task_info)
344 {
345 return (task_info->state != Terminated);
346 }
347
348 /* Call the ITERATOR function once for each Ada task that hasn't been
349 terminated yet. */
350
351 void
352 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
353 {
354 int i, nb_tasks;
355 struct ada_task_info *task;
356 struct ada_tasks_inferior_data *data;
357
358 ada_build_task_list ();
359 data = get_ada_tasks_inferior_data (current_inferior ());
360 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
361
362 for (i = 0; i < nb_tasks; i++)
363 {
364 task = VEC_index (ada_task_info_s, data->task_list, i);
365 if (!ada_task_is_alive (task))
366 continue;
367 iterator (task);
368 }
369 }
370
371 /* Extract the contents of the value as a string whose length is LENGTH,
372 and store the result in DEST. */
373
374 static void
375 value_as_string (char *dest, struct value *val, int length)
376 {
377 memcpy (dest, value_contents (val), length);
378 dest[length] = '\0';
379 }
380
381 /* Extract the string image from the fat string corresponding to VAL,
382 and store it in DEST. If the string length is greater than MAX_LEN,
383 then truncate the result to the first MAX_LEN characters of the fat
384 string. */
385
386 static void
387 read_fat_string_value (char *dest, struct value *val, int max_len)
388 {
389 struct value *array_val;
390 struct value *bounds_val;
391 int len;
392
393 /* The following variables are made static to avoid recomputing them
394 each time this function is called. */
395 static int initialize_fieldnos = 1;
396 static int array_fieldno;
397 static int bounds_fieldno;
398 static int upper_bound_fieldno;
399
400 /* Get the index of the fields that we will need to read in order
401 to extract the string from the fat string. */
402 if (initialize_fieldnos)
403 {
404 struct type *type = value_type (val);
405 struct type *bounds_type;
406
407 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
408 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
409
410 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno);
411 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR)
412 bounds_type = TYPE_TARGET_TYPE (bounds_type);
413 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT)
414 error (_("Unknown task name format. Aborting"));
415 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
416
417 initialize_fieldnos = 0;
418 }
419
420 /* Get the size of the task image by checking the value of the bounds.
421 The lower bound is always 1, so we only need to read the upper bound. */
422 bounds_val = value_ind (value_field (val, bounds_fieldno));
423 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
424
425 /* Make sure that we do not read more than max_len characters... */
426 if (len > max_len)
427 len = max_len;
428
429 /* Extract LEN characters from the fat string. */
430 array_val = value_ind (value_field (val, array_fieldno));
431 read_memory (value_address (array_val), dest, len);
432
433 /* Add the NUL character to close the string. */
434 dest[len] = '\0';
435 }
436
437 /* Get from the debugging information the type description of all types
438 related to the Ada Task Control Block that will be needed in order to
439 read the list of known tasks in the Ada runtime. Also return the
440 associated ATCB_FIELDNOS.
441
442 Error handling: Any data missing from the debugging info will cause
443 an error to be raised, and none of the return values to be set.
444 Users of this function can depend on the fact that all or none of the
445 return values will be set. */
446
447 static void
448 get_tcb_types_info (void)
449 {
450 struct type *type;
451 struct type *common_type;
452 struct type *ll_type;
453 struct type *call_type;
454 struct atcb_fieldnos fieldnos;
455 struct ada_tasks_pspace_data *pspace_data;
456
457 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
458 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
459 const char *common_atcb_name = "system__tasking__common_atcb";
460 const char *private_data_name = "system__task_primitives__private_data";
461 const char *entry_call_record_name = "system__tasking__entry_call_record";
462
463 /* ATCB symbols may be found in several compilation units. As we
464 are only interested in one instance, use standard (literal,
465 C-like) lookups to get the first match. */
466
467 struct symbol *atcb_sym =
468 lookup_symbol_in_language (atcb_name, NULL, VAR_DOMAIN,
469 language_c, NULL);
470 const struct symbol *common_atcb_sym =
471 lookup_symbol_in_language (common_atcb_name, NULL, VAR_DOMAIN,
472 language_c, NULL);
473 const struct symbol *private_data_sym =
474 lookup_symbol_in_language (private_data_name, NULL, VAR_DOMAIN,
475 language_c, NULL);
476 const struct symbol *entry_call_record_sym =
477 lookup_symbol_in_language (entry_call_record_name, NULL, VAR_DOMAIN,
478 language_c, NULL);
479
480 if (atcb_sym == NULL || atcb_sym->type == NULL)
481 {
482 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
483 size, so the symbol name differs. */
484 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL, VAR_DOMAIN,
485 language_c, NULL);
486
487 if (atcb_sym == NULL || atcb_sym->type == NULL)
488 error (_("Cannot find Ada_Task_Control_Block type. Aborting"));
489
490 type = atcb_sym->type;
491 }
492 else
493 {
494 /* Get a static representation of the type record
495 Ada_Task_Control_Block. */
496 type = atcb_sym->type;
497 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
498 }
499
500 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
501 error (_("Cannot find Common_ATCB type. Aborting"));
502 if (private_data_sym == NULL || private_data_sym->type == NULL)
503 error (_("Cannot find Private_Data type. Aborting"));
504 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
505 error (_("Cannot find Entry_Call_Record type. Aborting"));
506
507 /* Get the type for Ada_Task_Control_Block.Common. */
508 common_type = common_atcb_sym->type;
509
510 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
511 ll_type = private_data_sym->type;
512
513 /* Get the type for Common_ATCB.Call.all. */
514 call_type = entry_call_record_sym->type;
515
516 /* Get the field indices. */
517 fieldnos.common = ada_get_field_index (type, "common", 0);
518 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
519 fieldnos.atc_nesting_level =
520 ada_get_field_index (type, "atc_nesting_level", 1);
521 fieldnos.state = ada_get_field_index (common_type, "state", 0);
522 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
523 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
524 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
525 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
526 fieldnos.activation_link = ada_get_field_index (common_type,
527 "activation_link", 1);
528 fieldnos.call = ada_get_field_index (common_type, "call", 1);
529 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
530 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
531 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
532 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
533
534 /* On certain platforms such as x86-windows, the "lwp" field has been
535 named "thread_id". This field will likely be renamed in the future,
536 but we need to support both possibilities to avoid an unnecessary
537 dependency on a recent compiler. We therefore try locating the
538 "thread_id" field in place of the "lwp" field if we did not find
539 the latter. */
540 if (fieldnos.ll_lwp < 0)
541 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
542
543 /* Set all the out parameters all at once, now that we are certain
544 that there are no potential error() anymore. */
545 pspace_data = get_ada_tasks_pspace_data (current_program_space);
546 pspace_data->initialized_p = 1;
547 pspace_data->atcb_type = type;
548 pspace_data->atcb_common_type = common_type;
549 pspace_data->atcb_ll_type = ll_type;
550 pspace_data->atcb_call_type = call_type;
551 pspace_data->atcb_fieldno = fieldnos;
552 }
553
554 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
555 component of its ATCB record. This PTID needs to match the PTID used
556 by the thread layer. */
557
558 static ptid_t
559 ptid_from_atcb_common (struct value *common_value)
560 {
561 long thread = 0;
562 CORE_ADDR lwp = 0;
563 struct value *ll_value;
564 ptid_t ptid;
565 const struct ada_tasks_pspace_data *pspace_data
566 = get_ada_tasks_pspace_data (current_program_space);
567
568 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
569
570 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
571 lwp = value_as_address (value_field (ll_value,
572 pspace_data->atcb_fieldno.ll_lwp));
573 thread = value_as_long (value_field (ll_value,
574 pspace_data->atcb_fieldno.ll_thread));
575
576 ptid = target_get_ada_task_ptid (lwp, thread);
577
578 return ptid;
579 }
580
581 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
582 the address of its assocated ATCB record), and store the result inside
583 TASK_INFO. */
584
585 static void
586 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
587 {
588 struct value *tcb_value;
589 struct value *common_value;
590 struct value *atc_nesting_level_value;
591 struct value *entry_calls_value;
592 struct value *entry_calls_value_element;
593 int called_task_fieldno = -1;
594 const char ravenscar_task_name[] = "Ravenscar task";
595 const struct ada_tasks_pspace_data *pspace_data
596 = get_ada_tasks_pspace_data (current_program_space);
597
598 if (!pspace_data->initialized_p)
599 get_tcb_types_info ();
600
601 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
602 NULL, task_id);
603 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
604
605 /* Fill in the task_id. */
606
607 task_info->task_id = task_id;
608
609 /* Compute the name of the task.
610
611 Depending on the GNAT version used, the task image is either a fat
612 string, or a thin array of characters. Older versions of GNAT used
613 to use fat strings, and therefore did not need an extra field in
614 the ATCB to store the string length. For efficiency reasons, newer
615 versions of GNAT replaced the fat string by a static buffer, but this
616 also required the addition of a new field named "Image_Len" containing
617 the length of the task name. The method used to extract the task name
618 is selected depending on the existence of this field.
619
620 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
621 we may want to get it from the first user frame of the stack. For now,
622 we just give a dummy name. */
623
624 if (pspace_data->atcb_fieldno.image_len == -1)
625 {
626 if (pspace_data->atcb_fieldno.image >= 0)
627 read_fat_string_value (task_info->name,
628 value_field (common_value,
629 pspace_data->atcb_fieldno.image),
630 sizeof (task_info->name) - 1);
631 else
632 strcpy (task_info->name, ravenscar_task_name);
633 }
634 else
635 {
636 int len = value_as_long
637 (value_field (common_value,
638 pspace_data->atcb_fieldno.image_len));
639
640 value_as_string (task_info->name,
641 value_field (common_value,
642 pspace_data->atcb_fieldno.image),
643 len);
644 }
645
646 /* Compute the task state and priority. */
647
648 task_info->state =
649 value_as_long (value_field (common_value,
650 pspace_data->atcb_fieldno.state));
651 task_info->priority =
652 value_as_long (value_field (common_value,
653 pspace_data->atcb_fieldno.priority));
654
655 /* If the ATCB contains some information about the parent task,
656 then compute it as well. Otherwise, zero. */
657
658 if (pspace_data->atcb_fieldno.parent >= 0)
659 task_info->parent =
660 value_as_address (value_field (common_value,
661 pspace_data->atcb_fieldno.parent));
662 else
663 task_info->parent = 0;
664
665
666 /* If the ATCB contains some information about entry calls, then
667 compute the "called_task" as well. Otherwise, zero. */
668
669 if (pspace_data->atcb_fieldno.atc_nesting_level > 0
670 && pspace_data->atcb_fieldno.entry_calls > 0)
671 {
672 /* Let My_ATCB be the Ada task control block of a task calling the
673 entry of another task; then the Task_Id of the called task is
674 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
675 atc_nesting_level_value =
676 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
677 entry_calls_value =
678 ada_coerce_to_simple_array_ptr
679 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
680 entry_calls_value_element =
681 value_subscript (entry_calls_value,
682 value_as_long (atc_nesting_level_value));
683 called_task_fieldno =
684 ada_get_field_index (value_type (entry_calls_value_element),
685 "called_task", 0);
686 task_info->called_task =
687 value_as_address (value_field (entry_calls_value_element,
688 called_task_fieldno));
689 }
690 else
691 {
692 task_info->called_task = 0;
693 }
694
695 /* If the ATCB cotnains some information about RV callers,
696 then compute the "caller_task". Otherwise, zero. */
697
698 task_info->caller_task = 0;
699 if (pspace_data->atcb_fieldno.call >= 0)
700 {
701 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
702 If Common_ATCB.Call is null, then there is no caller. */
703 const CORE_ADDR call =
704 value_as_address (value_field (common_value,
705 pspace_data->atcb_fieldno.call));
706 struct value *call_val;
707
708 if (call != 0)
709 {
710 call_val =
711 value_from_contents_and_address (pspace_data->atcb_call_type,
712 NULL, call);
713 task_info->caller_task =
714 value_as_address
715 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
716 }
717 }
718
719 /* And finally, compute the task ptid. Note that there are situations
720 where this cannot be determined:
721 - The task is no longer alive - the ptid is irrelevant;
722 - We are debugging a core file - the thread is not always
723 completely preserved for us to link back a task to its
724 underlying thread. Since we do not support task switching
725 when debugging core files anyway, we don't need to compute
726 that task ptid.
727 In either case, we don't need that ptid, and it is just good enough
728 to set it to null_ptid. */
729
730 if (target_has_execution && ada_task_is_alive (task_info))
731 task_info->ptid = ptid_from_atcb_common (common_value);
732 else
733 task_info->ptid = null_ptid;
734 }
735
736 /* Read the ATCB info of the given task (identified by TASK_ID), and
737 add the result to the given inferior's TASK_LIST. */
738
739 static void
740 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
741 {
742 struct ada_task_info task_info;
743 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
744
745 read_atcb (task_id, &task_info);
746 VEC_safe_push (ada_task_info_s, data->task_list, &task_info);
747 }
748
749 /* Read the Known_Tasks array from the inferior memory, and store
750 it in the current inferior's TASK_LIST. Return non-zero upon success. */
751
752 static int
753 read_known_tasks_array (CORE_ADDR known_tasks_addr)
754 {
755 const int target_ptr_byte =
756 gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT;
757 const int known_tasks_size = target_ptr_byte * MAX_NUMBER_OF_KNOWN_TASKS;
758 gdb_byte *known_tasks = alloca (known_tasks_size);
759 int i;
760
761 /* Build a new list by reading the ATCBs from the Known_Tasks array
762 in the Ada runtime. */
763 read_memory (known_tasks_addr, known_tasks, known_tasks_size);
764 for (i = 0; i < MAX_NUMBER_OF_KNOWN_TASKS; i++)
765 {
766 struct type *data_ptr_type =
767 builtin_type (target_gdbarch)->builtin_data_ptr;
768 CORE_ADDR task_id =
769 extract_typed_address (known_tasks + i * target_ptr_byte,
770 data_ptr_type);
771
772 if (task_id != 0)
773 add_ada_task (task_id, current_inferior ());
774 }
775
776 return 1;
777 }
778
779 /* Read the known tasks from the inferior memory, and store it in
780 the current inferior's TASK_LIST. Return non-zero upon success. */
781
782 static int
783 read_known_tasks_list (CORE_ADDR known_tasks_addr)
784 {
785 const int target_ptr_byte =
786 gdbarch_ptr_bit (target_gdbarch) / TARGET_CHAR_BIT;
787 gdb_byte *known_tasks = alloca (target_ptr_byte);
788 struct type *data_ptr_type =
789 builtin_type (target_gdbarch)->builtin_data_ptr;
790 CORE_ADDR task_id;
791 const struct ada_tasks_pspace_data *pspace_data
792 = get_ada_tasks_pspace_data (current_program_space);
793
794 /* Sanity check. */
795 if (pspace_data->atcb_fieldno.activation_link < 0)
796 return 0;
797
798 /* Build a new list by reading the ATCBs. Read head of the list. */
799 read_memory (known_tasks_addr, known_tasks, target_ptr_byte);
800 task_id = extract_typed_address (known_tasks, data_ptr_type);
801 while (task_id != 0)
802 {
803 struct value *tcb_value;
804 struct value *common_value;
805
806 add_ada_task (task_id, current_inferior ());
807
808 /* Read the chain. */
809 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
810 NULL, task_id);
811 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
812 task_id = value_as_address
813 (value_field (common_value,
814 pspace_data->atcb_fieldno.activation_link));
815 }
816
817 return 1;
818 }
819
820 /* Return the address of the variable NAME that contains all the known
821 tasks maintained in the Ada Runtime. Return NULL if the variable
822 could not be found, meaning that the inferior program probably does
823 not use tasking. */
824
825 static CORE_ADDR
826 get_known_tasks_addr (const char *name)
827 {
828 struct minimal_symbol *msym;
829
830 msym = lookup_minimal_symbol (name, NULL, NULL);
831 if (msym == NULL)
832 return 0;
833
834 return SYMBOL_VALUE_ADDRESS (msym);
835 }
836
837 /* Assuming DATA is the ada-tasks' data for the current inferior,
838 set the known_tasks_kind and known_tasks_addr fields. Do nothing
839 if those fields are already set and still up to date. */
840
841 static void
842 ada_set_current_inferior_known_tasks_addr (struct ada_tasks_inferior_data *data)
843 {
844 CORE_ADDR known_tasks_addr;
845
846 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
847 return;
848
849 known_tasks_addr = get_known_tasks_addr (KNOWN_TASKS_NAME);
850 if (known_tasks_addr != 0)
851 {
852 data->known_tasks_kind = ADA_TASKS_ARRAY;
853 data->known_tasks_addr = known_tasks_addr;
854 return;
855 }
856
857 known_tasks_addr = get_known_tasks_addr (KNOWN_TASKS_LIST);
858 if (known_tasks_addr != 0)
859 {
860 data->known_tasks_kind = ADA_TASKS_LIST;
861 data->known_tasks_addr = known_tasks_addr;
862 return;
863 }
864
865 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
866 data->known_tasks_addr = 0;
867 }
868
869 /* Read the known tasks from the current inferior's memory, and store it
870 in the current inferior's data TASK_LIST.
871 Return non-zero upon success. */
872
873 static int
874 read_known_tasks (void)
875 {
876 struct ada_tasks_inferior_data *data =
877 get_ada_tasks_inferior_data (current_inferior ());
878
879 /* Step 1: Clear the current list, if necessary. */
880 VEC_truncate (ada_task_info_s, data->task_list, 0);
881
882 /* Step 2: do the real work.
883 If the application does not use task, then no more needs to be done.
884 It is important to have the task list cleared (see above) before we
885 return, as we don't want a stale task list to be used... This can
886 happen for instance when debugging a non-multitasking program after
887 having debugged a multitasking one. */
888 ada_set_current_inferior_known_tasks_addr (data);
889 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
890
891 switch (data->known_tasks_kind)
892 {
893 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
894 return 0;
895 case ADA_TASKS_ARRAY:
896 return read_known_tasks_array (data->known_tasks_addr);
897 case ADA_TASKS_LIST:
898 return read_known_tasks_list (data->known_tasks_addr);
899 }
900
901 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
902 array unless needed. Then report a success. */
903 data->task_list_valid_p = 1;
904
905 return 1;
906 }
907
908 /* Build the task_list by reading the Known_Tasks array from
909 the inferior, and return the number of tasks in that list
910 (zero means that the program is not using tasking at all). */
911
912 int
913 ada_build_task_list (void)
914 {
915 struct ada_tasks_inferior_data *data;
916
917 if (!target_has_stack)
918 error (_("Cannot inspect Ada tasks when program is not running"));
919
920 data = get_ada_tasks_inferior_data (current_inferior ());
921 if (!data->task_list_valid_p)
922 read_known_tasks ();
923
924 return VEC_length (ada_task_info_s, data->task_list);
925 }
926
927 /* Print a table providing a short description of all Ada tasks
928 running inside inferior INF. If ARG_STR is set, it will be
929 interpreted as a task number, and the table will be limited to
930 that task only. */
931
932 static void
933 print_ada_task_info (struct ui_out *uiout,
934 char *arg_str,
935 struct inferior *inf)
936 {
937 struct ada_tasks_inferior_data *data;
938 int taskno, nb_tasks;
939 int taskno_arg = 0;
940 struct cleanup *old_chain;
941
942 if (ada_build_task_list () == 0)
943 {
944 ui_out_message (uiout, 0,
945 _("Your application does not use any Ada tasks.\n"));
946 return;
947 }
948
949 if (arg_str != NULL && arg_str[0] != '\0')
950 taskno_arg = value_as_long (parse_and_eval (arg_str));
951
952 data = get_ada_tasks_inferior_data (inf);
953 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
954
955 old_chain = make_cleanup_ui_out_table_begin_end (uiout, 7, nb_tasks,
956 "tasks");
957 ui_out_table_header (uiout, 1, ui_left, "current", "");
958 ui_out_table_header (uiout, 3, ui_right, "id", "ID");
959 ui_out_table_header (uiout, 9, ui_right, "task-id", "TID");
960 ui_out_table_header (uiout, 4, ui_right, "parent-id", "P-ID");
961 ui_out_table_header (uiout, 3, ui_right, "priority", "Pri");
962 ui_out_table_header (uiout, 22, ui_left, "state", "State");
963 /* Use ui_noalign for the last column, to prevent the CLI uiout
964 from printing an extra space at the end of each row. This
965 is a bit of a hack, but does get the job done. */
966 ui_out_table_header (uiout, 1, ui_noalign, "name", "Name");
967 ui_out_table_body (uiout);
968
969 for (taskno = 1; taskno <= nb_tasks; taskno++)
970 {
971 const struct ada_task_info *const task_info =
972 VEC_index (ada_task_info_s, data->task_list, taskno - 1);
973 int parent_id;
974 struct cleanup *chain2;
975
976 gdb_assert (task_info != NULL);
977
978 /* If the user asked for the output to be restricted
979 to one task only, and this is not the task, skip
980 to the next one. */
981 if (taskno_arg && taskno != taskno_arg)
982 continue;
983
984 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
985
986 /* Print a star if this task is the current task (or the task
987 currently selected). */
988 if (ptid_equal (task_info->ptid, inferior_ptid))
989 ui_out_field_string (uiout, "current", "*");
990 else
991 ui_out_field_skip (uiout, "current");
992
993 /* Print the task number. */
994 ui_out_field_int (uiout, "id", taskno);
995
996 /* Print the Task ID. */
997 ui_out_field_fmt (uiout, "task-id", "%9lx", (long) task_info->task_id);
998
999 /* Print the ID of the parent task. */
1000 parent_id = get_task_number_from_id (task_info->parent, inf);
1001 if (parent_id)
1002 ui_out_field_int (uiout, "parent-id", parent_id);
1003 else
1004 ui_out_field_skip (uiout, "parent-id");
1005
1006 /* Print the base priority of the task. */
1007 ui_out_field_int (uiout, "priority", task_info->priority);
1008
1009 /* Print the task current state. */
1010 if (task_info->caller_task)
1011 ui_out_field_fmt (uiout, "state",
1012 _("Accepting RV with %-4d"),
1013 get_task_number_from_id (task_info->caller_task,
1014 inf));
1015 else if (task_info->state == Entry_Caller_Sleep
1016 && task_info->called_task)
1017 ui_out_field_fmt (uiout, "state",
1018 _("Waiting on RV with %-3d"),
1019 get_task_number_from_id (task_info->called_task,
1020 inf));
1021 else
1022 ui_out_field_string (uiout, "state", task_states[task_info->state]);
1023
1024 /* Finally, print the task name. */
1025 ui_out_field_fmt (uiout, "name",
1026 "%s",
1027 task_info->name[0] != '\0' ? task_info->name
1028 : _("<no name>"));
1029
1030 ui_out_text (uiout, "\n");
1031 do_cleanups (chain2);
1032 }
1033
1034 do_cleanups (old_chain);
1035 }
1036
1037 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1038 for the given inferior (INF). */
1039
1040 static void
1041 info_task (struct ui_out *uiout, char *taskno_str, struct inferior *inf)
1042 {
1043 const int taskno = value_as_long (parse_and_eval (taskno_str));
1044 struct ada_task_info *task_info;
1045 int parent_taskno = 0;
1046 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1047
1048 if (ada_build_task_list () == 0)
1049 {
1050 ui_out_message (uiout, 0,
1051 _("Your application does not use any Ada tasks.\n"));
1052 return;
1053 }
1054
1055 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1056 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1057 "see the IDs of currently known tasks"), taskno);
1058 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1059
1060 /* Print the Ada task ID. */
1061 printf_filtered (_("Ada Task: %s\n"),
1062 paddress (target_gdbarch, task_info->task_id));
1063
1064 /* Print the name of the task. */
1065 if (task_info->name[0] != '\0')
1066 printf_filtered (_("Name: %s\n"), task_info->name);
1067 else
1068 printf_filtered (_("<no name>\n"));
1069
1070 /* Print the TID and LWP. */
1071 printf_filtered (_("Thread: %#lx\n"), ptid_get_tid (task_info->ptid));
1072 printf_filtered (_("LWP: %#lx\n"), ptid_get_lwp (task_info->ptid));
1073
1074 /* Print who is the parent (if any). */
1075 if (task_info->parent != 0)
1076 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1077 if (parent_taskno)
1078 {
1079 struct ada_task_info *parent =
1080 VEC_index (ada_task_info_s, data->task_list, parent_taskno - 1);
1081
1082 printf_filtered (_("Parent: %d"), parent_taskno);
1083 if (parent->name[0] != '\0')
1084 printf_filtered (" (%s)", parent->name);
1085 printf_filtered ("\n");
1086 }
1087 else
1088 printf_filtered (_("No parent\n"));
1089
1090 /* Print the base priority. */
1091 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1092
1093 /* print the task current state. */
1094 {
1095 int target_taskno = 0;
1096
1097 if (task_info->caller_task)
1098 {
1099 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1100 printf_filtered (_("State: Accepting rendezvous with %d"),
1101 target_taskno);
1102 }
1103 else if (task_info->state == Entry_Caller_Sleep && task_info->called_task)
1104 {
1105 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1106 printf_filtered (_("State: Waiting on task %d's entry"),
1107 target_taskno);
1108 }
1109 else
1110 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1111
1112 if (target_taskno)
1113 {
1114 struct ada_task_info *target_task_info =
1115 VEC_index (ada_task_info_s, data->task_list, target_taskno - 1);
1116
1117 if (target_task_info->name[0] != '\0')
1118 printf_filtered (" (%s)", target_task_info->name);
1119 }
1120
1121 printf_filtered ("\n");
1122 }
1123 }
1124
1125 /* If ARG is empty or null, then print a list of all Ada tasks.
1126 Otherwise, print detailed information about the task whose ID
1127 is ARG.
1128
1129 Does nothing if the program doesn't use Ada tasking. */
1130
1131 static void
1132 info_tasks_command (char *arg, int from_tty)
1133 {
1134 struct ui_out *uiout = current_uiout;
1135
1136 if (arg == NULL || *arg == '\0')
1137 print_ada_task_info (uiout, NULL, current_inferior ());
1138 else
1139 info_task (uiout, arg, current_inferior ());
1140 }
1141
1142 /* Print a message telling the user id of the current task.
1143 This function assumes that tasking is in use in the inferior. */
1144
1145 static void
1146 display_current_task_id (void)
1147 {
1148 const int current_task = ada_get_task_number (inferior_ptid);
1149
1150 if (current_task == 0)
1151 printf_filtered (_("[Current task is unknown]\n"));
1152 else
1153 printf_filtered (_("[Current task is %d]\n"), current_task);
1154 }
1155
1156 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1157 that task. Print an error message if the task switch failed. */
1158
1159 static void
1160 task_command_1 (char *taskno_str, int from_tty, struct inferior *inf)
1161 {
1162 const int taskno = value_as_long (parse_and_eval (taskno_str));
1163 struct ada_task_info *task_info;
1164 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1165
1166 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1167 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1168 "see the IDs of currently known tasks"), taskno);
1169 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1170
1171 if (!ada_task_is_alive (task_info))
1172 error (_("Cannot switch to task %d: Task is no longer running"), taskno);
1173
1174 /* On some platforms, the thread list is not updated until the user
1175 performs a thread-related operation (by using the "info threads"
1176 command, for instance). So this thread list may not be up to date
1177 when the user attempts this task switch. Since we cannot switch
1178 to the thread associated to our task if GDB does not know about
1179 that thread, we need to make sure that any new threads gets added
1180 to the thread list. */
1181 target_find_new_threads ();
1182
1183 /* Verify that the ptid of the task we want to switch to is valid
1184 (in other words, a ptid that GDB knows about). Otherwise, we will
1185 cause an assertion failure later on, when we try to determine
1186 the ptid associated thread_info data. We should normally never
1187 encounter such an error, but the wrong ptid can actually easily be
1188 computed if target_get_ada_task_ptid has not been implemented for
1189 our target (yet). Rather than cause an assertion error in that case,
1190 it's nicer for the user to just refuse to perform the task switch. */
1191 if (!find_thread_ptid (task_info->ptid))
1192 error (_("Unable to compute thread ID for task %d.\n"
1193 "Cannot switch to this task."),
1194 taskno);
1195
1196 switch_to_thread (task_info->ptid);
1197 ada_find_printable_frame (get_selected_frame (NULL));
1198 printf_filtered (_("[Switching to task %d]\n"), taskno);
1199 print_stack_frame (get_selected_frame (NULL),
1200 frame_relative_level (get_selected_frame (NULL)), 1);
1201 }
1202
1203
1204 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1205 Otherwise, switch to the task indicated by TASKNO_STR. */
1206
1207 static void
1208 task_command (char *taskno_str, int from_tty)
1209 {
1210 struct ui_out *uiout = current_uiout;
1211
1212 if (ada_build_task_list () == 0)
1213 {
1214 ui_out_message (uiout, 0,
1215 _("Your application does not use any Ada tasks.\n"));
1216 return;
1217 }
1218
1219 if (taskno_str == NULL || taskno_str[0] == '\0')
1220 display_current_task_id ();
1221 else
1222 {
1223 /* Task switching in core files doesn't work, either because:
1224 1. Thread support is not implemented with core files
1225 2. Thread support is implemented, but the thread IDs created
1226 after having read the core file are not the same as the ones
1227 that were used during the program life, before the crash.
1228 As a consequence, there is no longer a way for the debugger
1229 to find the associated thead ID of any given Ada task.
1230 So, instead of attempting a task switch without giving the user
1231 any clue as to what might have happened, just error-out with
1232 a message explaining that this feature is not supported. */
1233 if (!target_has_execution)
1234 error (_("\
1235 Task switching not supported when debugging from core files\n\
1236 (use thread support instead)"));
1237 task_command_1 (taskno_str, from_tty, current_inferior ());
1238 }
1239 }
1240
1241 /* Indicate that the given inferior's task list may have changed,
1242 so invalidate the cache. */
1243
1244 static void
1245 ada_task_list_changed (struct inferior *inf)
1246 {
1247 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1248
1249 data->task_list_valid_p = 0;
1250 }
1251
1252 /* Invalidate the per-program-space data. */
1253
1254 static void
1255 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1256 {
1257 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1258 }
1259
1260 /* Invalidate the per-inferior data. */
1261
1262 static void
1263 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1264 {
1265 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1266
1267 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1268 data->task_list_valid_p = 0;
1269 }
1270
1271 /* The 'normal_stop' observer notification callback. */
1272
1273 static void
1274 ada_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1275 {
1276 /* The inferior has been resumed, and just stopped. This means that
1277 our task_list needs to be recomputed before it can be used again. */
1278 ada_task_list_changed (current_inferior ());
1279 }
1280
1281 /* A routine to be called when the objfiles have changed. */
1282
1283 static void
1284 ada_new_objfile_observer (struct objfile *objfile)
1285 {
1286 struct inferior *inf;
1287
1288 /* Invalidate the relevant data in our program-space data. */
1289
1290 if (objfile == NULL)
1291 {
1292 /* All objfiles are being cleared, so we should clear all
1293 our caches for all program spaces. */
1294 struct program_space *pspace;
1295
1296 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next)
1297 ada_tasks_invalidate_pspace_data (pspace);
1298 }
1299 else
1300 {
1301 /* The associated program-space data might have changed after
1302 this objfile was added. Invalidate all cached data. */
1303 ada_tasks_invalidate_pspace_data (objfile->pspace);
1304 }
1305
1306 /* Invalidate the per-inferior cache for all inferiors using
1307 this objfile (or, in other words, for all inferiors who have
1308 the same program-space as the objfile's program space).
1309 If all objfiles are being cleared (OBJFILE is NULL), then
1310 clear the caches for all inferiors. */
1311
1312 for (inf = inferior_list; inf != NULL; inf = inf->next)
1313 if (objfile == NULL || inf->pspace == objfile->pspace)
1314 ada_tasks_invalidate_inferior_data (inf);
1315 }
1316
1317 /* Provide a prototype to silence -Wmissing-prototypes. */
1318 extern initialize_file_ftype _initialize_tasks;
1319
1320 void
1321 _initialize_tasks (void)
1322 {
1323 ada_tasks_pspace_data_handle = register_program_space_data ();
1324 ada_tasks_inferior_data_handle = register_inferior_data ();
1325
1326 /* Attach various observers. */
1327 observer_attach_normal_stop (ada_normal_stop_observer);
1328 observer_attach_new_objfile (ada_new_objfile_observer);
1329
1330 /* Some new commands provided by this module. */
1331 add_info ("tasks", info_tasks_command,
1332 _("Provide information about all known Ada tasks"));
1333 add_cmd ("task", class_run, task_command,
1334 _("Use this command to switch between Ada tasks.\n\
1335 Without argument, this command simply prints the current task ID"),
1336 &cmdlist);
1337 }
1338
This page took 0.057948 seconds and 5 git commands to generate.