Replace the block_found global with explicit data-flow
[deliverable/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-2015 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "observer.h"
20 #include "gdbcmd.h"
21 #include "target.h"
22 #include "ada-lang.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "progspace.h"
27 #include "objfiles.h"
28
29 /* The name of the array in the GNAT runtime where the Ada Task Control
30 Block of each task is stored. */
31 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
32
33 /* The maximum number of tasks known to the Ada runtime. */
34 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
35
36 /* The name of the variable in the GNAT runtime where the head of a task
37 chain is saved. This is an alternate mechanism to find the list of known
38 tasks. */
39 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
40
41 enum task_states
42 {
43 Unactivated,
44 Runnable,
45 Terminated,
46 Activator_Sleep,
47 Acceptor_Sleep,
48 Entry_Caller_Sleep,
49 Async_Select_Sleep,
50 Delay_Sleep,
51 Master_Completion_Sleep,
52 Master_Phase_2_Sleep,
53 Interrupt_Server_Idle_Sleep,
54 Interrupt_Server_Blocked_Interrupt_Sleep,
55 Timer_Server_Sleep,
56 AST_Server_Sleep,
57 Asynchronous_Hold,
58 Interrupt_Server_Blocked_On_Event_Flag,
59 Activating,
60 Acceptor_Delay_Sleep
61 };
62
63 /* A short description corresponding to each possible task state. */
64 static const char *task_states[] = {
65 N_("Unactivated"),
66 N_("Runnable"),
67 N_("Terminated"),
68 N_("Child Activation Wait"),
69 N_("Accept or Select Term"),
70 N_("Waiting on entry call"),
71 N_("Async Select Wait"),
72 N_("Delay Sleep"),
73 N_("Child Termination Wait"),
74 N_("Wait Child in Term Alt"),
75 "",
76 "",
77 "",
78 "",
79 N_("Asynchronous Hold"),
80 "",
81 N_("Activating"),
82 N_("Selective Wait")
83 };
84
85 /* A longer description corresponding to each possible task state. */
86 static const char *long_task_states[] = {
87 N_("Unactivated"),
88 N_("Runnable"),
89 N_("Terminated"),
90 N_("Waiting for child activation"),
91 N_("Blocked in accept or select with terminate"),
92 N_("Waiting on entry call"),
93 N_("Asynchronous Selective Wait"),
94 N_("Delay Sleep"),
95 N_("Waiting for children termination"),
96 N_("Waiting for children in terminate alternative"),
97 "",
98 "",
99 "",
100 "",
101 N_("Asynchronous Hold"),
102 "",
103 N_("Activating"),
104 N_("Blocked in selective wait statement")
105 };
106
107 /* The index of certain important fields in the Ada Task Control Block
108 record and sub-records. */
109
110 struct atcb_fieldnos
111 {
112 /* Fields in record Ada_Task_Control_Block. */
113 int common;
114 int entry_calls;
115 int atc_nesting_level;
116
117 /* Fields in record Common_ATCB. */
118 int state;
119 int parent;
120 int priority;
121 int image;
122 int image_len; /* This field may be missing. */
123 int activation_link;
124 int call;
125 int ll;
126
127 /* Fields in Task_Primitives.Private_Data. */
128 int ll_thread;
129 int ll_lwp; /* This field may be missing. */
130
131 /* Fields in Common_ATCB.Call.all. */
132 int call_self;
133 };
134
135 /* This module's per-program-space data. */
136
137 struct ada_tasks_pspace_data
138 {
139 /* Nonzero if the data has been initialized. If set to zero,
140 it means that the data has either not been initialized, or
141 has potentially become stale. */
142 int initialized_p;
143
144 /* The ATCB record type. */
145 struct type *atcb_type;
146
147 /* The ATCB "Common" component type. */
148 struct type *atcb_common_type;
149
150 /* The type of the "ll" field, from the atcb_common_type. */
151 struct type *atcb_ll_type;
152
153 /* The type of the "call" field, from the atcb_common_type. */
154 struct type *atcb_call_type;
155
156 /* The index of various fields in the ATCB record and sub-records. */
157 struct atcb_fieldnos atcb_fieldno;
158 };
159
160 /* Key to our per-program-space data. */
161 static const struct program_space_data *ada_tasks_pspace_data_handle;
162
163 typedef struct ada_task_info ada_task_info_s;
164 DEF_VEC_O(ada_task_info_s);
165
166 /* The kind of data structure used by the runtime to store the list
167 of Ada tasks. */
168
169 enum ada_known_tasks_kind
170 {
171 /* Use this value when we haven't determined which kind of structure
172 is being used, or when we need to recompute it.
173
174 We set the value of this enumerate to zero on purpose: This allows
175 us to use this enumerate in a structure where setting all fields
176 to zero will result in this kind being set to unknown. */
177 ADA_TASKS_UNKNOWN = 0,
178
179 /* This value means that we did not find any task list. Unless
180 there is a bug somewhere, this means that the inferior does not
181 use tasking. */
182 ADA_TASKS_NOT_FOUND,
183
184 /* This value means that the task list is stored as an array.
185 This is the usual method, as it causes very little overhead.
186 But this method is not always used, as it does use a certain
187 amount of memory, which might be scarse in certain environments. */
188 ADA_TASKS_ARRAY,
189
190 /* This value means that the task list is stored as a linked list.
191 This has more runtime overhead than the array approach, but
192 also require less memory when the number of tasks is small. */
193 ADA_TASKS_LIST,
194 };
195
196 /* This module's per-inferior data. */
197
198 struct ada_tasks_inferior_data
199 {
200 /* The type of data structure used by the runtime to store
201 the list of Ada tasks. The value of this field influences
202 the interpretation of the known_tasks_addr field below:
203 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
204 been determined yet;
205 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
206 and the known_tasks_addr is irrelevant;
207 - ADA_TASKS_ARRAY: The known_tasks is an array;
208 - ADA_TASKS_LIST: The known_tasks is a list. */
209 enum ada_known_tasks_kind known_tasks_kind;
210
211 /* The address of the known_tasks structure. This is where
212 the runtime stores the information for all Ada tasks.
213 The interpretation of this field depends on KNOWN_TASKS_KIND
214 above. */
215 CORE_ADDR known_tasks_addr;
216
217 /* Type of elements of the known task. Usually a pointer. */
218 struct type *known_tasks_element;
219
220 /* Number of elements in the known tasks array. */
221 unsigned int known_tasks_length;
222
223 /* When nonzero, this flag indicates that the task_list field
224 below is up to date. When set to zero, the list has either
225 not been initialized, or has potentially become stale. */
226 int task_list_valid_p;
227
228 /* The list of Ada tasks.
229
230 Note: To each task we associate a number that the user can use to
231 reference it - this number is printed beside each task in the tasks
232 info listing displayed by "info tasks". This number is equal to
233 its index in the vector + 1. Reciprocally, to compute the index
234 of a task in the vector, we need to substract 1 from its number. */
235 VEC(ada_task_info_s) *task_list;
236 };
237
238 /* Key to our per-inferior data. */
239 static const struct inferior_data *ada_tasks_inferior_data_handle;
240
241 /* Return the ada-tasks module's data for the given program space (PSPACE).
242 If none is found, add a zero'ed one now.
243
244 This function always returns a valid object. */
245
246 static struct ada_tasks_pspace_data *
247 get_ada_tasks_pspace_data (struct program_space *pspace)
248 {
249 struct ada_tasks_pspace_data *data;
250
251 data = program_space_data (pspace, ada_tasks_pspace_data_handle);
252 if (data == NULL)
253 {
254 data = XCNEW (struct ada_tasks_pspace_data);
255 set_program_space_data (pspace, ada_tasks_pspace_data_handle, data);
256 }
257
258 return data;
259 }
260
261 /* Return the ada-tasks module's data for the given inferior (INF).
262 If none is found, add a zero'ed one now.
263
264 This function always returns a valid object.
265
266 Note that we could use an observer of the inferior-created event
267 to make sure that the ada-tasks per-inferior data always exists.
268 But we prefered this approach, as it avoids this entirely as long
269 as the user does not use any of the tasking features. This is
270 quite possible, particularly in the case where the inferior does
271 not use tasking. */
272
273 static struct ada_tasks_inferior_data *
274 get_ada_tasks_inferior_data (struct inferior *inf)
275 {
276 struct ada_tasks_inferior_data *data;
277
278 data = inferior_data (inf, ada_tasks_inferior_data_handle);
279 if (data == NULL)
280 {
281 data = XCNEW (struct ada_tasks_inferior_data);
282 set_inferior_data (inf, ada_tasks_inferior_data_handle, data);
283 }
284
285 return data;
286 }
287
288 /* Return the task number of the task whose ptid is PTID, or zero
289 if the task could not be found. */
290
291 int
292 ada_get_task_number (ptid_t ptid)
293 {
294 int i;
295 struct inferior *inf = find_inferior_ptid (ptid);
296 struct ada_tasks_inferior_data *data;
297
298 gdb_assert (inf != NULL);
299 data = get_ada_tasks_inferior_data (inf);
300
301 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
302 if (ptid_equal (VEC_index (ada_task_info_s, data->task_list, i)->ptid,
303 ptid))
304 return i + 1;
305
306 return 0; /* No matching task found. */
307 }
308
309 /* Return the task number of the task running in inferior INF which
310 matches TASK_ID , or zero if the task could not be found. */
311
312 static int
313 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
314 {
315 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
316 int i;
317
318 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
319 {
320 struct ada_task_info *task_info =
321 VEC_index (ada_task_info_s, data->task_list, i);
322
323 if (task_info->task_id == task_id)
324 return i + 1;
325 }
326
327 /* Task not found. Return 0. */
328 return 0;
329 }
330
331 /* Return non-zero if TASK_NUM is a valid task number. */
332
333 int
334 valid_task_id (int task_num)
335 {
336 struct ada_tasks_inferior_data *data;
337
338 ada_build_task_list ();
339 data = get_ada_tasks_inferior_data (current_inferior ());
340 return (task_num > 0
341 && task_num <= VEC_length (ada_task_info_s, data->task_list));
342 }
343
344 /* Return non-zero iff the task STATE corresponds to a non-terminated
345 task state. */
346
347 static int
348 ada_task_is_alive (struct ada_task_info *task_info)
349 {
350 return (task_info->state != Terminated);
351 }
352
353 /* Call the ITERATOR function once for each Ada task that hasn't been
354 terminated yet. */
355
356 void
357 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
358 {
359 int i, nb_tasks;
360 struct ada_task_info *task;
361 struct ada_tasks_inferior_data *data;
362
363 ada_build_task_list ();
364 data = get_ada_tasks_inferior_data (current_inferior ());
365 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
366
367 for (i = 0; i < nb_tasks; i++)
368 {
369 task = VEC_index (ada_task_info_s, data->task_list, i);
370 if (!ada_task_is_alive (task))
371 continue;
372 iterator (task);
373 }
374 }
375
376 /* Extract the contents of the value as a string whose length is LENGTH,
377 and store the result in DEST. */
378
379 static void
380 value_as_string (char *dest, struct value *val, int length)
381 {
382 memcpy (dest, value_contents (val), length);
383 dest[length] = '\0';
384 }
385
386 /* Extract the string image from the fat string corresponding to VAL,
387 and store it in DEST. If the string length is greater than MAX_LEN,
388 then truncate the result to the first MAX_LEN characters of the fat
389 string. */
390
391 static void
392 read_fat_string_value (char *dest, struct value *val, int max_len)
393 {
394 struct value *array_val;
395 struct value *bounds_val;
396 int len;
397
398 /* The following variables are made static to avoid recomputing them
399 each time this function is called. */
400 static int initialize_fieldnos = 1;
401 static int array_fieldno;
402 static int bounds_fieldno;
403 static int upper_bound_fieldno;
404
405 /* Get the index of the fields that we will need to read in order
406 to extract the string from the fat string. */
407 if (initialize_fieldnos)
408 {
409 struct type *type = value_type (val);
410 struct type *bounds_type;
411
412 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
413 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
414
415 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno);
416 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR)
417 bounds_type = TYPE_TARGET_TYPE (bounds_type);
418 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT)
419 error (_("Unknown task name format. Aborting"));
420 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
421
422 initialize_fieldnos = 0;
423 }
424
425 /* Get the size of the task image by checking the value of the bounds.
426 The lower bound is always 1, so we only need to read the upper bound. */
427 bounds_val = value_ind (value_field (val, bounds_fieldno));
428 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
429
430 /* Make sure that we do not read more than max_len characters... */
431 if (len > max_len)
432 len = max_len;
433
434 /* Extract LEN characters from the fat string. */
435 array_val = value_ind (value_field (val, array_fieldno));
436 read_memory (value_address (array_val), (gdb_byte *) dest, len);
437
438 /* Add the NUL character to close the string. */
439 dest[len] = '\0';
440 }
441
442 /* Get from the debugging information the type description of all types
443 related to the Ada Task Control Block that will be needed in order to
444 read the list of known tasks in the Ada runtime. Also return the
445 associated ATCB_FIELDNOS.
446
447 Error handling: Any data missing from the debugging info will cause
448 an error to be raised, and none of the return values to be set.
449 Users of this function can depend on the fact that all or none of the
450 return values will be set. */
451
452 static void
453 get_tcb_types_info (void)
454 {
455 struct type *type;
456 struct type *common_type;
457 struct type *ll_type;
458 struct type *call_type;
459 struct atcb_fieldnos fieldnos;
460 struct ada_tasks_pspace_data *pspace_data;
461
462 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
463 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
464 const char *common_atcb_name = "system__tasking__common_atcb";
465 const char *private_data_name = "system__task_primitives__private_data";
466 const char *entry_call_record_name = "system__tasking__entry_call_record";
467
468 /* ATCB symbols may be found in several compilation units. As we
469 are only interested in one instance, use standard (literal,
470 C-like) lookups to get the first match. */
471
472 struct symbol *atcb_sym =
473 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN,
474 language_c, NULL).symbol;
475 const struct symbol *common_atcb_sym =
476 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN,
477 language_c, NULL).symbol;
478 const struct symbol *private_data_sym =
479 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN,
480 language_c, NULL).symbol;
481 const struct symbol *entry_call_record_sym =
482 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN,
483 language_c, NULL).symbol;
484
485 if (atcb_sym == NULL || atcb_sym->type == NULL)
486 {
487 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
488 size, so the symbol name differs. */
489 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
490 STRUCT_DOMAIN, language_c,
491 NULL).symbol;
492
493 if (atcb_sym == NULL || atcb_sym->type == NULL)
494 error (_("Cannot find Ada_Task_Control_Block type. Aborting"));
495
496 type = atcb_sym->type;
497 }
498 else
499 {
500 /* Get a static representation of the type record
501 Ada_Task_Control_Block. */
502 type = atcb_sym->type;
503 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
504 }
505
506 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
507 error (_("Cannot find Common_ATCB type. Aborting"));
508 if (private_data_sym == NULL || private_data_sym->type == NULL)
509 error (_("Cannot find Private_Data type. Aborting"));
510 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
511 error (_("Cannot find Entry_Call_Record type. Aborting"));
512
513 /* Get the type for Ada_Task_Control_Block.Common. */
514 common_type = common_atcb_sym->type;
515
516 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
517 ll_type = private_data_sym->type;
518
519 /* Get the type for Common_ATCB.Call.all. */
520 call_type = entry_call_record_sym->type;
521
522 /* Get the field indices. */
523 fieldnos.common = ada_get_field_index (type, "common", 0);
524 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
525 fieldnos.atc_nesting_level =
526 ada_get_field_index (type, "atc_nesting_level", 1);
527 fieldnos.state = ada_get_field_index (common_type, "state", 0);
528 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
529 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
530 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
531 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
532 fieldnos.activation_link = ada_get_field_index (common_type,
533 "activation_link", 1);
534 fieldnos.call = ada_get_field_index (common_type, "call", 1);
535 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
536 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
537 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
538 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
539
540 /* On certain platforms such as x86-windows, the "lwp" field has been
541 named "thread_id". This field will likely be renamed in the future,
542 but we need to support both possibilities to avoid an unnecessary
543 dependency on a recent compiler. We therefore try locating the
544 "thread_id" field in place of the "lwp" field if we did not find
545 the latter. */
546 if (fieldnos.ll_lwp < 0)
547 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
548
549 /* Set all the out parameters all at once, now that we are certain
550 that there are no potential error() anymore. */
551 pspace_data = get_ada_tasks_pspace_data (current_program_space);
552 pspace_data->initialized_p = 1;
553 pspace_data->atcb_type = type;
554 pspace_data->atcb_common_type = common_type;
555 pspace_data->atcb_ll_type = ll_type;
556 pspace_data->atcb_call_type = call_type;
557 pspace_data->atcb_fieldno = fieldnos;
558 }
559
560 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
561 component of its ATCB record. This PTID needs to match the PTID used
562 by the thread layer. */
563
564 static ptid_t
565 ptid_from_atcb_common (struct value *common_value)
566 {
567 long thread = 0;
568 CORE_ADDR lwp = 0;
569 struct value *ll_value;
570 ptid_t ptid;
571 const struct ada_tasks_pspace_data *pspace_data
572 = get_ada_tasks_pspace_data (current_program_space);
573
574 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
575
576 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
577 lwp = value_as_address (value_field (ll_value,
578 pspace_data->atcb_fieldno.ll_lwp));
579 thread = value_as_long (value_field (ll_value,
580 pspace_data->atcb_fieldno.ll_thread));
581
582 ptid = target_get_ada_task_ptid (lwp, thread);
583
584 return ptid;
585 }
586
587 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
588 the address of its assocated ATCB record), and store the result inside
589 TASK_INFO. */
590
591 static void
592 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
593 {
594 struct value *tcb_value;
595 struct value *common_value;
596 struct value *atc_nesting_level_value;
597 struct value *entry_calls_value;
598 struct value *entry_calls_value_element;
599 int called_task_fieldno = -1;
600 static const char ravenscar_task_name[] = "Ravenscar task";
601 const struct ada_tasks_pspace_data *pspace_data
602 = get_ada_tasks_pspace_data (current_program_space);
603
604 if (!pspace_data->initialized_p)
605 get_tcb_types_info ();
606
607 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
608 NULL, task_id);
609 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
610
611 /* Fill in the task_id. */
612
613 task_info->task_id = task_id;
614
615 /* Compute the name of the task.
616
617 Depending on the GNAT version used, the task image is either a fat
618 string, or a thin array of characters. Older versions of GNAT used
619 to use fat strings, and therefore did not need an extra field in
620 the ATCB to store the string length. For efficiency reasons, newer
621 versions of GNAT replaced the fat string by a static buffer, but this
622 also required the addition of a new field named "Image_Len" containing
623 the length of the task name. The method used to extract the task name
624 is selected depending on the existence of this field.
625
626 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
627 we may want to get it from the first user frame of the stack. For now,
628 we just give a dummy name. */
629
630 if (pspace_data->atcb_fieldno.image_len == -1)
631 {
632 if (pspace_data->atcb_fieldno.image >= 0)
633 read_fat_string_value (task_info->name,
634 value_field (common_value,
635 pspace_data->atcb_fieldno.image),
636 sizeof (task_info->name) - 1);
637 else
638 {
639 struct bound_minimal_symbol msym;
640
641 msym = lookup_minimal_symbol_by_pc (task_id);
642 if (msym.minsym)
643 {
644 const char *full_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
645 const char *task_name = full_name;
646 const char *p;
647
648 /* Strip the prefix. */
649 for (p = full_name; *p; p++)
650 if (p[0] == '_' && p[1] == '_')
651 task_name = p + 2;
652
653 /* Copy the task name. */
654 strncpy (task_info->name, task_name, sizeof (task_info->name));
655 task_info->name[sizeof (task_info->name) - 1] = 0;
656 }
657 else
658 {
659 /* No symbol found. Use a default name. */
660 strcpy (task_info->name, ravenscar_task_name);
661 }
662 }
663 }
664 else
665 {
666 int len = value_as_long
667 (value_field (common_value,
668 pspace_data->atcb_fieldno.image_len));
669
670 value_as_string (task_info->name,
671 value_field (common_value,
672 pspace_data->atcb_fieldno.image),
673 len);
674 }
675
676 /* Compute the task state and priority. */
677
678 task_info->state =
679 value_as_long (value_field (common_value,
680 pspace_data->atcb_fieldno.state));
681 task_info->priority =
682 value_as_long (value_field (common_value,
683 pspace_data->atcb_fieldno.priority));
684
685 /* If the ATCB contains some information about the parent task,
686 then compute it as well. Otherwise, zero. */
687
688 if (pspace_data->atcb_fieldno.parent >= 0)
689 task_info->parent =
690 value_as_address (value_field (common_value,
691 pspace_data->atcb_fieldno.parent));
692 else
693 task_info->parent = 0;
694
695
696 /* If the ATCB contains some information about entry calls, then
697 compute the "called_task" as well. Otherwise, zero. */
698
699 if (pspace_data->atcb_fieldno.atc_nesting_level > 0
700 && pspace_data->atcb_fieldno.entry_calls > 0)
701 {
702 /* Let My_ATCB be the Ada task control block of a task calling the
703 entry of another task; then the Task_Id of the called task is
704 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
705 atc_nesting_level_value =
706 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
707 entry_calls_value =
708 ada_coerce_to_simple_array_ptr
709 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
710 entry_calls_value_element =
711 value_subscript (entry_calls_value,
712 value_as_long (atc_nesting_level_value));
713 called_task_fieldno =
714 ada_get_field_index (value_type (entry_calls_value_element),
715 "called_task", 0);
716 task_info->called_task =
717 value_as_address (value_field (entry_calls_value_element,
718 called_task_fieldno));
719 }
720 else
721 {
722 task_info->called_task = 0;
723 }
724
725 /* If the ATCB cotnains some information about RV callers,
726 then compute the "caller_task". Otherwise, zero. */
727
728 task_info->caller_task = 0;
729 if (pspace_data->atcb_fieldno.call >= 0)
730 {
731 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
732 If Common_ATCB.Call is null, then there is no caller. */
733 const CORE_ADDR call =
734 value_as_address (value_field (common_value,
735 pspace_data->atcb_fieldno.call));
736 struct value *call_val;
737
738 if (call != 0)
739 {
740 call_val =
741 value_from_contents_and_address (pspace_data->atcb_call_type,
742 NULL, call);
743 task_info->caller_task =
744 value_as_address
745 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
746 }
747 }
748
749 /* And finally, compute the task ptid. Note that there are situations
750 where this cannot be determined:
751 - The task is no longer alive - the ptid is irrelevant;
752 - We are debugging a core file - the thread is not always
753 completely preserved for us to link back a task to its
754 underlying thread. Since we do not support task switching
755 when debugging core files anyway, we don't need to compute
756 that task ptid.
757 In either case, we don't need that ptid, and it is just good enough
758 to set it to null_ptid. */
759
760 if (target_has_execution && ada_task_is_alive (task_info))
761 task_info->ptid = ptid_from_atcb_common (common_value);
762 else
763 task_info->ptid = null_ptid;
764 }
765
766 /* Read the ATCB info of the given task (identified by TASK_ID), and
767 add the result to the given inferior's TASK_LIST. */
768
769 static void
770 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
771 {
772 struct ada_task_info task_info;
773 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
774
775 read_atcb (task_id, &task_info);
776 VEC_safe_push (ada_task_info_s, data->task_list, &task_info);
777 }
778
779 /* Read the Known_Tasks array from the inferior memory, and store
780 it in the current inferior's TASK_LIST. Return non-zero upon success. */
781
782 static int
783 read_known_tasks_array (struct ada_tasks_inferior_data *data)
784 {
785 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
786 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
787 gdb_byte *known_tasks = alloca (known_tasks_size);
788 int i;
789
790 /* Build a new list by reading the ATCBs from the Known_Tasks array
791 in the Ada runtime. */
792 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
793 for (i = 0; i < data->known_tasks_length; i++)
794 {
795 CORE_ADDR task_id =
796 extract_typed_address (known_tasks + i * target_ptr_byte,
797 data->known_tasks_element);
798
799 if (task_id != 0)
800 add_ada_task (task_id, current_inferior ());
801 }
802
803 return 1;
804 }
805
806 /* Read the known tasks from the inferior memory, and store it in
807 the current inferior's TASK_LIST. Return non-zero upon success. */
808
809 static int
810 read_known_tasks_list (struct ada_tasks_inferior_data *data)
811 {
812 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
813 gdb_byte *known_tasks = alloca (target_ptr_byte);
814 CORE_ADDR task_id;
815 const struct ada_tasks_pspace_data *pspace_data
816 = get_ada_tasks_pspace_data (current_program_space);
817
818 /* Sanity check. */
819 if (pspace_data->atcb_fieldno.activation_link < 0)
820 return 0;
821
822 /* Build a new list by reading the ATCBs. Read head of the list. */
823 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
824 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
825 while (task_id != 0)
826 {
827 struct value *tcb_value;
828 struct value *common_value;
829
830 add_ada_task (task_id, current_inferior ());
831
832 /* Read the chain. */
833 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
834 NULL, task_id);
835 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
836 task_id = value_as_address
837 (value_field (common_value,
838 pspace_data->atcb_fieldno.activation_link));
839 }
840
841 return 1;
842 }
843
844 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
845 Do nothing if those fields are already set and still up to date. */
846
847 static void
848 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
849 {
850 struct bound_minimal_symbol msym;
851 struct symbol *sym;
852
853 /* Return now if already set. */
854 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
855 return;
856
857 /* Try array. */
858
859 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
860 if (msym.minsym != NULL)
861 {
862 data->known_tasks_kind = ADA_TASKS_ARRAY;
863 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
864
865 /* Try to get pointer type and array length from the symtab. */
866 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
867 language_c, NULL).symbol;
868 if (sym != NULL)
869 {
870 /* Validate. */
871 struct type *type = check_typedef (SYMBOL_TYPE (sym));
872 struct type *eltype = NULL;
873 struct type *idxtype = NULL;
874
875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
876 eltype = check_typedef (TYPE_TARGET_TYPE (type));
877 if (eltype != NULL
878 && TYPE_CODE (eltype) == TYPE_CODE_PTR)
879 idxtype = check_typedef (TYPE_INDEX_TYPE (type));
880 if (idxtype != NULL
881 && !TYPE_LOW_BOUND_UNDEFINED (idxtype)
882 && !TYPE_HIGH_BOUND_UNDEFINED (idxtype))
883 {
884 data->known_tasks_element = eltype;
885 data->known_tasks_length =
886 TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1;
887 return;
888 }
889 }
890
891 /* Fallback to default values. The runtime may have been stripped (as
892 in some distributions), but it is likely that the executable still
893 contains debug information on the task type (due to implicit with of
894 Ada.Tasking). */
895 data->known_tasks_element =
896 builtin_type (target_gdbarch ())->builtin_data_ptr;
897 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
898 return;
899 }
900
901
902 /* Try list. */
903
904 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
905 if (msym.minsym != NULL)
906 {
907 data->known_tasks_kind = ADA_TASKS_LIST;
908 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
909 data->known_tasks_length = 1;
910
911 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
912 language_c, NULL).symbol;
913 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
914 {
915 /* Validate. */
916 struct type *type = check_typedef (SYMBOL_TYPE (sym));
917
918 if (TYPE_CODE (type) == TYPE_CODE_PTR)
919 {
920 data->known_tasks_element = type;
921 return;
922 }
923 }
924
925 /* Fallback to default values. */
926 data->known_tasks_element =
927 builtin_type (target_gdbarch ())->builtin_data_ptr;
928 data->known_tasks_length = 1;
929 return;
930 }
931
932 /* Can't find tasks. */
933
934 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
935 data->known_tasks_addr = 0;
936 }
937
938 /* Read the known tasks from the current inferior's memory, and store it
939 in the current inferior's data TASK_LIST.
940 Return non-zero upon success. */
941
942 static int
943 read_known_tasks (void)
944 {
945 struct ada_tasks_inferior_data *data =
946 get_ada_tasks_inferior_data (current_inferior ());
947
948 /* Step 1: Clear the current list, if necessary. */
949 VEC_truncate (ada_task_info_s, data->task_list, 0);
950
951 /* Step 2: do the real work.
952 If the application does not use task, then no more needs to be done.
953 It is important to have the task list cleared (see above) before we
954 return, as we don't want a stale task list to be used... This can
955 happen for instance when debugging a non-multitasking program after
956 having debugged a multitasking one. */
957 ada_tasks_inferior_data_sniffer (data);
958 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
959
960 switch (data->known_tasks_kind)
961 {
962 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
963 return 0;
964 case ADA_TASKS_ARRAY:
965 return read_known_tasks_array (data);
966 case ADA_TASKS_LIST:
967 return read_known_tasks_list (data);
968 }
969
970 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
971 array unless needed. Then report a success. */
972 data->task_list_valid_p = 1;
973
974 return 1;
975 }
976
977 /* Build the task_list by reading the Known_Tasks array from
978 the inferior, and return the number of tasks in that list
979 (zero means that the program is not using tasking at all). */
980
981 int
982 ada_build_task_list (void)
983 {
984 struct ada_tasks_inferior_data *data;
985
986 if (!target_has_stack)
987 error (_("Cannot inspect Ada tasks when program is not running"));
988
989 data = get_ada_tasks_inferior_data (current_inferior ());
990 if (!data->task_list_valid_p)
991 read_known_tasks ();
992
993 return VEC_length (ada_task_info_s, data->task_list);
994 }
995
996 /* Print a table providing a short description of all Ada tasks
997 running inside inferior INF. If ARG_STR is set, it will be
998 interpreted as a task number, and the table will be limited to
999 that task only. */
1000
1001 void
1002 print_ada_task_info (struct ui_out *uiout,
1003 char *arg_str,
1004 struct inferior *inf)
1005 {
1006 struct ada_tasks_inferior_data *data;
1007 int taskno, nb_tasks;
1008 int taskno_arg = 0;
1009 struct cleanup *old_chain;
1010 int nb_columns;
1011
1012 if (ada_build_task_list () == 0)
1013 {
1014 ui_out_message (uiout, 0,
1015 _("Your application does not use any Ada tasks.\n"));
1016 return;
1017 }
1018
1019 if (arg_str != NULL && arg_str[0] != '\0')
1020 taskno_arg = value_as_long (parse_and_eval (arg_str));
1021
1022 if (ui_out_is_mi_like_p (uiout))
1023 /* In GDB/MI mode, we want to provide the thread ID corresponding
1024 to each task. This allows clients to quickly find the thread
1025 associated to any task, which is helpful for commands that
1026 take a --thread argument. However, in order to be able to
1027 provide that thread ID, the thread list must be up to date
1028 first. */
1029 target_update_thread_list ();
1030
1031 data = get_ada_tasks_inferior_data (inf);
1032
1033 /* Compute the number of tasks that are going to be displayed
1034 in the output. If an argument was given, there will be
1035 at most 1 entry. Otherwise, there will be as many entries
1036 as we have tasks. */
1037 if (taskno_arg)
1038 {
1039 if (taskno_arg > 0
1040 && taskno_arg <= VEC_length (ada_task_info_s, data->task_list))
1041 nb_tasks = 1;
1042 else
1043 nb_tasks = 0;
1044 }
1045 else
1046 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
1047
1048 nb_columns = ui_out_is_mi_like_p (uiout) ? 8 : 7;
1049 old_chain = make_cleanup_ui_out_table_begin_end (uiout, nb_columns,
1050 nb_tasks, "tasks");
1051 ui_out_table_header (uiout, 1, ui_left, "current", "");
1052 ui_out_table_header (uiout, 3, ui_right, "id", "ID");
1053 ui_out_table_header (uiout, 9, ui_right, "task-id", "TID");
1054 /* The following column is provided in GDB/MI mode only because
1055 it is only really useful in that mode, and also because it
1056 allows us to keep the CLI output shorter and more compact. */
1057 if (ui_out_is_mi_like_p (uiout))
1058 ui_out_table_header (uiout, 4, ui_right, "thread-id", "");
1059 ui_out_table_header (uiout, 4, ui_right, "parent-id", "P-ID");
1060 ui_out_table_header (uiout, 3, ui_right, "priority", "Pri");
1061 ui_out_table_header (uiout, 22, ui_left, "state", "State");
1062 /* Use ui_noalign for the last column, to prevent the CLI uiout
1063 from printing an extra space at the end of each row. This
1064 is a bit of a hack, but does get the job done. */
1065 ui_out_table_header (uiout, 1, ui_noalign, "name", "Name");
1066 ui_out_table_body (uiout);
1067
1068 for (taskno = 1;
1069 taskno <= VEC_length (ada_task_info_s, data->task_list);
1070 taskno++)
1071 {
1072 const struct ada_task_info *const task_info =
1073 VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1074 int parent_id;
1075 struct cleanup *chain2;
1076
1077 gdb_assert (task_info != NULL);
1078
1079 /* If the user asked for the output to be restricted
1080 to one task only, and this is not the task, skip
1081 to the next one. */
1082 if (taskno_arg && taskno != taskno_arg)
1083 continue;
1084
1085 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1086
1087 /* Print a star if this task is the current task (or the task
1088 currently selected). */
1089 if (ptid_equal (task_info->ptid, inferior_ptid))
1090 ui_out_field_string (uiout, "current", "*");
1091 else
1092 ui_out_field_skip (uiout, "current");
1093
1094 /* Print the task number. */
1095 ui_out_field_int (uiout, "id", taskno);
1096
1097 /* Print the Task ID. */
1098 ui_out_field_fmt (uiout, "task-id", "%9lx", (long) task_info->task_id);
1099
1100 /* Print the associated Thread ID. */
1101 if (ui_out_is_mi_like_p (uiout))
1102 {
1103 const int thread_id = pid_to_thread_id (task_info->ptid);
1104
1105 if (thread_id != 0)
1106 ui_out_field_int (uiout, "thread-id", thread_id);
1107 else
1108 /* This should never happen unless there is a bug somewhere,
1109 but be resilient when that happens. */
1110 ui_out_field_skip (uiout, "thread-id");
1111 }
1112
1113 /* Print the ID of the parent task. */
1114 parent_id = get_task_number_from_id (task_info->parent, inf);
1115 if (parent_id)
1116 ui_out_field_int (uiout, "parent-id", parent_id);
1117 else
1118 ui_out_field_skip (uiout, "parent-id");
1119
1120 /* Print the base priority of the task. */
1121 ui_out_field_int (uiout, "priority", task_info->priority);
1122
1123 /* Print the task current state. */
1124 if (task_info->caller_task)
1125 ui_out_field_fmt (uiout, "state",
1126 _("Accepting RV with %-4d"),
1127 get_task_number_from_id (task_info->caller_task,
1128 inf));
1129 else if (task_info->state == Entry_Caller_Sleep
1130 && task_info->called_task)
1131 ui_out_field_fmt (uiout, "state",
1132 _("Waiting on RV with %-3d"),
1133 get_task_number_from_id (task_info->called_task,
1134 inf));
1135 else
1136 ui_out_field_string (uiout, "state", task_states[task_info->state]);
1137
1138 /* Finally, print the task name. */
1139 ui_out_field_fmt (uiout, "name",
1140 "%s",
1141 task_info->name[0] != '\0' ? task_info->name
1142 : _("<no name>"));
1143
1144 ui_out_text (uiout, "\n");
1145 do_cleanups (chain2);
1146 }
1147
1148 do_cleanups (old_chain);
1149 }
1150
1151 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1152 for the given inferior (INF). */
1153
1154 static void
1155 info_task (struct ui_out *uiout, char *taskno_str, struct inferior *inf)
1156 {
1157 const int taskno = value_as_long (parse_and_eval (taskno_str));
1158 struct ada_task_info *task_info;
1159 int parent_taskno = 0;
1160 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1161
1162 if (ada_build_task_list () == 0)
1163 {
1164 ui_out_message (uiout, 0,
1165 _("Your application does not use any Ada tasks.\n"));
1166 return;
1167 }
1168
1169 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1170 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1171 "see the IDs of currently known tasks"), taskno);
1172 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1173
1174 /* Print the Ada task ID. */
1175 printf_filtered (_("Ada Task: %s\n"),
1176 paddress (target_gdbarch (), task_info->task_id));
1177
1178 /* Print the name of the task. */
1179 if (task_info->name[0] != '\0')
1180 printf_filtered (_("Name: %s\n"), task_info->name);
1181 else
1182 printf_filtered (_("<no name>\n"));
1183
1184 /* Print the TID and LWP. */
1185 printf_filtered (_("Thread: %#lx\n"), ptid_get_tid (task_info->ptid));
1186 printf_filtered (_("LWP: %#lx\n"), ptid_get_lwp (task_info->ptid));
1187
1188 /* Print who is the parent (if any). */
1189 if (task_info->parent != 0)
1190 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1191 if (parent_taskno)
1192 {
1193 struct ada_task_info *parent =
1194 VEC_index (ada_task_info_s, data->task_list, parent_taskno - 1);
1195
1196 printf_filtered (_("Parent: %d"), parent_taskno);
1197 if (parent->name[0] != '\0')
1198 printf_filtered (" (%s)", parent->name);
1199 printf_filtered ("\n");
1200 }
1201 else
1202 printf_filtered (_("No parent\n"));
1203
1204 /* Print the base priority. */
1205 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1206
1207 /* print the task current state. */
1208 {
1209 int target_taskno = 0;
1210
1211 if (task_info->caller_task)
1212 {
1213 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1214 printf_filtered (_("State: Accepting rendezvous with %d"),
1215 target_taskno);
1216 }
1217 else if (task_info->state == Entry_Caller_Sleep && task_info->called_task)
1218 {
1219 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1220 printf_filtered (_("State: Waiting on task %d's entry"),
1221 target_taskno);
1222 }
1223 else
1224 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1225
1226 if (target_taskno)
1227 {
1228 struct ada_task_info *target_task_info =
1229 VEC_index (ada_task_info_s, data->task_list, target_taskno - 1);
1230
1231 if (target_task_info->name[0] != '\0')
1232 printf_filtered (" (%s)", target_task_info->name);
1233 }
1234
1235 printf_filtered ("\n");
1236 }
1237 }
1238
1239 /* If ARG is empty or null, then print a list of all Ada tasks.
1240 Otherwise, print detailed information about the task whose ID
1241 is ARG.
1242
1243 Does nothing if the program doesn't use Ada tasking. */
1244
1245 static void
1246 info_tasks_command (char *arg, int from_tty)
1247 {
1248 struct ui_out *uiout = current_uiout;
1249
1250 if (arg == NULL || *arg == '\0')
1251 print_ada_task_info (uiout, NULL, current_inferior ());
1252 else
1253 info_task (uiout, arg, current_inferior ());
1254 }
1255
1256 /* Print a message telling the user id of the current task.
1257 This function assumes that tasking is in use in the inferior. */
1258
1259 static void
1260 display_current_task_id (void)
1261 {
1262 const int current_task = ada_get_task_number (inferior_ptid);
1263
1264 if (current_task == 0)
1265 printf_filtered (_("[Current task is unknown]\n"));
1266 else
1267 printf_filtered (_("[Current task is %d]\n"), current_task);
1268 }
1269
1270 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1271 that task. Print an error message if the task switch failed. */
1272
1273 static void
1274 task_command_1 (char *taskno_str, int from_tty, struct inferior *inf)
1275 {
1276 const int taskno = value_as_long (parse_and_eval (taskno_str));
1277 struct ada_task_info *task_info;
1278 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1279
1280 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1281 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1282 "see the IDs of currently known tasks"), taskno);
1283 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1284
1285 if (!ada_task_is_alive (task_info))
1286 error (_("Cannot switch to task %d: Task is no longer running"), taskno);
1287
1288 /* On some platforms, the thread list is not updated until the user
1289 performs a thread-related operation (by using the "info threads"
1290 command, for instance). So this thread list may not be up to date
1291 when the user attempts this task switch. Since we cannot switch
1292 to the thread associated to our task if GDB does not know about
1293 that thread, we need to make sure that any new threads gets added
1294 to the thread list. */
1295 target_update_thread_list ();
1296
1297 /* Verify that the ptid of the task we want to switch to is valid
1298 (in other words, a ptid that GDB knows about). Otherwise, we will
1299 cause an assertion failure later on, when we try to determine
1300 the ptid associated thread_info data. We should normally never
1301 encounter such an error, but the wrong ptid can actually easily be
1302 computed if target_get_ada_task_ptid has not been implemented for
1303 our target (yet). Rather than cause an assertion error in that case,
1304 it's nicer for the user to just refuse to perform the task switch. */
1305 if (!find_thread_ptid (task_info->ptid))
1306 error (_("Unable to compute thread ID for task %d.\n"
1307 "Cannot switch to this task."),
1308 taskno);
1309
1310 switch_to_thread (task_info->ptid);
1311 ada_find_printable_frame (get_selected_frame (NULL));
1312 printf_filtered (_("[Switching to task %d]\n"), taskno);
1313 print_stack_frame (get_selected_frame (NULL),
1314 frame_relative_level (get_selected_frame (NULL)),
1315 SRC_AND_LOC, 1);
1316 }
1317
1318
1319 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1320 Otherwise, switch to the task indicated by TASKNO_STR. */
1321
1322 static void
1323 task_command (char *taskno_str, int from_tty)
1324 {
1325 struct ui_out *uiout = current_uiout;
1326
1327 if (ada_build_task_list () == 0)
1328 {
1329 ui_out_message (uiout, 0,
1330 _("Your application does not use any Ada tasks.\n"));
1331 return;
1332 }
1333
1334 if (taskno_str == NULL || taskno_str[0] == '\0')
1335 display_current_task_id ();
1336 else
1337 {
1338 /* Task switching in core files doesn't work, either because:
1339 1. Thread support is not implemented with core files
1340 2. Thread support is implemented, but the thread IDs created
1341 after having read the core file are not the same as the ones
1342 that were used during the program life, before the crash.
1343 As a consequence, there is no longer a way for the debugger
1344 to find the associated thead ID of any given Ada task.
1345 So, instead of attempting a task switch without giving the user
1346 any clue as to what might have happened, just error-out with
1347 a message explaining that this feature is not supported. */
1348 if (!target_has_execution)
1349 error (_("\
1350 Task switching not supported when debugging from core files\n\
1351 (use thread support instead)"));
1352 task_command_1 (taskno_str, from_tty, current_inferior ());
1353 }
1354 }
1355
1356 /* Indicate that the given inferior's task list may have changed,
1357 so invalidate the cache. */
1358
1359 static void
1360 ada_task_list_changed (struct inferior *inf)
1361 {
1362 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1363
1364 data->task_list_valid_p = 0;
1365 }
1366
1367 /* Invalidate the per-program-space data. */
1368
1369 static void
1370 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1371 {
1372 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1373 }
1374
1375 /* Invalidate the per-inferior data. */
1376
1377 static void
1378 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1379 {
1380 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1381
1382 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1383 data->task_list_valid_p = 0;
1384 }
1385
1386 /* The 'normal_stop' observer notification callback. */
1387
1388 static void
1389 ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1390 {
1391 /* The inferior has been resumed, and just stopped. This means that
1392 our task_list needs to be recomputed before it can be used again. */
1393 ada_task_list_changed (current_inferior ());
1394 }
1395
1396 /* A routine to be called when the objfiles have changed. */
1397
1398 static void
1399 ada_tasks_new_objfile_observer (struct objfile *objfile)
1400 {
1401 struct inferior *inf;
1402
1403 /* Invalidate the relevant data in our program-space data. */
1404
1405 if (objfile == NULL)
1406 {
1407 /* All objfiles are being cleared, so we should clear all
1408 our caches for all program spaces. */
1409 struct program_space *pspace;
1410
1411 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next)
1412 ada_tasks_invalidate_pspace_data (pspace);
1413 }
1414 else
1415 {
1416 /* The associated program-space data might have changed after
1417 this objfile was added. Invalidate all cached data. */
1418 ada_tasks_invalidate_pspace_data (objfile->pspace);
1419 }
1420
1421 /* Invalidate the per-inferior cache for all inferiors using
1422 this objfile (or, in other words, for all inferiors who have
1423 the same program-space as the objfile's program space).
1424 If all objfiles are being cleared (OBJFILE is NULL), then
1425 clear the caches for all inferiors. */
1426
1427 for (inf = inferior_list; inf != NULL; inf = inf->next)
1428 if (objfile == NULL || inf->pspace == objfile->pspace)
1429 ada_tasks_invalidate_inferior_data (inf);
1430 }
1431
1432 /* Provide a prototype to silence -Wmissing-prototypes. */
1433 extern initialize_file_ftype _initialize_tasks;
1434
1435 void
1436 _initialize_tasks (void)
1437 {
1438 ada_tasks_pspace_data_handle = register_program_space_data ();
1439 ada_tasks_inferior_data_handle = register_inferior_data ();
1440
1441 /* Attach various observers. */
1442 observer_attach_normal_stop (ada_tasks_normal_stop_observer);
1443 observer_attach_new_objfile (ada_tasks_new_objfile_observer);
1444
1445 /* Some new commands provided by this module. */
1446 add_info ("tasks", info_tasks_command,
1447 _("Provide information about all known Ada tasks"));
1448 add_cmd ("task", class_run, task_command,
1449 _("Use this command to switch between Ada tasks.\n\
1450 Without argument, this command simply prints the current task ID"),
1451 &cmdlist);
1452 }
This page took 0.060214 seconds and 5 git commands to generate.