2012-02-23 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
2 Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "observer.h"
21 #include "gdbcmd.h"
22 #include "target.h"
23 #include "ada-lang.h"
24 #include "gdbcore.h"
25 #include "inferior.h"
26 #include "gdbthread.h"
27 #include "progspace.h"
28 #include "objfiles.h"
29
30 /* The name of the array in the GNAT runtime where the Ada Task Control
31 Block of each task is stored. */
32 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
33
34 /* The maximum number of tasks known to the Ada runtime. */
35 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
36
37 /* The name of the variable in the GNAT runtime where the head of a task
38 chain is saved. This is an alternate mechanism to find the list of known
39 tasks. */
40 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
41
42 enum task_states
43 {
44 Unactivated,
45 Runnable,
46 Terminated,
47 Activator_Sleep,
48 Acceptor_Sleep,
49 Entry_Caller_Sleep,
50 Async_Select_Sleep,
51 Delay_Sleep,
52 Master_Completion_Sleep,
53 Master_Phase_2_Sleep,
54 Interrupt_Server_Idle_Sleep,
55 Interrupt_Server_Blocked_Interrupt_Sleep,
56 Timer_Server_Sleep,
57 AST_Server_Sleep,
58 Asynchronous_Hold,
59 Interrupt_Server_Blocked_On_Event_Flag,
60 Activating,
61 Acceptor_Delay_Sleep
62 };
63
64 /* A short description corresponding to each possible task state. */
65 static const char *task_states[] = {
66 N_("Unactivated"),
67 N_("Runnable"),
68 N_("Terminated"),
69 N_("Child Activation Wait"),
70 N_("Accept or Select Term"),
71 N_("Waiting on entry call"),
72 N_("Async Select Wait"),
73 N_("Delay Sleep"),
74 N_("Child Termination Wait"),
75 N_("Wait Child in Term Alt"),
76 "",
77 "",
78 "",
79 "",
80 N_("Asynchronous Hold"),
81 "",
82 N_("Activating"),
83 N_("Selective Wait")
84 };
85
86 /* A longer description corresponding to each possible task state. */
87 static const char *long_task_states[] = {
88 N_("Unactivated"),
89 N_("Runnable"),
90 N_("Terminated"),
91 N_("Waiting for child activation"),
92 N_("Blocked in accept or select with terminate"),
93 N_("Waiting on entry call"),
94 N_("Asynchronous Selective Wait"),
95 N_("Delay Sleep"),
96 N_("Waiting for children termination"),
97 N_("Waiting for children in terminate alternative"),
98 "",
99 "",
100 "",
101 "",
102 N_("Asynchronous Hold"),
103 "",
104 N_("Activating"),
105 N_("Blocked in selective wait statement")
106 };
107
108 /* The index of certain important fields in the Ada Task Control Block
109 record and sub-records. */
110
111 struct atcb_fieldnos
112 {
113 /* Fields in record Ada_Task_Control_Block. */
114 int common;
115 int entry_calls;
116 int atc_nesting_level;
117
118 /* Fields in record Common_ATCB. */
119 int state;
120 int parent;
121 int priority;
122 int image;
123 int image_len; /* This field may be missing. */
124 int activation_link;
125 int call;
126 int ll;
127
128 /* Fields in Task_Primitives.Private_Data. */
129 int ll_thread;
130 int ll_lwp; /* This field may be missing. */
131
132 /* Fields in Common_ATCB.Call.all. */
133 int call_self;
134 };
135
136 /* This module's per-program-space data. */
137
138 struct ada_tasks_pspace_data
139 {
140 /* Nonzero if the data has been initialized. If set to zero,
141 it means that the data has either not been initialized, or
142 has potentially become stale. */
143 int initialized_p;
144
145 /* The ATCB record type. */
146 struct type *atcb_type;
147
148 /* The ATCB "Common" component type. */
149 struct type *atcb_common_type;
150
151 /* The type of the "ll" field, from the atcb_common_type. */
152 struct type *atcb_ll_type;
153
154 /* The type of the "call" field, from the atcb_common_type. */
155 struct type *atcb_call_type;
156
157 /* The index of various fields in the ATCB record and sub-records. */
158 struct atcb_fieldnos atcb_fieldno;
159 };
160
161 /* Key to our per-program-space data. */
162 static const struct program_space_data *ada_tasks_pspace_data_handle;
163
164 typedef struct ada_task_info ada_task_info_s;
165 DEF_VEC_O(ada_task_info_s);
166
167 /* The kind of data structure used by the runtime to store the list
168 of Ada tasks. */
169
170 enum ada_known_tasks_kind
171 {
172 /* Use this value when we haven't determined which kind of structure
173 is being used, or when we need to recompute it.
174
175 We set the value of this enumerate to zero on purpose: This allows
176 us to use this enumerate in a structure where setting all fields
177 to zero will result in this kind being set to unknown. */
178 ADA_TASKS_UNKNOWN = 0,
179
180 /* This value means that we did not find any task list. Unless
181 there is a bug somewhere, this means that the inferior does not
182 use tasking. */
183 ADA_TASKS_NOT_FOUND,
184
185 /* This value means that the task list is stored as an array.
186 This is the usual method, as it causes very little overhead.
187 But this method is not always used, as it does use a certain
188 amount of memory, which might be scarse in certain environments. */
189 ADA_TASKS_ARRAY,
190
191 /* This value means that the task list is stored as a linked list.
192 This has more runtime overhead than the array approach, but
193 also require less memory when the number of tasks is small. */
194 ADA_TASKS_LIST,
195 };
196
197 /* This module's per-inferior data. */
198
199 struct ada_tasks_inferior_data
200 {
201 /* The type of data structure used by the runtime to store
202 the list of Ada tasks. The value of this field influences
203 the interpretation of the known_tasks_addr field below:
204 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
205 been determined yet;
206 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
207 and the known_tasks_addr is irrelevant;
208 - ADA_TASKS_ARRAY: The known_tasks is an array;
209 - ADA_TASKS_LIST: The known_tasks is a list. */
210 enum ada_known_tasks_kind known_tasks_kind;
211
212 /* The address of the known_tasks structure. This is where
213 the runtime stores the information for all Ada tasks.
214 The interpretation of this field depends on KNOWN_TASKS_KIND
215 above. */
216 CORE_ADDR known_tasks_addr;
217
218 /* Type of elements of the known task. Usually a pointer. */
219 struct type *known_tasks_element;
220
221 /* Number of elements in the known tasks array. */
222 unsigned int known_tasks_length;
223
224 /* When nonzero, this flag indicates that the task_list field
225 below is up to date. When set to zero, the list has either
226 not been initialized, or has potentially become stale. */
227 int task_list_valid_p;
228
229 /* The list of Ada tasks.
230
231 Note: To each task we associate a number that the user can use to
232 reference it - this number is printed beside each task in the tasks
233 info listing displayed by "info tasks". This number is equal to
234 its index in the vector + 1. Reciprocally, to compute the index
235 of a task in the vector, we need to substract 1 from its number. */
236 VEC(ada_task_info_s) *task_list;
237 };
238
239 /* Key to our per-inferior data. */
240 static const struct inferior_data *ada_tasks_inferior_data_handle;
241
242 /* Return the ada-tasks module's data for the given program space (PSPACE).
243 If none is found, add a zero'ed one now.
244
245 This function always returns a valid object. */
246
247 static struct ada_tasks_pspace_data *
248 get_ada_tasks_pspace_data (struct program_space *pspace)
249 {
250 struct ada_tasks_pspace_data *data;
251
252 data = program_space_data (pspace, ada_tasks_pspace_data_handle);
253 if (data == NULL)
254 {
255 data = XZALLOC (struct ada_tasks_pspace_data);
256 set_program_space_data (pspace, ada_tasks_pspace_data_handle, data);
257 }
258
259 return data;
260 }
261
262 /* Return the ada-tasks module's data for the given inferior (INF).
263 If none is found, add a zero'ed one now.
264
265 This function always returns a valid object.
266
267 Note that we could use an observer of the inferior-created event
268 to make sure that the ada-tasks per-inferior data always exists.
269 But we prefered this approach, as it avoids this entirely as long
270 as the user does not use any of the tasking features. This is
271 quite possible, particularly in the case where the inferior does
272 not use tasking. */
273
274 static struct ada_tasks_inferior_data *
275 get_ada_tasks_inferior_data (struct inferior *inf)
276 {
277 struct ada_tasks_inferior_data *data;
278
279 data = inferior_data (inf, ada_tasks_inferior_data_handle);
280 if (data == NULL)
281 {
282 data = XZALLOC (struct ada_tasks_inferior_data);
283 set_inferior_data (inf, ada_tasks_inferior_data_handle, data);
284 }
285
286 return data;
287 }
288
289 /* Return the task number of the task whose ptid is PTID, or zero
290 if the task could not be found. */
291
292 int
293 ada_get_task_number (ptid_t ptid)
294 {
295 int i;
296 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
297 struct ada_tasks_inferior_data *data;
298
299 gdb_assert (inf != NULL);
300 data = get_ada_tasks_inferior_data (inf);
301
302 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
303 if (ptid_equal (VEC_index (ada_task_info_s, data->task_list, i)->ptid,
304 ptid))
305 return i + 1;
306
307 return 0; /* No matching task found. */
308 }
309
310 /* Return the task number of the task running in inferior INF which
311 matches TASK_ID , or zero if the task could not be found. */
312
313 static int
314 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
315 {
316 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
317 int i;
318
319 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
320 {
321 struct ada_task_info *task_info =
322 VEC_index (ada_task_info_s, data->task_list, i);
323
324 if (task_info->task_id == task_id)
325 return i + 1;
326 }
327
328 /* Task not found. Return 0. */
329 return 0;
330 }
331
332 /* Return non-zero if TASK_NUM is a valid task number. */
333
334 int
335 valid_task_id (int task_num)
336 {
337 struct ada_tasks_inferior_data *data;
338
339 ada_build_task_list ();
340 data = get_ada_tasks_inferior_data (current_inferior ());
341 return (task_num > 0
342 && task_num <= VEC_length (ada_task_info_s, data->task_list));
343 }
344
345 /* Return non-zero iff the task STATE corresponds to a non-terminated
346 task state. */
347
348 static int
349 ada_task_is_alive (struct ada_task_info *task_info)
350 {
351 return (task_info->state != Terminated);
352 }
353
354 /* Call the ITERATOR function once for each Ada task that hasn't been
355 terminated yet. */
356
357 void
358 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
359 {
360 int i, nb_tasks;
361 struct ada_task_info *task;
362 struct ada_tasks_inferior_data *data;
363
364 ada_build_task_list ();
365 data = get_ada_tasks_inferior_data (current_inferior ());
366 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
367
368 for (i = 0; i < nb_tasks; i++)
369 {
370 task = VEC_index (ada_task_info_s, data->task_list, i);
371 if (!ada_task_is_alive (task))
372 continue;
373 iterator (task);
374 }
375 }
376
377 /* Extract the contents of the value as a string whose length is LENGTH,
378 and store the result in DEST. */
379
380 static void
381 value_as_string (char *dest, struct value *val, int length)
382 {
383 memcpy (dest, value_contents (val), length);
384 dest[length] = '\0';
385 }
386
387 /* Extract the string image from the fat string corresponding to VAL,
388 and store it in DEST. If the string length is greater than MAX_LEN,
389 then truncate the result to the first MAX_LEN characters of the fat
390 string. */
391
392 static void
393 read_fat_string_value (char *dest, struct value *val, int max_len)
394 {
395 struct value *array_val;
396 struct value *bounds_val;
397 int len;
398
399 /* The following variables are made static to avoid recomputing them
400 each time this function is called. */
401 static int initialize_fieldnos = 1;
402 static int array_fieldno;
403 static int bounds_fieldno;
404 static int upper_bound_fieldno;
405
406 /* Get the index of the fields that we will need to read in order
407 to extract the string from the fat string. */
408 if (initialize_fieldnos)
409 {
410 struct type *type = value_type (val);
411 struct type *bounds_type;
412
413 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
414 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
415
416 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno);
417 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR)
418 bounds_type = TYPE_TARGET_TYPE (bounds_type);
419 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT)
420 error (_("Unknown task name format. Aborting"));
421 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
422
423 initialize_fieldnos = 0;
424 }
425
426 /* Get the size of the task image by checking the value of the bounds.
427 The lower bound is always 1, so we only need to read the upper bound. */
428 bounds_val = value_ind (value_field (val, bounds_fieldno));
429 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
430
431 /* Make sure that we do not read more than max_len characters... */
432 if (len > max_len)
433 len = max_len;
434
435 /* Extract LEN characters from the fat string. */
436 array_val = value_ind (value_field (val, array_fieldno));
437 read_memory (value_address (array_val), dest, len);
438
439 /* Add the NUL character to close the string. */
440 dest[len] = '\0';
441 }
442
443 /* Get from the debugging information the type description of all types
444 related to the Ada Task Control Block that will be needed in order to
445 read the list of known tasks in the Ada runtime. Also return the
446 associated ATCB_FIELDNOS.
447
448 Error handling: Any data missing from the debugging info will cause
449 an error to be raised, and none of the return values to be set.
450 Users of this function can depend on the fact that all or none of the
451 return values will be set. */
452
453 static void
454 get_tcb_types_info (void)
455 {
456 struct type *type;
457 struct type *common_type;
458 struct type *ll_type;
459 struct type *call_type;
460 struct atcb_fieldnos fieldnos;
461 struct ada_tasks_pspace_data *pspace_data;
462
463 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
464 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
465 const char *common_atcb_name = "system__tasking__common_atcb";
466 const char *private_data_name = "system__task_primitives__private_data";
467 const char *entry_call_record_name = "system__tasking__entry_call_record";
468
469 /* ATCB symbols may be found in several compilation units. As we
470 are only interested in one instance, use standard (literal,
471 C-like) lookups to get the first match. */
472
473 struct symbol *atcb_sym =
474 lookup_symbol_in_language (atcb_name, NULL, VAR_DOMAIN,
475 language_c, NULL);
476 const struct symbol *common_atcb_sym =
477 lookup_symbol_in_language (common_atcb_name, NULL, VAR_DOMAIN,
478 language_c, NULL);
479 const struct symbol *private_data_sym =
480 lookup_symbol_in_language (private_data_name, NULL, VAR_DOMAIN,
481 language_c, NULL);
482 const struct symbol *entry_call_record_sym =
483 lookup_symbol_in_language (entry_call_record_name, NULL, VAR_DOMAIN,
484 language_c, NULL);
485
486 if (atcb_sym == NULL || atcb_sym->type == NULL)
487 {
488 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
489 size, so the symbol name differs. */
490 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL, VAR_DOMAIN,
491 language_c, NULL);
492
493 if (atcb_sym == NULL || atcb_sym->type == NULL)
494 error (_("Cannot find Ada_Task_Control_Block type. Aborting"));
495
496 type = atcb_sym->type;
497 }
498 else
499 {
500 /* Get a static representation of the type record
501 Ada_Task_Control_Block. */
502 type = atcb_sym->type;
503 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
504 }
505
506 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
507 error (_("Cannot find Common_ATCB type. Aborting"));
508 if (private_data_sym == NULL || private_data_sym->type == NULL)
509 error (_("Cannot find Private_Data type. Aborting"));
510 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
511 error (_("Cannot find Entry_Call_Record type. Aborting"));
512
513 /* Get the type for Ada_Task_Control_Block.Common. */
514 common_type = common_atcb_sym->type;
515
516 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
517 ll_type = private_data_sym->type;
518
519 /* Get the type for Common_ATCB.Call.all. */
520 call_type = entry_call_record_sym->type;
521
522 /* Get the field indices. */
523 fieldnos.common = ada_get_field_index (type, "common", 0);
524 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
525 fieldnos.atc_nesting_level =
526 ada_get_field_index (type, "atc_nesting_level", 1);
527 fieldnos.state = ada_get_field_index (common_type, "state", 0);
528 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
529 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
530 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
531 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
532 fieldnos.activation_link = ada_get_field_index (common_type,
533 "activation_link", 1);
534 fieldnos.call = ada_get_field_index (common_type, "call", 1);
535 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
536 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
537 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
538 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
539
540 /* On certain platforms such as x86-windows, the "lwp" field has been
541 named "thread_id". This field will likely be renamed in the future,
542 but we need to support both possibilities to avoid an unnecessary
543 dependency on a recent compiler. We therefore try locating the
544 "thread_id" field in place of the "lwp" field if we did not find
545 the latter. */
546 if (fieldnos.ll_lwp < 0)
547 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
548
549 /* Set all the out parameters all at once, now that we are certain
550 that there are no potential error() anymore. */
551 pspace_data = get_ada_tasks_pspace_data (current_program_space);
552 pspace_data->initialized_p = 1;
553 pspace_data->atcb_type = type;
554 pspace_data->atcb_common_type = common_type;
555 pspace_data->atcb_ll_type = ll_type;
556 pspace_data->atcb_call_type = call_type;
557 pspace_data->atcb_fieldno = fieldnos;
558 }
559
560 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
561 component of its ATCB record. This PTID needs to match the PTID used
562 by the thread layer. */
563
564 static ptid_t
565 ptid_from_atcb_common (struct value *common_value)
566 {
567 long thread = 0;
568 CORE_ADDR lwp = 0;
569 struct value *ll_value;
570 ptid_t ptid;
571 const struct ada_tasks_pspace_data *pspace_data
572 = get_ada_tasks_pspace_data (current_program_space);
573
574 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
575
576 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
577 lwp = value_as_address (value_field (ll_value,
578 pspace_data->atcb_fieldno.ll_lwp));
579 thread = value_as_long (value_field (ll_value,
580 pspace_data->atcb_fieldno.ll_thread));
581
582 ptid = target_get_ada_task_ptid (lwp, thread);
583
584 return ptid;
585 }
586
587 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
588 the address of its assocated ATCB record), and store the result inside
589 TASK_INFO. */
590
591 static void
592 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
593 {
594 struct value *tcb_value;
595 struct value *common_value;
596 struct value *atc_nesting_level_value;
597 struct value *entry_calls_value;
598 struct value *entry_calls_value_element;
599 int called_task_fieldno = -1;
600 static const char ravenscar_task_name[] = "Ravenscar task";
601 const struct ada_tasks_pspace_data *pspace_data
602 = get_ada_tasks_pspace_data (current_program_space);
603
604 if (!pspace_data->initialized_p)
605 get_tcb_types_info ();
606
607 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
608 NULL, task_id);
609 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
610
611 /* Fill in the task_id. */
612
613 task_info->task_id = task_id;
614
615 /* Compute the name of the task.
616
617 Depending on the GNAT version used, the task image is either a fat
618 string, or a thin array of characters. Older versions of GNAT used
619 to use fat strings, and therefore did not need an extra field in
620 the ATCB to store the string length. For efficiency reasons, newer
621 versions of GNAT replaced the fat string by a static buffer, but this
622 also required the addition of a new field named "Image_Len" containing
623 the length of the task name. The method used to extract the task name
624 is selected depending on the existence of this field.
625
626 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
627 we may want to get it from the first user frame of the stack. For now,
628 we just give a dummy name. */
629
630 if (pspace_data->atcb_fieldno.image_len == -1)
631 {
632 if (pspace_data->atcb_fieldno.image >= 0)
633 read_fat_string_value (task_info->name,
634 value_field (common_value,
635 pspace_data->atcb_fieldno.image),
636 sizeof (task_info->name) - 1);
637 else
638 {
639 struct minimal_symbol *msym;
640
641 msym = lookup_minimal_symbol_by_pc (task_id);
642 if (msym)
643 {
644 const char *full_name = SYMBOL_LINKAGE_NAME (msym);
645 const char *task_name = full_name;
646 const char *p;
647
648 /* Strip the prefix. */
649 for (p = full_name; *p; p++)
650 if (p[0] == '_' && p[1] == '_')
651 task_name = p + 2;
652
653 /* Copy the task name. */
654 strncpy (task_info->name, task_name, sizeof (task_info->name));
655 task_info->name[sizeof (task_info->name) - 1] = 0;
656 }
657 else
658 {
659 /* No symbol found. Use a default name. */
660 strcpy (task_info->name, ravenscar_task_name);
661 }
662 }
663 }
664 else
665 {
666 int len = value_as_long
667 (value_field (common_value,
668 pspace_data->atcb_fieldno.image_len));
669
670 value_as_string (task_info->name,
671 value_field (common_value,
672 pspace_data->atcb_fieldno.image),
673 len);
674 }
675
676 /* Compute the task state and priority. */
677
678 task_info->state =
679 value_as_long (value_field (common_value,
680 pspace_data->atcb_fieldno.state));
681 task_info->priority =
682 value_as_long (value_field (common_value,
683 pspace_data->atcb_fieldno.priority));
684
685 /* If the ATCB contains some information about the parent task,
686 then compute it as well. Otherwise, zero. */
687
688 if (pspace_data->atcb_fieldno.parent >= 0)
689 task_info->parent =
690 value_as_address (value_field (common_value,
691 pspace_data->atcb_fieldno.parent));
692 else
693 task_info->parent = 0;
694
695
696 /* If the ATCB contains some information about entry calls, then
697 compute the "called_task" as well. Otherwise, zero. */
698
699 if (pspace_data->atcb_fieldno.atc_nesting_level > 0
700 && pspace_data->atcb_fieldno.entry_calls > 0)
701 {
702 /* Let My_ATCB be the Ada task control block of a task calling the
703 entry of another task; then the Task_Id of the called task is
704 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
705 atc_nesting_level_value =
706 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
707 entry_calls_value =
708 ada_coerce_to_simple_array_ptr
709 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
710 entry_calls_value_element =
711 value_subscript (entry_calls_value,
712 value_as_long (atc_nesting_level_value));
713 called_task_fieldno =
714 ada_get_field_index (value_type (entry_calls_value_element),
715 "called_task", 0);
716 task_info->called_task =
717 value_as_address (value_field (entry_calls_value_element,
718 called_task_fieldno));
719 }
720 else
721 {
722 task_info->called_task = 0;
723 }
724
725 /* If the ATCB cotnains some information about RV callers,
726 then compute the "caller_task". Otherwise, zero. */
727
728 task_info->caller_task = 0;
729 if (pspace_data->atcb_fieldno.call >= 0)
730 {
731 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
732 If Common_ATCB.Call is null, then there is no caller. */
733 const CORE_ADDR call =
734 value_as_address (value_field (common_value,
735 pspace_data->atcb_fieldno.call));
736 struct value *call_val;
737
738 if (call != 0)
739 {
740 call_val =
741 value_from_contents_and_address (pspace_data->atcb_call_type,
742 NULL, call);
743 task_info->caller_task =
744 value_as_address
745 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
746 }
747 }
748
749 /* And finally, compute the task ptid. Note that there are situations
750 where this cannot be determined:
751 - The task is no longer alive - the ptid is irrelevant;
752 - We are debugging a core file - the thread is not always
753 completely preserved for us to link back a task to its
754 underlying thread. Since we do not support task switching
755 when debugging core files anyway, we don't need to compute
756 that task ptid.
757 In either case, we don't need that ptid, and it is just good enough
758 to set it to null_ptid. */
759
760 if (target_has_execution && ada_task_is_alive (task_info))
761 task_info->ptid = ptid_from_atcb_common (common_value);
762 else
763 task_info->ptid = null_ptid;
764 }
765
766 /* Read the ATCB info of the given task (identified by TASK_ID), and
767 add the result to the given inferior's TASK_LIST. */
768
769 static void
770 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
771 {
772 struct ada_task_info task_info;
773 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
774
775 read_atcb (task_id, &task_info);
776 VEC_safe_push (ada_task_info_s, data->task_list, &task_info);
777 }
778
779 /* Read the Known_Tasks array from the inferior memory, and store
780 it in the current inferior's TASK_LIST. Return non-zero upon success. */
781
782 static int
783 read_known_tasks_array (struct ada_tasks_inferior_data *data)
784 {
785 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
786 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
787 gdb_byte *known_tasks = alloca (known_tasks_size);
788 int i;
789
790 /* Build a new list by reading the ATCBs from the Known_Tasks array
791 in the Ada runtime. */
792 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
793 for (i = 0; i < data->known_tasks_length; i++)
794 {
795 CORE_ADDR task_id =
796 extract_typed_address (known_tasks + i * target_ptr_byte,
797 data->known_tasks_element);
798
799 if (task_id != 0)
800 add_ada_task (task_id, current_inferior ());
801 }
802
803 return 1;
804 }
805
806 /* Read the known tasks from the inferior memory, and store it in
807 the current inferior's TASK_LIST. Return non-zero upon success. */
808
809 static int
810 read_known_tasks_list (struct ada_tasks_inferior_data *data)
811 {
812 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
813 gdb_byte *known_tasks = alloca (target_ptr_byte);
814 CORE_ADDR task_id;
815 const struct ada_tasks_pspace_data *pspace_data
816 = get_ada_tasks_pspace_data (current_program_space);
817
818 /* Sanity check. */
819 if (pspace_data->atcb_fieldno.activation_link < 0)
820 return 0;
821
822 /* Build a new list by reading the ATCBs. Read head of the list. */
823 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
824 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
825 while (task_id != 0)
826 {
827 struct value *tcb_value;
828 struct value *common_value;
829
830 add_ada_task (task_id, current_inferior ());
831
832 /* Read the chain. */
833 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
834 NULL, task_id);
835 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
836 task_id = value_as_address
837 (value_field (common_value,
838 pspace_data->atcb_fieldno.activation_link));
839 }
840
841 return 1;
842 }
843
844 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
845 Do nothing if those fields are already set and still up to date. */
846
847 static void
848 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
849 {
850 const char *name;
851 struct minimal_symbol *msym;
852 struct symbol *sym;
853
854 /* Return now if already set. */
855 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
856 return;
857
858 /* Try array. */
859
860 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
861 if (msym != NULL)
862 {
863 data->known_tasks_kind = ADA_TASKS_ARRAY;
864 data->known_tasks_addr = SYMBOL_VALUE_ADDRESS (msym);
865
866 /* Try to get pointer type and array length from the symtab. */
867 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
868 language_c, NULL);
869 if (sym != NULL)
870 {
871 /* Validate. */
872 struct type *type = check_typedef (SYMBOL_TYPE (sym));
873 struct type *eltype;
874 struct type *idxtype;
875
876 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
877 && (eltype = check_typedef (TYPE_TARGET_TYPE (type)))
878 && TYPE_CODE (eltype) == TYPE_CODE_PTR
879 && (idxtype = check_typedef (TYPE_INDEX_TYPE (type)))
880 && !TYPE_LOW_BOUND_UNDEFINED (idxtype)
881 && !TYPE_HIGH_BOUND_UNDEFINED (idxtype))
882 {
883 data->known_tasks_element = eltype;
884 data->known_tasks_length =
885 TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1;
886 return;
887 }
888 }
889
890 /* Fallback to default values. The runtime may have been stripped (as
891 in some distributions), but it is likely that the executable still
892 contains debug information on the task type (due to implicit with of
893 Ada.Tasking). */
894 data->known_tasks_element =
895 builtin_type (target_gdbarch)->builtin_data_ptr;
896 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
897 return;
898 }
899
900
901 /* Try list. */
902
903 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
904 if (msym != NULL)
905 {
906 data->known_tasks_kind = ADA_TASKS_LIST;
907 data->known_tasks_addr = SYMBOL_VALUE_ADDRESS (msym);
908 data->known_tasks_length = 1;
909
910 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
911 language_c, NULL);
912 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
913 {
914 /* Validate. */
915 struct type *type = check_typedef (SYMBOL_TYPE (sym));
916
917 if (TYPE_CODE (type) == TYPE_CODE_PTR)
918 {
919 data->known_tasks_element = type;
920 return;
921 }
922 }
923
924 /* Fallback to default values. */
925 data->known_tasks_element =
926 builtin_type (target_gdbarch)->builtin_data_ptr;
927 data->known_tasks_length = 1;
928 return;
929 }
930
931 /* Can't find tasks. */
932
933 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
934 data->known_tasks_addr = 0;
935 }
936
937 /* Read the known tasks from the current inferior's memory, and store it
938 in the current inferior's data TASK_LIST.
939 Return non-zero upon success. */
940
941 static int
942 read_known_tasks (void)
943 {
944 struct ada_tasks_inferior_data *data =
945 get_ada_tasks_inferior_data (current_inferior ());
946
947 /* Step 1: Clear the current list, if necessary. */
948 VEC_truncate (ada_task_info_s, data->task_list, 0);
949
950 /* Step 2: do the real work.
951 If the application does not use task, then no more needs to be done.
952 It is important to have the task list cleared (see above) before we
953 return, as we don't want a stale task list to be used... This can
954 happen for instance when debugging a non-multitasking program after
955 having debugged a multitasking one. */
956 ada_tasks_inferior_data_sniffer (data);
957 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
958
959 switch (data->known_tasks_kind)
960 {
961 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
962 return 0;
963 case ADA_TASKS_ARRAY:
964 return read_known_tasks_array (data);
965 case ADA_TASKS_LIST:
966 return read_known_tasks_list (data);
967 }
968
969 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
970 array unless needed. Then report a success. */
971 data->task_list_valid_p = 1;
972
973 return 1;
974 }
975
976 /* Build the task_list by reading the Known_Tasks array from
977 the inferior, and return the number of tasks in that list
978 (zero means that the program is not using tasking at all). */
979
980 int
981 ada_build_task_list (void)
982 {
983 struct ada_tasks_inferior_data *data;
984
985 if (!target_has_stack)
986 error (_("Cannot inspect Ada tasks when program is not running"));
987
988 data = get_ada_tasks_inferior_data (current_inferior ());
989 if (!data->task_list_valid_p)
990 read_known_tasks ();
991
992 return VEC_length (ada_task_info_s, data->task_list);
993 }
994
995 /* Print a table providing a short description of all Ada tasks
996 running inside inferior INF. If ARG_STR is set, it will be
997 interpreted as a task number, and the table will be limited to
998 that task only. */
999
1000 void
1001 print_ada_task_info (struct ui_out *uiout,
1002 char *arg_str,
1003 struct inferior *inf)
1004 {
1005 struct ada_tasks_inferior_data *data;
1006 int taskno, nb_tasks;
1007 int taskno_arg = 0;
1008 struct cleanup *old_chain;
1009 int nb_columns;
1010
1011 if (ada_build_task_list () == 0)
1012 {
1013 ui_out_message (uiout, 0,
1014 _("Your application does not use any Ada tasks.\n"));
1015 return;
1016 }
1017
1018 if (arg_str != NULL && arg_str[0] != '\0')
1019 taskno_arg = value_as_long (parse_and_eval (arg_str));
1020
1021 if (ui_out_is_mi_like_p (uiout))
1022 /* In GDB/MI mode, we want to provide the thread ID corresponding
1023 to each task. This allows clients to quickly find the thread
1024 associated to any task, which is helpful for commands that
1025 take a --thread argument. However, in order to be able to
1026 provide that thread ID, the thread list must be up to date
1027 first. */
1028 target_find_new_threads ();
1029
1030 data = get_ada_tasks_inferior_data (inf);
1031
1032 /* Compute the number of tasks that are going to be displayed
1033 in the output. If an argument was given, there will be
1034 at most 1 entry. Otherwise, there will be as many entries
1035 as we have tasks. */
1036 if (taskno_arg)
1037 {
1038 if (taskno_arg > 0
1039 && taskno_arg <= VEC_length (ada_task_info_s, data->task_list))
1040 nb_tasks = 1;
1041 else
1042 nb_tasks = 0;
1043 }
1044 else
1045 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
1046
1047 nb_columns = ui_out_is_mi_like_p (uiout) ? 8 : 7;
1048 old_chain = make_cleanup_ui_out_table_begin_end (uiout, nb_columns,
1049 nb_tasks, "tasks");
1050 ui_out_table_header (uiout, 1, ui_left, "current", "");
1051 ui_out_table_header (uiout, 3, ui_right, "id", "ID");
1052 ui_out_table_header (uiout, 9, ui_right, "task-id", "TID");
1053 /* The following column is provided in GDB/MI mode only because
1054 it is only really useful in that mode, and also because it
1055 allows us to keep the CLI output shorter and more compact. */
1056 if (ui_out_is_mi_like_p (uiout))
1057 ui_out_table_header (uiout, 4, ui_right, "thread-id", "");
1058 ui_out_table_header (uiout, 4, ui_right, "parent-id", "P-ID");
1059 ui_out_table_header (uiout, 3, ui_right, "priority", "Pri");
1060 ui_out_table_header (uiout, 22, ui_left, "state", "State");
1061 /* Use ui_noalign for the last column, to prevent the CLI uiout
1062 from printing an extra space at the end of each row. This
1063 is a bit of a hack, but does get the job done. */
1064 ui_out_table_header (uiout, 1, ui_noalign, "name", "Name");
1065 ui_out_table_body (uiout);
1066
1067 for (taskno = 1;
1068 taskno <= VEC_length (ada_task_info_s, data->task_list);
1069 taskno++)
1070 {
1071 const struct ada_task_info *const task_info =
1072 VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1073 int parent_id;
1074 struct cleanup *chain2;
1075
1076 gdb_assert (task_info != NULL);
1077
1078 /* If the user asked for the output to be restricted
1079 to one task only, and this is not the task, skip
1080 to the next one. */
1081 if (taskno_arg && taskno != taskno_arg)
1082 continue;
1083
1084 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1085
1086 /* Print a star if this task is the current task (or the task
1087 currently selected). */
1088 if (ptid_equal (task_info->ptid, inferior_ptid))
1089 ui_out_field_string (uiout, "current", "*");
1090 else
1091 ui_out_field_skip (uiout, "current");
1092
1093 /* Print the task number. */
1094 ui_out_field_int (uiout, "id", taskno);
1095
1096 /* Print the Task ID. */
1097 ui_out_field_fmt (uiout, "task-id", "%9lx", (long) task_info->task_id);
1098
1099 /* Print the associated Thread ID. */
1100 if (ui_out_is_mi_like_p (uiout))
1101 {
1102 const int thread_id = pid_to_thread_id (task_info->ptid);
1103
1104 if (thread_id != 0)
1105 ui_out_field_int (uiout, "thread-id", thread_id);
1106 else
1107 /* This should never happen unless there is a bug somewhere,
1108 but be resilient when that happens. */
1109 ui_out_field_skip (uiout, "thread-id");
1110 }
1111
1112 /* Print the ID of the parent task. */
1113 parent_id = get_task_number_from_id (task_info->parent, inf);
1114 if (parent_id)
1115 ui_out_field_int (uiout, "parent-id", parent_id);
1116 else
1117 ui_out_field_skip (uiout, "parent-id");
1118
1119 /* Print the base priority of the task. */
1120 ui_out_field_int (uiout, "priority", task_info->priority);
1121
1122 /* Print the task current state. */
1123 if (task_info->caller_task)
1124 ui_out_field_fmt (uiout, "state",
1125 _("Accepting RV with %-4d"),
1126 get_task_number_from_id (task_info->caller_task,
1127 inf));
1128 else if (task_info->state == Entry_Caller_Sleep
1129 && task_info->called_task)
1130 ui_out_field_fmt (uiout, "state",
1131 _("Waiting on RV with %-3d"),
1132 get_task_number_from_id (task_info->called_task,
1133 inf));
1134 else
1135 ui_out_field_string (uiout, "state", task_states[task_info->state]);
1136
1137 /* Finally, print the task name. */
1138 ui_out_field_fmt (uiout, "name",
1139 "%s",
1140 task_info->name[0] != '\0' ? task_info->name
1141 : _("<no name>"));
1142
1143 ui_out_text (uiout, "\n");
1144 do_cleanups (chain2);
1145 }
1146
1147 do_cleanups (old_chain);
1148 }
1149
1150 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1151 for the given inferior (INF). */
1152
1153 static void
1154 info_task (struct ui_out *uiout, char *taskno_str, struct inferior *inf)
1155 {
1156 const int taskno = value_as_long (parse_and_eval (taskno_str));
1157 struct ada_task_info *task_info;
1158 int parent_taskno = 0;
1159 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1160
1161 if (ada_build_task_list () == 0)
1162 {
1163 ui_out_message (uiout, 0,
1164 _("Your application does not use any Ada tasks.\n"));
1165 return;
1166 }
1167
1168 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1169 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1170 "see the IDs of currently known tasks"), taskno);
1171 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1172
1173 /* Print the Ada task ID. */
1174 printf_filtered (_("Ada Task: %s\n"),
1175 paddress (target_gdbarch, task_info->task_id));
1176
1177 /* Print the name of the task. */
1178 if (task_info->name[0] != '\0')
1179 printf_filtered (_("Name: %s\n"), task_info->name);
1180 else
1181 printf_filtered (_("<no name>\n"));
1182
1183 /* Print the TID and LWP. */
1184 printf_filtered (_("Thread: %#lx\n"), ptid_get_tid (task_info->ptid));
1185 printf_filtered (_("LWP: %#lx\n"), ptid_get_lwp (task_info->ptid));
1186
1187 /* Print who is the parent (if any). */
1188 if (task_info->parent != 0)
1189 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1190 if (parent_taskno)
1191 {
1192 struct ada_task_info *parent =
1193 VEC_index (ada_task_info_s, data->task_list, parent_taskno - 1);
1194
1195 printf_filtered (_("Parent: %d"), parent_taskno);
1196 if (parent->name[0] != '\0')
1197 printf_filtered (" (%s)", parent->name);
1198 printf_filtered ("\n");
1199 }
1200 else
1201 printf_filtered (_("No parent\n"));
1202
1203 /* Print the base priority. */
1204 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1205
1206 /* print the task current state. */
1207 {
1208 int target_taskno = 0;
1209
1210 if (task_info->caller_task)
1211 {
1212 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1213 printf_filtered (_("State: Accepting rendezvous with %d"),
1214 target_taskno);
1215 }
1216 else if (task_info->state == Entry_Caller_Sleep && task_info->called_task)
1217 {
1218 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1219 printf_filtered (_("State: Waiting on task %d's entry"),
1220 target_taskno);
1221 }
1222 else
1223 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1224
1225 if (target_taskno)
1226 {
1227 struct ada_task_info *target_task_info =
1228 VEC_index (ada_task_info_s, data->task_list, target_taskno - 1);
1229
1230 if (target_task_info->name[0] != '\0')
1231 printf_filtered (" (%s)", target_task_info->name);
1232 }
1233
1234 printf_filtered ("\n");
1235 }
1236 }
1237
1238 /* If ARG is empty or null, then print a list of all Ada tasks.
1239 Otherwise, print detailed information about the task whose ID
1240 is ARG.
1241
1242 Does nothing if the program doesn't use Ada tasking. */
1243
1244 static void
1245 info_tasks_command (char *arg, int from_tty)
1246 {
1247 struct ui_out *uiout = current_uiout;
1248
1249 if (arg == NULL || *arg == '\0')
1250 print_ada_task_info (uiout, NULL, current_inferior ());
1251 else
1252 info_task (uiout, arg, current_inferior ());
1253 }
1254
1255 /* Print a message telling the user id of the current task.
1256 This function assumes that tasking is in use in the inferior. */
1257
1258 static void
1259 display_current_task_id (void)
1260 {
1261 const int current_task = ada_get_task_number (inferior_ptid);
1262
1263 if (current_task == 0)
1264 printf_filtered (_("[Current task is unknown]\n"));
1265 else
1266 printf_filtered (_("[Current task is %d]\n"), current_task);
1267 }
1268
1269 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1270 that task. Print an error message if the task switch failed. */
1271
1272 static void
1273 task_command_1 (char *taskno_str, int from_tty, struct inferior *inf)
1274 {
1275 const int taskno = value_as_long (parse_and_eval (taskno_str));
1276 struct ada_task_info *task_info;
1277 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1278
1279 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1280 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1281 "see the IDs of currently known tasks"), taskno);
1282 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1283
1284 if (!ada_task_is_alive (task_info))
1285 error (_("Cannot switch to task %d: Task is no longer running"), taskno);
1286
1287 /* On some platforms, the thread list is not updated until the user
1288 performs a thread-related operation (by using the "info threads"
1289 command, for instance). So this thread list may not be up to date
1290 when the user attempts this task switch. Since we cannot switch
1291 to the thread associated to our task if GDB does not know about
1292 that thread, we need to make sure that any new threads gets added
1293 to the thread list. */
1294 target_find_new_threads ();
1295
1296 /* Verify that the ptid of the task we want to switch to is valid
1297 (in other words, a ptid that GDB knows about). Otherwise, we will
1298 cause an assertion failure later on, when we try to determine
1299 the ptid associated thread_info data. We should normally never
1300 encounter such an error, but the wrong ptid can actually easily be
1301 computed if target_get_ada_task_ptid has not been implemented for
1302 our target (yet). Rather than cause an assertion error in that case,
1303 it's nicer for the user to just refuse to perform the task switch. */
1304 if (!find_thread_ptid (task_info->ptid))
1305 error (_("Unable to compute thread ID for task %d.\n"
1306 "Cannot switch to this task."),
1307 taskno);
1308
1309 switch_to_thread (task_info->ptid);
1310 ada_find_printable_frame (get_selected_frame (NULL));
1311 printf_filtered (_("[Switching to task %d]\n"), taskno);
1312 print_stack_frame (get_selected_frame (NULL),
1313 frame_relative_level (get_selected_frame (NULL)), 1);
1314 }
1315
1316
1317 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1318 Otherwise, switch to the task indicated by TASKNO_STR. */
1319
1320 static void
1321 task_command (char *taskno_str, int from_tty)
1322 {
1323 struct ui_out *uiout = current_uiout;
1324
1325 if (ada_build_task_list () == 0)
1326 {
1327 ui_out_message (uiout, 0,
1328 _("Your application does not use any Ada tasks.\n"));
1329 return;
1330 }
1331
1332 if (taskno_str == NULL || taskno_str[0] == '\0')
1333 display_current_task_id ();
1334 else
1335 {
1336 /* Task switching in core files doesn't work, either because:
1337 1. Thread support is not implemented with core files
1338 2. Thread support is implemented, but the thread IDs created
1339 after having read the core file are not the same as the ones
1340 that were used during the program life, before the crash.
1341 As a consequence, there is no longer a way for the debugger
1342 to find the associated thead ID of any given Ada task.
1343 So, instead of attempting a task switch without giving the user
1344 any clue as to what might have happened, just error-out with
1345 a message explaining that this feature is not supported. */
1346 if (!target_has_execution)
1347 error (_("\
1348 Task switching not supported when debugging from core files\n\
1349 (use thread support instead)"));
1350 task_command_1 (taskno_str, from_tty, current_inferior ());
1351 }
1352 }
1353
1354 /* Indicate that the given inferior's task list may have changed,
1355 so invalidate the cache. */
1356
1357 static void
1358 ada_task_list_changed (struct inferior *inf)
1359 {
1360 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1361
1362 data->task_list_valid_p = 0;
1363 }
1364
1365 /* Invalidate the per-program-space data. */
1366
1367 static void
1368 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1369 {
1370 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1371 }
1372
1373 /* Invalidate the per-inferior data. */
1374
1375 static void
1376 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1377 {
1378 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1379
1380 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1381 data->task_list_valid_p = 0;
1382 }
1383
1384 /* The 'normal_stop' observer notification callback. */
1385
1386 static void
1387 ada_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1388 {
1389 /* The inferior has been resumed, and just stopped. This means that
1390 our task_list needs to be recomputed before it can be used again. */
1391 ada_task_list_changed (current_inferior ());
1392 }
1393
1394 /* A routine to be called when the objfiles have changed. */
1395
1396 static void
1397 ada_new_objfile_observer (struct objfile *objfile)
1398 {
1399 struct inferior *inf;
1400
1401 /* Invalidate the relevant data in our program-space data. */
1402
1403 if (objfile == NULL)
1404 {
1405 /* All objfiles are being cleared, so we should clear all
1406 our caches for all program spaces. */
1407 struct program_space *pspace;
1408
1409 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next)
1410 ada_tasks_invalidate_pspace_data (pspace);
1411 }
1412 else
1413 {
1414 /* The associated program-space data might have changed after
1415 this objfile was added. Invalidate all cached data. */
1416 ada_tasks_invalidate_pspace_data (objfile->pspace);
1417 }
1418
1419 /* Invalidate the per-inferior cache for all inferiors using
1420 this objfile (or, in other words, for all inferiors who have
1421 the same program-space as the objfile's program space).
1422 If all objfiles are being cleared (OBJFILE is NULL), then
1423 clear the caches for all inferiors. */
1424
1425 for (inf = inferior_list; inf != NULL; inf = inf->next)
1426 if (objfile == NULL || inf->pspace == objfile->pspace)
1427 ada_tasks_invalidate_inferior_data (inf);
1428 }
1429
1430 /* Provide a prototype to silence -Wmissing-prototypes. */
1431 extern initialize_file_ftype _initialize_tasks;
1432
1433 void
1434 _initialize_tasks (void)
1435 {
1436 ada_tasks_pspace_data_handle = register_program_space_data ();
1437 ada_tasks_inferior_data_handle = register_inferior_data ();
1438
1439 /* Attach various observers. */
1440 observer_attach_normal_stop (ada_normal_stop_observer);
1441 observer_attach_new_objfile (ada_new_objfile_observer);
1442
1443 /* Some new commands provided by this module. */
1444 add_info ("tasks", info_tasks_command,
1445 _("Provide information about all known Ada tasks"));
1446 add_cmd ("task", class_run, task_command,
1447 _("Use this command to switch between Ada tasks.\n\
1448 Without argument, this command simply prints the current task ID"),
1449 &cmdlist);
1450 }
1451
This page took 0.08312 seconds and 5 git commands to generate.