gdb/remote: Use true/false instead of 1/0
[deliverable/binutils-gdb.git] / gdb / ada-varobj.c
1 /* varobj support for Ada.
2
3 Copyright (C) 2012-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "ada-lang.h"
22 #include "varobj.h"
23 #include "language.h"
24 #include "valprint.h"
25
26 /* Implementation principle used in this unit:
27
28 For our purposes, the meat of the varobj object is made of two
29 elements: The varobj's (struct) value, and the varobj's (struct)
30 type. In most situations, the varobj has a non-NULL value, and
31 the type becomes redundant, as it can be directly derived from
32 the value. In the initial implementation of this unit, most
33 routines would only take a value, and return a value.
34
35 But there are many situations where it is possible for a varobj
36 to have a NULL value. For instance, if the varobj becomes out of
37 scope. Or better yet, when the varobj is the child of another
38 NULL pointer varobj. In that situation, we must rely on the type
39 instead of the value to create the child varobj.
40
41 That's why most functions below work with a (value, type) pair.
42 The value may or may not be NULL. But the type is always expected
43 to be set. When the value is NULL, then we work with the type
44 alone, and keep the value NULL. But when the value is not NULL,
45 then we work using the value, because it provides more information.
46 But we still always set the type as well, even if that type could
47 easily be derived from the value. The reason behind this is that
48 it allows the code to use the type without having to worry about
49 it being set or not. It makes the code clearer. */
50
51 static int ada_varobj_get_number_of_children (struct value *parent_value,
52 struct type *parent_type);
53
54 /* A convenience function that decodes the VALUE_PTR/TYPE_PTR couple:
55 If there is a value (*VALUE_PTR not NULL), then perform the decoding
56 using it, and compute the associated type from the resulting value.
57 Otherwise, compute a static approximation of *TYPE_PTR, leaving
58 *VALUE_PTR unchanged.
59
60 The results are written in place. */
61
62 static void
63 ada_varobj_decode_var (struct value **value_ptr, struct type **type_ptr)
64 {
65 if (*value_ptr)
66 *value_ptr = ada_get_decoded_value (*value_ptr);
67
68 if (*value_ptr != nullptr)
69 *type_ptr = ada_check_typedef (value_type (*value_ptr));
70 else
71 *type_ptr = ada_get_decoded_type (*type_ptr);
72 }
73
74 /* Return a string containing an image of the given scalar value.
75 VAL is the numeric value, while TYPE is the value's type.
76 This is useful for plain integers, of course, but even more
77 so for enumerated types. */
78
79 static std::string
80 ada_varobj_scalar_image (struct type *type, LONGEST val)
81 {
82 string_file buf;
83
84 ada_print_scalar (type, val, &buf);
85 return std::move (buf.string ());
86 }
87
88 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
89 a struct or union, compute the (CHILD_VALUE, CHILD_TYPE) couple
90 corresponding to the field number FIELDNO. */
91
92 static void
93 ada_varobj_struct_elt (struct value *parent_value,
94 struct type *parent_type,
95 int fieldno,
96 struct value **child_value,
97 struct type **child_type)
98 {
99 struct value *value = NULL;
100 struct type *type = NULL;
101
102 if (parent_value)
103 {
104 value = value_field (parent_value, fieldno);
105 type = value_type (value);
106 }
107 else
108 type = parent_type->field (fieldno).type ();
109
110 if (child_value)
111 *child_value = value;
112 if (child_type)
113 *child_type = type;
114 }
115
116 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a pointer or
117 reference, return a (CHILD_VALUE, CHILD_TYPE) couple corresponding
118 to the dereferenced value. */
119
120 static void
121 ada_varobj_ind (struct value *parent_value,
122 struct type *parent_type,
123 struct value **child_value,
124 struct type **child_type)
125 {
126 struct value *value = NULL;
127 struct type *type = NULL;
128
129 if (ada_is_array_descriptor_type (parent_type))
130 {
131 /* This can only happen when PARENT_VALUE is NULL. Otherwise,
132 ada_get_decoded_value would have transformed our parent_type
133 into a simple array pointer type. */
134 gdb_assert (parent_value == NULL);
135 gdb_assert (parent_type->code () == TYPE_CODE_TYPEDEF);
136
137 /* Decode parent_type by the equivalent pointer to (decoded)
138 array. */
139 while (parent_type->code () == TYPE_CODE_TYPEDEF)
140 parent_type = TYPE_TARGET_TYPE (parent_type);
141 parent_type = ada_coerce_to_simple_array_type (parent_type);
142 parent_type = lookup_pointer_type (parent_type);
143 }
144
145 /* If parent_value is a null pointer, then only perform static
146 dereferencing. We cannot dereference null pointers. */
147 if (parent_value && value_as_address (parent_value) == 0)
148 parent_value = NULL;
149
150 if (parent_value)
151 {
152 value = ada_value_ind (parent_value);
153 type = value_type (value);
154 }
155 else
156 type = TYPE_TARGET_TYPE (parent_type);
157
158 if (child_value)
159 *child_value = value;
160 if (child_type)
161 *child_type = type;
162 }
163
164 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a simple
165 array (TYPE_CODE_ARRAY), return the (CHILD_VALUE, CHILD_TYPE)
166 pair corresponding to the element at ELT_INDEX. */
167
168 static void
169 ada_varobj_simple_array_elt (struct value *parent_value,
170 struct type *parent_type,
171 int elt_index,
172 struct value **child_value,
173 struct type **child_type)
174 {
175 struct value *value = NULL;
176 struct type *type = NULL;
177
178 if (parent_value)
179 {
180 struct value *index_value =
181 value_from_longest (parent_type->index_type (), elt_index);
182
183 value = ada_value_subscript (parent_value, 1, &index_value);
184 type = value_type (value);
185 }
186 else
187 type = TYPE_TARGET_TYPE (parent_type);
188
189 if (child_value)
190 *child_value = value;
191 if (child_type)
192 *child_type = type;
193 }
194
195 /* Given the decoded value and decoded type of a variable object,
196 adjust the value and type to those necessary for getting children
197 of the variable object.
198
199 The replacement is performed in place. */
200
201 static void
202 ada_varobj_adjust_for_child_access (struct value **value,
203 struct type **type)
204 {
205 /* Pointers to struct/union types are special: Instead of having
206 one child (the struct), their children are the components of
207 the struct/union type. We handle this situation by dereferencing
208 the (value, type) couple. */
209 if ((*type)->code () == TYPE_CODE_PTR
210 && (TYPE_TARGET_TYPE (*type)->code () == TYPE_CODE_STRUCT
211 || TYPE_TARGET_TYPE (*type)->code () == TYPE_CODE_UNION)
212 && *value != nullptr
213 && value_as_address (*value) != 0
214 && !ada_is_array_descriptor_type (TYPE_TARGET_TYPE (*type))
215 && !ada_is_constrained_packed_array_type (TYPE_TARGET_TYPE (*type)))
216 ada_varobj_ind (*value, *type, value, type);
217
218 /* If this is a tagged type, we need to transform it a bit in order
219 to be able to fetch its full view. As always with tagged types,
220 we can only do that if we have a value. */
221 if (*value != NULL && ada_is_tagged_type (*type, 1))
222 {
223 *value = ada_tag_value_at_base_address (*value);
224 *type = value_type (*value);
225 }
226 }
227
228 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is an array
229 (any type of array, "simple" or not), return the number of children
230 that this array contains. */
231
232 static int
233 ada_varobj_get_array_number_of_children (struct value *parent_value,
234 struct type *parent_type)
235 {
236 LONGEST lo, hi;
237
238 if (parent_value == NULL
239 && is_dynamic_type (parent_type->index_type ()))
240 {
241 /* This happens when listing the children of an object
242 which does not exist in memory (Eg: when requesting
243 the children of a null pointer, which is allowed by
244 varobj). The array index type being dynamic, we cannot
245 determine how many elements this array has. Just assume
246 it has none. */
247 return 0;
248 }
249
250 if (!get_array_bounds (parent_type, &lo, &hi))
251 {
252 /* Could not get the array bounds. Pretend this is an empty array. */
253 warning (_("unable to get bounds of array, assuming null array"));
254 return 0;
255 }
256
257 /* Ada allows the upper bound to be less than the lower bound,
258 in order to specify empty arrays... */
259 if (hi < lo)
260 return 0;
261
262 return hi - lo + 1;
263 }
264
265 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a struct or
266 union, return the number of children this struct contains. */
267
268 static int
269 ada_varobj_get_struct_number_of_children (struct value *parent_value,
270 struct type *parent_type)
271 {
272 int n_children = 0;
273 int i;
274
275 gdb_assert (parent_type->code () == TYPE_CODE_STRUCT
276 || parent_type->code () == TYPE_CODE_UNION);
277
278 for (i = 0; i < parent_type->num_fields (); i++)
279 {
280 if (ada_is_ignored_field (parent_type, i))
281 continue;
282
283 if (ada_is_wrapper_field (parent_type, i))
284 {
285 struct value *elt_value;
286 struct type *elt_type;
287
288 ada_varobj_struct_elt (parent_value, parent_type, i,
289 &elt_value, &elt_type);
290 if (ada_is_tagged_type (elt_type, 0))
291 {
292 /* We must not use ada_varobj_get_number_of_children
293 to determine is element's number of children, because
294 this function first calls ada_varobj_decode_var,
295 which "fixes" the element. For tagged types, this
296 includes reading the object's tag to determine its
297 real type, which happens to be the parent_type, and
298 leads to an infinite loop (because the element gets
299 fixed back into the parent). */
300 n_children += ada_varobj_get_struct_number_of_children
301 (elt_value, elt_type);
302 }
303 else
304 n_children += ada_varobj_get_number_of_children (elt_value, elt_type);
305 }
306 else if (ada_is_variant_part (parent_type, i))
307 {
308 /* In normal situations, the variant part of the record should
309 have been "fixed". Or, in other words, it should have been
310 replaced by the branch of the variant part that is relevant
311 for our value. But there are still situations where this
312 can happen, however (Eg. when our parent is a NULL pointer).
313 We do not support showing this part of the record for now,
314 so just pretend this field does not exist. */
315 }
316 else
317 n_children++;
318 }
319
320 return n_children;
321 }
322
323 /* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
324 a pointer, return the number of children this pointer has. */
325
326 static int
327 ada_varobj_get_ptr_number_of_children (struct value *parent_value,
328 struct type *parent_type)
329 {
330 struct type *child_type = TYPE_TARGET_TYPE (parent_type);
331
332 /* Pointer to functions and to void do not have a child, since
333 you cannot print what they point to. */
334 if (child_type->code () == TYPE_CODE_FUNC
335 || child_type->code () == TYPE_CODE_VOID)
336 return 0;
337
338 /* Only show children for non-null pointers. */
339 if (parent_value == nullptr || value_as_address (parent_value) == 0)
340 return 0;
341
342 /* All other types have 1 child. */
343 return 1;
344 }
345
346 /* Return the number of children for the (PARENT_VALUE, PARENT_TYPE)
347 pair. */
348
349 static int
350 ada_varobj_get_number_of_children (struct value *parent_value,
351 struct type *parent_type)
352 {
353 ada_varobj_decode_var (&parent_value, &parent_type);
354 ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
355
356 /* A typedef to an array descriptor in fact represents a pointer
357 to an unconstrained array. These types always have one child
358 (the unconstrained array). */
359 if (ada_is_access_to_unconstrained_array (parent_type))
360 return 1;
361
362 if (parent_type->code () == TYPE_CODE_ARRAY)
363 return ada_varobj_get_array_number_of_children (parent_value,
364 parent_type);
365
366 if (parent_type->code () == TYPE_CODE_STRUCT
367 || parent_type->code () == TYPE_CODE_UNION)
368 return ada_varobj_get_struct_number_of_children (parent_value,
369 parent_type);
370
371 if (parent_type->code () == TYPE_CODE_PTR)
372 return ada_varobj_get_ptr_number_of_children (parent_value,
373 parent_type);
374
375 /* All other types have no child. */
376 return 0;
377 }
378
379 /* Describe the child of the (PARENT_VALUE, PARENT_TYPE) pair
380 whose index is CHILD_INDEX:
381
382 - If CHILD_NAME is not NULL, then a copy of the child's name
383 is saved in *CHILD_NAME. This copy must be deallocated
384 with xfree after use.
385
386 - If CHILD_VALUE is not NULL, then save the child's value
387 in *CHILD_VALUE. Same thing for the child's type with
388 CHILD_TYPE if not NULL.
389
390 - If CHILD_PATH_EXPR is not NULL, then compute the child's
391 path expression. The resulting string must be deallocated
392 after use with xfree.
393
394 Computing the child's path expression requires the PARENT_PATH_EXPR
395 to be non-NULL. Otherwise, PARENT_PATH_EXPR may be null if
396 CHILD_PATH_EXPR is NULL.
397
398 PARENT_NAME is the name of the parent, and should never be NULL. */
399
400 static void ada_varobj_describe_child (struct value *parent_value,
401 struct type *parent_type,
402 const char *parent_name,
403 const char *parent_path_expr,
404 int child_index,
405 std::string *child_name,
406 struct value **child_value,
407 struct type **child_type,
408 std::string *child_path_expr);
409
410 /* Same as ada_varobj_describe_child, but limited to struct/union
411 objects. */
412
413 static void
414 ada_varobj_describe_struct_child (struct value *parent_value,
415 struct type *parent_type,
416 const char *parent_name,
417 const char *parent_path_expr,
418 int child_index,
419 std::string *child_name,
420 struct value **child_value,
421 struct type **child_type,
422 std::string *child_path_expr)
423 {
424 int fieldno;
425 int childno = 0;
426
427 gdb_assert (parent_type->code () == TYPE_CODE_STRUCT
428 || parent_type->code () == TYPE_CODE_UNION);
429
430 for (fieldno = 0; fieldno < parent_type->num_fields (); fieldno++)
431 {
432 if (ada_is_ignored_field (parent_type, fieldno))
433 continue;
434
435 if (ada_is_wrapper_field (parent_type, fieldno))
436 {
437 struct value *elt_value;
438 struct type *elt_type;
439 int elt_n_children;
440
441 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
442 &elt_value, &elt_type);
443 if (ada_is_tagged_type (elt_type, 0))
444 {
445 /* Same as in ada_varobj_get_struct_number_of_children:
446 For tagged types, we must be careful to not call
447 ada_varobj_get_number_of_children, to prevent our
448 element from being fixed back into the parent. */
449 elt_n_children = ada_varobj_get_struct_number_of_children
450 (elt_value, elt_type);
451 }
452 else
453 elt_n_children =
454 ada_varobj_get_number_of_children (elt_value, elt_type);
455
456 /* Is the child we're looking for one of the children
457 of this wrapper field? */
458 if (child_index - childno < elt_n_children)
459 {
460 if (ada_is_tagged_type (elt_type, 0))
461 {
462 /* Same as in ada_varobj_get_struct_number_of_children:
463 For tagged types, we must be careful to not call
464 ada_varobj_describe_child, to prevent our element
465 from being fixed back into the parent. */
466 ada_varobj_describe_struct_child
467 (elt_value, elt_type, parent_name, parent_path_expr,
468 child_index - childno, child_name, child_value,
469 child_type, child_path_expr);
470 }
471 else
472 ada_varobj_describe_child (elt_value, elt_type,
473 parent_name, parent_path_expr,
474 child_index - childno,
475 child_name, child_value,
476 child_type, child_path_expr);
477 return;
478 }
479
480 /* The child we're looking for is beyond this wrapper
481 field, so skip all its children. */
482 childno += elt_n_children;
483 continue;
484 }
485 else if (ada_is_variant_part (parent_type, fieldno))
486 {
487 /* In normal situations, the variant part of the record should
488 have been "fixed". Or, in other words, it should have been
489 replaced by the branch of the variant part that is relevant
490 for our value. But there are still situations where this
491 can happen, however (Eg. when our parent is a NULL pointer).
492 We do not support showing this part of the record for now,
493 so just pretend this field does not exist. */
494 continue;
495 }
496
497 if (childno == child_index)
498 {
499 if (child_name)
500 {
501 /* The name of the child is none other than the field's
502 name, except that we need to strip suffixes from it.
503 For instance, fields with alignment constraints will
504 have an __XVA suffix added to them. */
505 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
506 int child_name_len = ada_name_prefix_len (field_name);
507
508 *child_name = string_printf ("%.*s", child_name_len, field_name);
509 }
510
511 if (child_value && parent_value)
512 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
513 child_value, NULL);
514
515 if (child_type)
516 ada_varobj_struct_elt (parent_value, parent_type, fieldno,
517 NULL, child_type);
518
519 if (child_path_expr)
520 {
521 /* The name of the child is none other than the field's
522 name, except that we need to strip suffixes from it.
523 For instance, fields with alignment constraints will
524 have an __XVA suffix added to them. */
525 const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
526 int child_name_len = ada_name_prefix_len (field_name);
527
528 *child_path_expr =
529 string_printf ("(%s).%.*s", parent_path_expr,
530 child_name_len, field_name);
531 }
532
533 return;
534 }
535
536 childno++;
537 }
538
539 /* Something went wrong. Either we miscounted the number of
540 children, or CHILD_INDEX was too high. But we should never
541 reach here. We don't have enough information to recover
542 nicely, so just raise an assertion failure. */
543 gdb_assert_not_reached ("unexpected code path");
544 }
545
546 /* Same as ada_varobj_describe_child, but limited to pointer objects.
547
548 Note that CHILD_INDEX is unused in this situation, but still provided
549 for consistency of interface with other routines describing an object's
550 child. */
551
552 static void
553 ada_varobj_describe_ptr_child (struct value *parent_value,
554 struct type *parent_type,
555 const char *parent_name,
556 const char *parent_path_expr,
557 int child_index,
558 std::string *child_name,
559 struct value **child_value,
560 struct type **child_type,
561 std::string *child_path_expr)
562 {
563 if (child_name)
564 *child_name = string_printf ("%s.all", parent_name);
565
566 if (child_value && parent_value)
567 ada_varobj_ind (parent_value, parent_type, child_value, NULL);
568
569 if (child_type)
570 ada_varobj_ind (parent_value, parent_type, NULL, child_type);
571
572 if (child_path_expr)
573 *child_path_expr = string_printf ("(%s).all", parent_path_expr);
574 }
575
576 /* Same as ada_varobj_describe_child, limited to simple array objects
577 (TYPE_CODE_ARRAY only).
578
579 Assumes that the (PARENT_VALUE, PARENT_TYPE) pair is properly decoded.
580 This is done by ada_varobj_describe_child before calling us. */
581
582 static void
583 ada_varobj_describe_simple_array_child (struct value *parent_value,
584 struct type *parent_type,
585 const char *parent_name,
586 const char *parent_path_expr,
587 int child_index,
588 std::string *child_name,
589 struct value **child_value,
590 struct type **child_type,
591 std::string *child_path_expr)
592 {
593 struct type *index_type;
594 int real_index;
595
596 gdb_assert (parent_type->code () == TYPE_CODE_ARRAY);
597
598 index_type = parent_type->index_type ();
599 real_index = child_index + ada_discrete_type_low_bound (index_type);
600
601 if (child_name)
602 *child_name = ada_varobj_scalar_image (index_type, real_index);
603
604 if (child_value && parent_value)
605 ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
606 child_value, NULL);
607
608 if (child_type)
609 ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
610 NULL, child_type);
611
612 if (child_path_expr)
613 {
614 std::string index_img = ada_varobj_scalar_image (index_type, real_index);
615
616 /* Enumeration litterals by themselves are potentially ambiguous.
617 For instance, consider the following package spec:
618
619 package Pck is
620 type Color is (Red, Green, Blue, White);
621 type Blood_Cells is (White, Red);
622 end Pck;
623
624 In this case, the litteral "red" for instance, or even
625 the fully-qualified litteral "pck.red" cannot be resolved
626 by itself. Type qualification is needed to determine which
627 enumeration litterals should be used.
628
629 The following variable will be used to contain the name
630 of the array index type when such type qualification is
631 needed. */
632 const char *index_type_name = NULL;
633 std::string decoded;
634
635 /* If the index type is a range type, find the base type. */
636 while (index_type->code () == TYPE_CODE_RANGE)
637 index_type = TYPE_TARGET_TYPE (index_type);
638
639 if (index_type->code () == TYPE_CODE_ENUM
640 || index_type->code () == TYPE_CODE_BOOL)
641 {
642 index_type_name = ada_type_name (index_type);
643 if (index_type_name)
644 {
645 decoded = ada_decode (index_type_name);
646 index_type_name = decoded.c_str ();
647 }
648 }
649
650 if (index_type_name != NULL)
651 *child_path_expr =
652 string_printf ("(%s)(%.*s'(%s))", parent_path_expr,
653 ada_name_prefix_len (index_type_name),
654 index_type_name, index_img.c_str ());
655 else
656 *child_path_expr =
657 string_printf ("(%s)(%s)", parent_path_expr, index_img.c_str ());
658 }
659 }
660
661 /* See description at declaration above. */
662
663 static void
664 ada_varobj_describe_child (struct value *parent_value,
665 struct type *parent_type,
666 const char *parent_name,
667 const char *parent_path_expr,
668 int child_index,
669 std::string *child_name,
670 struct value **child_value,
671 struct type **child_type,
672 std::string *child_path_expr)
673 {
674 /* We cannot compute the child's path expression without
675 the parent's path expression. This is a pre-condition
676 for calling this function. */
677 if (child_path_expr)
678 gdb_assert (parent_path_expr != NULL);
679
680 ada_varobj_decode_var (&parent_value, &parent_type);
681 ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
682
683 if (child_name)
684 *child_name = std::string ();
685 if (child_value)
686 *child_value = NULL;
687 if (child_type)
688 *child_type = NULL;
689 if (child_path_expr)
690 *child_path_expr = std::string ();
691
692 if (ada_is_access_to_unconstrained_array (parent_type))
693 {
694 ada_varobj_describe_ptr_child (parent_value, parent_type,
695 parent_name, parent_path_expr,
696 child_index, child_name,
697 child_value, child_type,
698 child_path_expr);
699 return;
700 }
701
702 if (parent_type->code () == TYPE_CODE_ARRAY)
703 {
704 ada_varobj_describe_simple_array_child
705 (parent_value, parent_type, parent_name, parent_path_expr,
706 child_index, child_name, child_value, child_type,
707 child_path_expr);
708 return;
709 }
710
711 if (parent_type->code () == TYPE_CODE_STRUCT
712 || parent_type->code () == TYPE_CODE_UNION)
713 {
714 ada_varobj_describe_struct_child (parent_value, parent_type,
715 parent_name, parent_path_expr,
716 child_index, child_name,
717 child_value, child_type,
718 child_path_expr);
719 return;
720 }
721
722 if (parent_type->code () == TYPE_CODE_PTR)
723 {
724 ada_varobj_describe_ptr_child (parent_value, parent_type,
725 parent_name, parent_path_expr,
726 child_index, child_name,
727 child_value, child_type,
728 child_path_expr);
729 return;
730 }
731
732 /* It should never happen. But rather than crash, report dummy names
733 and return a NULL child_value. */
734 if (child_name)
735 *child_name = "???";
736 }
737
738 /* Return the name of the child number CHILD_INDEX of the (PARENT_VALUE,
739 PARENT_TYPE) pair. PARENT_NAME is the name of the PARENT. */
740
741 static std::string
742 ada_varobj_get_name_of_child (struct value *parent_value,
743 struct type *parent_type,
744 const char *parent_name, int child_index)
745 {
746 std::string child_name;
747
748 ada_varobj_describe_child (parent_value, parent_type, parent_name,
749 NULL, child_index, &child_name, NULL,
750 NULL, NULL);
751 return child_name;
752 }
753
754 /* Return the path expression of the child number CHILD_INDEX of
755 the (PARENT_VALUE, PARENT_TYPE) pair. PARENT_NAME is the name
756 of the parent, and PARENT_PATH_EXPR is the parent's path expression.
757 Both must be non-NULL. */
758
759 static std::string
760 ada_varobj_get_path_expr_of_child (struct value *parent_value,
761 struct type *parent_type,
762 const char *parent_name,
763 const char *parent_path_expr,
764 int child_index)
765 {
766 std::string child_path_expr;
767
768 ada_varobj_describe_child (parent_value, parent_type, parent_name,
769 parent_path_expr, child_index, NULL,
770 NULL, NULL, &child_path_expr);
771
772 return child_path_expr;
773 }
774
775 /* Return the value of child number CHILD_INDEX of the (PARENT_VALUE,
776 PARENT_TYPE) pair. PARENT_NAME is the name of the parent. */
777
778 static struct value *
779 ada_varobj_get_value_of_child (struct value *parent_value,
780 struct type *parent_type,
781 const char *parent_name, int child_index)
782 {
783 struct value *child_value;
784
785 ada_varobj_describe_child (parent_value, parent_type, parent_name,
786 NULL, child_index, NULL, &child_value,
787 NULL, NULL);
788
789 return child_value;
790 }
791
792 /* Return the type of child number CHILD_INDEX of the (PARENT_VALUE,
793 PARENT_TYPE) pair. */
794
795 static struct type *
796 ada_varobj_get_type_of_child (struct value *parent_value,
797 struct type *parent_type,
798 int child_index)
799 {
800 struct type *child_type;
801
802 ada_varobj_describe_child (parent_value, parent_type, NULL, NULL,
803 child_index, NULL, NULL, &child_type, NULL);
804
805 return child_type;
806 }
807
808 /* Return a string that contains the image of the given VALUE, using
809 the print options OPTS as the options for formatting the result.
810
811 The resulting string must be deallocated after use with xfree. */
812
813 static std::string
814 ada_varobj_get_value_image (struct value *value,
815 struct value_print_options *opts)
816 {
817 string_file buffer;
818
819 common_val_print (value, &buffer, 0, opts, current_language);
820 return std::move (buffer.string ());
821 }
822
823 /* Assuming that the (VALUE, TYPE) pair designates an array varobj,
824 return a string that is suitable for use in the "value" field of
825 the varobj output. Most of the time, this is the number of elements
826 in the array inside square brackets, but there are situations where
827 it's useful to add more info.
828
829 OPTS are the print options used when formatting the result.
830
831 The result should be deallocated after use using xfree. */
832
833 static std::string
834 ada_varobj_get_value_of_array_variable (struct value *value,
835 struct type *type,
836 struct value_print_options *opts)
837 {
838 const int numchild = ada_varobj_get_array_number_of_children (value, type);
839
840 /* If we have a string, provide its contents in the "value" field.
841 Otherwise, the only other way to inspect the contents of the string
842 is by looking at the value of each element, as in any other array,
843 which is not very convenient... */
844 if (value
845 && ada_is_string_type (type)
846 && (opts->format == 0 || opts->format == 's'))
847 {
848 std::string str = ada_varobj_get_value_image (value, opts);
849 return string_printf ("[%d] %s", numchild, str.c_str ());
850 }
851 else
852 return string_printf ("[%d]", numchild);
853 }
854
855 /* Return a string representation of the (VALUE, TYPE) pair, using
856 the given print options OPTS as our formatting options. */
857
858 static std::string
859 ada_varobj_get_value_of_variable (struct value *value,
860 struct type *type,
861 struct value_print_options *opts)
862 {
863 ada_varobj_decode_var (&value, &type);
864
865 switch (type->code ())
866 {
867 case TYPE_CODE_STRUCT:
868 case TYPE_CODE_UNION:
869 return "{...}";
870 case TYPE_CODE_ARRAY:
871 return ada_varobj_get_value_of_array_variable (value, type, opts);
872 default:
873 if (!value)
874 return "";
875 else
876 return ada_varobj_get_value_image (value, opts);
877 }
878 }
879
880 /* Ada specific callbacks for VAROBJs. */
881
882 static int
883 ada_number_of_children (const struct varobj *var)
884 {
885 return ada_varobj_get_number_of_children (var->value.get (), var->type);
886 }
887
888 static std::string
889 ada_name_of_variable (const struct varobj *parent)
890 {
891 return c_varobj_ops.name_of_variable (parent);
892 }
893
894 static std::string
895 ada_name_of_child (const struct varobj *parent, int index)
896 {
897 return ada_varobj_get_name_of_child (parent->value.get (), parent->type,
898 parent->name.c_str (), index);
899 }
900
901 static std::string
902 ada_path_expr_of_child (const struct varobj *child)
903 {
904 const struct varobj *parent = child->parent;
905 const char *parent_path_expr = varobj_get_path_expr (parent);
906
907 return ada_varobj_get_path_expr_of_child (parent->value.get (),
908 parent->type,
909 parent->name.c_str (),
910 parent_path_expr,
911 child->index);
912 }
913
914 static struct value *
915 ada_value_of_child (const struct varobj *parent, int index)
916 {
917 return ada_varobj_get_value_of_child (parent->value.get (), parent->type,
918 parent->name.c_str (), index);
919 }
920
921 static struct type *
922 ada_type_of_child (const struct varobj *parent, int index)
923 {
924 return ada_varobj_get_type_of_child (parent->value.get (), parent->type,
925 index);
926 }
927
928 static std::string
929 ada_value_of_variable (const struct varobj *var,
930 enum varobj_display_formats format)
931 {
932 struct value_print_options opts;
933
934 varobj_formatted_print_options (&opts, format);
935
936 return ada_varobj_get_value_of_variable (var->value.get (), var->type,
937 &opts);
938 }
939
940 /* Implement the "value_is_changeable_p" routine for Ada. */
941
942 static bool
943 ada_value_is_changeable_p (const struct varobj *var)
944 {
945 struct type *type = (var->value != nullptr
946 ? value_type (var->value.get ()) : var->type);
947
948 if (type->code () == TYPE_CODE_REF)
949 type = TYPE_TARGET_TYPE (type);
950
951 if (ada_is_access_to_unconstrained_array (type))
952 {
953 /* This is in reality a pointer to an unconstrained array.
954 its value is changeable. */
955 return true;
956 }
957
958 if (ada_is_string_type (type))
959 {
960 /* We display the contents of the string in the array's
961 "value" field. The contents can change, so consider
962 that the array is changeable. */
963 return true;
964 }
965
966 return varobj_default_value_is_changeable_p (var);
967 }
968
969 /* Implement the "value_has_mutated" routine for Ada. */
970
971 static bool
972 ada_value_has_mutated (const struct varobj *var, struct value *new_val,
973 struct type *new_type)
974 {
975 int from = -1;
976 int to = -1;
977
978 /* If the number of fields have changed, then for sure the type
979 has mutated. */
980 if (ada_varobj_get_number_of_children (new_val, new_type)
981 != var->num_children)
982 return true;
983
984 /* If the number of fields have remained the same, then we need
985 to check the name of each field. If they remain the same,
986 then chances are the type hasn't mutated. This is technically
987 an incomplete test, as the child's type might have changed
988 despite the fact that the name remains the same. But we'll
989 handle this situation by saying that the child has mutated,
990 not this value.
991
992 If only part (or none!) of the children have been fetched,
993 then only check the ones we fetched. It does not matter
994 to the frontend whether a child that it has not fetched yet
995 has mutated or not. So just assume it hasn't. */
996
997 varobj_restrict_range (var->children, &from, &to);
998 for (int i = from; i < to; i++)
999 if (ada_varobj_get_name_of_child (new_val, new_type,
1000 var->name.c_str (), i)
1001 != var->children[i]->name)
1002 return true;
1003
1004 return false;
1005 }
1006
1007 /* varobj operations for ada. */
1008
1009 const struct lang_varobj_ops ada_varobj_ops =
1010 {
1011 ada_number_of_children,
1012 ada_name_of_variable,
1013 ada_name_of_child,
1014 ada_path_expr_of_child,
1015 ada_value_of_child,
1016 ada_type_of_child,
1017 ada_value_of_variable,
1018 ada_value_is_changeable_p,
1019 ada_value_has_mutated,
1020 varobj_default_is_path_expr_parent
1021 };
This page took 0.050153 seconds and 4 git commands to generate.