* alpha-tdep.c (alpha_supply_int_regs, alpha_fill_int_regs,
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "doublest.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "dwarf2-frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "dis-asm.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdb_string.h"
38 #include "linespec.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "arch-utils.h"
42 #include "osabi.h"
43 #include "block.h"
44 #include "infcall.h"
45
46 #include "elf-bfd.h"
47
48 #include "alpha-tdep.h"
49
50 \f
51 /* Return the name of the REGNO register.
52
53 An empty name corresponds to a register number that used to
54 be used for a virtual register. That virtual register has
55 been removed, but the index is still reserved to maintain
56 compatibility with existing remote alpha targets. */
57
58 static const char *
59 alpha_register_name (int regno)
60 {
61 static const char * const register_names[] =
62 {
63 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
64 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
65 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
66 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
67 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
68 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
69 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
70 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
71 "pc", "", "unique"
72 };
73
74 if (regno < 0)
75 return NULL;
76 if (regno >= ARRAY_SIZE(register_names))
77 return NULL;
78 return register_names[regno];
79 }
80
81 static int
82 alpha_cannot_fetch_register (int regno)
83 {
84 return (regno == ALPHA_ZERO_REGNUM
85 || strlen (alpha_register_name (regno)) == 0);
86 }
87
88 static int
89 alpha_cannot_store_register (int regno)
90 {
91 return (regno == ALPHA_ZERO_REGNUM
92 || strlen (alpha_register_name (regno)) == 0);
93 }
94
95 static struct type *
96 alpha_register_type (struct gdbarch *gdbarch, int regno)
97 {
98 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
99 return builtin_type_void_data_ptr;
100 if (regno == ALPHA_PC_REGNUM)
101 return builtin_type_void_func_ptr;
102
103 /* Don't need to worry about little vs big endian until
104 some jerk tries to port to alpha-unicosmk. */
105 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
106 return builtin_type_ieee_double;
107
108 return builtin_type_int64;
109 }
110
111 /* Is REGNUM a member of REGGROUP? */
112
113 static int
114 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
115 struct reggroup *group)
116 {
117 /* Filter out any registers eliminated, but whose regnum is
118 reserved for backward compatibility, e.g. the vfp. */
119 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
120 return 0;
121
122 if (group == all_reggroup)
123 return 1;
124
125 /* Zero should not be saved or restored. Technically it is a general
126 register (just as $f31 would be a float if we represented it), but
127 there's no point displaying it during "info regs", so leave it out
128 of all groups except for "all". */
129 if (regnum == ALPHA_ZERO_REGNUM)
130 return 0;
131
132 /* All other registers are saved and restored. */
133 if (group == save_reggroup || group == restore_reggroup)
134 return 1;
135
136 /* All other groups are non-overlapping. */
137
138 /* Since this is really a PALcode memory slot... */
139 if (regnum == ALPHA_UNIQUE_REGNUM)
140 return group == system_reggroup;
141
142 /* Force the FPCR to be considered part of the floating point state. */
143 if (regnum == ALPHA_FPCR_REGNUM)
144 return group == float_reggroup;
145
146 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
147 return group == float_reggroup;
148 else
149 return group == general_reggroup;
150 }
151
152 /* The following represents exactly the conversion performed by
153 the LDS instruction. This applies to both single-precision
154 floating point and 32-bit integers. */
155
156 static void
157 alpha_lds (void *out, const void *in)
158 {
159 ULONGEST mem = extract_unsigned_integer (in, 4);
160 ULONGEST frac = (mem >> 0) & 0x7fffff;
161 ULONGEST sign = (mem >> 31) & 1;
162 ULONGEST exp_msb = (mem >> 30) & 1;
163 ULONGEST exp_low = (mem >> 23) & 0x7f;
164 ULONGEST exp, reg;
165
166 exp = (exp_msb << 10) | exp_low;
167 if (exp_msb)
168 {
169 if (exp_low == 0x7f)
170 exp = 0x7ff;
171 }
172 else
173 {
174 if (exp_low != 0x00)
175 exp |= 0x380;
176 }
177
178 reg = (sign << 63) | (exp << 52) | (frac << 29);
179 store_unsigned_integer (out, 8, reg);
180 }
181
182 /* Similarly, this represents exactly the conversion performed by
183 the STS instruction. */
184
185 static void
186 alpha_sts (void *out, const void *in)
187 {
188 ULONGEST reg, mem;
189
190 reg = extract_unsigned_integer (in, 8);
191 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
192 store_unsigned_integer (out, 4, mem);
193 }
194
195 /* The alpha needs a conversion between register and memory format if the
196 register is a floating point register and memory format is float, as the
197 register format must be double or memory format is an integer with 4
198 bytes or less, as the representation of integers in floating point
199 registers is different. */
200
201 static int
202 alpha_convert_register_p (int regno, struct type *type)
203 {
204 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31);
205 }
206
207 static void
208 alpha_register_to_value (struct frame_info *frame, int regnum,
209 struct type *valtype, gdb_byte *out)
210 {
211 gdb_byte in[MAX_REGISTER_SIZE];
212
213 frame_register_read (frame, regnum, in);
214 switch (TYPE_LENGTH (valtype))
215 {
216 case 4:
217 alpha_sts (out, in);
218 break;
219 case 8:
220 memcpy (out, in, 8);
221 break;
222 default:
223 error (_("Cannot retrieve value from floating point register"));
224 }
225 }
226
227 static void
228 alpha_value_to_register (struct frame_info *frame, int regnum,
229 struct type *valtype, const gdb_byte *in)
230 {
231 gdb_byte out[MAX_REGISTER_SIZE];
232
233 switch (TYPE_LENGTH (valtype))
234 {
235 case 4:
236 alpha_lds (out, in);
237 break;
238 case 8:
239 memcpy (out, in, 8);
240 break;
241 default:
242 error (_("Cannot store value in floating point register"));
243 }
244 put_frame_register (frame, regnum, out);
245 }
246
247 \f
248 /* The alpha passes the first six arguments in the registers, the rest on
249 the stack. The register arguments are stored in ARG_REG_BUFFER, and
250 then moved into the register file; this simplifies the passing of a
251 large struct which extends from the registers to the stack, plus avoids
252 three ptrace invocations per word.
253
254 We don't bother tracking which register values should go in integer
255 regs or fp regs; we load the same values into both.
256
257 If the called function is returning a structure, the address of the
258 structure to be returned is passed as a hidden first argument. */
259
260 static CORE_ADDR
261 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
262 struct regcache *regcache, CORE_ADDR bp_addr,
263 int nargs, struct value **args, CORE_ADDR sp,
264 int struct_return, CORE_ADDR struct_addr)
265 {
266 int i;
267 int accumulate_size = struct_return ? 8 : 0;
268 struct alpha_arg
269 {
270 gdb_byte *contents;
271 int len;
272 int offset;
273 };
274 struct alpha_arg *alpha_args
275 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
276 struct alpha_arg *m_arg;
277 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
278 int required_arg_regs;
279 CORE_ADDR func_addr = find_function_addr (function, NULL);
280
281 /* The ABI places the address of the called function in T12. */
282 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
283
284 /* Set the return address register to point to the entry point
285 of the program, where a breakpoint lies in wait. */
286 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
287
288 /* Lay out the arguments in memory. */
289 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
290 {
291 struct value *arg = args[i];
292 struct type *arg_type = check_typedef (value_type (arg));
293
294 /* Cast argument to long if necessary as the compiler does it too. */
295 switch (TYPE_CODE (arg_type))
296 {
297 case TYPE_CODE_INT:
298 case TYPE_CODE_BOOL:
299 case TYPE_CODE_CHAR:
300 case TYPE_CODE_RANGE:
301 case TYPE_CODE_ENUM:
302 if (TYPE_LENGTH (arg_type) == 4)
303 {
304 /* 32-bit values must be sign-extended to 64 bits
305 even if the base data type is unsigned. */
306 arg_type = builtin_type_int32;
307 arg = value_cast (arg_type, arg);
308 }
309 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
310 {
311 arg_type = builtin_type_int64;
312 arg = value_cast (arg_type, arg);
313 }
314 break;
315
316 case TYPE_CODE_FLT:
317 /* "float" arguments loaded in registers must be passed in
318 register format, aka "double". */
319 if (accumulate_size < sizeof (arg_reg_buffer)
320 && TYPE_LENGTH (arg_type) == 4)
321 {
322 arg_type = builtin_type_ieee_double;
323 arg = value_cast (arg_type, arg);
324 }
325 /* Tru64 5.1 has a 128-bit long double, and passes this by
326 invisible reference. No one else uses this data type. */
327 else if (TYPE_LENGTH (arg_type) == 16)
328 {
329 /* Allocate aligned storage. */
330 sp = (sp & -16) - 16;
331
332 /* Write the real data into the stack. */
333 write_memory (sp, value_contents (arg), 16);
334
335 /* Construct the indirection. */
336 arg_type = lookup_pointer_type (arg_type);
337 arg = value_from_pointer (arg_type, sp);
338 }
339 break;
340
341 case TYPE_CODE_COMPLEX:
342 /* ??? The ABI says that complex values are passed as two
343 separate scalar values. This distinction only matters
344 for complex float. However, GCC does not implement this. */
345
346 /* Tru64 5.1 has a 128-bit long double, and passes this by
347 invisible reference. */
348 if (TYPE_LENGTH (arg_type) == 32)
349 {
350 /* Allocate aligned storage. */
351 sp = (sp & -16) - 16;
352
353 /* Write the real data into the stack. */
354 write_memory (sp, value_contents (arg), 32);
355
356 /* Construct the indirection. */
357 arg_type = lookup_pointer_type (arg_type);
358 arg = value_from_pointer (arg_type, sp);
359 }
360 break;
361
362 default:
363 break;
364 }
365 m_arg->len = TYPE_LENGTH (arg_type);
366 m_arg->offset = accumulate_size;
367 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
368 m_arg->contents = value_contents_writeable (arg);
369 }
370
371 /* Determine required argument register loads, loading an argument register
372 is expensive as it uses three ptrace calls. */
373 required_arg_regs = accumulate_size / 8;
374 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
375 required_arg_regs = ALPHA_NUM_ARG_REGS;
376
377 /* Make room for the arguments on the stack. */
378 if (accumulate_size < sizeof(arg_reg_buffer))
379 accumulate_size = 0;
380 else
381 accumulate_size -= sizeof(arg_reg_buffer);
382 sp -= accumulate_size;
383
384 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
385 sp &= ~15;
386
387 /* `Push' arguments on the stack. */
388 for (i = nargs; m_arg--, --i >= 0;)
389 {
390 gdb_byte *contents = m_arg->contents;
391 int offset = m_arg->offset;
392 int len = m_arg->len;
393
394 /* Copy the bytes destined for registers into arg_reg_buffer. */
395 if (offset < sizeof(arg_reg_buffer))
396 {
397 if (offset + len <= sizeof(arg_reg_buffer))
398 {
399 memcpy (arg_reg_buffer + offset, contents, len);
400 continue;
401 }
402 else
403 {
404 int tlen = sizeof(arg_reg_buffer) - offset;
405 memcpy (arg_reg_buffer + offset, contents, tlen);
406 offset += tlen;
407 contents += tlen;
408 len -= tlen;
409 }
410 }
411
412 /* Everything else goes to the stack. */
413 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
414 }
415 if (struct_return)
416 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
417
418 /* Load the argument registers. */
419 for (i = 0; i < required_arg_regs; i++)
420 {
421 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
422 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
423 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
424 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
425 }
426
427 /* Finally, update the stack pointer. */
428 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
429
430 return sp;
431 }
432
433 /* Extract from REGCACHE the value about to be returned from a function
434 and copy it into VALBUF. */
435
436 static void
437 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
438 gdb_byte *valbuf)
439 {
440 int length = TYPE_LENGTH (valtype);
441 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
442 ULONGEST l;
443
444 switch (TYPE_CODE (valtype))
445 {
446 case TYPE_CODE_FLT:
447 switch (length)
448 {
449 case 4:
450 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
451 alpha_sts (valbuf, raw_buffer);
452 break;
453
454 case 8:
455 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
456 break;
457
458 case 16:
459 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
460 read_memory (l, valbuf, 16);
461 break;
462
463 default:
464 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
465 }
466 break;
467
468 case TYPE_CODE_COMPLEX:
469 switch (length)
470 {
471 case 8:
472 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
473 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
474 break;
475
476 case 16:
477 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
478 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
479 break;
480
481 case 32:
482 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
483 read_memory (l, valbuf, 32);
484 break;
485
486 default:
487 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
488 }
489 break;
490
491 default:
492 /* Assume everything else degenerates to an integer. */
493 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
494 store_unsigned_integer (valbuf, length, l);
495 break;
496 }
497 }
498
499 /* Insert the given value into REGCACHE as if it was being
500 returned by a function. */
501
502 static void
503 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
504 const gdb_byte *valbuf)
505 {
506 int length = TYPE_LENGTH (valtype);
507 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
508 ULONGEST l;
509
510 switch (TYPE_CODE (valtype))
511 {
512 case TYPE_CODE_FLT:
513 switch (length)
514 {
515 case 4:
516 alpha_lds (raw_buffer, valbuf);
517 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
518 break;
519
520 case 8:
521 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
522 break;
523
524 case 16:
525 /* FIXME: 128-bit long doubles are returned like structures:
526 by writing into indirect storage provided by the caller
527 as the first argument. */
528 error (_("Cannot set a 128-bit long double return value."));
529
530 default:
531 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
532 }
533 break;
534
535 case TYPE_CODE_COMPLEX:
536 switch (length)
537 {
538 case 8:
539 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
540 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
541 break;
542
543 case 16:
544 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
545 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
546 break;
547
548 case 32:
549 /* FIXME: 128-bit long doubles are returned like structures:
550 by writing into indirect storage provided by the caller
551 as the first argument. */
552 error (_("Cannot set a 128-bit long double return value."));
553
554 default:
555 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
556 }
557 break;
558
559 default:
560 /* Assume everything else degenerates to an integer. */
561 /* 32-bit values must be sign-extended to 64 bits
562 even if the base data type is unsigned. */
563 if (length == 4)
564 valtype = builtin_type_int32;
565 l = unpack_long (valtype, valbuf);
566 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
567 break;
568 }
569 }
570
571 static enum return_value_convention
572 alpha_return_value (struct gdbarch *gdbarch, struct type *type,
573 struct regcache *regcache, gdb_byte *readbuf,
574 const gdb_byte *writebuf)
575 {
576 enum type_code code = TYPE_CODE (type);
577
578 if ((code == TYPE_CODE_STRUCT
579 || code == TYPE_CODE_UNION
580 || code == TYPE_CODE_ARRAY)
581 && gdbarch_tdep (gdbarch)->return_in_memory (type))
582 {
583 if (readbuf)
584 {
585 ULONGEST addr;
586 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
587 read_memory (addr, readbuf, TYPE_LENGTH (type));
588 }
589
590 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
591 }
592
593 if (readbuf)
594 alpha_extract_return_value (type, regcache, readbuf);
595 if (writebuf)
596 alpha_store_return_value (type, regcache, writebuf);
597
598 return RETURN_VALUE_REGISTER_CONVENTION;
599 }
600
601 static int
602 alpha_return_in_memory_always (struct type *type)
603 {
604 return 1;
605 }
606 \f
607 static const gdb_byte *
608 alpha_breakpoint_from_pc (CORE_ADDR *pc, int *len)
609 {
610 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
611
612 *len = sizeof(break_insn);
613 return break_insn;
614 }
615
616 \f
617 /* This returns the PC of the first insn after the prologue.
618 If we can't find the prologue, then return 0. */
619
620 CORE_ADDR
621 alpha_after_prologue (CORE_ADDR pc)
622 {
623 struct symtab_and_line sal;
624 CORE_ADDR func_addr, func_end;
625
626 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
627 return 0;
628
629 sal = find_pc_line (func_addr, 0);
630 if (sal.end < func_end)
631 return sal.end;
632
633 /* The line after the prologue is after the end of the function. In this
634 case, tell the caller to find the prologue the hard way. */
635 return 0;
636 }
637
638 /* Read an instruction from memory at PC, looking through breakpoints. */
639
640 unsigned int
641 alpha_read_insn (CORE_ADDR pc)
642 {
643 gdb_byte buf[ALPHA_INSN_SIZE];
644 int status;
645
646 status = read_memory_nobpt (pc, buf, sizeof (buf));
647 if (status)
648 memory_error (status, pc);
649 return extract_unsigned_integer (buf, sizeof (buf));
650 }
651
652 /* To skip prologues, I use this predicate. Returns either PC itself
653 if the code at PC does not look like a function prologue; otherwise
654 returns an address that (if we're lucky) follows the prologue. If
655 LENIENT, then we must skip everything which is involved in setting
656 up the frame (it's OK to skip more, just so long as we don't skip
657 anything which might clobber the registers which are being saved. */
658
659 static CORE_ADDR
660 alpha_skip_prologue (CORE_ADDR pc)
661 {
662 unsigned long inst;
663 int offset;
664 CORE_ADDR post_prologue_pc;
665 gdb_byte buf[ALPHA_INSN_SIZE];
666
667 /* Silently return the unaltered pc upon memory errors.
668 This could happen on OSF/1 if decode_line_1 tries to skip the
669 prologue for quickstarted shared library functions when the
670 shared library is not yet mapped in.
671 Reading target memory is slow over serial lines, so we perform
672 this check only if the target has shared libraries (which all
673 Alpha targets do). */
674 if (target_read_memory (pc, buf, sizeof (buf)))
675 return pc;
676
677 /* See if we can determine the end of the prologue via the symbol table.
678 If so, then return either PC, or the PC after the prologue, whichever
679 is greater. */
680
681 post_prologue_pc = alpha_after_prologue (pc);
682 if (post_prologue_pc != 0)
683 return max (pc, post_prologue_pc);
684
685 /* Can't determine prologue from the symbol table, need to examine
686 instructions. */
687
688 /* Skip the typical prologue instructions. These are the stack adjustment
689 instruction and the instructions that save registers on the stack
690 or in the gcc frame. */
691 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
692 {
693 inst = alpha_read_insn (pc + offset);
694
695 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
696 continue;
697 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
698 continue;
699 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
700 continue;
701 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
702 continue;
703
704 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
705 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
706 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
707 continue;
708
709 if (inst == 0x47de040f) /* bis sp,sp,fp */
710 continue;
711 if (inst == 0x47fe040f) /* bis zero,sp,fp */
712 continue;
713
714 break;
715 }
716 return pc + offset;
717 }
718
719 \f
720 /* Figure out where the longjmp will land.
721 We expect the first arg to be a pointer to the jmp_buf structure from
722 which we extract the PC (JB_PC) that we will land at. The PC is copied
723 into the "pc". This routine returns true on success. */
724
725 static int
726 alpha_get_longjmp_target (CORE_ADDR *pc)
727 {
728 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
729 CORE_ADDR jb_addr;
730 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
731
732 jb_addr = read_register (ALPHA_A0_REGNUM);
733
734 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
735 raw_buffer, tdep->jb_elt_size))
736 return 0;
737
738 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
739 return 1;
740 }
741
742 \f
743 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
744 describe the location and shape of the sigcontext structure. After
745 that, all registers are in memory, so it's easy. */
746 /* ??? Shouldn't we be able to do this generically, rather than with
747 OSABI data specific to Alpha? */
748
749 struct alpha_sigtramp_unwind_cache
750 {
751 CORE_ADDR sigcontext_addr;
752 };
753
754 static struct alpha_sigtramp_unwind_cache *
755 alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
756 void **this_prologue_cache)
757 {
758 struct alpha_sigtramp_unwind_cache *info;
759 struct gdbarch_tdep *tdep;
760
761 if (*this_prologue_cache)
762 return *this_prologue_cache;
763
764 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
765 *this_prologue_cache = info;
766
767 tdep = gdbarch_tdep (current_gdbarch);
768 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
769
770 return info;
771 }
772
773 /* Return the address of REGNUM in a sigtramp frame. Since this is
774 all arithmetic, it doesn't seem worthwhile to cache it. */
775
776 static CORE_ADDR
777 alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, int regnum)
778 {
779 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
780
781 if (regnum >= 0 && regnum < 32)
782 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
783 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
784 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
785 else if (regnum == ALPHA_PC_REGNUM)
786 return sigcontext_addr + tdep->sc_pc_offset;
787
788 return 0;
789 }
790
791 /* Given a GDB frame, determine the address of the calling function's
792 frame. This will be used to create a new GDB frame struct. */
793
794 static void
795 alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
796 void **this_prologue_cache,
797 struct frame_id *this_id)
798 {
799 struct alpha_sigtramp_unwind_cache *info
800 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
801 struct gdbarch_tdep *tdep;
802 CORE_ADDR stack_addr, code_addr;
803
804 /* If the OSABI couldn't locate the sigcontext, give up. */
805 if (info->sigcontext_addr == 0)
806 return;
807
808 /* If we have dynamic signal trampolines, find their start.
809 If we do not, then we must assume there is a symbol record
810 that can provide the start address. */
811 tdep = gdbarch_tdep (current_gdbarch);
812 if (tdep->dynamic_sigtramp_offset)
813 {
814 int offset;
815 code_addr = frame_pc_unwind (next_frame);
816 offset = tdep->dynamic_sigtramp_offset (code_addr);
817 if (offset >= 0)
818 code_addr -= offset;
819 else
820 code_addr = 0;
821 }
822 else
823 code_addr = frame_func_unwind (next_frame, SIGTRAMP_FRAME);
824
825 /* The stack address is trivially read from the sigcontext. */
826 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
827 ALPHA_SP_REGNUM);
828 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
829 ALPHA_REGISTER_SIZE);
830
831 *this_id = frame_id_build (stack_addr, code_addr);
832 }
833
834 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
835
836 static void
837 alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
838 void **this_prologue_cache,
839 int regnum, int *optimizedp,
840 enum lval_type *lvalp, CORE_ADDR *addrp,
841 int *realnump, gdb_byte *bufferp)
842 {
843 struct alpha_sigtramp_unwind_cache *info
844 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
845 CORE_ADDR addr;
846
847 if (info->sigcontext_addr != 0)
848 {
849 /* All integer and fp registers are stored in memory. */
850 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
851 if (addr != 0)
852 {
853 *optimizedp = 0;
854 *lvalp = lval_memory;
855 *addrp = addr;
856 *realnump = -1;
857 if (bufferp != NULL)
858 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
859 return;
860 }
861 }
862
863 /* This extra register may actually be in the sigcontext, but our
864 current description of it in alpha_sigtramp_frame_unwind_cache
865 doesn't include it. Too bad. Fall back on whatever's in the
866 outer frame. */
867 *optimizedp = 0;
868 *lvalp = lval_register;
869 *addrp = 0;
870 *realnump = regnum;
871 if (bufferp)
872 frame_unwind_register (next_frame, *realnump, bufferp);
873 }
874
875 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
876 SIGTRAMP_FRAME,
877 alpha_sigtramp_frame_this_id,
878 alpha_sigtramp_frame_prev_register
879 };
880
881 static const struct frame_unwind *
882 alpha_sigtramp_frame_sniffer (struct frame_info *next_frame)
883 {
884 CORE_ADDR pc = frame_pc_unwind (next_frame);
885 char *name;
886
887 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
888 look at tramp-frame.h and other simplier per-architecture
889 sigtramp unwinders. */
890
891 /* We shouldn't even bother to try if the OSABI didn't register a
892 sigcontext_addr handler or pc_in_sigtramp hander. */
893 if (gdbarch_tdep (current_gdbarch)->sigcontext_addr == NULL)
894 return NULL;
895 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp == NULL)
896 return NULL;
897
898 /* Otherwise we should be in a signal frame. */
899 find_pc_partial_function (pc, &name, NULL, NULL);
900 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp (pc, name))
901 return &alpha_sigtramp_frame_unwind;
902
903 return NULL;
904 }
905 \f
906 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
907 something about the traditional layout of alpha stack frames. */
908
909 struct alpha_heuristic_unwind_cache
910 {
911 CORE_ADDR *saved_regs;
912 CORE_ADDR vfp;
913 CORE_ADDR start_pc;
914 int return_reg;
915 };
916
917 /* Heuristic_proc_start may hunt through the text section for a long
918 time across a 2400 baud serial line. Allows the user to limit this
919 search. */
920 static unsigned int heuristic_fence_post = 0;
921
922 /* Attempt to locate the start of the function containing PC. We assume that
923 the previous function ends with an about_to_return insn. Not foolproof by
924 any means, since gcc is happy to put the epilogue in the middle of a
925 function. But we're guessing anyway... */
926
927 static CORE_ADDR
928 alpha_heuristic_proc_start (CORE_ADDR pc)
929 {
930 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
931 CORE_ADDR last_non_nop = pc;
932 CORE_ADDR fence = pc - heuristic_fence_post;
933 CORE_ADDR orig_pc = pc;
934 CORE_ADDR func;
935
936 if (pc == 0)
937 return 0;
938
939 /* First see if we can find the start of the function from minimal
940 symbol information. This can succeed with a binary that doesn't
941 have debug info, but hasn't been stripped. */
942 func = get_pc_function_start (pc);
943 if (func)
944 return func;
945
946 if (heuristic_fence_post == UINT_MAX
947 || fence < tdep->vm_min_address)
948 fence = tdep->vm_min_address;
949
950 /* Search back for previous return; also stop at a 0, which might be
951 seen for instance before the start of a code section. Don't include
952 nops, since this usually indicates padding between functions. */
953 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
954 {
955 unsigned int insn = alpha_read_insn (pc);
956 switch (insn)
957 {
958 case 0: /* invalid insn */
959 case 0x6bfa8001: /* ret $31,($26),1 */
960 return last_non_nop;
961
962 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
963 case 0x47ff041f: /* nop: bis $31,$31,$31 */
964 break;
965
966 default:
967 last_non_nop = pc;
968 break;
969 }
970 }
971
972 /* It's not clear to me why we reach this point when stopping quietly,
973 but with this test, at least we don't print out warnings for every
974 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
975 if (stop_soon == NO_STOP_QUIETLY)
976 {
977 static int blurb_printed = 0;
978
979 if (fence == tdep->vm_min_address)
980 warning (_("Hit beginning of text section without finding \
981 enclosing function for address 0x%s"), paddr_nz (orig_pc));
982 else
983 warning (_("Hit heuristic-fence-post without finding \
984 enclosing function for address 0x%s"), paddr_nz (orig_pc));
985
986 if (!blurb_printed)
987 {
988 printf_filtered (_("\
989 This warning occurs if you are debugging a function without any symbols\n\
990 (for example, in a stripped executable). In that case, you may wish to\n\
991 increase the size of the search with the `set heuristic-fence-post' command.\n\
992 \n\
993 Otherwise, you told GDB there was a function where there isn't one, or\n\
994 (more likely) you have encountered a bug in GDB.\n"));
995 blurb_printed = 1;
996 }
997 }
998
999 return 0;
1000 }
1001
1002 static struct alpha_heuristic_unwind_cache *
1003 alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
1004 void **this_prologue_cache,
1005 CORE_ADDR start_pc)
1006 {
1007 struct alpha_heuristic_unwind_cache *info;
1008 ULONGEST val;
1009 CORE_ADDR limit_pc, cur_pc;
1010 int frame_reg, frame_size, return_reg, reg;
1011
1012 if (*this_prologue_cache)
1013 return *this_prologue_cache;
1014
1015 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1016 *this_prologue_cache = info;
1017 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
1018
1019 limit_pc = frame_pc_unwind (next_frame);
1020 if (start_pc == 0)
1021 start_pc = alpha_heuristic_proc_start (limit_pc);
1022 info->start_pc = start_pc;
1023
1024 frame_reg = ALPHA_SP_REGNUM;
1025 frame_size = 0;
1026 return_reg = -1;
1027
1028 /* If we've identified a likely place to start, do code scanning. */
1029 if (start_pc != 0)
1030 {
1031 /* Limit the forward search to 50 instructions. */
1032 if (start_pc + 200 < limit_pc)
1033 limit_pc = start_pc + 200;
1034
1035 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1036 {
1037 unsigned int word = alpha_read_insn (cur_pc);
1038
1039 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1040 {
1041 if (word & 0x8000)
1042 {
1043 /* Consider only the first stack allocation instruction
1044 to contain the static size of the frame. */
1045 if (frame_size == 0)
1046 frame_size = (-word) & 0xffff;
1047 }
1048 else
1049 {
1050 /* Exit loop if a positive stack adjustment is found, which
1051 usually means that the stack cleanup code in the function
1052 epilogue is reached. */
1053 break;
1054 }
1055 }
1056 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1057 {
1058 reg = (word & 0x03e00000) >> 21;
1059
1060 /* Ignore this instruction if we have already encountered
1061 an instruction saving the same register earlier in the
1062 function code. The current instruction does not tell
1063 us where the original value upon function entry is saved.
1064 All it says is that the function we are scanning reused
1065 that register for some computation of its own, and is now
1066 saving its result. */
1067 if (info->saved_regs[reg])
1068 continue;
1069
1070 if (reg == 31)
1071 continue;
1072
1073 /* Do not compute the address where the register was saved yet,
1074 because we don't know yet if the offset will need to be
1075 relative to $sp or $fp (we can not compute the address
1076 relative to $sp if $sp is updated during the execution of
1077 the current subroutine, for instance when doing some alloca).
1078 So just store the offset for the moment, and compute the
1079 address later when we know whether this frame has a frame
1080 pointer or not. */
1081 /* Hack: temporarily add one, so that the offset is non-zero
1082 and we can tell which registers have save offsets below. */
1083 info->saved_regs[reg] = (word & 0xffff) + 1;
1084
1085 /* Starting with OSF/1-3.2C, the system libraries are shipped
1086 without local symbols, but they still contain procedure
1087 descriptors without a symbol reference. GDB is currently
1088 unable to find these procedure descriptors and uses
1089 heuristic_proc_desc instead.
1090 As some low level compiler support routines (__div*, __add*)
1091 use a non-standard return address register, we have to
1092 add some heuristics to determine the return address register,
1093 or stepping over these routines will fail.
1094 Usually the return address register is the first register
1095 saved on the stack, but assembler optimization might
1096 rearrange the register saves.
1097 So we recognize only a few registers (t7, t9, ra) within
1098 the procedure prologue as valid return address registers.
1099 If we encounter a return instruction, we extract the
1100 the return address register from it.
1101
1102 FIXME: Rewriting GDB to access the procedure descriptors,
1103 e.g. via the minimal symbol table, might obviate this hack. */
1104 if (return_reg == -1
1105 && cur_pc < (start_pc + 80)
1106 && (reg == ALPHA_T7_REGNUM
1107 || reg == ALPHA_T9_REGNUM
1108 || reg == ALPHA_RA_REGNUM))
1109 return_reg = reg;
1110 }
1111 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1112 return_reg = (word >> 16) & 0x1f;
1113 else if (word == 0x47de040f) /* bis sp,sp,fp */
1114 frame_reg = ALPHA_GCC_FP_REGNUM;
1115 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1116 frame_reg = ALPHA_GCC_FP_REGNUM;
1117 }
1118
1119 /* If we haven't found a valid return address register yet, keep
1120 searching in the procedure prologue. */
1121 if (return_reg == -1)
1122 {
1123 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1124 {
1125 unsigned int word = alpha_read_insn (cur_pc);
1126
1127 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1128 {
1129 reg = (word & 0x03e00000) >> 21;
1130 if (reg == ALPHA_T7_REGNUM
1131 || reg == ALPHA_T9_REGNUM
1132 || reg == ALPHA_RA_REGNUM)
1133 {
1134 return_reg = reg;
1135 break;
1136 }
1137 }
1138 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1139 {
1140 return_reg = (word >> 16) & 0x1f;
1141 break;
1142 }
1143
1144 cur_pc += ALPHA_INSN_SIZE;
1145 }
1146 }
1147 }
1148
1149 /* Failing that, do default to the customary RA. */
1150 if (return_reg == -1)
1151 return_reg = ALPHA_RA_REGNUM;
1152 info->return_reg = return_reg;
1153
1154 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
1155 info->vfp = val + frame_size;
1156
1157 /* Convert offsets to absolute addresses. See above about adding
1158 one to the offsets to make all detected offsets non-zero. */
1159 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1160 if (info->saved_regs[reg])
1161 info->saved_regs[reg] += val - 1;
1162
1163 return info;
1164 }
1165
1166 /* Given a GDB frame, determine the address of the calling function's
1167 frame. This will be used to create a new GDB frame struct. */
1168
1169 static void
1170 alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1171 void **this_prologue_cache,
1172 struct frame_id *this_id)
1173 {
1174 struct alpha_heuristic_unwind_cache *info
1175 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1176
1177 *this_id = frame_id_build (info->vfp, info->start_pc);
1178 }
1179
1180 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1181
1182 static void
1183 alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1184 void **this_prologue_cache,
1185 int regnum, int *optimizedp,
1186 enum lval_type *lvalp, CORE_ADDR *addrp,
1187 int *realnump, gdb_byte *bufferp)
1188 {
1189 struct alpha_heuristic_unwind_cache *info
1190 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1191
1192 /* The PC of the previous frame is stored in the link register of
1193 the current frame. Frob regnum so that we pull the value from
1194 the correct place. */
1195 if (regnum == ALPHA_PC_REGNUM)
1196 regnum = info->return_reg;
1197
1198 /* For all registers known to be saved in the current frame,
1199 do the obvious and pull the value out. */
1200 if (info->saved_regs[regnum])
1201 {
1202 *optimizedp = 0;
1203 *lvalp = lval_memory;
1204 *addrp = info->saved_regs[regnum];
1205 *realnump = -1;
1206 if (bufferp != NULL)
1207 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
1208 return;
1209 }
1210
1211 /* The stack pointer of the previous frame is computed by popping
1212 the current stack frame. */
1213 if (regnum == ALPHA_SP_REGNUM)
1214 {
1215 *optimizedp = 0;
1216 *lvalp = not_lval;
1217 *addrp = 0;
1218 *realnump = -1;
1219 if (bufferp != NULL)
1220 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1221 return;
1222 }
1223
1224 /* Otherwise assume the next frame has the same register value. */
1225 *optimizedp = 0;
1226 *lvalp = lval_register;
1227 *addrp = 0;
1228 *realnump = regnum;
1229 if (bufferp)
1230 frame_unwind_register (next_frame, *realnump, bufferp);
1231 }
1232
1233 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1234 NORMAL_FRAME,
1235 alpha_heuristic_frame_this_id,
1236 alpha_heuristic_frame_prev_register
1237 };
1238
1239 static const struct frame_unwind *
1240 alpha_heuristic_frame_sniffer (struct frame_info *next_frame)
1241 {
1242 return &alpha_heuristic_frame_unwind;
1243 }
1244
1245 static CORE_ADDR
1246 alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1247 void **this_prologue_cache)
1248 {
1249 struct alpha_heuristic_unwind_cache *info
1250 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1251
1252 return info->vfp;
1253 }
1254
1255 static const struct frame_base alpha_heuristic_frame_base = {
1256 &alpha_heuristic_frame_unwind,
1257 alpha_heuristic_frame_base_address,
1258 alpha_heuristic_frame_base_address,
1259 alpha_heuristic_frame_base_address
1260 };
1261
1262 /* Just like reinit_frame_cache, but with the right arguments to be
1263 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1264
1265 static void
1266 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1267 {
1268 reinit_frame_cache ();
1269 }
1270
1271 \f
1272 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1273 dummy frame. The frame ID's base needs to match the TOS value
1274 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1275 breakpoint. */
1276
1277 static struct frame_id
1278 alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1279 {
1280 ULONGEST base;
1281 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1282 return frame_id_build (base, frame_pc_unwind (next_frame));
1283 }
1284
1285 static CORE_ADDR
1286 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1287 {
1288 ULONGEST pc;
1289 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1290 return pc;
1291 }
1292
1293 \f
1294 /* Helper routines for alpha*-nat.c files to move register sets to and
1295 from core files. The UNIQUE pointer is allowed to be NULL, as most
1296 targets don't supply this value in their core files. */
1297
1298 void
1299 alpha_supply_int_regs (struct regcache *regcache, int regno,
1300 const void *r0_r30, const void *pc, const void *unique)
1301 {
1302 const gdb_byte *regs = r0_r30;
1303 int i;
1304
1305 for (i = 0; i < 31; ++i)
1306 if (regno == i || regno == -1)
1307 regcache_raw_supply (regcache, i, regs + i * 8);
1308
1309 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1310 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, NULL);
1311
1312 if (regno == ALPHA_PC_REGNUM || regno == -1)
1313 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1314
1315 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1316 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1317 }
1318
1319 void
1320 alpha_fill_int_regs (const struct regcache *regcache,
1321 int regno, void *r0_r30, void *pc, void *unique)
1322 {
1323 gdb_byte *regs = r0_r30;
1324 int i;
1325
1326 for (i = 0; i < 31; ++i)
1327 if (regno == i || regno == -1)
1328 regcache_raw_collect (regcache, i, regs + i * 8);
1329
1330 if (regno == ALPHA_PC_REGNUM || regno == -1)
1331 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1332
1333 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1334 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1335 }
1336
1337 void
1338 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1339 const void *f0_f30, const void *fpcr)
1340 {
1341 const gdb_byte *regs = f0_f30;
1342 int i;
1343
1344 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1345 if (regno == i || regno == -1)
1346 regcache_raw_supply (regcache, i,
1347 regs + (i - ALPHA_FP0_REGNUM) * 8);
1348
1349 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1350 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1351 }
1352
1353 void
1354 alpha_fill_fp_regs (const struct regcache *regcache,
1355 int regno, void *f0_f30, void *fpcr)
1356 {
1357 gdb_byte *regs = f0_f30;
1358 int i;
1359
1360 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1361 if (regno == i || regno == -1)
1362 regcache_raw_collect (regcache, i,
1363 regs + (i - ALPHA_FP0_REGNUM) * 8);
1364
1365 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1366 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1367 }
1368
1369 \f
1370
1371 /* Return nonzero if the G_floating register value in REG is equal to
1372 zero for FP control instructions. */
1373
1374 static int
1375 fp_register_zero_p (LONGEST reg)
1376 {
1377 /* Check that all bits except the sign bit are zero. */
1378 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1379
1380 return ((reg & zero_mask) == 0);
1381 }
1382
1383 /* Return the value of the sign bit for the G_floating register
1384 value held in REG. */
1385
1386 static int
1387 fp_register_sign_bit (LONGEST reg)
1388 {
1389 const LONGEST sign_mask = (LONGEST) 1 << 63;
1390
1391 return ((reg & sign_mask) != 0);
1392 }
1393
1394 /* alpha_software_single_step() is called just before we want to resume
1395 the inferior, if we want to single-step it but there is no hardware
1396 or kernel single-step support (NetBSD on Alpha, for example). We find
1397 the target of the coming instruction and breakpoint it. */
1398
1399 static CORE_ADDR
1400 alpha_next_pc (CORE_ADDR pc)
1401 {
1402 unsigned int insn;
1403 unsigned int op;
1404 int regno;
1405 int offset;
1406 LONGEST rav;
1407 gdb_byte reg[ALPHA_REGISTER_SIZE];
1408
1409 insn = alpha_read_insn (pc);
1410
1411 /* Opcode is top 6 bits. */
1412 op = (insn >> 26) & 0x3f;
1413
1414 if (op == 0x1a)
1415 {
1416 /* Jump format: target PC is:
1417 RB & ~3 */
1418 return (read_register ((insn >> 16) & 0x1f) & ~3);
1419 }
1420
1421 if ((op & 0x30) == 0x30)
1422 {
1423 /* Branch format: target PC is:
1424 (new PC) + (4 * sext(displacement)) */
1425 if (op == 0x30 || /* BR */
1426 op == 0x34) /* BSR */
1427 {
1428 branch_taken:
1429 offset = (insn & 0x001fffff);
1430 if (offset & 0x00100000)
1431 offset |= 0xffe00000;
1432 offset *= ALPHA_INSN_SIZE;
1433 return (pc + ALPHA_INSN_SIZE + offset);
1434 }
1435
1436 /* Need to determine if branch is taken; read RA. */
1437 regno = (insn >> 21) & 0x1f;
1438 switch (op)
1439 {
1440 case 0x31: /* FBEQ */
1441 case 0x36: /* FBGE */
1442 case 0x37: /* FBGT */
1443 case 0x33: /* FBLE */
1444 case 0x32: /* FBLT */
1445 case 0x35: /* FBNE */
1446 regno += FP0_REGNUM;
1447 }
1448
1449 regcache_cooked_read (current_regcache, regno, reg);
1450 rav = extract_signed_integer (reg, ALPHA_REGISTER_SIZE);
1451
1452 switch (op)
1453 {
1454 case 0x38: /* BLBC */
1455 if ((rav & 1) == 0)
1456 goto branch_taken;
1457 break;
1458 case 0x3c: /* BLBS */
1459 if (rav & 1)
1460 goto branch_taken;
1461 break;
1462 case 0x39: /* BEQ */
1463 if (rav == 0)
1464 goto branch_taken;
1465 break;
1466 case 0x3d: /* BNE */
1467 if (rav != 0)
1468 goto branch_taken;
1469 break;
1470 case 0x3a: /* BLT */
1471 if (rav < 0)
1472 goto branch_taken;
1473 break;
1474 case 0x3b: /* BLE */
1475 if (rav <= 0)
1476 goto branch_taken;
1477 break;
1478 case 0x3f: /* BGT */
1479 if (rav > 0)
1480 goto branch_taken;
1481 break;
1482 case 0x3e: /* BGE */
1483 if (rav >= 0)
1484 goto branch_taken;
1485 break;
1486
1487 /* Floating point branches. */
1488
1489 case 0x31: /* FBEQ */
1490 if (fp_register_zero_p (rav))
1491 goto branch_taken;
1492 break;
1493 case 0x36: /* FBGE */
1494 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1495 goto branch_taken;
1496 break;
1497 case 0x37: /* FBGT */
1498 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1499 goto branch_taken;
1500 break;
1501 case 0x33: /* FBLE */
1502 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1503 goto branch_taken;
1504 break;
1505 case 0x32: /* FBLT */
1506 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1507 goto branch_taken;
1508 break;
1509 case 0x35: /* FBNE */
1510 if (! fp_register_zero_p (rav))
1511 goto branch_taken;
1512 break;
1513 }
1514 }
1515
1516 /* Not a branch or branch not taken; target PC is:
1517 pc + 4 */
1518 return (pc + ALPHA_INSN_SIZE);
1519 }
1520
1521 int
1522 alpha_software_single_step (struct regcache *regcache)
1523 {
1524 CORE_ADDR pc, next_pc;
1525
1526 pc = read_pc ();
1527 next_pc = alpha_next_pc (pc);
1528
1529 insert_single_step_breakpoint (next_pc);
1530 return 1;
1531 }
1532
1533 \f
1534 /* Initialize the current architecture based on INFO. If possible, re-use an
1535 architecture from ARCHES, which is a list of architectures already created
1536 during this debugging session.
1537
1538 Called e.g. at program startup, when reading a core file, and when reading
1539 a binary file. */
1540
1541 static struct gdbarch *
1542 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1543 {
1544 struct gdbarch_tdep *tdep;
1545 struct gdbarch *gdbarch;
1546
1547 /* Try to determine the ABI of the object we are loading. */
1548 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1549 {
1550 /* If it's an ECOFF file, assume it's OSF/1. */
1551 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1552 info.osabi = GDB_OSABI_OSF1;
1553 }
1554
1555 /* Find a candidate among extant architectures. */
1556 arches = gdbarch_list_lookup_by_info (arches, &info);
1557 if (arches != NULL)
1558 return arches->gdbarch;
1559
1560 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1561 gdbarch = gdbarch_alloc (&info, tdep);
1562
1563 /* Lowest text address. This is used by heuristic_proc_start()
1564 to decide when to stop looking. */
1565 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1566
1567 tdep->dynamic_sigtramp_offset = NULL;
1568 tdep->sigcontext_addr = NULL;
1569 tdep->sc_pc_offset = 2 * 8;
1570 tdep->sc_regs_offset = 4 * 8;
1571 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1572
1573 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1574
1575 tdep->return_in_memory = alpha_return_in_memory_always;
1576
1577 /* Type sizes */
1578 set_gdbarch_short_bit (gdbarch, 16);
1579 set_gdbarch_int_bit (gdbarch, 32);
1580 set_gdbarch_long_bit (gdbarch, 64);
1581 set_gdbarch_long_long_bit (gdbarch, 64);
1582 set_gdbarch_float_bit (gdbarch, 32);
1583 set_gdbarch_double_bit (gdbarch, 64);
1584 set_gdbarch_long_double_bit (gdbarch, 64);
1585 set_gdbarch_ptr_bit (gdbarch, 64);
1586
1587 /* Register info */
1588 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1589 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1590 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1591 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1592
1593 set_gdbarch_register_name (gdbarch, alpha_register_name);
1594 set_gdbarch_register_type (gdbarch, alpha_register_type);
1595
1596 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1597 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1598
1599 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1600 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1601 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1602
1603 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1604
1605 /* Prologue heuristics. */
1606 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1607
1608 /* Disassembler. */
1609 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1610
1611 /* Call info. */
1612
1613 set_gdbarch_return_value (gdbarch, alpha_return_value);
1614
1615 /* Settings for calling functions in the inferior. */
1616 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1617
1618 /* Methods for saving / extracting a dummy frame's ID. */
1619 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
1620
1621 /* Return the unwound PC value. */
1622 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1623
1624 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1625 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1626
1627 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1628 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1629 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1630
1631 /* Hook in ABI-specific overrides, if they have been registered. */
1632 gdbarch_init_osabi (info, gdbarch);
1633
1634 /* Now that we have tuned the configuration, set a few final things
1635 based on what the OS ABI has told us. */
1636
1637 if (tdep->jb_pc >= 0)
1638 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1639
1640 frame_unwind_append_sniffer (gdbarch, alpha_sigtramp_frame_sniffer);
1641 frame_unwind_append_sniffer (gdbarch, alpha_heuristic_frame_sniffer);
1642
1643 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1644
1645 return gdbarch;
1646 }
1647
1648 void
1649 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1650 {
1651 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1652 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1653 }
1654
1655 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1656
1657 void
1658 _initialize_alpha_tdep (void)
1659 {
1660 struct cmd_list_element *c;
1661
1662 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1663
1664 /* Let the user set the fence post for heuristic_proc_start. */
1665
1666 /* We really would like to have both "0" and "unlimited" work, but
1667 command.c doesn't deal with that. So make it a var_zinteger
1668 because the user can always use "999999" or some such for unlimited. */
1669 /* We need to throw away the frame cache when we set this, since it
1670 might change our ability to get backtraces. */
1671 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1672 &heuristic_fence_post, _("\
1673 Set the distance searched for the start of a function."), _("\
1674 Show the distance searched for the start of a function."), _("\
1675 If you are debugging a stripped executable, GDB needs to search through the\n\
1676 program for the start of a function. This command sets the distance of the\n\
1677 search. The only need to set it is when debugging a stripped executable."),
1678 reinit_frame_cache_sfunc,
1679 NULL, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */
1680 &setlist, &showlist);
1681 }
This page took 0.072164 seconds and 5 git commands to generate.