2011-11-25  Uros Bizjak  <ubizjak@gmail.com>
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "doublest.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "inferior.h"
29 #include "symtab.h"
30 #include "value.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "dis-asm.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_string.h"
37 #include "linespec.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "arch-utils.h"
41 #include "osabi.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "trad-frame.h"
45
46 #include "elf-bfd.h"
47
48 #include "alpha-tdep.h"
49
50 /* Instruction decoding. The notations for registers, immediates and
51 opcodes are the same as the one used in Compaq's Alpha architecture
52 handbook. */
53
54 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
55
56 /* Memory instruction format */
57 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
58 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
59 #define MEM_DISP(insn) \
60 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
61
62 static const int lda_opcode = 0x08;
63 static const int stq_opcode = 0x2d;
64
65 /* Branch instruction format */
66 #define BR_RA(insn) MEM_RA(insn)
67
68 static const int br_opcode = 0x30;
69 static const int bne_opcode = 0x3d;
70
71 /* Operate instruction format */
72 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
73 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
74 #define OPR_RA(insn) MEM_RA(insn)
75 #define OPR_RC(insn) ((insn & 0x1f))
76 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
77
78 static const int subq_opcode = 0x10;
79 static const int subq_function = 0x29;
80
81 \f
82 /* Return the name of the REGNO register.
83
84 An empty name corresponds to a register number that used to
85 be used for a virtual register. That virtual register has
86 been removed, but the index is still reserved to maintain
87 compatibility with existing remote alpha targets. */
88
89 static const char *
90 alpha_register_name (struct gdbarch *gdbarch, int regno)
91 {
92 static const char * const register_names[] =
93 {
94 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
95 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
96 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
97 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
98 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
99 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
100 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
101 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
102 "pc", "", "unique"
103 };
104
105 if (regno < 0)
106 return NULL;
107 if (regno >= ARRAY_SIZE(register_names))
108 return NULL;
109 return register_names[regno];
110 }
111
112 static int
113 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
114 {
115 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
116 }
117
118 static int
119 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
120 {
121 return (regno == ALPHA_ZERO_REGNUM
122 || strlen (alpha_register_name (gdbarch, regno)) == 0);
123 }
124
125 static struct type *
126 alpha_register_type (struct gdbarch *gdbarch, int regno)
127 {
128 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
129 return builtin_type (gdbarch)->builtin_data_ptr;
130 if (regno == ALPHA_PC_REGNUM)
131 return builtin_type (gdbarch)->builtin_func_ptr;
132
133 /* Don't need to worry about little vs big endian until
134 some jerk tries to port to alpha-unicosmk. */
135 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
136 return builtin_type (gdbarch)->builtin_double;
137
138 return builtin_type (gdbarch)->builtin_int64;
139 }
140
141 /* Is REGNUM a member of REGGROUP? */
142
143 static int
144 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
145 struct reggroup *group)
146 {
147 /* Filter out any registers eliminated, but whose regnum is
148 reserved for backward compatibility, e.g. the vfp. */
149 if (gdbarch_register_name (gdbarch, regnum) == NULL
150 || *gdbarch_register_name (gdbarch, regnum) == '\0')
151 return 0;
152
153 if (group == all_reggroup)
154 return 1;
155
156 /* Zero should not be saved or restored. Technically it is a general
157 register (just as $f31 would be a float if we represented it), but
158 there's no point displaying it during "info regs", so leave it out
159 of all groups except for "all". */
160 if (regnum == ALPHA_ZERO_REGNUM)
161 return 0;
162
163 /* All other registers are saved and restored. */
164 if (group == save_reggroup || group == restore_reggroup)
165 return 1;
166
167 /* All other groups are non-overlapping. */
168
169 /* Since this is really a PALcode memory slot... */
170 if (regnum == ALPHA_UNIQUE_REGNUM)
171 return group == system_reggroup;
172
173 /* Force the FPCR to be considered part of the floating point state. */
174 if (regnum == ALPHA_FPCR_REGNUM)
175 return group == float_reggroup;
176
177 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
178 return group == float_reggroup;
179 else
180 return group == general_reggroup;
181 }
182
183 /* The following represents exactly the conversion performed by
184 the LDS instruction. This applies to both single-precision
185 floating point and 32-bit integers. */
186
187 static void
188 alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
189 {
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 ULONGEST mem = extract_unsigned_integer (in, 4, byte_order);
192 ULONGEST frac = (mem >> 0) & 0x7fffff;
193 ULONGEST sign = (mem >> 31) & 1;
194 ULONGEST exp_msb = (mem >> 30) & 1;
195 ULONGEST exp_low = (mem >> 23) & 0x7f;
196 ULONGEST exp, reg;
197
198 exp = (exp_msb << 10) | exp_low;
199 if (exp_msb)
200 {
201 if (exp_low == 0x7f)
202 exp = 0x7ff;
203 }
204 else
205 {
206 if (exp_low != 0x00)
207 exp |= 0x380;
208 }
209
210 reg = (sign << 63) | (exp << 52) | (frac << 29);
211 store_unsigned_integer (out, 8, byte_order, reg);
212 }
213
214 /* Similarly, this represents exactly the conversion performed by
215 the STS instruction. */
216
217 static void
218 alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
219 {
220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
221 ULONGEST reg, mem;
222
223 reg = extract_unsigned_integer (in, 8, byte_order);
224 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
225 store_unsigned_integer (out, 4, byte_order, mem);
226 }
227
228 /* The alpha needs a conversion between register and memory format if the
229 register is a floating point register and memory format is float, as the
230 register format must be double or memory format is an integer with 4
231 bytes or less, as the representation of integers in floating point
232 registers is different. */
233
234 static int
235 alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
236 struct type *type)
237 {
238 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
239 && TYPE_LENGTH (type) != 8);
240 }
241
242 static int
243 alpha_register_to_value (struct frame_info *frame, int regnum,
244 struct type *valtype, gdb_byte *out,
245 int *optimizedp, int *unavailablep)
246 {
247 struct gdbarch *gdbarch = get_frame_arch (frame);
248 gdb_byte in[MAX_REGISTER_SIZE];
249
250 /* Convert to TYPE. */
251 if (!get_frame_register_bytes (frame, regnum, 0,
252 register_size (gdbarch, regnum),
253 in, optimizedp, unavailablep))
254 return 0;
255
256 if (TYPE_LENGTH (valtype) == 4)
257 {
258 alpha_sts (gdbarch, out, in);
259 *optimizedp = *unavailablep = 0;
260 return 1;
261 }
262
263 error (_("Cannot retrieve value from floating point register"));
264 }
265
266 static void
267 alpha_value_to_register (struct frame_info *frame, int regnum,
268 struct type *valtype, const gdb_byte *in)
269 {
270 gdb_byte out[MAX_REGISTER_SIZE];
271
272 switch (TYPE_LENGTH (valtype))
273 {
274 case 4:
275 alpha_lds (get_frame_arch (frame), out, in);
276 break;
277 default:
278 error (_("Cannot store value in floating point register"));
279 }
280 put_frame_register (frame, regnum, out);
281 }
282
283 \f
284 /* The alpha passes the first six arguments in the registers, the rest on
285 the stack. The register arguments are stored in ARG_REG_BUFFER, and
286 then moved into the register file; this simplifies the passing of a
287 large struct which extends from the registers to the stack, plus avoids
288 three ptrace invocations per word.
289
290 We don't bother tracking which register values should go in integer
291 regs or fp regs; we load the same values into both.
292
293 If the called function is returning a structure, the address of the
294 structure to be returned is passed as a hidden first argument. */
295
296 static CORE_ADDR
297 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
298 struct regcache *regcache, CORE_ADDR bp_addr,
299 int nargs, struct value **args, CORE_ADDR sp,
300 int struct_return, CORE_ADDR struct_addr)
301 {
302 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
303 int i;
304 int accumulate_size = struct_return ? 8 : 0;
305 struct alpha_arg
306 {
307 const gdb_byte *contents;
308 int len;
309 int offset;
310 };
311 struct alpha_arg *alpha_args
312 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
313 struct alpha_arg *m_arg;
314 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
315 int required_arg_regs;
316 CORE_ADDR func_addr = find_function_addr (function, NULL);
317
318 /* The ABI places the address of the called function in T12. */
319 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
320
321 /* Set the return address register to point to the entry point
322 of the program, where a breakpoint lies in wait. */
323 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
324
325 /* Lay out the arguments in memory. */
326 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
327 {
328 struct value *arg = args[i];
329 struct type *arg_type = check_typedef (value_type (arg));
330
331 /* Cast argument to long if necessary as the compiler does it too. */
332 switch (TYPE_CODE (arg_type))
333 {
334 case TYPE_CODE_INT:
335 case TYPE_CODE_BOOL:
336 case TYPE_CODE_CHAR:
337 case TYPE_CODE_RANGE:
338 case TYPE_CODE_ENUM:
339 if (TYPE_LENGTH (arg_type) == 4)
340 {
341 /* 32-bit values must be sign-extended to 64 bits
342 even if the base data type is unsigned. */
343 arg_type = builtin_type (gdbarch)->builtin_int32;
344 arg = value_cast (arg_type, arg);
345 }
346 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
347 {
348 arg_type = builtin_type (gdbarch)->builtin_int64;
349 arg = value_cast (arg_type, arg);
350 }
351 break;
352
353 case TYPE_CODE_FLT:
354 /* "float" arguments loaded in registers must be passed in
355 register format, aka "double". */
356 if (accumulate_size < sizeof (arg_reg_buffer)
357 && TYPE_LENGTH (arg_type) == 4)
358 {
359 arg_type = builtin_type (gdbarch)->builtin_double;
360 arg = value_cast (arg_type, arg);
361 }
362 /* Tru64 5.1 has a 128-bit long double, and passes this by
363 invisible reference. No one else uses this data type. */
364 else if (TYPE_LENGTH (arg_type) == 16)
365 {
366 /* Allocate aligned storage. */
367 sp = (sp & -16) - 16;
368
369 /* Write the real data into the stack. */
370 write_memory (sp, value_contents (arg), 16);
371
372 /* Construct the indirection. */
373 arg_type = lookup_pointer_type (arg_type);
374 arg = value_from_pointer (arg_type, sp);
375 }
376 break;
377
378 case TYPE_CODE_COMPLEX:
379 /* ??? The ABI says that complex values are passed as two
380 separate scalar values. This distinction only matters
381 for complex float. However, GCC does not implement this. */
382
383 /* Tru64 5.1 has a 128-bit long double, and passes this by
384 invisible reference. */
385 if (TYPE_LENGTH (arg_type) == 32)
386 {
387 /* Allocate aligned storage. */
388 sp = (sp & -16) - 16;
389
390 /* Write the real data into the stack. */
391 write_memory (sp, value_contents (arg), 32);
392
393 /* Construct the indirection. */
394 arg_type = lookup_pointer_type (arg_type);
395 arg = value_from_pointer (arg_type, sp);
396 }
397 break;
398
399 default:
400 break;
401 }
402 m_arg->len = TYPE_LENGTH (arg_type);
403 m_arg->offset = accumulate_size;
404 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
405 m_arg->contents = value_contents (arg);
406 }
407
408 /* Determine required argument register loads, loading an argument register
409 is expensive as it uses three ptrace calls. */
410 required_arg_regs = accumulate_size / 8;
411 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
412 required_arg_regs = ALPHA_NUM_ARG_REGS;
413
414 /* Make room for the arguments on the stack. */
415 if (accumulate_size < sizeof(arg_reg_buffer))
416 accumulate_size = 0;
417 else
418 accumulate_size -= sizeof(arg_reg_buffer);
419 sp -= accumulate_size;
420
421 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
422 sp &= ~15;
423
424 /* `Push' arguments on the stack. */
425 for (i = nargs; m_arg--, --i >= 0;)
426 {
427 const gdb_byte *contents = m_arg->contents;
428 int offset = m_arg->offset;
429 int len = m_arg->len;
430
431 /* Copy the bytes destined for registers into arg_reg_buffer. */
432 if (offset < sizeof(arg_reg_buffer))
433 {
434 if (offset + len <= sizeof(arg_reg_buffer))
435 {
436 memcpy (arg_reg_buffer + offset, contents, len);
437 continue;
438 }
439 else
440 {
441 int tlen = sizeof(arg_reg_buffer) - offset;
442 memcpy (arg_reg_buffer + offset, contents, tlen);
443 offset += tlen;
444 contents += tlen;
445 len -= tlen;
446 }
447 }
448
449 /* Everything else goes to the stack. */
450 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
451 }
452 if (struct_return)
453 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
454 byte_order, struct_addr);
455
456 /* Load the argument registers. */
457 for (i = 0; i < required_arg_regs; i++)
458 {
459 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
460 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
461 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
462 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
463 }
464
465 /* Finally, update the stack pointer. */
466 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
467
468 return sp;
469 }
470
471 /* Extract from REGCACHE the value about to be returned from a function
472 and copy it into VALBUF. */
473
474 static void
475 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
476 gdb_byte *valbuf)
477 {
478 struct gdbarch *gdbarch = get_regcache_arch (regcache);
479 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
480 int length = TYPE_LENGTH (valtype);
481 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
482 ULONGEST l;
483
484 switch (TYPE_CODE (valtype))
485 {
486 case TYPE_CODE_FLT:
487 switch (length)
488 {
489 case 4:
490 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
491 alpha_sts (gdbarch, valbuf, raw_buffer);
492 break;
493
494 case 8:
495 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
496 break;
497
498 case 16:
499 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
500 read_memory (l, valbuf, 16);
501 break;
502
503 default:
504 internal_error (__FILE__, __LINE__,
505 _("unknown floating point width"));
506 }
507 break;
508
509 case TYPE_CODE_COMPLEX:
510 switch (length)
511 {
512 case 8:
513 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
514 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
515 break;
516
517 case 16:
518 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
519 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
520 break;
521
522 case 32:
523 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
524 read_memory (l, valbuf, 32);
525 break;
526
527 default:
528 internal_error (__FILE__, __LINE__,
529 _("unknown floating point width"));
530 }
531 break;
532
533 default:
534 /* Assume everything else degenerates to an integer. */
535 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
536 store_unsigned_integer (valbuf, length, byte_order, l);
537 break;
538 }
539 }
540
541 /* Insert the given value into REGCACHE as if it was being
542 returned by a function. */
543
544 static void
545 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
546 const gdb_byte *valbuf)
547 {
548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
549 int length = TYPE_LENGTH (valtype);
550 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
551 ULONGEST l;
552
553 switch (TYPE_CODE (valtype))
554 {
555 case TYPE_CODE_FLT:
556 switch (length)
557 {
558 case 4:
559 alpha_lds (gdbarch, raw_buffer, valbuf);
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
561 break;
562
563 case 8:
564 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
565 break;
566
567 case 16:
568 /* FIXME: 128-bit long doubles are returned like structures:
569 by writing into indirect storage provided by the caller
570 as the first argument. */
571 error (_("Cannot set a 128-bit long double return value."));
572
573 default:
574 internal_error (__FILE__, __LINE__,
575 _("unknown floating point width"));
576 }
577 break;
578
579 case TYPE_CODE_COMPLEX:
580 switch (length)
581 {
582 case 8:
583 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
584 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
585 break;
586
587 case 16:
588 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
589 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
590 break;
591
592 case 32:
593 /* FIXME: 128-bit long doubles are returned like structures:
594 by writing into indirect storage provided by the caller
595 as the first argument. */
596 error (_("Cannot set a 128-bit long double return value."));
597
598 default:
599 internal_error (__FILE__, __LINE__,
600 _("unknown floating point width"));
601 }
602 break;
603
604 default:
605 /* Assume everything else degenerates to an integer. */
606 /* 32-bit values must be sign-extended to 64 bits
607 even if the base data type is unsigned. */
608 if (length == 4)
609 valtype = builtin_type (gdbarch)->builtin_int32;
610 l = unpack_long (valtype, valbuf);
611 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
612 break;
613 }
614 }
615
616 static enum return_value_convention
617 alpha_return_value (struct gdbarch *gdbarch, struct type *func_type,
618 struct type *type, struct regcache *regcache,
619 gdb_byte *readbuf, const gdb_byte *writebuf)
620 {
621 enum type_code code = TYPE_CODE (type);
622
623 if ((code == TYPE_CODE_STRUCT
624 || code == TYPE_CODE_UNION
625 || code == TYPE_CODE_ARRAY)
626 && gdbarch_tdep (gdbarch)->return_in_memory (type))
627 {
628 if (readbuf)
629 {
630 ULONGEST addr;
631 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
632 read_memory (addr, readbuf, TYPE_LENGTH (type));
633 }
634
635 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
636 }
637
638 if (readbuf)
639 alpha_extract_return_value (type, regcache, readbuf);
640 if (writebuf)
641 alpha_store_return_value (type, regcache, writebuf);
642
643 return RETURN_VALUE_REGISTER_CONVENTION;
644 }
645
646 static int
647 alpha_return_in_memory_always (struct type *type)
648 {
649 return 1;
650 }
651 \f
652 static const gdb_byte *
653 alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
654 {
655 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
656
657 *len = sizeof(break_insn);
658 return break_insn;
659 }
660
661 \f
662 /* This returns the PC of the first insn after the prologue.
663 If we can't find the prologue, then return 0. */
664
665 CORE_ADDR
666 alpha_after_prologue (CORE_ADDR pc)
667 {
668 struct symtab_and_line sal;
669 CORE_ADDR func_addr, func_end;
670
671 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
672 return 0;
673
674 sal = find_pc_line (func_addr, 0);
675 if (sal.end < func_end)
676 return sal.end;
677
678 /* The line after the prologue is after the end of the function. In this
679 case, tell the caller to find the prologue the hard way. */
680 return 0;
681 }
682
683 /* Read an instruction from memory at PC, looking through breakpoints. */
684
685 unsigned int
686 alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
687 {
688 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
689 gdb_byte buf[ALPHA_INSN_SIZE];
690 int status;
691
692 status = target_read_memory (pc, buf, sizeof (buf));
693 if (status)
694 memory_error (status, pc);
695 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
696 }
697
698 /* To skip prologues, I use this predicate. Returns either PC itself
699 if the code at PC does not look like a function prologue; otherwise
700 returns an address that (if we're lucky) follows the prologue. If
701 LENIENT, then we must skip everything which is involved in setting
702 up the frame (it's OK to skip more, just so long as we don't skip
703 anything which might clobber the registers which are being saved. */
704
705 static CORE_ADDR
706 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
707 {
708 unsigned long inst;
709 int offset;
710 CORE_ADDR post_prologue_pc;
711 gdb_byte buf[ALPHA_INSN_SIZE];
712
713 /* Silently return the unaltered pc upon memory errors.
714 This could happen on OSF/1 if decode_line_1 tries to skip the
715 prologue for quickstarted shared library functions when the
716 shared library is not yet mapped in.
717 Reading target memory is slow over serial lines, so we perform
718 this check only if the target has shared libraries (which all
719 Alpha targets do). */
720 if (target_read_memory (pc, buf, sizeof (buf)))
721 return pc;
722
723 /* See if we can determine the end of the prologue via the symbol table.
724 If so, then return either PC, or the PC after the prologue, whichever
725 is greater. */
726
727 post_prologue_pc = alpha_after_prologue (pc);
728 if (post_prologue_pc != 0)
729 return max (pc, post_prologue_pc);
730
731 /* Can't determine prologue from the symbol table, need to examine
732 instructions. */
733
734 /* Skip the typical prologue instructions. These are the stack adjustment
735 instruction and the instructions that save registers on the stack
736 or in the gcc frame. */
737 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
738 {
739 inst = alpha_read_insn (gdbarch, pc + offset);
740
741 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
742 continue;
743 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
744 continue;
745 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
746 continue;
747 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
748 continue;
749
750 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
751 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
752 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
753 continue;
754
755 if (inst == 0x47de040f) /* bis sp,sp,fp */
756 continue;
757 if (inst == 0x47fe040f) /* bis zero,sp,fp */
758 continue;
759
760 break;
761 }
762 return pc + offset;
763 }
764
765 \f
766 static const int ldl_l_opcode = 0x2a;
767 static const int ldq_l_opcode = 0x2b;
768 static const int stl_c_opcode = 0x2e;
769 static const int stq_c_opcode = 0x2f;
770
771 /* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
772 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
773 is found, attempt to step through it. A breakpoint is placed at the end of
774 the sequence. */
775
776 int
777 alpha_deal_with_atomic_sequence (struct frame_info *frame)
778 {
779 struct gdbarch *gdbarch = get_frame_arch (frame);
780 struct address_space *aspace = get_frame_address_space (frame);
781 CORE_ADDR pc = get_frame_pc (frame);
782 CORE_ADDR breaks[2] = {-1, -1};
783 CORE_ADDR loc = pc;
784 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
785 unsigned int insn = alpha_read_insn (gdbarch, loc);
786 int insn_count;
787 int index;
788 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
789 const int atomic_sequence_length = 16; /* Instruction sequence length. */
790 int bc_insn_count = 0; /* Conditional branch instruction count. */
791
792 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
793 if (INSN_OPCODE (insn) != ldl_l_opcode
794 && INSN_OPCODE (insn) != ldq_l_opcode)
795 return 0;
796
797 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
798 instructions. */
799 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
800 {
801 loc += ALPHA_INSN_SIZE;
802 insn = alpha_read_insn (gdbarch, loc);
803
804 /* Assume that there is at most one branch in the atomic
805 sequence. If a branch is found, put a breakpoint in
806 its destination address. */
807 if (INSN_OPCODE (insn) >= br_opcode)
808 {
809 int immediate = (insn & 0x001fffff) << 2;
810
811 immediate = (immediate ^ 0x400000) - 0x400000;
812
813 if (bc_insn_count >= 1)
814 return 0; /* More than one branch found, fallback
815 to the standard single-step code. */
816
817 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
818
819 bc_insn_count++;
820 last_breakpoint++;
821 }
822
823 if (INSN_OPCODE (insn) == stl_c_opcode
824 || INSN_OPCODE (insn) == stq_c_opcode)
825 break;
826 }
827
828 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
829 if (INSN_OPCODE (insn) != stl_c_opcode
830 && INSN_OPCODE (insn) != stq_c_opcode)
831 return 0;
832
833 closing_insn = loc;
834 loc += ALPHA_INSN_SIZE;
835
836 /* Insert a breakpoint right after the end of the atomic sequence. */
837 breaks[0] = loc;
838
839 /* Check for duplicated breakpoints. Check also for a breakpoint
840 placed (branch instruction's destination) anywhere in sequence. */
841 if (last_breakpoint
842 && (breaks[1] == breaks[0]
843 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
844 last_breakpoint = 0;
845
846 /* Effectively inserts the breakpoints. */
847 for (index = 0; index <= last_breakpoint; index++)
848 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
849
850 return 1;
851 }
852
853 \f
854 /* Figure out where the longjmp will land.
855 We expect the first arg to be a pointer to the jmp_buf structure from
856 which we extract the PC (JB_PC) that we will land at. The PC is copied
857 into the "pc". This routine returns true on success. */
858
859 static int
860 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
861 {
862 struct gdbarch *gdbarch = get_frame_arch (frame);
863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
865 CORE_ADDR jb_addr;
866 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
867
868 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
869
870 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
871 raw_buffer, tdep->jb_elt_size))
872 return 0;
873
874 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
875 return 1;
876 }
877
878 \f
879 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
880 describe the location and shape of the sigcontext structure. After
881 that, all registers are in memory, so it's easy. */
882 /* ??? Shouldn't we be able to do this generically, rather than with
883 OSABI data specific to Alpha? */
884
885 struct alpha_sigtramp_unwind_cache
886 {
887 CORE_ADDR sigcontext_addr;
888 };
889
890 static struct alpha_sigtramp_unwind_cache *
891 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
892 void **this_prologue_cache)
893 {
894 struct alpha_sigtramp_unwind_cache *info;
895 struct gdbarch_tdep *tdep;
896
897 if (*this_prologue_cache)
898 return *this_prologue_cache;
899
900 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
901 *this_prologue_cache = info;
902
903 tdep = gdbarch_tdep (get_frame_arch (this_frame));
904 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
905
906 return info;
907 }
908
909 /* Return the address of REGNUM in a sigtramp frame. Since this is
910 all arithmetic, it doesn't seem worthwhile to cache it. */
911
912 static CORE_ADDR
913 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
914 CORE_ADDR sigcontext_addr, int regnum)
915 {
916 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
917
918 if (regnum >= 0 && regnum < 32)
919 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
920 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
921 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
922 else if (regnum == ALPHA_PC_REGNUM)
923 return sigcontext_addr + tdep->sc_pc_offset;
924
925 return 0;
926 }
927
928 /* Given a GDB frame, determine the address of the calling function's
929 frame. This will be used to create a new GDB frame struct. */
930
931 static void
932 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
933 void **this_prologue_cache,
934 struct frame_id *this_id)
935 {
936 struct gdbarch *gdbarch = get_frame_arch (this_frame);
937 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
938 struct alpha_sigtramp_unwind_cache *info
939 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
940 CORE_ADDR stack_addr, code_addr;
941
942 /* If the OSABI couldn't locate the sigcontext, give up. */
943 if (info->sigcontext_addr == 0)
944 return;
945
946 /* If we have dynamic signal trampolines, find their start.
947 If we do not, then we must assume there is a symbol record
948 that can provide the start address. */
949 if (tdep->dynamic_sigtramp_offset)
950 {
951 int offset;
952 code_addr = get_frame_pc (this_frame);
953 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
954 if (offset >= 0)
955 code_addr -= offset;
956 else
957 code_addr = 0;
958 }
959 else
960 code_addr = get_frame_func (this_frame);
961
962 /* The stack address is trivially read from the sigcontext. */
963 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
964 ALPHA_SP_REGNUM);
965 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
966 ALPHA_REGISTER_SIZE);
967
968 *this_id = frame_id_build (stack_addr, code_addr);
969 }
970
971 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
972
973 static struct value *
974 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
975 void **this_prologue_cache, int regnum)
976 {
977 struct alpha_sigtramp_unwind_cache *info
978 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
979 CORE_ADDR addr;
980
981 if (info->sigcontext_addr != 0)
982 {
983 /* All integer and fp registers are stored in memory. */
984 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
985 info->sigcontext_addr, regnum);
986 if (addr != 0)
987 return frame_unwind_got_memory (this_frame, regnum, addr);
988 }
989
990 /* This extra register may actually be in the sigcontext, but our
991 current description of it in alpha_sigtramp_frame_unwind_cache
992 doesn't include it. Too bad. Fall back on whatever's in the
993 outer frame. */
994 return frame_unwind_got_register (this_frame, regnum, regnum);
995 }
996
997 static int
998 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
999 struct frame_info *this_frame,
1000 void **this_prologue_cache)
1001 {
1002 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1003 CORE_ADDR pc = get_frame_pc (this_frame);
1004 char *name;
1005
1006 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
1007 look at tramp-frame.h and other simplier per-architecture
1008 sigtramp unwinders. */
1009
1010 /* We shouldn't even bother to try if the OSABI didn't register a
1011 sigcontext_addr handler or pc_in_sigtramp hander. */
1012 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
1013 return 0;
1014 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
1015 return 0;
1016
1017 /* Otherwise we should be in a signal frame. */
1018 find_pc_partial_function (pc, &name, NULL, NULL);
1019 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
1020 return 1;
1021
1022 return 0;
1023 }
1024
1025 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1026 SIGTRAMP_FRAME,
1027 default_frame_unwind_stop_reason,
1028 alpha_sigtramp_frame_this_id,
1029 alpha_sigtramp_frame_prev_register,
1030 NULL,
1031 alpha_sigtramp_frame_sniffer
1032 };
1033
1034 \f
1035
1036 /* Heuristic_proc_start may hunt through the text section for a long
1037 time across a 2400 baud serial line. Allows the user to limit this
1038 search. */
1039 static unsigned int heuristic_fence_post = 0;
1040
1041 /* Attempt to locate the start of the function containing PC. We assume that
1042 the previous function ends with an about_to_return insn. Not foolproof by
1043 any means, since gcc is happy to put the epilogue in the middle of a
1044 function. But we're guessing anyway... */
1045
1046 static CORE_ADDR
1047 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
1048 {
1049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1050 CORE_ADDR last_non_nop = pc;
1051 CORE_ADDR fence = pc - heuristic_fence_post;
1052 CORE_ADDR orig_pc = pc;
1053 CORE_ADDR func;
1054 struct inferior *inf;
1055
1056 if (pc == 0)
1057 return 0;
1058
1059 /* First see if we can find the start of the function from minimal
1060 symbol information. This can succeed with a binary that doesn't
1061 have debug info, but hasn't been stripped. */
1062 func = get_pc_function_start (pc);
1063 if (func)
1064 return func;
1065
1066 if (heuristic_fence_post == UINT_MAX
1067 || fence < tdep->vm_min_address)
1068 fence = tdep->vm_min_address;
1069
1070 /* Search back for previous return; also stop at a 0, which might be
1071 seen for instance before the start of a code section. Don't include
1072 nops, since this usually indicates padding between functions. */
1073 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
1074 {
1075 unsigned int insn = alpha_read_insn (gdbarch, pc);
1076 switch (insn)
1077 {
1078 case 0: /* invalid insn */
1079 case 0x6bfa8001: /* ret $31,($26),1 */
1080 return last_non_nop;
1081
1082 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1083 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1084 break;
1085
1086 default:
1087 last_non_nop = pc;
1088 break;
1089 }
1090 }
1091
1092 inf = current_inferior ();
1093
1094 /* It's not clear to me why we reach this point when stopping quietly,
1095 but with this test, at least we don't print out warnings for every
1096 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
1097 if (inf->control.stop_soon == NO_STOP_QUIETLY)
1098 {
1099 static int blurb_printed = 0;
1100
1101 if (fence == tdep->vm_min_address)
1102 warning (_("Hit beginning of text section without finding \
1103 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1104 else
1105 warning (_("Hit heuristic-fence-post without finding \
1106 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1107
1108 if (!blurb_printed)
1109 {
1110 printf_filtered (_("\
1111 This warning occurs if you are debugging a function without any symbols\n\
1112 (for example, in a stripped executable). In that case, you may wish to\n\
1113 increase the size of the search with the `set heuristic-fence-post' command.\n\
1114 \n\
1115 Otherwise, you told GDB there was a function where there isn't one, or\n\
1116 (more likely) you have encountered a bug in GDB.\n"));
1117 blurb_printed = 1;
1118 }
1119 }
1120
1121 return 0;
1122 }
1123
1124 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
1125 something about the traditional layout of alpha stack frames. */
1126
1127 struct alpha_heuristic_unwind_cache
1128 {
1129 CORE_ADDR vfp;
1130 CORE_ADDR start_pc;
1131 struct trad_frame_saved_reg *saved_regs;
1132 int return_reg;
1133 };
1134
1135 /* If a probing loop sequence starts at PC, simulate it and compute
1136 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1137 FRAME_SIZE unchanged. */
1138
1139 static void
1140 alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1141 int *frame_size)
1142 {
1143 CORE_ADDR cur_pc = *pc;
1144 int cur_frame_size = *frame_size;
1145 int nb_of_iterations, reg_index, reg_probe;
1146 unsigned int insn;
1147
1148 /* The following pattern is recognized as a probing loop:
1149
1150 lda REG_INDEX,NB_OF_ITERATIONS
1151 lda REG_PROBE,<immediate>(sp)
1152
1153 LOOP_START:
1154 stq zero,<immediate>(REG_PROBE)
1155 subq REG_INDEX,0x1,REG_INDEX
1156 lda REG_PROBE,<immediate>(REG_PROBE)
1157 bne REG_INDEX, LOOP_START
1158
1159 lda sp,<immediate>(REG_PROBE)
1160
1161 If anything different is found, the function returns without
1162 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
1163 after this sequence, and FRAME_SIZE will be updated. */
1164
1165 /* lda REG_INDEX,NB_OF_ITERATIONS */
1166
1167 insn = alpha_read_insn (gdbarch, cur_pc);
1168 if (INSN_OPCODE (insn) != lda_opcode)
1169 return;
1170 reg_index = MEM_RA (insn);
1171 nb_of_iterations = MEM_DISP (insn);
1172
1173 /* lda REG_PROBE,<immediate>(sp) */
1174
1175 cur_pc += ALPHA_INSN_SIZE;
1176 insn = alpha_read_insn (gdbarch, cur_pc);
1177 if (INSN_OPCODE (insn) != lda_opcode
1178 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1179 return;
1180 reg_probe = MEM_RA (insn);
1181 cur_frame_size -= MEM_DISP (insn);
1182
1183 /* stq zero,<immediate>(REG_PROBE) */
1184
1185 cur_pc += ALPHA_INSN_SIZE;
1186 insn = alpha_read_insn (gdbarch, cur_pc);
1187 if (INSN_OPCODE (insn) != stq_opcode
1188 || MEM_RA (insn) != 0x1f
1189 || MEM_RB (insn) != reg_probe)
1190 return;
1191
1192 /* subq REG_INDEX,0x1,REG_INDEX */
1193
1194 cur_pc += ALPHA_INSN_SIZE;
1195 insn = alpha_read_insn (gdbarch, cur_pc);
1196 if (INSN_OPCODE (insn) != subq_opcode
1197 || !OPR_HAS_IMMEDIATE (insn)
1198 || OPR_FUNCTION (insn) != subq_function
1199 || OPR_LIT(insn) != 1
1200 || OPR_RA (insn) != reg_index
1201 || OPR_RC (insn) != reg_index)
1202 return;
1203
1204 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1205
1206 cur_pc += ALPHA_INSN_SIZE;
1207 insn = alpha_read_insn (gdbarch, cur_pc);
1208 if (INSN_OPCODE (insn) != lda_opcode
1209 || MEM_RA (insn) != reg_probe
1210 || MEM_RB (insn) != reg_probe)
1211 return;
1212 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1213
1214 /* bne REG_INDEX, LOOP_START */
1215
1216 cur_pc += ALPHA_INSN_SIZE;
1217 insn = alpha_read_insn (gdbarch, cur_pc);
1218 if (INSN_OPCODE (insn) != bne_opcode
1219 || MEM_RA (insn) != reg_index)
1220 return;
1221
1222 /* lda sp,<immediate>(REG_PROBE) */
1223
1224 cur_pc += ALPHA_INSN_SIZE;
1225 insn = alpha_read_insn (gdbarch, cur_pc);
1226 if (INSN_OPCODE (insn) != lda_opcode
1227 || MEM_RA (insn) != ALPHA_SP_REGNUM
1228 || MEM_RB (insn) != reg_probe)
1229 return;
1230 cur_frame_size -= MEM_DISP (insn);
1231
1232 *pc = cur_pc;
1233 *frame_size = cur_frame_size;
1234 }
1235
1236 static struct alpha_heuristic_unwind_cache *
1237 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
1238 void **this_prologue_cache,
1239 CORE_ADDR start_pc)
1240 {
1241 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1242 struct alpha_heuristic_unwind_cache *info;
1243 ULONGEST val;
1244 CORE_ADDR limit_pc, cur_pc;
1245 int frame_reg, frame_size, return_reg, reg;
1246
1247 if (*this_prologue_cache)
1248 return *this_prologue_cache;
1249
1250 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1251 *this_prologue_cache = info;
1252 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1253
1254 limit_pc = get_frame_pc (this_frame);
1255 if (start_pc == 0)
1256 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1257 info->start_pc = start_pc;
1258
1259 frame_reg = ALPHA_SP_REGNUM;
1260 frame_size = 0;
1261 return_reg = -1;
1262
1263 /* If we've identified a likely place to start, do code scanning. */
1264 if (start_pc != 0)
1265 {
1266 /* Limit the forward search to 50 instructions. */
1267 if (start_pc + 200 < limit_pc)
1268 limit_pc = start_pc + 200;
1269
1270 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1271 {
1272 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1273
1274 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1275 {
1276 if (word & 0x8000)
1277 {
1278 /* Consider only the first stack allocation instruction
1279 to contain the static size of the frame. */
1280 if (frame_size == 0)
1281 frame_size = (-word) & 0xffff;
1282 }
1283 else
1284 {
1285 /* Exit loop if a positive stack adjustment is found, which
1286 usually means that the stack cleanup code in the function
1287 epilogue is reached. */
1288 break;
1289 }
1290 }
1291 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1292 {
1293 reg = (word & 0x03e00000) >> 21;
1294
1295 /* Ignore this instruction if we have already encountered
1296 an instruction saving the same register earlier in the
1297 function code. The current instruction does not tell
1298 us where the original value upon function entry is saved.
1299 All it says is that the function we are scanning reused
1300 that register for some computation of its own, and is now
1301 saving its result. */
1302 if (trad_frame_addr_p(info->saved_regs, reg))
1303 continue;
1304
1305 if (reg == 31)
1306 continue;
1307
1308 /* Do not compute the address where the register was saved yet,
1309 because we don't know yet if the offset will need to be
1310 relative to $sp or $fp (we can not compute the address
1311 relative to $sp if $sp is updated during the execution of
1312 the current subroutine, for instance when doing some alloca).
1313 So just store the offset for the moment, and compute the
1314 address later when we know whether this frame has a frame
1315 pointer or not. */
1316 /* Hack: temporarily add one, so that the offset is non-zero
1317 and we can tell which registers have save offsets below. */
1318 info->saved_regs[reg].addr = (word & 0xffff) + 1;
1319
1320 /* Starting with OSF/1-3.2C, the system libraries are shipped
1321 without local symbols, but they still contain procedure
1322 descriptors without a symbol reference. GDB is currently
1323 unable to find these procedure descriptors and uses
1324 heuristic_proc_desc instead.
1325 As some low level compiler support routines (__div*, __add*)
1326 use a non-standard return address register, we have to
1327 add some heuristics to determine the return address register,
1328 or stepping over these routines will fail.
1329 Usually the return address register is the first register
1330 saved on the stack, but assembler optimization might
1331 rearrange the register saves.
1332 So we recognize only a few registers (t7, t9, ra) within
1333 the procedure prologue as valid return address registers.
1334 If we encounter a return instruction, we extract the
1335 return address register from it.
1336
1337 FIXME: Rewriting GDB to access the procedure descriptors,
1338 e.g. via the minimal symbol table, might obviate this
1339 hack. */
1340 if (return_reg == -1
1341 && cur_pc < (start_pc + 80)
1342 && (reg == ALPHA_T7_REGNUM
1343 || reg == ALPHA_T9_REGNUM
1344 || reg == ALPHA_RA_REGNUM))
1345 return_reg = reg;
1346 }
1347 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1348 return_reg = (word >> 16) & 0x1f;
1349 else if (word == 0x47de040f) /* bis sp,sp,fp */
1350 frame_reg = ALPHA_GCC_FP_REGNUM;
1351 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1352 frame_reg = ALPHA_GCC_FP_REGNUM;
1353
1354 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
1355 }
1356
1357 /* If we haven't found a valid return address register yet, keep
1358 searching in the procedure prologue. */
1359 if (return_reg == -1)
1360 {
1361 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1362 {
1363 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1364
1365 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1366 {
1367 reg = (word & 0x03e00000) >> 21;
1368 if (reg == ALPHA_T7_REGNUM
1369 || reg == ALPHA_T9_REGNUM
1370 || reg == ALPHA_RA_REGNUM)
1371 {
1372 return_reg = reg;
1373 break;
1374 }
1375 }
1376 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1377 {
1378 return_reg = (word >> 16) & 0x1f;
1379 break;
1380 }
1381
1382 cur_pc += ALPHA_INSN_SIZE;
1383 }
1384 }
1385 }
1386
1387 /* Failing that, do default to the customary RA. */
1388 if (return_reg == -1)
1389 return_reg = ALPHA_RA_REGNUM;
1390 info->return_reg = return_reg;
1391
1392 val = get_frame_register_unsigned (this_frame, frame_reg);
1393 info->vfp = val + frame_size;
1394
1395 /* Convert offsets to absolute addresses. See above about adding
1396 one to the offsets to make all detected offsets non-zero. */
1397 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1398 if (trad_frame_addr_p(info->saved_regs, reg))
1399 info->saved_regs[reg].addr += val - 1;
1400
1401 /* The stack pointer of the previous frame is computed by popping
1402 the current stack frame. */
1403 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1404 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1405
1406 return info;
1407 }
1408
1409 /* Given a GDB frame, determine the address of the calling function's
1410 frame. This will be used to create a new GDB frame struct. */
1411
1412 static void
1413 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1414 void **this_prologue_cache,
1415 struct frame_id *this_id)
1416 {
1417 struct alpha_heuristic_unwind_cache *info
1418 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1419
1420 *this_id = frame_id_build (info->vfp, info->start_pc);
1421 }
1422
1423 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1424
1425 static struct value *
1426 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1427 void **this_prologue_cache, int regnum)
1428 {
1429 struct alpha_heuristic_unwind_cache *info
1430 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1431
1432 /* The PC of the previous frame is stored in the link register of
1433 the current frame. Frob regnum so that we pull the value from
1434 the correct place. */
1435 if (regnum == ALPHA_PC_REGNUM)
1436 regnum = info->return_reg;
1437
1438 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1439 }
1440
1441 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1442 NORMAL_FRAME,
1443 default_frame_unwind_stop_reason,
1444 alpha_heuristic_frame_this_id,
1445 alpha_heuristic_frame_prev_register,
1446 NULL,
1447 default_frame_sniffer
1448 };
1449
1450 static CORE_ADDR
1451 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1452 void **this_prologue_cache)
1453 {
1454 struct alpha_heuristic_unwind_cache *info
1455 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1456
1457 return info->vfp;
1458 }
1459
1460 static const struct frame_base alpha_heuristic_frame_base = {
1461 &alpha_heuristic_frame_unwind,
1462 alpha_heuristic_frame_base_address,
1463 alpha_heuristic_frame_base_address,
1464 alpha_heuristic_frame_base_address
1465 };
1466
1467 /* Just like reinit_frame_cache, but with the right arguments to be
1468 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1469
1470 static void
1471 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1472 {
1473 reinit_frame_cache ();
1474 }
1475
1476 \f
1477 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1478 dummy frame. The frame ID's base needs to match the TOS value
1479 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1480 breakpoint. */
1481
1482 static struct frame_id
1483 alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1484 {
1485 ULONGEST base;
1486 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1487 return frame_id_build (base, get_frame_pc (this_frame));
1488 }
1489
1490 static CORE_ADDR
1491 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1492 {
1493 ULONGEST pc;
1494 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
1495 return pc;
1496 }
1497
1498 \f
1499 /* Helper routines for alpha*-nat.c files to move register sets to and
1500 from core files. The UNIQUE pointer is allowed to be NULL, as most
1501 targets don't supply this value in their core files. */
1502
1503 void
1504 alpha_supply_int_regs (struct regcache *regcache, int regno,
1505 const void *r0_r30, const void *pc, const void *unique)
1506 {
1507 const gdb_byte *regs = r0_r30;
1508 int i;
1509
1510 for (i = 0; i < 31; ++i)
1511 if (regno == i || regno == -1)
1512 regcache_raw_supply (regcache, i, regs + i * 8);
1513
1514 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1515 {
1516 const gdb_byte zero[8] = { 0 };
1517
1518 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1519 }
1520
1521 if (regno == ALPHA_PC_REGNUM || regno == -1)
1522 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1523
1524 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1525 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1526 }
1527
1528 void
1529 alpha_fill_int_regs (const struct regcache *regcache,
1530 int regno, void *r0_r30, void *pc, void *unique)
1531 {
1532 gdb_byte *regs = r0_r30;
1533 int i;
1534
1535 for (i = 0; i < 31; ++i)
1536 if (regno == i || regno == -1)
1537 regcache_raw_collect (regcache, i, regs + i * 8);
1538
1539 if (regno == ALPHA_PC_REGNUM || regno == -1)
1540 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1541
1542 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1543 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1544 }
1545
1546 void
1547 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1548 const void *f0_f30, const void *fpcr)
1549 {
1550 const gdb_byte *regs = f0_f30;
1551 int i;
1552
1553 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1554 if (regno == i || regno == -1)
1555 regcache_raw_supply (regcache, i,
1556 regs + (i - ALPHA_FP0_REGNUM) * 8);
1557
1558 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1559 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1560 }
1561
1562 void
1563 alpha_fill_fp_regs (const struct regcache *regcache,
1564 int regno, void *f0_f30, void *fpcr)
1565 {
1566 gdb_byte *regs = f0_f30;
1567 int i;
1568
1569 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1570 if (regno == i || regno == -1)
1571 regcache_raw_collect (regcache, i,
1572 regs + (i - ALPHA_FP0_REGNUM) * 8);
1573
1574 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1575 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1576 }
1577
1578 \f
1579
1580 /* Return nonzero if the G_floating register value in REG is equal to
1581 zero for FP control instructions. */
1582
1583 static int
1584 fp_register_zero_p (LONGEST reg)
1585 {
1586 /* Check that all bits except the sign bit are zero. */
1587 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1588
1589 return ((reg & zero_mask) == 0);
1590 }
1591
1592 /* Return the value of the sign bit for the G_floating register
1593 value held in REG. */
1594
1595 static int
1596 fp_register_sign_bit (LONGEST reg)
1597 {
1598 const LONGEST sign_mask = (LONGEST) 1 << 63;
1599
1600 return ((reg & sign_mask) != 0);
1601 }
1602
1603 /* alpha_software_single_step() is called just before we want to resume
1604 the inferior, if we want to single-step it but there is no hardware
1605 or kernel single-step support (NetBSD on Alpha, for example). We find
1606 the target of the coming instruction and breakpoint it. */
1607
1608 static CORE_ADDR
1609 alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
1610 {
1611 struct gdbarch *gdbarch = get_frame_arch (frame);
1612 unsigned int insn;
1613 unsigned int op;
1614 int regno;
1615 int offset;
1616 LONGEST rav;
1617
1618 insn = alpha_read_insn (gdbarch, pc);
1619
1620 /* Opcode is top 6 bits. */
1621 op = (insn >> 26) & 0x3f;
1622
1623 if (op == 0x1a)
1624 {
1625 /* Jump format: target PC is:
1626 RB & ~3 */
1627 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
1628 }
1629
1630 if ((op & 0x30) == 0x30)
1631 {
1632 /* Branch format: target PC is:
1633 (new PC) + (4 * sext(displacement)) */
1634 if (op == 0x30 /* BR */
1635 || op == 0x34) /* BSR */
1636 {
1637 branch_taken:
1638 offset = (insn & 0x001fffff);
1639 if (offset & 0x00100000)
1640 offset |= 0xffe00000;
1641 offset *= ALPHA_INSN_SIZE;
1642 return (pc + ALPHA_INSN_SIZE + offset);
1643 }
1644
1645 /* Need to determine if branch is taken; read RA. */
1646 regno = (insn >> 21) & 0x1f;
1647 switch (op)
1648 {
1649 case 0x31: /* FBEQ */
1650 case 0x36: /* FBGE */
1651 case 0x37: /* FBGT */
1652 case 0x33: /* FBLE */
1653 case 0x32: /* FBLT */
1654 case 0x35: /* FBNE */
1655 regno += gdbarch_fp0_regnum (gdbarch);
1656 }
1657
1658 rav = get_frame_register_signed (frame, regno);
1659
1660 switch (op)
1661 {
1662 case 0x38: /* BLBC */
1663 if ((rav & 1) == 0)
1664 goto branch_taken;
1665 break;
1666 case 0x3c: /* BLBS */
1667 if (rav & 1)
1668 goto branch_taken;
1669 break;
1670 case 0x39: /* BEQ */
1671 if (rav == 0)
1672 goto branch_taken;
1673 break;
1674 case 0x3d: /* BNE */
1675 if (rav != 0)
1676 goto branch_taken;
1677 break;
1678 case 0x3a: /* BLT */
1679 if (rav < 0)
1680 goto branch_taken;
1681 break;
1682 case 0x3b: /* BLE */
1683 if (rav <= 0)
1684 goto branch_taken;
1685 break;
1686 case 0x3f: /* BGT */
1687 if (rav > 0)
1688 goto branch_taken;
1689 break;
1690 case 0x3e: /* BGE */
1691 if (rav >= 0)
1692 goto branch_taken;
1693 break;
1694
1695 /* Floating point branches. */
1696
1697 case 0x31: /* FBEQ */
1698 if (fp_register_zero_p (rav))
1699 goto branch_taken;
1700 break;
1701 case 0x36: /* FBGE */
1702 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1703 goto branch_taken;
1704 break;
1705 case 0x37: /* FBGT */
1706 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1707 goto branch_taken;
1708 break;
1709 case 0x33: /* FBLE */
1710 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1711 goto branch_taken;
1712 break;
1713 case 0x32: /* FBLT */
1714 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1715 goto branch_taken;
1716 break;
1717 case 0x35: /* FBNE */
1718 if (! fp_register_zero_p (rav))
1719 goto branch_taken;
1720 break;
1721 }
1722 }
1723
1724 /* Not a branch or branch not taken; target PC is:
1725 pc + 4 */
1726 return (pc + ALPHA_INSN_SIZE);
1727 }
1728
1729 int
1730 alpha_software_single_step (struct frame_info *frame)
1731 {
1732 struct gdbarch *gdbarch = get_frame_arch (frame);
1733 struct address_space *aspace = get_frame_address_space (frame);
1734 CORE_ADDR pc, next_pc;
1735
1736 pc = get_frame_pc (frame);
1737 next_pc = alpha_next_pc (frame, pc);
1738
1739 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
1740 return 1;
1741 }
1742
1743 \f
1744 /* Initialize the current architecture based on INFO. If possible, re-use an
1745 architecture from ARCHES, which is a list of architectures already created
1746 during this debugging session.
1747
1748 Called e.g. at program startup, when reading a core file, and when reading
1749 a binary file. */
1750
1751 static struct gdbarch *
1752 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1753 {
1754 struct gdbarch_tdep *tdep;
1755 struct gdbarch *gdbarch;
1756
1757 /* Try to determine the ABI of the object we are loading. */
1758 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1759 {
1760 /* If it's an ECOFF file, assume it's OSF/1. */
1761 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1762 info.osabi = GDB_OSABI_OSF1;
1763 }
1764
1765 /* Find a candidate among extant architectures. */
1766 arches = gdbarch_list_lookup_by_info (arches, &info);
1767 if (arches != NULL)
1768 return arches->gdbarch;
1769
1770 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1771 gdbarch = gdbarch_alloc (&info, tdep);
1772
1773 /* Lowest text address. This is used by heuristic_proc_start()
1774 to decide when to stop looking. */
1775 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1776
1777 tdep->dynamic_sigtramp_offset = NULL;
1778 tdep->sigcontext_addr = NULL;
1779 tdep->sc_pc_offset = 2 * 8;
1780 tdep->sc_regs_offset = 4 * 8;
1781 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1782
1783 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
1784
1785 tdep->return_in_memory = alpha_return_in_memory_always;
1786
1787 /* Type sizes */
1788 set_gdbarch_short_bit (gdbarch, 16);
1789 set_gdbarch_int_bit (gdbarch, 32);
1790 set_gdbarch_long_bit (gdbarch, 64);
1791 set_gdbarch_long_long_bit (gdbarch, 64);
1792 set_gdbarch_float_bit (gdbarch, 32);
1793 set_gdbarch_double_bit (gdbarch, 64);
1794 set_gdbarch_long_double_bit (gdbarch, 64);
1795 set_gdbarch_ptr_bit (gdbarch, 64);
1796
1797 /* Register info */
1798 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1799 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1800 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1801 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1802
1803 set_gdbarch_register_name (gdbarch, alpha_register_name);
1804 set_gdbarch_register_type (gdbarch, alpha_register_type);
1805
1806 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1807 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1808
1809 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1810 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1811 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1812
1813 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1814
1815 /* Prologue heuristics. */
1816 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1817
1818 /* Disassembler. */
1819 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1820
1821 /* Call info. */
1822
1823 set_gdbarch_return_value (gdbarch, alpha_return_value);
1824
1825 /* Settings for calling functions in the inferior. */
1826 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1827
1828 /* Methods for saving / extracting a dummy frame's ID. */
1829 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
1830
1831 /* Return the unwound PC value. */
1832 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1833
1834 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1835 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1836
1837 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1838 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1839 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1840
1841 /* Handles single stepping of atomic sequences. */
1842 set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1843
1844 /* Hook in ABI-specific overrides, if they have been registered. */
1845 gdbarch_init_osabi (info, gdbarch);
1846
1847 /* Now that we have tuned the configuration, set a few final things
1848 based on what the OS ABI has told us. */
1849
1850 if (tdep->jb_pc >= 0)
1851 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1852
1853 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1854 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1855
1856 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1857
1858 return gdbarch;
1859 }
1860
1861 void
1862 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1863 {
1864 dwarf2_append_unwinders (gdbarch);
1865 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1866 }
1867
1868 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1869
1870 void
1871 _initialize_alpha_tdep (void)
1872 {
1873 struct cmd_list_element *c;
1874
1875 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1876
1877 /* Let the user set the fence post for heuristic_proc_start. */
1878
1879 /* We really would like to have both "0" and "unlimited" work, but
1880 command.c doesn't deal with that. So make it a var_zinteger
1881 because the user can always use "999999" or some such for unlimited. */
1882 /* We need to throw away the frame cache when we set this, since it
1883 might change our ability to get backtraces. */
1884 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1885 &heuristic_fence_post, _("\
1886 Set the distance searched for the start of a function."), _("\
1887 Show the distance searched for the start of a function."), _("\
1888 If you are debugging a stripped executable, GDB needs to search through the\n\
1889 program for the start of a function. This command sets the distance of the\n\
1890 search. The only need to set it is when debugging a stripped executable."),
1891 reinit_frame_cache_sfunc,
1892 NULL, /* FIXME: i18n: The distance searched for
1893 the start of a function is \"%d\". */
1894 &setlist, &showlist);
1895 }
This page took 0.067425 seconds and 5 git commands to generate.