gdb/
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993-2003, 2005-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "doublest.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "dwarf2-frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "value.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "dis-asm.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_string.h"
35 #include "linespec.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "arch-utils.h"
39 #include "osabi.h"
40 #include "block.h"
41 #include "infcall.h"
42 #include "trad-frame.h"
43
44 #include "elf-bfd.h"
45
46 #include "alpha-tdep.h"
47
48 /* Instruction decoding. The notations for registers, immediates and
49 opcodes are the same as the one used in Compaq's Alpha architecture
50 handbook. */
51
52 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
53
54 /* Memory instruction format */
55 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
56 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
57 #define MEM_DISP(insn) \
58 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
59
60 static const int lda_opcode = 0x08;
61 static const int stq_opcode = 0x2d;
62
63 /* Branch instruction format */
64 #define BR_RA(insn) MEM_RA(insn)
65
66 static const int br_opcode = 0x30;
67 static const int bne_opcode = 0x3d;
68
69 /* Operate instruction format */
70 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
71 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
72 #define OPR_RA(insn) MEM_RA(insn)
73 #define OPR_RC(insn) ((insn & 0x1f))
74 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
75
76 static const int subq_opcode = 0x10;
77 static const int subq_function = 0x29;
78
79 \f
80 /* Return the name of the REGNO register.
81
82 An empty name corresponds to a register number that used to
83 be used for a virtual register. That virtual register has
84 been removed, but the index is still reserved to maintain
85 compatibility with existing remote alpha targets. */
86
87 static const char *
88 alpha_register_name (struct gdbarch *gdbarch, int regno)
89 {
90 static const char * const register_names[] =
91 {
92 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
93 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
94 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
95 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
96 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
97 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
98 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
99 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
100 "pc", "", "unique"
101 };
102
103 if (regno < 0)
104 return NULL;
105 if (regno >= ARRAY_SIZE(register_names))
106 return NULL;
107 return register_names[regno];
108 }
109
110 static int
111 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
112 {
113 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
114 }
115
116 static int
117 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
118 {
119 return (regno == ALPHA_ZERO_REGNUM
120 || strlen (alpha_register_name (gdbarch, regno)) == 0);
121 }
122
123 static struct type *
124 alpha_register_type (struct gdbarch *gdbarch, int regno)
125 {
126 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
127 return builtin_type (gdbarch)->builtin_data_ptr;
128 if (regno == ALPHA_PC_REGNUM)
129 return builtin_type (gdbarch)->builtin_func_ptr;
130
131 /* Don't need to worry about little vs big endian until
132 some jerk tries to port to alpha-unicosmk. */
133 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
134 return builtin_type (gdbarch)->builtin_double;
135
136 return builtin_type (gdbarch)->builtin_int64;
137 }
138
139 /* Is REGNUM a member of REGGROUP? */
140
141 static int
142 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
143 struct reggroup *group)
144 {
145 /* Filter out any registers eliminated, but whose regnum is
146 reserved for backward compatibility, e.g. the vfp. */
147 if (gdbarch_register_name (gdbarch, regnum) == NULL
148 || *gdbarch_register_name (gdbarch, regnum) == '\0')
149 return 0;
150
151 if (group == all_reggroup)
152 return 1;
153
154 /* Zero should not be saved or restored. Technically it is a general
155 register (just as $f31 would be a float if we represented it), but
156 there's no point displaying it during "info regs", so leave it out
157 of all groups except for "all". */
158 if (regnum == ALPHA_ZERO_REGNUM)
159 return 0;
160
161 /* All other registers are saved and restored. */
162 if (group == save_reggroup || group == restore_reggroup)
163 return 1;
164
165 /* All other groups are non-overlapping. */
166
167 /* Since this is really a PALcode memory slot... */
168 if (regnum == ALPHA_UNIQUE_REGNUM)
169 return group == system_reggroup;
170
171 /* Force the FPCR to be considered part of the floating point state. */
172 if (regnum == ALPHA_FPCR_REGNUM)
173 return group == float_reggroup;
174
175 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
176 return group == float_reggroup;
177 else
178 return group == general_reggroup;
179 }
180
181 /* The following represents exactly the conversion performed by
182 the LDS instruction. This applies to both single-precision
183 floating point and 32-bit integers. */
184
185 static void
186 alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
187 {
188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
189 ULONGEST mem = extract_unsigned_integer (in, 4, byte_order);
190 ULONGEST frac = (mem >> 0) & 0x7fffff;
191 ULONGEST sign = (mem >> 31) & 1;
192 ULONGEST exp_msb = (mem >> 30) & 1;
193 ULONGEST exp_low = (mem >> 23) & 0x7f;
194 ULONGEST exp, reg;
195
196 exp = (exp_msb << 10) | exp_low;
197 if (exp_msb)
198 {
199 if (exp_low == 0x7f)
200 exp = 0x7ff;
201 }
202 else
203 {
204 if (exp_low != 0x00)
205 exp |= 0x380;
206 }
207
208 reg = (sign << 63) | (exp << 52) | (frac << 29);
209 store_unsigned_integer (out, 8, byte_order, reg);
210 }
211
212 /* Similarly, this represents exactly the conversion performed by
213 the STS instruction. */
214
215 static void
216 alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
217 {
218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
219 ULONGEST reg, mem;
220
221 reg = extract_unsigned_integer (in, 8, byte_order);
222 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
223 store_unsigned_integer (out, 4, byte_order, mem);
224 }
225
226 /* The alpha needs a conversion between register and memory format if the
227 register is a floating point register and memory format is float, as the
228 register format must be double or memory format is an integer with 4
229 bytes or less, as the representation of integers in floating point
230 registers is different. */
231
232 static int
233 alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
234 struct type *type)
235 {
236 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
237 && TYPE_LENGTH (type) != 8);
238 }
239
240 static int
241 alpha_register_to_value (struct frame_info *frame, int regnum,
242 struct type *valtype, gdb_byte *out,
243 int *optimizedp, int *unavailablep)
244 {
245 struct gdbarch *gdbarch = get_frame_arch (frame);
246 gdb_byte in[MAX_REGISTER_SIZE];
247
248 /* Convert to TYPE. */
249 if (!get_frame_register_bytes (frame, regnum, 0,
250 register_size (gdbarch, regnum),
251 in, optimizedp, unavailablep))
252 return 0;
253
254 if (TYPE_LENGTH (valtype) == 4)
255 {
256 alpha_sts (gdbarch, out, in);
257 *optimizedp = *unavailablep = 0;
258 return 1;
259 }
260
261 error (_("Cannot retrieve value from floating point register"));
262 }
263
264 static void
265 alpha_value_to_register (struct frame_info *frame, int regnum,
266 struct type *valtype, const gdb_byte *in)
267 {
268 gdb_byte out[MAX_REGISTER_SIZE];
269
270 switch (TYPE_LENGTH (valtype))
271 {
272 case 4:
273 alpha_lds (get_frame_arch (frame), out, in);
274 break;
275 default:
276 error (_("Cannot store value in floating point register"));
277 }
278 put_frame_register (frame, regnum, out);
279 }
280
281 \f
282 /* The alpha passes the first six arguments in the registers, the rest on
283 the stack. The register arguments are stored in ARG_REG_BUFFER, and
284 then moved into the register file; this simplifies the passing of a
285 large struct which extends from the registers to the stack, plus avoids
286 three ptrace invocations per word.
287
288 We don't bother tracking which register values should go in integer
289 regs or fp regs; we load the same values into both.
290
291 If the called function is returning a structure, the address of the
292 structure to be returned is passed as a hidden first argument. */
293
294 static CORE_ADDR
295 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
296 struct regcache *regcache, CORE_ADDR bp_addr,
297 int nargs, struct value **args, CORE_ADDR sp,
298 int struct_return, CORE_ADDR struct_addr)
299 {
300 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
301 int i;
302 int accumulate_size = struct_return ? 8 : 0;
303 struct alpha_arg
304 {
305 const gdb_byte *contents;
306 int len;
307 int offset;
308 };
309 struct alpha_arg *alpha_args
310 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
311 struct alpha_arg *m_arg;
312 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
313 int required_arg_regs;
314 CORE_ADDR func_addr = find_function_addr (function, NULL);
315
316 /* The ABI places the address of the called function in T12. */
317 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
318
319 /* Set the return address register to point to the entry point
320 of the program, where a breakpoint lies in wait. */
321 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
322
323 /* Lay out the arguments in memory. */
324 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
325 {
326 struct value *arg = args[i];
327 struct type *arg_type = check_typedef (value_type (arg));
328
329 /* Cast argument to long if necessary as the compiler does it too. */
330 switch (TYPE_CODE (arg_type))
331 {
332 case TYPE_CODE_INT:
333 case TYPE_CODE_BOOL:
334 case TYPE_CODE_CHAR:
335 case TYPE_CODE_RANGE:
336 case TYPE_CODE_ENUM:
337 if (TYPE_LENGTH (arg_type) == 4)
338 {
339 /* 32-bit values must be sign-extended to 64 bits
340 even if the base data type is unsigned. */
341 arg_type = builtin_type (gdbarch)->builtin_int32;
342 arg = value_cast (arg_type, arg);
343 }
344 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
345 {
346 arg_type = builtin_type (gdbarch)->builtin_int64;
347 arg = value_cast (arg_type, arg);
348 }
349 break;
350
351 case TYPE_CODE_FLT:
352 /* "float" arguments loaded in registers must be passed in
353 register format, aka "double". */
354 if (accumulate_size < sizeof (arg_reg_buffer)
355 && TYPE_LENGTH (arg_type) == 4)
356 {
357 arg_type = builtin_type (gdbarch)->builtin_double;
358 arg = value_cast (arg_type, arg);
359 }
360 /* Tru64 5.1 has a 128-bit long double, and passes this by
361 invisible reference. No one else uses this data type. */
362 else if (TYPE_LENGTH (arg_type) == 16)
363 {
364 /* Allocate aligned storage. */
365 sp = (sp & -16) - 16;
366
367 /* Write the real data into the stack. */
368 write_memory (sp, value_contents (arg), 16);
369
370 /* Construct the indirection. */
371 arg_type = lookup_pointer_type (arg_type);
372 arg = value_from_pointer (arg_type, sp);
373 }
374 break;
375
376 case TYPE_CODE_COMPLEX:
377 /* ??? The ABI says that complex values are passed as two
378 separate scalar values. This distinction only matters
379 for complex float. However, GCC does not implement this. */
380
381 /* Tru64 5.1 has a 128-bit long double, and passes this by
382 invisible reference. */
383 if (TYPE_LENGTH (arg_type) == 32)
384 {
385 /* Allocate aligned storage. */
386 sp = (sp & -16) - 16;
387
388 /* Write the real data into the stack. */
389 write_memory (sp, value_contents (arg), 32);
390
391 /* Construct the indirection. */
392 arg_type = lookup_pointer_type (arg_type);
393 arg = value_from_pointer (arg_type, sp);
394 }
395 break;
396
397 default:
398 break;
399 }
400 m_arg->len = TYPE_LENGTH (arg_type);
401 m_arg->offset = accumulate_size;
402 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
403 m_arg->contents = value_contents (arg);
404 }
405
406 /* Determine required argument register loads, loading an argument register
407 is expensive as it uses three ptrace calls. */
408 required_arg_regs = accumulate_size / 8;
409 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
410 required_arg_regs = ALPHA_NUM_ARG_REGS;
411
412 /* Make room for the arguments on the stack. */
413 if (accumulate_size < sizeof(arg_reg_buffer))
414 accumulate_size = 0;
415 else
416 accumulate_size -= sizeof(arg_reg_buffer);
417 sp -= accumulate_size;
418
419 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
420 sp &= ~15;
421
422 /* `Push' arguments on the stack. */
423 for (i = nargs; m_arg--, --i >= 0;)
424 {
425 const gdb_byte *contents = m_arg->contents;
426 int offset = m_arg->offset;
427 int len = m_arg->len;
428
429 /* Copy the bytes destined for registers into arg_reg_buffer. */
430 if (offset < sizeof(arg_reg_buffer))
431 {
432 if (offset + len <= sizeof(arg_reg_buffer))
433 {
434 memcpy (arg_reg_buffer + offset, contents, len);
435 continue;
436 }
437 else
438 {
439 int tlen = sizeof(arg_reg_buffer) - offset;
440 memcpy (arg_reg_buffer + offset, contents, tlen);
441 offset += tlen;
442 contents += tlen;
443 len -= tlen;
444 }
445 }
446
447 /* Everything else goes to the stack. */
448 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
449 }
450 if (struct_return)
451 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
452 byte_order, struct_addr);
453
454 /* Load the argument registers. */
455 for (i = 0; i < required_arg_regs; i++)
456 {
457 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
458 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
459 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
460 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
461 }
462
463 /* Finally, update the stack pointer. */
464 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
465
466 return sp;
467 }
468
469 /* Extract from REGCACHE the value about to be returned from a function
470 and copy it into VALBUF. */
471
472 static void
473 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
474 gdb_byte *valbuf)
475 {
476 struct gdbarch *gdbarch = get_regcache_arch (regcache);
477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
478 int length = TYPE_LENGTH (valtype);
479 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
480 ULONGEST l;
481
482 switch (TYPE_CODE (valtype))
483 {
484 case TYPE_CODE_FLT:
485 switch (length)
486 {
487 case 4:
488 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
489 alpha_sts (gdbarch, valbuf, raw_buffer);
490 break;
491
492 case 8:
493 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
494 break;
495
496 case 16:
497 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
498 read_memory (l, valbuf, 16);
499 break;
500
501 default:
502 internal_error (__FILE__, __LINE__,
503 _("unknown floating point width"));
504 }
505 break;
506
507 case TYPE_CODE_COMPLEX:
508 switch (length)
509 {
510 case 8:
511 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
512 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
513 break;
514
515 case 16:
516 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
517 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
518 break;
519
520 case 32:
521 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
522 read_memory (l, valbuf, 32);
523 break;
524
525 default:
526 internal_error (__FILE__, __LINE__,
527 _("unknown floating point width"));
528 }
529 break;
530
531 default:
532 /* Assume everything else degenerates to an integer. */
533 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
534 store_unsigned_integer (valbuf, length, byte_order, l);
535 break;
536 }
537 }
538
539 /* Insert the given value into REGCACHE as if it was being
540 returned by a function. */
541
542 static void
543 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
544 const gdb_byte *valbuf)
545 {
546 struct gdbarch *gdbarch = get_regcache_arch (regcache);
547 int length = TYPE_LENGTH (valtype);
548 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
549 ULONGEST l;
550
551 switch (TYPE_CODE (valtype))
552 {
553 case TYPE_CODE_FLT:
554 switch (length)
555 {
556 case 4:
557 alpha_lds (gdbarch, raw_buffer, valbuf);
558 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
559 break;
560
561 case 8:
562 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
563 break;
564
565 case 16:
566 /* FIXME: 128-bit long doubles are returned like structures:
567 by writing into indirect storage provided by the caller
568 as the first argument. */
569 error (_("Cannot set a 128-bit long double return value."));
570
571 default:
572 internal_error (__FILE__, __LINE__,
573 _("unknown floating point width"));
574 }
575 break;
576
577 case TYPE_CODE_COMPLEX:
578 switch (length)
579 {
580 case 8:
581 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
582 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
583 break;
584
585 case 16:
586 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
587 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
588 break;
589
590 case 32:
591 /* FIXME: 128-bit long doubles are returned like structures:
592 by writing into indirect storage provided by the caller
593 as the first argument. */
594 error (_("Cannot set a 128-bit long double return value."));
595
596 default:
597 internal_error (__FILE__, __LINE__,
598 _("unknown floating point width"));
599 }
600 break;
601
602 default:
603 /* Assume everything else degenerates to an integer. */
604 /* 32-bit values must be sign-extended to 64 bits
605 even if the base data type is unsigned. */
606 if (length == 4)
607 valtype = builtin_type (gdbarch)->builtin_int32;
608 l = unpack_long (valtype, valbuf);
609 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
610 break;
611 }
612 }
613
614 static enum return_value_convention
615 alpha_return_value (struct gdbarch *gdbarch, struct type *func_type,
616 struct type *type, struct regcache *regcache,
617 gdb_byte *readbuf, const gdb_byte *writebuf)
618 {
619 enum type_code code = TYPE_CODE (type);
620
621 if ((code == TYPE_CODE_STRUCT
622 || code == TYPE_CODE_UNION
623 || code == TYPE_CODE_ARRAY)
624 && gdbarch_tdep (gdbarch)->return_in_memory (type))
625 {
626 if (readbuf)
627 {
628 ULONGEST addr;
629 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
630 read_memory (addr, readbuf, TYPE_LENGTH (type));
631 }
632
633 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
634 }
635
636 if (readbuf)
637 alpha_extract_return_value (type, regcache, readbuf);
638 if (writebuf)
639 alpha_store_return_value (type, regcache, writebuf);
640
641 return RETURN_VALUE_REGISTER_CONVENTION;
642 }
643
644 static int
645 alpha_return_in_memory_always (struct type *type)
646 {
647 return 1;
648 }
649 \f
650 static const gdb_byte *
651 alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
652 {
653 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
654
655 *len = sizeof(break_insn);
656 return break_insn;
657 }
658
659 \f
660 /* This returns the PC of the first insn after the prologue.
661 If we can't find the prologue, then return 0. */
662
663 CORE_ADDR
664 alpha_after_prologue (CORE_ADDR pc)
665 {
666 struct symtab_and_line sal;
667 CORE_ADDR func_addr, func_end;
668
669 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
670 return 0;
671
672 sal = find_pc_line (func_addr, 0);
673 if (sal.end < func_end)
674 return sal.end;
675
676 /* The line after the prologue is after the end of the function. In this
677 case, tell the caller to find the prologue the hard way. */
678 return 0;
679 }
680
681 /* Read an instruction from memory at PC, looking through breakpoints. */
682
683 unsigned int
684 alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
685 {
686 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
687 gdb_byte buf[ALPHA_INSN_SIZE];
688 int status;
689
690 status = target_read_memory (pc, buf, sizeof (buf));
691 if (status)
692 memory_error (status, pc);
693 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
694 }
695
696 /* To skip prologues, I use this predicate. Returns either PC itself
697 if the code at PC does not look like a function prologue; otherwise
698 returns an address that (if we're lucky) follows the prologue. If
699 LENIENT, then we must skip everything which is involved in setting
700 up the frame (it's OK to skip more, just so long as we don't skip
701 anything which might clobber the registers which are being saved. */
702
703 static CORE_ADDR
704 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
705 {
706 unsigned long inst;
707 int offset;
708 CORE_ADDR post_prologue_pc;
709 gdb_byte buf[ALPHA_INSN_SIZE];
710
711 /* Silently return the unaltered pc upon memory errors.
712 This could happen on OSF/1 if decode_line_1 tries to skip the
713 prologue for quickstarted shared library functions when the
714 shared library is not yet mapped in.
715 Reading target memory is slow over serial lines, so we perform
716 this check only if the target has shared libraries (which all
717 Alpha targets do). */
718 if (target_read_memory (pc, buf, sizeof (buf)))
719 return pc;
720
721 /* See if we can determine the end of the prologue via the symbol table.
722 If so, then return either PC, or the PC after the prologue, whichever
723 is greater. */
724
725 post_prologue_pc = alpha_after_prologue (pc);
726 if (post_prologue_pc != 0)
727 return max (pc, post_prologue_pc);
728
729 /* Can't determine prologue from the symbol table, need to examine
730 instructions. */
731
732 /* Skip the typical prologue instructions. These are the stack adjustment
733 instruction and the instructions that save registers on the stack
734 or in the gcc frame. */
735 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
736 {
737 inst = alpha_read_insn (gdbarch, pc + offset);
738
739 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
740 continue;
741 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
742 continue;
743 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
744 continue;
745 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
746 continue;
747
748 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
749 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
750 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
751 continue;
752
753 if (inst == 0x47de040f) /* bis sp,sp,fp */
754 continue;
755 if (inst == 0x47fe040f) /* bis zero,sp,fp */
756 continue;
757
758 break;
759 }
760 return pc + offset;
761 }
762
763 \f
764 static const int ldl_l_opcode = 0x2a;
765 static const int ldq_l_opcode = 0x2b;
766 static const int stl_c_opcode = 0x2e;
767 static const int stq_c_opcode = 0x2f;
768
769 /* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
770 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
771 is found, attempt to step through it. A breakpoint is placed at the end of
772 the sequence. */
773
774 static int
775 alpha_deal_with_atomic_sequence (struct frame_info *frame)
776 {
777 struct gdbarch *gdbarch = get_frame_arch (frame);
778 struct address_space *aspace = get_frame_address_space (frame);
779 CORE_ADDR pc = get_frame_pc (frame);
780 CORE_ADDR breaks[2] = {-1, -1};
781 CORE_ADDR loc = pc;
782 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
783 unsigned int insn = alpha_read_insn (gdbarch, loc);
784 int insn_count;
785 int index;
786 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
787 const int atomic_sequence_length = 16; /* Instruction sequence length. */
788 int bc_insn_count = 0; /* Conditional branch instruction count. */
789
790 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
791 if (INSN_OPCODE (insn) != ldl_l_opcode
792 && INSN_OPCODE (insn) != ldq_l_opcode)
793 return 0;
794
795 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
796 instructions. */
797 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
798 {
799 loc += ALPHA_INSN_SIZE;
800 insn = alpha_read_insn (gdbarch, loc);
801
802 /* Assume that there is at most one branch in the atomic
803 sequence. If a branch is found, put a breakpoint in
804 its destination address. */
805 if (INSN_OPCODE (insn) >= br_opcode)
806 {
807 int immediate = (insn & 0x001fffff) << 2;
808
809 immediate = (immediate ^ 0x400000) - 0x400000;
810
811 if (bc_insn_count >= 1)
812 return 0; /* More than one branch found, fallback
813 to the standard single-step code. */
814
815 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
816
817 bc_insn_count++;
818 last_breakpoint++;
819 }
820
821 if (INSN_OPCODE (insn) == stl_c_opcode
822 || INSN_OPCODE (insn) == stq_c_opcode)
823 break;
824 }
825
826 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
827 if (INSN_OPCODE (insn) != stl_c_opcode
828 && INSN_OPCODE (insn) != stq_c_opcode)
829 return 0;
830
831 closing_insn = loc;
832 loc += ALPHA_INSN_SIZE;
833
834 /* Insert a breakpoint right after the end of the atomic sequence. */
835 breaks[0] = loc;
836
837 /* Check for duplicated breakpoints. Check also for a breakpoint
838 placed (branch instruction's destination) anywhere in sequence. */
839 if (last_breakpoint
840 && (breaks[1] == breaks[0]
841 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
842 last_breakpoint = 0;
843
844 /* Effectively inserts the breakpoints. */
845 for (index = 0; index <= last_breakpoint; index++)
846 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
847
848 return 1;
849 }
850
851 \f
852 /* Figure out where the longjmp will land.
853 We expect the first arg to be a pointer to the jmp_buf structure from
854 which we extract the PC (JB_PC) that we will land at. The PC is copied
855 into the "pc". This routine returns true on success. */
856
857 static int
858 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
859 {
860 struct gdbarch *gdbarch = get_frame_arch (frame);
861 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
862 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
863 CORE_ADDR jb_addr;
864 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
865
866 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
867
868 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
869 raw_buffer, tdep->jb_elt_size))
870 return 0;
871
872 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
873 return 1;
874 }
875
876 \f
877 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
878 describe the location and shape of the sigcontext structure. After
879 that, all registers are in memory, so it's easy. */
880 /* ??? Shouldn't we be able to do this generically, rather than with
881 OSABI data specific to Alpha? */
882
883 struct alpha_sigtramp_unwind_cache
884 {
885 CORE_ADDR sigcontext_addr;
886 };
887
888 static struct alpha_sigtramp_unwind_cache *
889 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
890 void **this_prologue_cache)
891 {
892 struct alpha_sigtramp_unwind_cache *info;
893 struct gdbarch_tdep *tdep;
894
895 if (*this_prologue_cache)
896 return *this_prologue_cache;
897
898 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
899 *this_prologue_cache = info;
900
901 tdep = gdbarch_tdep (get_frame_arch (this_frame));
902 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
903
904 return info;
905 }
906
907 /* Return the address of REGNUM in a sigtramp frame. Since this is
908 all arithmetic, it doesn't seem worthwhile to cache it. */
909
910 static CORE_ADDR
911 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
912 CORE_ADDR sigcontext_addr, int regnum)
913 {
914 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
915
916 if (regnum >= 0 && regnum < 32)
917 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
918 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
919 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
920 else if (regnum == ALPHA_PC_REGNUM)
921 return sigcontext_addr + tdep->sc_pc_offset;
922
923 return 0;
924 }
925
926 /* Given a GDB frame, determine the address of the calling function's
927 frame. This will be used to create a new GDB frame struct. */
928
929 static void
930 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
931 void **this_prologue_cache,
932 struct frame_id *this_id)
933 {
934 struct gdbarch *gdbarch = get_frame_arch (this_frame);
935 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
936 struct alpha_sigtramp_unwind_cache *info
937 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
938 CORE_ADDR stack_addr, code_addr;
939
940 /* If the OSABI couldn't locate the sigcontext, give up. */
941 if (info->sigcontext_addr == 0)
942 return;
943
944 /* If we have dynamic signal trampolines, find their start.
945 If we do not, then we must assume there is a symbol record
946 that can provide the start address. */
947 if (tdep->dynamic_sigtramp_offset)
948 {
949 int offset;
950 code_addr = get_frame_pc (this_frame);
951 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
952 if (offset >= 0)
953 code_addr -= offset;
954 else
955 code_addr = 0;
956 }
957 else
958 code_addr = get_frame_func (this_frame);
959
960 /* The stack address is trivially read from the sigcontext. */
961 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
962 ALPHA_SP_REGNUM);
963 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
964 ALPHA_REGISTER_SIZE);
965
966 *this_id = frame_id_build (stack_addr, code_addr);
967 }
968
969 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
970
971 static struct value *
972 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
973 void **this_prologue_cache, int regnum)
974 {
975 struct alpha_sigtramp_unwind_cache *info
976 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
977 CORE_ADDR addr;
978
979 if (info->sigcontext_addr != 0)
980 {
981 /* All integer and fp registers are stored in memory. */
982 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
983 info->sigcontext_addr, regnum);
984 if (addr != 0)
985 return frame_unwind_got_memory (this_frame, regnum, addr);
986 }
987
988 /* This extra register may actually be in the sigcontext, but our
989 current description of it in alpha_sigtramp_frame_unwind_cache
990 doesn't include it. Too bad. Fall back on whatever's in the
991 outer frame. */
992 return frame_unwind_got_register (this_frame, regnum, regnum);
993 }
994
995 static int
996 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
997 struct frame_info *this_frame,
998 void **this_prologue_cache)
999 {
1000 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1001 CORE_ADDR pc = get_frame_pc (this_frame);
1002 const char *name;
1003
1004 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
1005 look at tramp-frame.h and other simplier per-architecture
1006 sigtramp unwinders. */
1007
1008 /* We shouldn't even bother to try if the OSABI didn't register a
1009 sigcontext_addr handler or pc_in_sigtramp hander. */
1010 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
1011 return 0;
1012 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
1013 return 0;
1014
1015 /* Otherwise we should be in a signal frame. */
1016 find_pc_partial_function (pc, &name, NULL, NULL);
1017 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
1018 return 1;
1019
1020 return 0;
1021 }
1022
1023 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1024 SIGTRAMP_FRAME,
1025 default_frame_unwind_stop_reason,
1026 alpha_sigtramp_frame_this_id,
1027 alpha_sigtramp_frame_prev_register,
1028 NULL,
1029 alpha_sigtramp_frame_sniffer
1030 };
1031
1032 \f
1033
1034 /* Heuristic_proc_start may hunt through the text section for a long
1035 time across a 2400 baud serial line. Allows the user to limit this
1036 search. */
1037 static unsigned int heuristic_fence_post = 0;
1038
1039 /* Attempt to locate the start of the function containing PC. We assume that
1040 the previous function ends with an about_to_return insn. Not foolproof by
1041 any means, since gcc is happy to put the epilogue in the middle of a
1042 function. But we're guessing anyway... */
1043
1044 static CORE_ADDR
1045 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
1046 {
1047 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1048 CORE_ADDR last_non_nop = pc;
1049 CORE_ADDR fence = pc - heuristic_fence_post;
1050 CORE_ADDR orig_pc = pc;
1051 CORE_ADDR func;
1052 struct inferior *inf;
1053
1054 if (pc == 0)
1055 return 0;
1056
1057 /* First see if we can find the start of the function from minimal
1058 symbol information. This can succeed with a binary that doesn't
1059 have debug info, but hasn't been stripped. */
1060 func = get_pc_function_start (pc);
1061 if (func)
1062 return func;
1063
1064 if (heuristic_fence_post == UINT_MAX
1065 || fence < tdep->vm_min_address)
1066 fence = tdep->vm_min_address;
1067
1068 /* Search back for previous return; also stop at a 0, which might be
1069 seen for instance before the start of a code section. Don't include
1070 nops, since this usually indicates padding between functions. */
1071 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
1072 {
1073 unsigned int insn = alpha_read_insn (gdbarch, pc);
1074 switch (insn)
1075 {
1076 case 0: /* invalid insn */
1077 case 0x6bfa8001: /* ret $31,($26),1 */
1078 return last_non_nop;
1079
1080 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1081 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1082 break;
1083
1084 default:
1085 last_non_nop = pc;
1086 break;
1087 }
1088 }
1089
1090 inf = current_inferior ();
1091
1092 /* It's not clear to me why we reach this point when stopping quietly,
1093 but with this test, at least we don't print out warnings for every
1094 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
1095 if (inf->control.stop_soon == NO_STOP_QUIETLY)
1096 {
1097 static int blurb_printed = 0;
1098
1099 if (fence == tdep->vm_min_address)
1100 warning (_("Hit beginning of text section without finding \
1101 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1102 else
1103 warning (_("Hit heuristic-fence-post without finding \
1104 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1105
1106 if (!blurb_printed)
1107 {
1108 printf_filtered (_("\
1109 This warning occurs if you are debugging a function without any symbols\n\
1110 (for example, in a stripped executable). In that case, you may wish to\n\
1111 increase the size of the search with the `set heuristic-fence-post' command.\n\
1112 \n\
1113 Otherwise, you told GDB there was a function where there isn't one, or\n\
1114 (more likely) you have encountered a bug in GDB.\n"));
1115 blurb_printed = 1;
1116 }
1117 }
1118
1119 return 0;
1120 }
1121
1122 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
1123 something about the traditional layout of alpha stack frames. */
1124
1125 struct alpha_heuristic_unwind_cache
1126 {
1127 CORE_ADDR vfp;
1128 CORE_ADDR start_pc;
1129 struct trad_frame_saved_reg *saved_regs;
1130 int return_reg;
1131 };
1132
1133 /* If a probing loop sequence starts at PC, simulate it and compute
1134 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1135 FRAME_SIZE unchanged. */
1136
1137 static void
1138 alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1139 int *frame_size)
1140 {
1141 CORE_ADDR cur_pc = *pc;
1142 int cur_frame_size = *frame_size;
1143 int nb_of_iterations, reg_index, reg_probe;
1144 unsigned int insn;
1145
1146 /* The following pattern is recognized as a probing loop:
1147
1148 lda REG_INDEX,NB_OF_ITERATIONS
1149 lda REG_PROBE,<immediate>(sp)
1150
1151 LOOP_START:
1152 stq zero,<immediate>(REG_PROBE)
1153 subq REG_INDEX,0x1,REG_INDEX
1154 lda REG_PROBE,<immediate>(REG_PROBE)
1155 bne REG_INDEX, LOOP_START
1156
1157 lda sp,<immediate>(REG_PROBE)
1158
1159 If anything different is found, the function returns without
1160 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
1161 after this sequence, and FRAME_SIZE will be updated. */
1162
1163 /* lda REG_INDEX,NB_OF_ITERATIONS */
1164
1165 insn = alpha_read_insn (gdbarch, cur_pc);
1166 if (INSN_OPCODE (insn) != lda_opcode)
1167 return;
1168 reg_index = MEM_RA (insn);
1169 nb_of_iterations = MEM_DISP (insn);
1170
1171 /* lda REG_PROBE,<immediate>(sp) */
1172
1173 cur_pc += ALPHA_INSN_SIZE;
1174 insn = alpha_read_insn (gdbarch, cur_pc);
1175 if (INSN_OPCODE (insn) != lda_opcode
1176 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1177 return;
1178 reg_probe = MEM_RA (insn);
1179 cur_frame_size -= MEM_DISP (insn);
1180
1181 /* stq zero,<immediate>(REG_PROBE) */
1182
1183 cur_pc += ALPHA_INSN_SIZE;
1184 insn = alpha_read_insn (gdbarch, cur_pc);
1185 if (INSN_OPCODE (insn) != stq_opcode
1186 || MEM_RA (insn) != 0x1f
1187 || MEM_RB (insn) != reg_probe)
1188 return;
1189
1190 /* subq REG_INDEX,0x1,REG_INDEX */
1191
1192 cur_pc += ALPHA_INSN_SIZE;
1193 insn = alpha_read_insn (gdbarch, cur_pc);
1194 if (INSN_OPCODE (insn) != subq_opcode
1195 || !OPR_HAS_IMMEDIATE (insn)
1196 || OPR_FUNCTION (insn) != subq_function
1197 || OPR_LIT(insn) != 1
1198 || OPR_RA (insn) != reg_index
1199 || OPR_RC (insn) != reg_index)
1200 return;
1201
1202 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1203
1204 cur_pc += ALPHA_INSN_SIZE;
1205 insn = alpha_read_insn (gdbarch, cur_pc);
1206 if (INSN_OPCODE (insn) != lda_opcode
1207 || MEM_RA (insn) != reg_probe
1208 || MEM_RB (insn) != reg_probe)
1209 return;
1210 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1211
1212 /* bne REG_INDEX, LOOP_START */
1213
1214 cur_pc += ALPHA_INSN_SIZE;
1215 insn = alpha_read_insn (gdbarch, cur_pc);
1216 if (INSN_OPCODE (insn) != bne_opcode
1217 || MEM_RA (insn) != reg_index)
1218 return;
1219
1220 /* lda sp,<immediate>(REG_PROBE) */
1221
1222 cur_pc += ALPHA_INSN_SIZE;
1223 insn = alpha_read_insn (gdbarch, cur_pc);
1224 if (INSN_OPCODE (insn) != lda_opcode
1225 || MEM_RA (insn) != ALPHA_SP_REGNUM
1226 || MEM_RB (insn) != reg_probe)
1227 return;
1228 cur_frame_size -= MEM_DISP (insn);
1229
1230 *pc = cur_pc;
1231 *frame_size = cur_frame_size;
1232 }
1233
1234 static struct alpha_heuristic_unwind_cache *
1235 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
1236 void **this_prologue_cache,
1237 CORE_ADDR start_pc)
1238 {
1239 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1240 struct alpha_heuristic_unwind_cache *info;
1241 ULONGEST val;
1242 CORE_ADDR limit_pc, cur_pc;
1243 int frame_reg, frame_size, return_reg, reg;
1244
1245 if (*this_prologue_cache)
1246 return *this_prologue_cache;
1247
1248 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1249 *this_prologue_cache = info;
1250 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1251
1252 limit_pc = get_frame_pc (this_frame);
1253 if (start_pc == 0)
1254 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1255 info->start_pc = start_pc;
1256
1257 frame_reg = ALPHA_SP_REGNUM;
1258 frame_size = 0;
1259 return_reg = -1;
1260
1261 /* If we've identified a likely place to start, do code scanning. */
1262 if (start_pc != 0)
1263 {
1264 /* Limit the forward search to 50 instructions. */
1265 if (start_pc + 200 < limit_pc)
1266 limit_pc = start_pc + 200;
1267
1268 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1269 {
1270 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1271
1272 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1273 {
1274 if (word & 0x8000)
1275 {
1276 /* Consider only the first stack allocation instruction
1277 to contain the static size of the frame. */
1278 if (frame_size == 0)
1279 frame_size = (-word) & 0xffff;
1280 }
1281 else
1282 {
1283 /* Exit loop if a positive stack adjustment is found, which
1284 usually means that the stack cleanup code in the function
1285 epilogue is reached. */
1286 break;
1287 }
1288 }
1289 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1290 {
1291 reg = (word & 0x03e00000) >> 21;
1292
1293 /* Ignore this instruction if we have already encountered
1294 an instruction saving the same register earlier in the
1295 function code. The current instruction does not tell
1296 us where the original value upon function entry is saved.
1297 All it says is that the function we are scanning reused
1298 that register for some computation of its own, and is now
1299 saving its result. */
1300 if (trad_frame_addr_p(info->saved_regs, reg))
1301 continue;
1302
1303 if (reg == 31)
1304 continue;
1305
1306 /* Do not compute the address where the register was saved yet,
1307 because we don't know yet if the offset will need to be
1308 relative to $sp or $fp (we can not compute the address
1309 relative to $sp if $sp is updated during the execution of
1310 the current subroutine, for instance when doing some alloca).
1311 So just store the offset for the moment, and compute the
1312 address later when we know whether this frame has a frame
1313 pointer or not. */
1314 /* Hack: temporarily add one, so that the offset is non-zero
1315 and we can tell which registers have save offsets below. */
1316 info->saved_regs[reg].addr = (word & 0xffff) + 1;
1317
1318 /* Starting with OSF/1-3.2C, the system libraries are shipped
1319 without local symbols, but they still contain procedure
1320 descriptors without a symbol reference. GDB is currently
1321 unable to find these procedure descriptors and uses
1322 heuristic_proc_desc instead.
1323 As some low level compiler support routines (__div*, __add*)
1324 use a non-standard return address register, we have to
1325 add some heuristics to determine the return address register,
1326 or stepping over these routines will fail.
1327 Usually the return address register is the first register
1328 saved on the stack, but assembler optimization might
1329 rearrange the register saves.
1330 So we recognize only a few registers (t7, t9, ra) within
1331 the procedure prologue as valid return address registers.
1332 If we encounter a return instruction, we extract the
1333 return address register from it.
1334
1335 FIXME: Rewriting GDB to access the procedure descriptors,
1336 e.g. via the minimal symbol table, might obviate this
1337 hack. */
1338 if (return_reg == -1
1339 && cur_pc < (start_pc + 80)
1340 && (reg == ALPHA_T7_REGNUM
1341 || reg == ALPHA_T9_REGNUM
1342 || reg == ALPHA_RA_REGNUM))
1343 return_reg = reg;
1344 }
1345 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1346 return_reg = (word >> 16) & 0x1f;
1347 else if (word == 0x47de040f) /* bis sp,sp,fp */
1348 frame_reg = ALPHA_GCC_FP_REGNUM;
1349 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1350 frame_reg = ALPHA_GCC_FP_REGNUM;
1351
1352 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
1353 }
1354
1355 /* If we haven't found a valid return address register yet, keep
1356 searching in the procedure prologue. */
1357 if (return_reg == -1)
1358 {
1359 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1360 {
1361 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1362
1363 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1364 {
1365 reg = (word & 0x03e00000) >> 21;
1366 if (reg == ALPHA_T7_REGNUM
1367 || reg == ALPHA_T9_REGNUM
1368 || reg == ALPHA_RA_REGNUM)
1369 {
1370 return_reg = reg;
1371 break;
1372 }
1373 }
1374 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1375 {
1376 return_reg = (word >> 16) & 0x1f;
1377 break;
1378 }
1379
1380 cur_pc += ALPHA_INSN_SIZE;
1381 }
1382 }
1383 }
1384
1385 /* Failing that, do default to the customary RA. */
1386 if (return_reg == -1)
1387 return_reg = ALPHA_RA_REGNUM;
1388 info->return_reg = return_reg;
1389
1390 val = get_frame_register_unsigned (this_frame, frame_reg);
1391 info->vfp = val + frame_size;
1392
1393 /* Convert offsets to absolute addresses. See above about adding
1394 one to the offsets to make all detected offsets non-zero. */
1395 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1396 if (trad_frame_addr_p(info->saved_regs, reg))
1397 info->saved_regs[reg].addr += val - 1;
1398
1399 /* The stack pointer of the previous frame is computed by popping
1400 the current stack frame. */
1401 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1402 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1403
1404 return info;
1405 }
1406
1407 /* Given a GDB frame, determine the address of the calling function's
1408 frame. This will be used to create a new GDB frame struct. */
1409
1410 static void
1411 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1412 void **this_prologue_cache,
1413 struct frame_id *this_id)
1414 {
1415 struct alpha_heuristic_unwind_cache *info
1416 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1417
1418 *this_id = frame_id_build (info->vfp, info->start_pc);
1419 }
1420
1421 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1422
1423 static struct value *
1424 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1425 void **this_prologue_cache, int regnum)
1426 {
1427 struct alpha_heuristic_unwind_cache *info
1428 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1429
1430 /* The PC of the previous frame is stored in the link register of
1431 the current frame. Frob regnum so that we pull the value from
1432 the correct place. */
1433 if (regnum == ALPHA_PC_REGNUM)
1434 regnum = info->return_reg;
1435
1436 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1437 }
1438
1439 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1440 NORMAL_FRAME,
1441 default_frame_unwind_stop_reason,
1442 alpha_heuristic_frame_this_id,
1443 alpha_heuristic_frame_prev_register,
1444 NULL,
1445 default_frame_sniffer
1446 };
1447
1448 static CORE_ADDR
1449 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1450 void **this_prologue_cache)
1451 {
1452 struct alpha_heuristic_unwind_cache *info
1453 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1454
1455 return info->vfp;
1456 }
1457
1458 static const struct frame_base alpha_heuristic_frame_base = {
1459 &alpha_heuristic_frame_unwind,
1460 alpha_heuristic_frame_base_address,
1461 alpha_heuristic_frame_base_address,
1462 alpha_heuristic_frame_base_address
1463 };
1464
1465 /* Just like reinit_frame_cache, but with the right arguments to be
1466 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1467
1468 static void
1469 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1470 {
1471 reinit_frame_cache ();
1472 }
1473
1474 \f
1475 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1476 dummy frame. The frame ID's base needs to match the TOS value
1477 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1478 breakpoint. */
1479
1480 static struct frame_id
1481 alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1482 {
1483 ULONGEST base;
1484 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1485 return frame_id_build (base, get_frame_pc (this_frame));
1486 }
1487
1488 static CORE_ADDR
1489 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1490 {
1491 ULONGEST pc;
1492 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
1493 return pc;
1494 }
1495
1496 \f
1497 /* Helper routines for alpha*-nat.c files to move register sets to and
1498 from core files. The UNIQUE pointer is allowed to be NULL, as most
1499 targets don't supply this value in their core files. */
1500
1501 void
1502 alpha_supply_int_regs (struct regcache *regcache, int regno,
1503 const void *r0_r30, const void *pc, const void *unique)
1504 {
1505 const gdb_byte *regs = r0_r30;
1506 int i;
1507
1508 for (i = 0; i < 31; ++i)
1509 if (regno == i || regno == -1)
1510 regcache_raw_supply (regcache, i, regs + i * 8);
1511
1512 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1513 {
1514 const gdb_byte zero[8] = { 0 };
1515
1516 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1517 }
1518
1519 if (regno == ALPHA_PC_REGNUM || regno == -1)
1520 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1521
1522 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1523 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1524 }
1525
1526 void
1527 alpha_fill_int_regs (const struct regcache *regcache,
1528 int regno, void *r0_r30, void *pc, void *unique)
1529 {
1530 gdb_byte *regs = r0_r30;
1531 int i;
1532
1533 for (i = 0; i < 31; ++i)
1534 if (regno == i || regno == -1)
1535 regcache_raw_collect (regcache, i, regs + i * 8);
1536
1537 if (regno == ALPHA_PC_REGNUM || regno == -1)
1538 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1539
1540 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1541 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1542 }
1543
1544 void
1545 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1546 const void *f0_f30, const void *fpcr)
1547 {
1548 const gdb_byte *regs = f0_f30;
1549 int i;
1550
1551 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1552 if (regno == i || regno == -1)
1553 regcache_raw_supply (regcache, i,
1554 regs + (i - ALPHA_FP0_REGNUM) * 8);
1555
1556 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1557 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1558 }
1559
1560 void
1561 alpha_fill_fp_regs (const struct regcache *regcache,
1562 int regno, void *f0_f30, void *fpcr)
1563 {
1564 gdb_byte *regs = f0_f30;
1565 int i;
1566
1567 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1568 if (regno == i || regno == -1)
1569 regcache_raw_collect (regcache, i,
1570 regs + (i - ALPHA_FP0_REGNUM) * 8);
1571
1572 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1573 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1574 }
1575
1576 \f
1577
1578 /* Return nonzero if the G_floating register value in REG is equal to
1579 zero for FP control instructions. */
1580
1581 static int
1582 fp_register_zero_p (LONGEST reg)
1583 {
1584 /* Check that all bits except the sign bit are zero. */
1585 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1586
1587 return ((reg & zero_mask) == 0);
1588 }
1589
1590 /* Return the value of the sign bit for the G_floating register
1591 value held in REG. */
1592
1593 static int
1594 fp_register_sign_bit (LONGEST reg)
1595 {
1596 const LONGEST sign_mask = (LONGEST) 1 << 63;
1597
1598 return ((reg & sign_mask) != 0);
1599 }
1600
1601 /* alpha_software_single_step() is called just before we want to resume
1602 the inferior, if we want to single-step it but there is no hardware
1603 or kernel single-step support (NetBSD on Alpha, for example). We find
1604 the target of the coming instruction and breakpoint it. */
1605
1606 static CORE_ADDR
1607 alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
1608 {
1609 struct gdbarch *gdbarch = get_frame_arch (frame);
1610 unsigned int insn;
1611 unsigned int op;
1612 int regno;
1613 int offset;
1614 LONGEST rav;
1615
1616 insn = alpha_read_insn (gdbarch, pc);
1617
1618 /* Opcode is top 6 bits. */
1619 op = (insn >> 26) & 0x3f;
1620
1621 if (op == 0x1a)
1622 {
1623 /* Jump format: target PC is:
1624 RB & ~3 */
1625 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
1626 }
1627
1628 if ((op & 0x30) == 0x30)
1629 {
1630 /* Branch format: target PC is:
1631 (new PC) + (4 * sext(displacement)) */
1632 if (op == 0x30 /* BR */
1633 || op == 0x34) /* BSR */
1634 {
1635 branch_taken:
1636 offset = (insn & 0x001fffff);
1637 if (offset & 0x00100000)
1638 offset |= 0xffe00000;
1639 offset *= ALPHA_INSN_SIZE;
1640 return (pc + ALPHA_INSN_SIZE + offset);
1641 }
1642
1643 /* Need to determine if branch is taken; read RA. */
1644 regno = (insn >> 21) & 0x1f;
1645 switch (op)
1646 {
1647 case 0x31: /* FBEQ */
1648 case 0x36: /* FBGE */
1649 case 0x37: /* FBGT */
1650 case 0x33: /* FBLE */
1651 case 0x32: /* FBLT */
1652 case 0x35: /* FBNE */
1653 regno += gdbarch_fp0_regnum (gdbarch);
1654 }
1655
1656 rav = get_frame_register_signed (frame, regno);
1657
1658 switch (op)
1659 {
1660 case 0x38: /* BLBC */
1661 if ((rav & 1) == 0)
1662 goto branch_taken;
1663 break;
1664 case 0x3c: /* BLBS */
1665 if (rav & 1)
1666 goto branch_taken;
1667 break;
1668 case 0x39: /* BEQ */
1669 if (rav == 0)
1670 goto branch_taken;
1671 break;
1672 case 0x3d: /* BNE */
1673 if (rav != 0)
1674 goto branch_taken;
1675 break;
1676 case 0x3a: /* BLT */
1677 if (rav < 0)
1678 goto branch_taken;
1679 break;
1680 case 0x3b: /* BLE */
1681 if (rav <= 0)
1682 goto branch_taken;
1683 break;
1684 case 0x3f: /* BGT */
1685 if (rav > 0)
1686 goto branch_taken;
1687 break;
1688 case 0x3e: /* BGE */
1689 if (rav >= 0)
1690 goto branch_taken;
1691 break;
1692
1693 /* Floating point branches. */
1694
1695 case 0x31: /* FBEQ */
1696 if (fp_register_zero_p (rav))
1697 goto branch_taken;
1698 break;
1699 case 0x36: /* FBGE */
1700 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1701 goto branch_taken;
1702 break;
1703 case 0x37: /* FBGT */
1704 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1705 goto branch_taken;
1706 break;
1707 case 0x33: /* FBLE */
1708 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1709 goto branch_taken;
1710 break;
1711 case 0x32: /* FBLT */
1712 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1713 goto branch_taken;
1714 break;
1715 case 0x35: /* FBNE */
1716 if (! fp_register_zero_p (rav))
1717 goto branch_taken;
1718 break;
1719 }
1720 }
1721
1722 /* Not a branch or branch not taken; target PC is:
1723 pc + 4 */
1724 return (pc + ALPHA_INSN_SIZE);
1725 }
1726
1727 int
1728 alpha_software_single_step (struct frame_info *frame)
1729 {
1730 struct gdbarch *gdbarch = get_frame_arch (frame);
1731 struct address_space *aspace = get_frame_address_space (frame);
1732 CORE_ADDR pc, next_pc;
1733
1734 pc = get_frame_pc (frame);
1735 next_pc = alpha_next_pc (frame, pc);
1736
1737 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
1738 return 1;
1739 }
1740
1741 \f
1742 /* Initialize the current architecture based on INFO. If possible, re-use an
1743 architecture from ARCHES, which is a list of architectures already created
1744 during this debugging session.
1745
1746 Called e.g. at program startup, when reading a core file, and when reading
1747 a binary file. */
1748
1749 static struct gdbarch *
1750 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1751 {
1752 struct gdbarch_tdep *tdep;
1753 struct gdbarch *gdbarch;
1754
1755 /* Try to determine the ABI of the object we are loading. */
1756 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1757 {
1758 /* If it's an ECOFF file, assume it's OSF/1. */
1759 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1760 info.osabi = GDB_OSABI_OSF1;
1761 }
1762
1763 /* Find a candidate among extant architectures. */
1764 arches = gdbarch_list_lookup_by_info (arches, &info);
1765 if (arches != NULL)
1766 return arches->gdbarch;
1767
1768 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1769 gdbarch = gdbarch_alloc (&info, tdep);
1770
1771 /* Lowest text address. This is used by heuristic_proc_start()
1772 to decide when to stop looking. */
1773 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1774
1775 tdep->dynamic_sigtramp_offset = NULL;
1776 tdep->sigcontext_addr = NULL;
1777 tdep->sc_pc_offset = 2 * 8;
1778 tdep->sc_regs_offset = 4 * 8;
1779 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1780
1781 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
1782
1783 tdep->return_in_memory = alpha_return_in_memory_always;
1784
1785 /* Type sizes */
1786 set_gdbarch_short_bit (gdbarch, 16);
1787 set_gdbarch_int_bit (gdbarch, 32);
1788 set_gdbarch_long_bit (gdbarch, 64);
1789 set_gdbarch_long_long_bit (gdbarch, 64);
1790 set_gdbarch_float_bit (gdbarch, 32);
1791 set_gdbarch_double_bit (gdbarch, 64);
1792 set_gdbarch_long_double_bit (gdbarch, 64);
1793 set_gdbarch_ptr_bit (gdbarch, 64);
1794
1795 /* Register info */
1796 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1797 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1798 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1799 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1800
1801 set_gdbarch_register_name (gdbarch, alpha_register_name);
1802 set_gdbarch_register_type (gdbarch, alpha_register_type);
1803
1804 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1805 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1806
1807 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1808 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1809 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1810
1811 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1812
1813 /* Prologue heuristics. */
1814 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1815
1816 /* Disassembler. */
1817 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1818
1819 /* Call info. */
1820
1821 set_gdbarch_return_value (gdbarch, alpha_return_value);
1822
1823 /* Settings for calling functions in the inferior. */
1824 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1825
1826 /* Methods for saving / extracting a dummy frame's ID. */
1827 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
1828
1829 /* Return the unwound PC value. */
1830 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1831
1832 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1833 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1834
1835 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1836 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1837 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1838
1839 /* Handles single stepping of atomic sequences. */
1840 set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1841
1842 /* Hook in ABI-specific overrides, if they have been registered. */
1843 gdbarch_init_osabi (info, gdbarch);
1844
1845 /* Now that we have tuned the configuration, set a few final things
1846 based on what the OS ABI has told us. */
1847
1848 if (tdep->jb_pc >= 0)
1849 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1850
1851 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1852 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1853
1854 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1855
1856 return gdbarch;
1857 }
1858
1859 void
1860 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1861 {
1862 dwarf2_append_unwinders (gdbarch);
1863 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1864 }
1865
1866 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1867
1868 void
1869 _initialize_alpha_tdep (void)
1870 {
1871 struct cmd_list_element *c;
1872
1873 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1874
1875 /* Let the user set the fence post for heuristic_proc_start. */
1876
1877 /* We really would like to have both "0" and "unlimited" work, but
1878 command.c doesn't deal with that. So make it a var_zinteger
1879 because the user can always use "999999" or some such for unlimited. */
1880 /* We need to throw away the frame cache when we set this, since it
1881 might change our ability to get backtraces. */
1882 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1883 &heuristic_fence_post, _("\
1884 Set the distance searched for the start of a function."), _("\
1885 Show the distance searched for the start of a function."), _("\
1886 If you are debugging a stripped executable, GDB needs to search through the\n\
1887 program for the start of a function. This command sets the distance of the\n\
1888 search. The only need to set it is when debugging a stripped executable."),
1889 reinit_frame_cache_sfunc,
1890 NULL, /* FIXME: i18n: The distance searched for
1891 the start of a function is \"%d\". */
1892 &setlist, &showlist);
1893 }
This page took 0.06839 seconds and 5 git commands to generate.