gdbarch software_single_step returns VEC (CORE_ADDR) *
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "doublest.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "dwarf2-frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "value.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "dis-asm.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "linespec.h"
35 #include "regcache.h"
36 #include "reggroups.h"
37 #include "arch-utils.h"
38 #include "osabi.h"
39 #include "block.h"
40 #include "infcall.h"
41 #include "trad-frame.h"
42
43 #include "elf-bfd.h"
44
45 #include "alpha-tdep.h"
46 #include <algorithm>
47
48 /* Instruction decoding. The notations for registers, immediates and
49 opcodes are the same as the one used in Compaq's Alpha architecture
50 handbook. */
51
52 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
53
54 /* Memory instruction format */
55 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
56 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
57 #define MEM_DISP(insn) \
58 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
59
60 static const int lda_opcode = 0x08;
61 static const int stq_opcode = 0x2d;
62
63 /* Branch instruction format */
64 #define BR_RA(insn) MEM_RA(insn)
65
66 static const int br_opcode = 0x30;
67 static const int bne_opcode = 0x3d;
68
69 /* Operate instruction format */
70 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
71 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
72 #define OPR_RA(insn) MEM_RA(insn)
73 #define OPR_RC(insn) ((insn & 0x1f))
74 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
75
76 static const int subq_opcode = 0x10;
77 static const int subq_function = 0x29;
78
79 \f
80 /* Return the name of the REGNO register.
81
82 An empty name corresponds to a register number that used to
83 be used for a virtual register. That virtual register has
84 been removed, but the index is still reserved to maintain
85 compatibility with existing remote alpha targets. */
86
87 static const char *
88 alpha_register_name (struct gdbarch *gdbarch, int regno)
89 {
90 static const char * const register_names[] =
91 {
92 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
93 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
94 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
95 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
96 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
97 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
98 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
99 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
100 "pc", "", "unique"
101 };
102
103 if (regno < 0)
104 return NULL;
105 if (regno >= ARRAY_SIZE(register_names))
106 return NULL;
107 return register_names[regno];
108 }
109
110 static int
111 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
112 {
113 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
114 }
115
116 static int
117 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
118 {
119 return (regno == ALPHA_ZERO_REGNUM
120 || strlen (alpha_register_name (gdbarch, regno)) == 0);
121 }
122
123 static struct type *
124 alpha_register_type (struct gdbarch *gdbarch, int regno)
125 {
126 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
127 return builtin_type (gdbarch)->builtin_data_ptr;
128 if (regno == ALPHA_PC_REGNUM)
129 return builtin_type (gdbarch)->builtin_func_ptr;
130
131 /* Don't need to worry about little vs big endian until
132 some jerk tries to port to alpha-unicosmk. */
133 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
134 return builtin_type (gdbarch)->builtin_double;
135
136 return builtin_type (gdbarch)->builtin_int64;
137 }
138
139 /* Is REGNUM a member of REGGROUP? */
140
141 static int
142 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
143 struct reggroup *group)
144 {
145 /* Filter out any registers eliminated, but whose regnum is
146 reserved for backward compatibility, e.g. the vfp. */
147 if (gdbarch_register_name (gdbarch, regnum) == NULL
148 || *gdbarch_register_name (gdbarch, regnum) == '\0')
149 return 0;
150
151 if (group == all_reggroup)
152 return 1;
153
154 /* Zero should not be saved or restored. Technically it is a general
155 register (just as $f31 would be a float if we represented it), but
156 there's no point displaying it during "info regs", so leave it out
157 of all groups except for "all". */
158 if (regnum == ALPHA_ZERO_REGNUM)
159 return 0;
160
161 /* All other registers are saved and restored. */
162 if (group == save_reggroup || group == restore_reggroup)
163 return 1;
164
165 /* All other groups are non-overlapping. */
166
167 /* Since this is really a PALcode memory slot... */
168 if (regnum == ALPHA_UNIQUE_REGNUM)
169 return group == system_reggroup;
170
171 /* Force the FPCR to be considered part of the floating point state. */
172 if (regnum == ALPHA_FPCR_REGNUM)
173 return group == float_reggroup;
174
175 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
176 return group == float_reggroup;
177 else
178 return group == general_reggroup;
179 }
180
181 /* The following represents exactly the conversion performed by
182 the LDS instruction. This applies to both single-precision
183 floating point and 32-bit integers. */
184
185 static void
186 alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
187 {
188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
189 ULONGEST mem
190 = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
191 ULONGEST frac = (mem >> 0) & 0x7fffff;
192 ULONGEST sign = (mem >> 31) & 1;
193 ULONGEST exp_msb = (mem >> 30) & 1;
194 ULONGEST exp_low = (mem >> 23) & 0x7f;
195 ULONGEST exp, reg;
196
197 exp = (exp_msb << 10) | exp_low;
198 if (exp_msb)
199 {
200 if (exp_low == 0x7f)
201 exp = 0x7ff;
202 }
203 else
204 {
205 if (exp_low != 0x00)
206 exp |= 0x380;
207 }
208
209 reg = (sign << 63) | (exp << 52) | (frac << 29);
210 store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
211 }
212
213 /* Similarly, this represents exactly the conversion performed by
214 the STS instruction. */
215
216 static void
217 alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
218 {
219 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
220 ULONGEST reg, mem;
221
222 reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
223 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
224 store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
225 }
226
227 /* The alpha needs a conversion between register and memory format if the
228 register is a floating point register and memory format is float, as the
229 register format must be double or memory format is an integer with 4
230 bytes or less, as the representation of integers in floating point
231 registers is different. */
232
233 static int
234 alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
235 struct type *type)
236 {
237 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
238 && TYPE_LENGTH (type) != 8);
239 }
240
241 static int
242 alpha_register_to_value (struct frame_info *frame, int regnum,
243 struct type *valtype, gdb_byte *out,
244 int *optimizedp, int *unavailablep)
245 {
246 struct gdbarch *gdbarch = get_frame_arch (frame);
247 gdb_byte in[MAX_REGISTER_SIZE];
248
249 /* Convert to TYPE. */
250 if (!get_frame_register_bytes (frame, regnum, 0,
251 register_size (gdbarch, regnum),
252 in, optimizedp, unavailablep))
253 return 0;
254
255 if (TYPE_LENGTH (valtype) == 4)
256 {
257 alpha_sts (gdbarch, out, in);
258 *optimizedp = *unavailablep = 0;
259 return 1;
260 }
261
262 error (_("Cannot retrieve value from floating point register"));
263 }
264
265 static void
266 alpha_value_to_register (struct frame_info *frame, int regnum,
267 struct type *valtype, const gdb_byte *in)
268 {
269 gdb_byte out[MAX_REGISTER_SIZE];
270
271 switch (TYPE_LENGTH (valtype))
272 {
273 case 4:
274 alpha_lds (get_frame_arch (frame), out, in);
275 break;
276 default:
277 error (_("Cannot store value in floating point register"));
278 }
279 put_frame_register (frame, regnum, out);
280 }
281
282 \f
283 /* The alpha passes the first six arguments in the registers, the rest on
284 the stack. The register arguments are stored in ARG_REG_BUFFER, and
285 then moved into the register file; this simplifies the passing of a
286 large struct which extends from the registers to the stack, plus avoids
287 three ptrace invocations per word.
288
289 We don't bother tracking which register values should go in integer
290 regs or fp regs; we load the same values into both.
291
292 If the called function is returning a structure, the address of the
293 structure to be returned is passed as a hidden first argument. */
294
295 static CORE_ADDR
296 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
297 struct regcache *regcache, CORE_ADDR bp_addr,
298 int nargs, struct value **args, CORE_ADDR sp,
299 int struct_return, CORE_ADDR struct_addr)
300 {
301 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
302 int i;
303 int accumulate_size = struct_return ? 8 : 0;
304 struct alpha_arg
305 {
306 const gdb_byte *contents;
307 int len;
308 int offset;
309 };
310 struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
311 struct alpha_arg *m_arg;
312 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
313 int required_arg_regs;
314 CORE_ADDR func_addr = find_function_addr (function, NULL);
315
316 /* The ABI places the address of the called function in T12. */
317 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
318
319 /* Set the return address register to point to the entry point
320 of the program, where a breakpoint lies in wait. */
321 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
322
323 /* Lay out the arguments in memory. */
324 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
325 {
326 struct value *arg = args[i];
327 struct type *arg_type = check_typedef (value_type (arg));
328
329 /* Cast argument to long if necessary as the compiler does it too. */
330 switch (TYPE_CODE (arg_type))
331 {
332 case TYPE_CODE_INT:
333 case TYPE_CODE_BOOL:
334 case TYPE_CODE_CHAR:
335 case TYPE_CODE_RANGE:
336 case TYPE_CODE_ENUM:
337 if (TYPE_LENGTH (arg_type) == 4)
338 {
339 /* 32-bit values must be sign-extended to 64 bits
340 even if the base data type is unsigned. */
341 arg_type = builtin_type (gdbarch)->builtin_int32;
342 arg = value_cast (arg_type, arg);
343 }
344 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
345 {
346 arg_type = builtin_type (gdbarch)->builtin_int64;
347 arg = value_cast (arg_type, arg);
348 }
349 break;
350
351 case TYPE_CODE_FLT:
352 /* "float" arguments loaded in registers must be passed in
353 register format, aka "double". */
354 if (accumulate_size < sizeof (arg_reg_buffer)
355 && TYPE_LENGTH (arg_type) == 4)
356 {
357 arg_type = builtin_type (gdbarch)->builtin_double;
358 arg = value_cast (arg_type, arg);
359 }
360 /* Tru64 5.1 has a 128-bit long double, and passes this by
361 invisible reference. No one else uses this data type. */
362 else if (TYPE_LENGTH (arg_type) == 16)
363 {
364 /* Allocate aligned storage. */
365 sp = (sp & -16) - 16;
366
367 /* Write the real data into the stack. */
368 write_memory (sp, value_contents (arg), 16);
369
370 /* Construct the indirection. */
371 arg_type = lookup_pointer_type (arg_type);
372 arg = value_from_pointer (arg_type, sp);
373 }
374 break;
375
376 case TYPE_CODE_COMPLEX:
377 /* ??? The ABI says that complex values are passed as two
378 separate scalar values. This distinction only matters
379 for complex float. However, GCC does not implement this. */
380
381 /* Tru64 5.1 has a 128-bit long double, and passes this by
382 invisible reference. */
383 if (TYPE_LENGTH (arg_type) == 32)
384 {
385 /* Allocate aligned storage. */
386 sp = (sp & -16) - 16;
387
388 /* Write the real data into the stack. */
389 write_memory (sp, value_contents (arg), 32);
390
391 /* Construct the indirection. */
392 arg_type = lookup_pointer_type (arg_type);
393 arg = value_from_pointer (arg_type, sp);
394 }
395 break;
396
397 default:
398 break;
399 }
400 m_arg->len = TYPE_LENGTH (arg_type);
401 m_arg->offset = accumulate_size;
402 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
403 m_arg->contents = value_contents (arg);
404 }
405
406 /* Determine required argument register loads, loading an argument register
407 is expensive as it uses three ptrace calls. */
408 required_arg_regs = accumulate_size / 8;
409 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
410 required_arg_regs = ALPHA_NUM_ARG_REGS;
411
412 /* Make room for the arguments on the stack. */
413 if (accumulate_size < sizeof(arg_reg_buffer))
414 accumulate_size = 0;
415 else
416 accumulate_size -= sizeof(arg_reg_buffer);
417 sp -= accumulate_size;
418
419 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
420 sp &= ~15;
421
422 /* `Push' arguments on the stack. */
423 for (i = nargs; m_arg--, --i >= 0;)
424 {
425 const gdb_byte *contents = m_arg->contents;
426 int offset = m_arg->offset;
427 int len = m_arg->len;
428
429 /* Copy the bytes destined for registers into arg_reg_buffer. */
430 if (offset < sizeof(arg_reg_buffer))
431 {
432 if (offset + len <= sizeof(arg_reg_buffer))
433 {
434 memcpy (arg_reg_buffer + offset, contents, len);
435 continue;
436 }
437 else
438 {
439 int tlen = sizeof(arg_reg_buffer) - offset;
440 memcpy (arg_reg_buffer + offset, contents, tlen);
441 offset += tlen;
442 contents += tlen;
443 len -= tlen;
444 }
445 }
446
447 /* Everything else goes to the stack. */
448 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
449 }
450 if (struct_return)
451 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
452 byte_order, struct_addr);
453
454 /* Load the argument registers. */
455 for (i = 0; i < required_arg_regs; i++)
456 {
457 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
458 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
459 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
460 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
461 }
462
463 /* Finally, update the stack pointer. */
464 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
465
466 return sp;
467 }
468
469 /* Extract from REGCACHE the value about to be returned from a function
470 and copy it into VALBUF. */
471
472 static void
473 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
474 gdb_byte *valbuf)
475 {
476 struct gdbarch *gdbarch = get_regcache_arch (regcache);
477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
478 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
479 ULONGEST l;
480
481 switch (TYPE_CODE (valtype))
482 {
483 case TYPE_CODE_FLT:
484 switch (TYPE_LENGTH (valtype))
485 {
486 case 4:
487 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
488 alpha_sts (gdbarch, valbuf, raw_buffer);
489 break;
490
491 case 8:
492 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
493 break;
494
495 case 16:
496 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
497 read_memory (l, valbuf, 16);
498 break;
499
500 default:
501 internal_error (__FILE__, __LINE__,
502 _("unknown floating point width"));
503 }
504 break;
505
506 case TYPE_CODE_COMPLEX:
507 switch (TYPE_LENGTH (valtype))
508 {
509 case 8:
510 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
511 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
512 break;
513
514 case 16:
515 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
516 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
517 break;
518
519 case 32:
520 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
521 read_memory (l, valbuf, 32);
522 break;
523
524 default:
525 internal_error (__FILE__, __LINE__,
526 _("unknown floating point width"));
527 }
528 break;
529
530 default:
531 /* Assume everything else degenerates to an integer. */
532 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
533 store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
534 break;
535 }
536 }
537
538 /* Insert the given value into REGCACHE as if it was being
539 returned by a function. */
540
541 static void
542 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
543 const gdb_byte *valbuf)
544 {
545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
546 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
547 ULONGEST l;
548
549 switch (TYPE_CODE (valtype))
550 {
551 case TYPE_CODE_FLT:
552 switch (TYPE_LENGTH (valtype))
553 {
554 case 4:
555 alpha_lds (gdbarch, raw_buffer, valbuf);
556 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
557 break;
558
559 case 8:
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
561 break;
562
563 case 16:
564 /* FIXME: 128-bit long doubles are returned like structures:
565 by writing into indirect storage provided by the caller
566 as the first argument. */
567 error (_("Cannot set a 128-bit long double return value."));
568
569 default:
570 internal_error (__FILE__, __LINE__,
571 _("unknown floating point width"));
572 }
573 break;
574
575 case TYPE_CODE_COMPLEX:
576 switch (TYPE_LENGTH (valtype))
577 {
578 case 8:
579 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
580 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
581 break;
582
583 case 16:
584 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
585 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
586 break;
587
588 case 32:
589 /* FIXME: 128-bit long doubles are returned like structures:
590 by writing into indirect storage provided by the caller
591 as the first argument. */
592 error (_("Cannot set a 128-bit long double return value."));
593
594 default:
595 internal_error (__FILE__, __LINE__,
596 _("unknown floating point width"));
597 }
598 break;
599
600 default:
601 /* Assume everything else degenerates to an integer. */
602 /* 32-bit values must be sign-extended to 64 bits
603 even if the base data type is unsigned. */
604 if (TYPE_LENGTH (valtype) == 4)
605 valtype = builtin_type (gdbarch)->builtin_int32;
606 l = unpack_long (valtype, valbuf);
607 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
608 break;
609 }
610 }
611
612 static enum return_value_convention
613 alpha_return_value (struct gdbarch *gdbarch, struct value *function,
614 struct type *type, struct regcache *regcache,
615 gdb_byte *readbuf, const gdb_byte *writebuf)
616 {
617 enum type_code code = TYPE_CODE (type);
618
619 if ((code == TYPE_CODE_STRUCT
620 || code == TYPE_CODE_UNION
621 || code == TYPE_CODE_ARRAY)
622 && gdbarch_tdep (gdbarch)->return_in_memory (type))
623 {
624 if (readbuf)
625 {
626 ULONGEST addr;
627 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
628 read_memory (addr, readbuf, TYPE_LENGTH (type));
629 }
630
631 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
632 }
633
634 if (readbuf)
635 alpha_extract_return_value (type, regcache, readbuf);
636 if (writebuf)
637 alpha_store_return_value (type, regcache, writebuf);
638
639 return RETURN_VALUE_REGISTER_CONVENTION;
640 }
641
642 static int
643 alpha_return_in_memory_always (struct type *type)
644 {
645 return 1;
646 }
647 \f
648
649 constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
650
651 typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint;
652
653 \f
654 /* This returns the PC of the first insn after the prologue.
655 If we can't find the prologue, then return 0. */
656
657 CORE_ADDR
658 alpha_after_prologue (CORE_ADDR pc)
659 {
660 struct symtab_and_line sal;
661 CORE_ADDR func_addr, func_end;
662
663 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
664 return 0;
665
666 sal = find_pc_line (func_addr, 0);
667 if (sal.end < func_end)
668 return sal.end;
669
670 /* The line after the prologue is after the end of the function. In this
671 case, tell the caller to find the prologue the hard way. */
672 return 0;
673 }
674
675 /* Read an instruction from memory at PC, looking through breakpoints. */
676
677 unsigned int
678 alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
679 {
680 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
681 gdb_byte buf[ALPHA_INSN_SIZE];
682 int res;
683
684 res = target_read_memory (pc, buf, sizeof (buf));
685 if (res != 0)
686 memory_error (TARGET_XFER_E_IO, pc);
687 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
688 }
689
690 /* To skip prologues, I use this predicate. Returns either PC itself
691 if the code at PC does not look like a function prologue; otherwise
692 returns an address that (if we're lucky) follows the prologue. If
693 LENIENT, then we must skip everything which is involved in setting
694 up the frame (it's OK to skip more, just so long as we don't skip
695 anything which might clobber the registers which are being saved. */
696
697 static CORE_ADDR
698 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
699 {
700 unsigned long inst;
701 int offset;
702 CORE_ADDR post_prologue_pc;
703 gdb_byte buf[ALPHA_INSN_SIZE];
704
705 /* Silently return the unaltered pc upon memory errors.
706 This could happen on OSF/1 if decode_line_1 tries to skip the
707 prologue for quickstarted shared library functions when the
708 shared library is not yet mapped in.
709 Reading target memory is slow over serial lines, so we perform
710 this check only if the target has shared libraries (which all
711 Alpha targets do). */
712 if (target_read_memory (pc, buf, sizeof (buf)))
713 return pc;
714
715 /* See if we can determine the end of the prologue via the symbol table.
716 If so, then return either PC, or the PC after the prologue, whichever
717 is greater. */
718
719 post_prologue_pc = alpha_after_prologue (pc);
720 if (post_prologue_pc != 0)
721 return std::max (pc, post_prologue_pc);
722
723 /* Can't determine prologue from the symbol table, need to examine
724 instructions. */
725
726 /* Skip the typical prologue instructions. These are the stack adjustment
727 instruction and the instructions that save registers on the stack
728 or in the gcc frame. */
729 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
730 {
731 inst = alpha_read_insn (gdbarch, pc + offset);
732
733 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
734 continue;
735 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
736 continue;
737 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
738 continue;
739 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
740 continue;
741
742 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
743 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
744 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
745 continue;
746
747 if (inst == 0x47de040f) /* bis sp,sp,fp */
748 continue;
749 if (inst == 0x47fe040f) /* bis zero,sp,fp */
750 continue;
751
752 break;
753 }
754 return pc + offset;
755 }
756
757 \f
758 static const int ldl_l_opcode = 0x2a;
759 static const int ldq_l_opcode = 0x2b;
760 static const int stl_c_opcode = 0x2e;
761 static const int stq_c_opcode = 0x2f;
762
763 /* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
764 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
765 is found, attempt to step through it. A breakpoint is placed at the end of
766 the sequence. */
767
768 static VEC (CORE_ADDR) *
769 alpha_deal_with_atomic_sequence (struct frame_info *frame)
770 {
771 struct gdbarch *gdbarch = get_frame_arch (frame);
772 CORE_ADDR pc = get_frame_pc (frame);
773 CORE_ADDR breaks[2] = {-1, -1};
774 CORE_ADDR loc = pc;
775 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
776 unsigned int insn = alpha_read_insn (gdbarch, loc);
777 int insn_count;
778 int index;
779 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
780 const int atomic_sequence_length = 16; /* Instruction sequence length. */
781 int bc_insn_count = 0; /* Conditional branch instruction count. */
782 VEC (CORE_ADDR) *next_pcs = NULL;
783
784 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
785 if (INSN_OPCODE (insn) != ldl_l_opcode
786 && INSN_OPCODE (insn) != ldq_l_opcode)
787 return NULL;
788
789 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
790 instructions. */
791 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
792 {
793 loc += ALPHA_INSN_SIZE;
794 insn = alpha_read_insn (gdbarch, loc);
795
796 /* Assume that there is at most one branch in the atomic
797 sequence. If a branch is found, put a breakpoint in
798 its destination address. */
799 if (INSN_OPCODE (insn) >= br_opcode)
800 {
801 int immediate = (insn & 0x001fffff) << 2;
802
803 immediate = (immediate ^ 0x400000) - 0x400000;
804
805 if (bc_insn_count >= 1)
806 return NULL; /* More than one branch found, fallback
807 to the standard single-step code. */
808
809 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
810
811 bc_insn_count++;
812 last_breakpoint++;
813 }
814
815 if (INSN_OPCODE (insn) == stl_c_opcode
816 || INSN_OPCODE (insn) == stq_c_opcode)
817 break;
818 }
819
820 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
821 if (INSN_OPCODE (insn) != stl_c_opcode
822 && INSN_OPCODE (insn) != stq_c_opcode)
823 return NULL;
824
825 closing_insn = loc;
826 loc += ALPHA_INSN_SIZE;
827
828 /* Insert a breakpoint right after the end of the atomic sequence. */
829 breaks[0] = loc;
830
831 /* Check for duplicated breakpoints. Check also for a breakpoint
832 placed (branch instruction's destination) anywhere in sequence. */
833 if (last_breakpoint
834 && (breaks[1] == breaks[0]
835 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
836 last_breakpoint = 0;
837
838 for (index = 0; index <= last_breakpoint; index++)
839 VEC_safe_push (CORE_ADDR, next_pcs, breaks[index]);
840
841 return next_pcs;
842 }
843
844 \f
845 /* Figure out where the longjmp will land.
846 We expect the first arg to be a pointer to the jmp_buf structure from
847 which we extract the PC (JB_PC) that we will land at. The PC is copied
848 into the "pc". This routine returns true on success. */
849
850 static int
851 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
852 {
853 struct gdbarch *gdbarch = get_frame_arch (frame);
854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
855 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
856 CORE_ADDR jb_addr;
857 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
858
859 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
860
861 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
862 raw_buffer, tdep->jb_elt_size))
863 return 0;
864
865 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
866 return 1;
867 }
868
869 \f
870 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
871 describe the location and shape of the sigcontext structure. After
872 that, all registers are in memory, so it's easy. */
873 /* ??? Shouldn't we be able to do this generically, rather than with
874 OSABI data specific to Alpha? */
875
876 struct alpha_sigtramp_unwind_cache
877 {
878 CORE_ADDR sigcontext_addr;
879 };
880
881 static struct alpha_sigtramp_unwind_cache *
882 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
883 void **this_prologue_cache)
884 {
885 struct alpha_sigtramp_unwind_cache *info;
886 struct gdbarch_tdep *tdep;
887
888 if (*this_prologue_cache)
889 return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
890
891 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
892 *this_prologue_cache = info;
893
894 tdep = gdbarch_tdep (get_frame_arch (this_frame));
895 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
896
897 return info;
898 }
899
900 /* Return the address of REGNUM in a sigtramp frame. Since this is
901 all arithmetic, it doesn't seem worthwhile to cache it. */
902
903 static CORE_ADDR
904 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
905 CORE_ADDR sigcontext_addr, int regnum)
906 {
907 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
908
909 if (regnum >= 0 && regnum < 32)
910 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
911 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
912 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
913 else if (regnum == ALPHA_PC_REGNUM)
914 return sigcontext_addr + tdep->sc_pc_offset;
915
916 return 0;
917 }
918
919 /* Given a GDB frame, determine the address of the calling function's
920 frame. This will be used to create a new GDB frame struct. */
921
922 static void
923 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
924 void **this_prologue_cache,
925 struct frame_id *this_id)
926 {
927 struct gdbarch *gdbarch = get_frame_arch (this_frame);
928 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
929 struct alpha_sigtramp_unwind_cache *info
930 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
931 CORE_ADDR stack_addr, code_addr;
932
933 /* If the OSABI couldn't locate the sigcontext, give up. */
934 if (info->sigcontext_addr == 0)
935 return;
936
937 /* If we have dynamic signal trampolines, find their start.
938 If we do not, then we must assume there is a symbol record
939 that can provide the start address. */
940 if (tdep->dynamic_sigtramp_offset)
941 {
942 int offset;
943 code_addr = get_frame_pc (this_frame);
944 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
945 if (offset >= 0)
946 code_addr -= offset;
947 else
948 code_addr = 0;
949 }
950 else
951 code_addr = get_frame_func (this_frame);
952
953 /* The stack address is trivially read from the sigcontext. */
954 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
955 ALPHA_SP_REGNUM);
956 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
957 ALPHA_REGISTER_SIZE);
958
959 *this_id = frame_id_build (stack_addr, code_addr);
960 }
961
962 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
963
964 static struct value *
965 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
966 void **this_prologue_cache, int regnum)
967 {
968 struct alpha_sigtramp_unwind_cache *info
969 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
970 CORE_ADDR addr;
971
972 if (info->sigcontext_addr != 0)
973 {
974 /* All integer and fp registers are stored in memory. */
975 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
976 info->sigcontext_addr, regnum);
977 if (addr != 0)
978 return frame_unwind_got_memory (this_frame, regnum, addr);
979 }
980
981 /* This extra register may actually be in the sigcontext, but our
982 current description of it in alpha_sigtramp_frame_unwind_cache
983 doesn't include it. Too bad. Fall back on whatever's in the
984 outer frame. */
985 return frame_unwind_got_register (this_frame, regnum, regnum);
986 }
987
988 static int
989 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
990 struct frame_info *this_frame,
991 void **this_prologue_cache)
992 {
993 struct gdbarch *gdbarch = get_frame_arch (this_frame);
994 CORE_ADDR pc = get_frame_pc (this_frame);
995 const char *name;
996
997 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
998 look at tramp-frame.h and other simplier per-architecture
999 sigtramp unwinders. */
1000
1001 /* We shouldn't even bother to try if the OSABI didn't register a
1002 sigcontext_addr handler or pc_in_sigtramp hander. */
1003 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
1004 return 0;
1005 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
1006 return 0;
1007
1008 /* Otherwise we should be in a signal frame. */
1009 find_pc_partial_function (pc, &name, NULL, NULL);
1010 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
1011 return 1;
1012
1013 return 0;
1014 }
1015
1016 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1017 SIGTRAMP_FRAME,
1018 default_frame_unwind_stop_reason,
1019 alpha_sigtramp_frame_this_id,
1020 alpha_sigtramp_frame_prev_register,
1021 NULL,
1022 alpha_sigtramp_frame_sniffer
1023 };
1024
1025 \f
1026
1027 /* Heuristic_proc_start may hunt through the text section for a long
1028 time across a 2400 baud serial line. Allows the user to limit this
1029 search. */
1030 static int heuristic_fence_post = 0;
1031
1032 /* Attempt to locate the start of the function containing PC. We assume that
1033 the previous function ends with an about_to_return insn. Not foolproof by
1034 any means, since gcc is happy to put the epilogue in the middle of a
1035 function. But we're guessing anyway... */
1036
1037 static CORE_ADDR
1038 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
1039 {
1040 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1041 CORE_ADDR last_non_nop = pc;
1042 CORE_ADDR fence = pc - heuristic_fence_post;
1043 CORE_ADDR orig_pc = pc;
1044 CORE_ADDR func;
1045 struct inferior *inf;
1046
1047 if (pc == 0)
1048 return 0;
1049
1050 /* First see if we can find the start of the function from minimal
1051 symbol information. This can succeed with a binary that doesn't
1052 have debug info, but hasn't been stripped. */
1053 func = get_pc_function_start (pc);
1054 if (func)
1055 return func;
1056
1057 if (heuristic_fence_post == -1
1058 || fence < tdep->vm_min_address)
1059 fence = tdep->vm_min_address;
1060
1061 /* Search back for previous return; also stop at a 0, which might be
1062 seen for instance before the start of a code section. Don't include
1063 nops, since this usually indicates padding between functions. */
1064 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
1065 {
1066 unsigned int insn = alpha_read_insn (gdbarch, pc);
1067 switch (insn)
1068 {
1069 case 0: /* invalid insn */
1070 case 0x6bfa8001: /* ret $31,($26),1 */
1071 return last_non_nop;
1072
1073 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1074 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1075 break;
1076
1077 default:
1078 last_non_nop = pc;
1079 break;
1080 }
1081 }
1082
1083 inf = current_inferior ();
1084
1085 /* It's not clear to me why we reach this point when stopping quietly,
1086 but with this test, at least we don't print out warnings for every
1087 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
1088 if (inf->control.stop_soon == NO_STOP_QUIETLY)
1089 {
1090 static int blurb_printed = 0;
1091
1092 if (fence == tdep->vm_min_address)
1093 warning (_("Hit beginning of text section without finding \
1094 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1095 else
1096 warning (_("Hit heuristic-fence-post without finding \
1097 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1098
1099 if (!blurb_printed)
1100 {
1101 printf_filtered (_("\
1102 This warning occurs if you are debugging a function without any symbols\n\
1103 (for example, in a stripped executable). In that case, you may wish to\n\
1104 increase the size of the search with the `set heuristic-fence-post' command.\n\
1105 \n\
1106 Otherwise, you told GDB there was a function where there isn't one, or\n\
1107 (more likely) you have encountered a bug in GDB.\n"));
1108 blurb_printed = 1;
1109 }
1110 }
1111
1112 return 0;
1113 }
1114
1115 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
1116 something about the traditional layout of alpha stack frames. */
1117
1118 struct alpha_heuristic_unwind_cache
1119 {
1120 CORE_ADDR vfp;
1121 CORE_ADDR start_pc;
1122 struct trad_frame_saved_reg *saved_regs;
1123 int return_reg;
1124 };
1125
1126 /* If a probing loop sequence starts at PC, simulate it and compute
1127 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1128 FRAME_SIZE unchanged. */
1129
1130 static void
1131 alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1132 int *frame_size)
1133 {
1134 CORE_ADDR cur_pc = *pc;
1135 int cur_frame_size = *frame_size;
1136 int nb_of_iterations, reg_index, reg_probe;
1137 unsigned int insn;
1138
1139 /* The following pattern is recognized as a probing loop:
1140
1141 lda REG_INDEX,NB_OF_ITERATIONS
1142 lda REG_PROBE,<immediate>(sp)
1143
1144 LOOP_START:
1145 stq zero,<immediate>(REG_PROBE)
1146 subq REG_INDEX,0x1,REG_INDEX
1147 lda REG_PROBE,<immediate>(REG_PROBE)
1148 bne REG_INDEX, LOOP_START
1149
1150 lda sp,<immediate>(REG_PROBE)
1151
1152 If anything different is found, the function returns without
1153 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
1154 after this sequence, and FRAME_SIZE will be updated. */
1155
1156 /* lda REG_INDEX,NB_OF_ITERATIONS */
1157
1158 insn = alpha_read_insn (gdbarch, cur_pc);
1159 if (INSN_OPCODE (insn) != lda_opcode)
1160 return;
1161 reg_index = MEM_RA (insn);
1162 nb_of_iterations = MEM_DISP (insn);
1163
1164 /* lda REG_PROBE,<immediate>(sp) */
1165
1166 cur_pc += ALPHA_INSN_SIZE;
1167 insn = alpha_read_insn (gdbarch, cur_pc);
1168 if (INSN_OPCODE (insn) != lda_opcode
1169 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1170 return;
1171 reg_probe = MEM_RA (insn);
1172 cur_frame_size -= MEM_DISP (insn);
1173
1174 /* stq zero,<immediate>(REG_PROBE) */
1175
1176 cur_pc += ALPHA_INSN_SIZE;
1177 insn = alpha_read_insn (gdbarch, cur_pc);
1178 if (INSN_OPCODE (insn) != stq_opcode
1179 || MEM_RA (insn) != 0x1f
1180 || MEM_RB (insn) != reg_probe)
1181 return;
1182
1183 /* subq REG_INDEX,0x1,REG_INDEX */
1184
1185 cur_pc += ALPHA_INSN_SIZE;
1186 insn = alpha_read_insn (gdbarch, cur_pc);
1187 if (INSN_OPCODE (insn) != subq_opcode
1188 || !OPR_HAS_IMMEDIATE (insn)
1189 || OPR_FUNCTION (insn) != subq_function
1190 || OPR_LIT(insn) != 1
1191 || OPR_RA (insn) != reg_index
1192 || OPR_RC (insn) != reg_index)
1193 return;
1194
1195 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1196
1197 cur_pc += ALPHA_INSN_SIZE;
1198 insn = alpha_read_insn (gdbarch, cur_pc);
1199 if (INSN_OPCODE (insn) != lda_opcode
1200 || MEM_RA (insn) != reg_probe
1201 || MEM_RB (insn) != reg_probe)
1202 return;
1203 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1204
1205 /* bne REG_INDEX, LOOP_START */
1206
1207 cur_pc += ALPHA_INSN_SIZE;
1208 insn = alpha_read_insn (gdbarch, cur_pc);
1209 if (INSN_OPCODE (insn) != bne_opcode
1210 || MEM_RA (insn) != reg_index)
1211 return;
1212
1213 /* lda sp,<immediate>(REG_PROBE) */
1214
1215 cur_pc += ALPHA_INSN_SIZE;
1216 insn = alpha_read_insn (gdbarch, cur_pc);
1217 if (INSN_OPCODE (insn) != lda_opcode
1218 || MEM_RA (insn) != ALPHA_SP_REGNUM
1219 || MEM_RB (insn) != reg_probe)
1220 return;
1221 cur_frame_size -= MEM_DISP (insn);
1222
1223 *pc = cur_pc;
1224 *frame_size = cur_frame_size;
1225 }
1226
1227 static struct alpha_heuristic_unwind_cache *
1228 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
1229 void **this_prologue_cache,
1230 CORE_ADDR start_pc)
1231 {
1232 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1233 struct alpha_heuristic_unwind_cache *info;
1234 ULONGEST val;
1235 CORE_ADDR limit_pc, cur_pc;
1236 int frame_reg, frame_size, return_reg, reg;
1237
1238 if (*this_prologue_cache)
1239 return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
1240
1241 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1242 *this_prologue_cache = info;
1243 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1244
1245 limit_pc = get_frame_pc (this_frame);
1246 if (start_pc == 0)
1247 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1248 info->start_pc = start_pc;
1249
1250 frame_reg = ALPHA_SP_REGNUM;
1251 frame_size = 0;
1252 return_reg = -1;
1253
1254 /* If we've identified a likely place to start, do code scanning. */
1255 if (start_pc != 0)
1256 {
1257 /* Limit the forward search to 50 instructions. */
1258 if (start_pc + 200 < limit_pc)
1259 limit_pc = start_pc + 200;
1260
1261 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1262 {
1263 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1264
1265 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1266 {
1267 if (word & 0x8000)
1268 {
1269 /* Consider only the first stack allocation instruction
1270 to contain the static size of the frame. */
1271 if (frame_size == 0)
1272 frame_size = (-word) & 0xffff;
1273 }
1274 else
1275 {
1276 /* Exit loop if a positive stack adjustment is found, which
1277 usually means that the stack cleanup code in the function
1278 epilogue is reached. */
1279 break;
1280 }
1281 }
1282 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1283 {
1284 reg = (word & 0x03e00000) >> 21;
1285
1286 /* Ignore this instruction if we have already encountered
1287 an instruction saving the same register earlier in the
1288 function code. The current instruction does not tell
1289 us where the original value upon function entry is saved.
1290 All it says is that the function we are scanning reused
1291 that register for some computation of its own, and is now
1292 saving its result. */
1293 if (trad_frame_addr_p(info->saved_regs, reg))
1294 continue;
1295
1296 if (reg == 31)
1297 continue;
1298
1299 /* Do not compute the address where the register was saved yet,
1300 because we don't know yet if the offset will need to be
1301 relative to $sp or $fp (we can not compute the address
1302 relative to $sp if $sp is updated during the execution of
1303 the current subroutine, for instance when doing some alloca).
1304 So just store the offset for the moment, and compute the
1305 address later when we know whether this frame has a frame
1306 pointer or not. */
1307 /* Hack: temporarily add one, so that the offset is non-zero
1308 and we can tell which registers have save offsets below. */
1309 info->saved_regs[reg].addr = (word & 0xffff) + 1;
1310
1311 /* Starting with OSF/1-3.2C, the system libraries are shipped
1312 without local symbols, but they still contain procedure
1313 descriptors without a symbol reference. GDB is currently
1314 unable to find these procedure descriptors and uses
1315 heuristic_proc_desc instead.
1316 As some low level compiler support routines (__div*, __add*)
1317 use a non-standard return address register, we have to
1318 add some heuristics to determine the return address register,
1319 or stepping over these routines will fail.
1320 Usually the return address register is the first register
1321 saved on the stack, but assembler optimization might
1322 rearrange the register saves.
1323 So we recognize only a few registers (t7, t9, ra) within
1324 the procedure prologue as valid return address registers.
1325 If we encounter a return instruction, we extract the
1326 return address register from it.
1327
1328 FIXME: Rewriting GDB to access the procedure descriptors,
1329 e.g. via the minimal symbol table, might obviate this
1330 hack. */
1331 if (return_reg == -1
1332 && cur_pc < (start_pc + 80)
1333 && (reg == ALPHA_T7_REGNUM
1334 || reg == ALPHA_T9_REGNUM
1335 || reg == ALPHA_RA_REGNUM))
1336 return_reg = reg;
1337 }
1338 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1339 return_reg = (word >> 16) & 0x1f;
1340 else if (word == 0x47de040f) /* bis sp,sp,fp */
1341 frame_reg = ALPHA_GCC_FP_REGNUM;
1342 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1343 frame_reg = ALPHA_GCC_FP_REGNUM;
1344
1345 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
1346 }
1347
1348 /* If we haven't found a valid return address register yet, keep
1349 searching in the procedure prologue. */
1350 if (return_reg == -1)
1351 {
1352 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1353 {
1354 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1355
1356 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1357 {
1358 reg = (word & 0x03e00000) >> 21;
1359 if (reg == ALPHA_T7_REGNUM
1360 || reg == ALPHA_T9_REGNUM
1361 || reg == ALPHA_RA_REGNUM)
1362 {
1363 return_reg = reg;
1364 break;
1365 }
1366 }
1367 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1368 {
1369 return_reg = (word >> 16) & 0x1f;
1370 break;
1371 }
1372
1373 cur_pc += ALPHA_INSN_SIZE;
1374 }
1375 }
1376 }
1377
1378 /* Failing that, do default to the customary RA. */
1379 if (return_reg == -1)
1380 return_reg = ALPHA_RA_REGNUM;
1381 info->return_reg = return_reg;
1382
1383 val = get_frame_register_unsigned (this_frame, frame_reg);
1384 info->vfp = val + frame_size;
1385
1386 /* Convert offsets to absolute addresses. See above about adding
1387 one to the offsets to make all detected offsets non-zero. */
1388 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1389 if (trad_frame_addr_p(info->saved_regs, reg))
1390 info->saved_regs[reg].addr += val - 1;
1391
1392 /* The stack pointer of the previous frame is computed by popping
1393 the current stack frame. */
1394 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1395 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1396
1397 return info;
1398 }
1399
1400 /* Given a GDB frame, determine the address of the calling function's
1401 frame. This will be used to create a new GDB frame struct. */
1402
1403 static void
1404 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1405 void **this_prologue_cache,
1406 struct frame_id *this_id)
1407 {
1408 struct alpha_heuristic_unwind_cache *info
1409 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1410
1411 *this_id = frame_id_build (info->vfp, info->start_pc);
1412 }
1413
1414 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1415
1416 static struct value *
1417 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1418 void **this_prologue_cache, int regnum)
1419 {
1420 struct alpha_heuristic_unwind_cache *info
1421 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1422
1423 /* The PC of the previous frame is stored in the link register of
1424 the current frame. Frob regnum so that we pull the value from
1425 the correct place. */
1426 if (regnum == ALPHA_PC_REGNUM)
1427 regnum = info->return_reg;
1428
1429 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1430 }
1431
1432 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1433 NORMAL_FRAME,
1434 default_frame_unwind_stop_reason,
1435 alpha_heuristic_frame_this_id,
1436 alpha_heuristic_frame_prev_register,
1437 NULL,
1438 default_frame_sniffer
1439 };
1440
1441 static CORE_ADDR
1442 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1443 void **this_prologue_cache)
1444 {
1445 struct alpha_heuristic_unwind_cache *info
1446 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1447
1448 return info->vfp;
1449 }
1450
1451 static const struct frame_base alpha_heuristic_frame_base = {
1452 &alpha_heuristic_frame_unwind,
1453 alpha_heuristic_frame_base_address,
1454 alpha_heuristic_frame_base_address,
1455 alpha_heuristic_frame_base_address
1456 };
1457
1458 /* Just like reinit_frame_cache, but with the right arguments to be
1459 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1460
1461 static void
1462 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1463 {
1464 reinit_frame_cache ();
1465 }
1466
1467 \f
1468 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1469 dummy frame. The frame ID's base needs to match the TOS value
1470 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1471 breakpoint. */
1472
1473 static struct frame_id
1474 alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1475 {
1476 ULONGEST base;
1477 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1478 return frame_id_build (base, get_frame_pc (this_frame));
1479 }
1480
1481 static CORE_ADDR
1482 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1483 {
1484 ULONGEST pc;
1485 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
1486 return pc;
1487 }
1488
1489 \f
1490 /* Helper routines for alpha*-nat.c files to move register sets to and
1491 from core files. The UNIQUE pointer is allowed to be NULL, as most
1492 targets don't supply this value in their core files. */
1493
1494 void
1495 alpha_supply_int_regs (struct regcache *regcache, int regno,
1496 const void *r0_r30, const void *pc, const void *unique)
1497 {
1498 const gdb_byte *regs = (const gdb_byte *) r0_r30;
1499 int i;
1500
1501 for (i = 0; i < 31; ++i)
1502 if (regno == i || regno == -1)
1503 regcache_raw_supply (regcache, i, regs + i * 8);
1504
1505 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1506 {
1507 const gdb_byte zero[8] = { 0 };
1508
1509 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1510 }
1511
1512 if (regno == ALPHA_PC_REGNUM || regno == -1)
1513 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1514
1515 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1516 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1517 }
1518
1519 void
1520 alpha_fill_int_regs (const struct regcache *regcache,
1521 int regno, void *r0_r30, void *pc, void *unique)
1522 {
1523 gdb_byte *regs = (gdb_byte *) r0_r30;
1524 int i;
1525
1526 for (i = 0; i < 31; ++i)
1527 if (regno == i || regno == -1)
1528 regcache_raw_collect (regcache, i, regs + i * 8);
1529
1530 if (regno == ALPHA_PC_REGNUM || regno == -1)
1531 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1532
1533 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1534 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1535 }
1536
1537 void
1538 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1539 const void *f0_f30, const void *fpcr)
1540 {
1541 const gdb_byte *regs = (const gdb_byte *) f0_f30;
1542 int i;
1543
1544 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1545 if (regno == i || regno == -1)
1546 regcache_raw_supply (regcache, i,
1547 regs + (i - ALPHA_FP0_REGNUM) * 8);
1548
1549 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1550 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1551 }
1552
1553 void
1554 alpha_fill_fp_regs (const struct regcache *regcache,
1555 int regno, void *f0_f30, void *fpcr)
1556 {
1557 gdb_byte *regs = (gdb_byte *) f0_f30;
1558 int i;
1559
1560 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1561 if (regno == i || regno == -1)
1562 regcache_raw_collect (regcache, i,
1563 regs + (i - ALPHA_FP0_REGNUM) * 8);
1564
1565 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1566 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1567 }
1568
1569 \f
1570
1571 /* Return nonzero if the G_floating register value in REG is equal to
1572 zero for FP control instructions. */
1573
1574 static int
1575 fp_register_zero_p (LONGEST reg)
1576 {
1577 /* Check that all bits except the sign bit are zero. */
1578 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1579
1580 return ((reg & zero_mask) == 0);
1581 }
1582
1583 /* Return the value of the sign bit for the G_floating register
1584 value held in REG. */
1585
1586 static int
1587 fp_register_sign_bit (LONGEST reg)
1588 {
1589 const LONGEST sign_mask = (LONGEST) 1 << 63;
1590
1591 return ((reg & sign_mask) != 0);
1592 }
1593
1594 /* alpha_software_single_step() is called just before we want to resume
1595 the inferior, if we want to single-step it but there is no hardware
1596 or kernel single-step support (NetBSD on Alpha, for example). We find
1597 the target of the coming instruction and breakpoint it. */
1598
1599 static CORE_ADDR
1600 alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
1601 {
1602 struct gdbarch *gdbarch = get_frame_arch (frame);
1603 unsigned int insn;
1604 unsigned int op;
1605 int regno;
1606 int offset;
1607 LONGEST rav;
1608
1609 insn = alpha_read_insn (gdbarch, pc);
1610
1611 /* Opcode is top 6 bits. */
1612 op = (insn >> 26) & 0x3f;
1613
1614 if (op == 0x1a)
1615 {
1616 /* Jump format: target PC is:
1617 RB & ~3 */
1618 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
1619 }
1620
1621 if ((op & 0x30) == 0x30)
1622 {
1623 /* Branch format: target PC is:
1624 (new PC) + (4 * sext(displacement)) */
1625 if (op == 0x30 /* BR */
1626 || op == 0x34) /* BSR */
1627 {
1628 branch_taken:
1629 offset = (insn & 0x001fffff);
1630 if (offset & 0x00100000)
1631 offset |= 0xffe00000;
1632 offset *= ALPHA_INSN_SIZE;
1633 return (pc + ALPHA_INSN_SIZE + offset);
1634 }
1635
1636 /* Need to determine if branch is taken; read RA. */
1637 regno = (insn >> 21) & 0x1f;
1638 switch (op)
1639 {
1640 case 0x31: /* FBEQ */
1641 case 0x36: /* FBGE */
1642 case 0x37: /* FBGT */
1643 case 0x33: /* FBLE */
1644 case 0x32: /* FBLT */
1645 case 0x35: /* FBNE */
1646 regno += gdbarch_fp0_regnum (gdbarch);
1647 }
1648
1649 rav = get_frame_register_signed (frame, regno);
1650
1651 switch (op)
1652 {
1653 case 0x38: /* BLBC */
1654 if ((rav & 1) == 0)
1655 goto branch_taken;
1656 break;
1657 case 0x3c: /* BLBS */
1658 if (rav & 1)
1659 goto branch_taken;
1660 break;
1661 case 0x39: /* BEQ */
1662 if (rav == 0)
1663 goto branch_taken;
1664 break;
1665 case 0x3d: /* BNE */
1666 if (rav != 0)
1667 goto branch_taken;
1668 break;
1669 case 0x3a: /* BLT */
1670 if (rav < 0)
1671 goto branch_taken;
1672 break;
1673 case 0x3b: /* BLE */
1674 if (rav <= 0)
1675 goto branch_taken;
1676 break;
1677 case 0x3f: /* BGT */
1678 if (rav > 0)
1679 goto branch_taken;
1680 break;
1681 case 0x3e: /* BGE */
1682 if (rav >= 0)
1683 goto branch_taken;
1684 break;
1685
1686 /* Floating point branches. */
1687
1688 case 0x31: /* FBEQ */
1689 if (fp_register_zero_p (rav))
1690 goto branch_taken;
1691 break;
1692 case 0x36: /* FBGE */
1693 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1694 goto branch_taken;
1695 break;
1696 case 0x37: /* FBGT */
1697 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1698 goto branch_taken;
1699 break;
1700 case 0x33: /* FBLE */
1701 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1702 goto branch_taken;
1703 break;
1704 case 0x32: /* FBLT */
1705 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1706 goto branch_taken;
1707 break;
1708 case 0x35: /* FBNE */
1709 if (! fp_register_zero_p (rav))
1710 goto branch_taken;
1711 break;
1712 }
1713 }
1714
1715 /* Not a branch or branch not taken; target PC is:
1716 pc + 4 */
1717 return (pc + ALPHA_INSN_SIZE);
1718 }
1719
1720 VEC (CORE_ADDR) *
1721 alpha_software_single_step (struct frame_info *frame)
1722 {
1723 struct gdbarch *gdbarch = get_frame_arch (frame);
1724 CORE_ADDR pc;
1725 VEC (CORE_ADDR) *next_pcs = NULL;
1726
1727 pc = get_frame_pc (frame);
1728
1729 VEC_safe_push (CORE_ADDR, next_pcs, alpha_next_pc (frame, pc));
1730 return next_pcs;
1731 }
1732
1733 \f
1734 /* Initialize the current architecture based on INFO. If possible, re-use an
1735 architecture from ARCHES, which is a list of architectures already created
1736 during this debugging session.
1737
1738 Called e.g. at program startup, when reading a core file, and when reading
1739 a binary file. */
1740
1741 static struct gdbarch *
1742 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1743 {
1744 struct gdbarch_tdep *tdep;
1745 struct gdbarch *gdbarch;
1746
1747 /* Find a candidate among extant architectures. */
1748 arches = gdbarch_list_lookup_by_info (arches, &info);
1749 if (arches != NULL)
1750 return arches->gdbarch;
1751
1752 tdep = XNEW (struct gdbarch_tdep);
1753 gdbarch = gdbarch_alloc (&info, tdep);
1754
1755 /* Lowest text address. This is used by heuristic_proc_start()
1756 to decide when to stop looking. */
1757 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1758
1759 tdep->dynamic_sigtramp_offset = NULL;
1760 tdep->sigcontext_addr = NULL;
1761 tdep->sc_pc_offset = 2 * 8;
1762 tdep->sc_regs_offset = 4 * 8;
1763 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1764
1765 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
1766
1767 tdep->return_in_memory = alpha_return_in_memory_always;
1768
1769 /* Type sizes */
1770 set_gdbarch_short_bit (gdbarch, 16);
1771 set_gdbarch_int_bit (gdbarch, 32);
1772 set_gdbarch_long_bit (gdbarch, 64);
1773 set_gdbarch_long_long_bit (gdbarch, 64);
1774 set_gdbarch_float_bit (gdbarch, 32);
1775 set_gdbarch_double_bit (gdbarch, 64);
1776 set_gdbarch_long_double_bit (gdbarch, 64);
1777 set_gdbarch_ptr_bit (gdbarch, 64);
1778
1779 /* Register info */
1780 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1781 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1782 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1783 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1784
1785 set_gdbarch_register_name (gdbarch, alpha_register_name);
1786 set_gdbarch_register_type (gdbarch, alpha_register_type);
1787
1788 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1789 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1790
1791 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1792 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1793 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1794
1795 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1796
1797 /* Prologue heuristics. */
1798 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1799
1800 /* Disassembler. */
1801 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1802
1803 /* Call info. */
1804
1805 set_gdbarch_return_value (gdbarch, alpha_return_value);
1806
1807 /* Settings for calling functions in the inferior. */
1808 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1809
1810 /* Methods for saving / extracting a dummy frame's ID. */
1811 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
1812
1813 /* Return the unwound PC value. */
1814 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1815
1816 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1817 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1818
1819 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1820 alpha_breakpoint::kind_from_pc);
1821 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1822 alpha_breakpoint::bp_from_kind);
1823 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1824 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1825
1826 /* Handles single stepping of atomic sequences. */
1827 set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1828
1829 /* Hook in ABI-specific overrides, if they have been registered. */
1830 gdbarch_init_osabi (info, gdbarch);
1831
1832 /* Now that we have tuned the configuration, set a few final things
1833 based on what the OS ABI has told us. */
1834
1835 if (tdep->jb_pc >= 0)
1836 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1837
1838 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1839 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1840
1841 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1842
1843 return gdbarch;
1844 }
1845
1846 void
1847 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1848 {
1849 dwarf2_append_unwinders (gdbarch);
1850 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1851 }
1852
1853 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1854
1855 void
1856 _initialize_alpha_tdep (void)
1857 {
1858
1859 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1860
1861 /* Let the user set the fence post for heuristic_proc_start. */
1862
1863 /* We really would like to have both "0" and "unlimited" work, but
1864 command.c doesn't deal with that. So make it a var_zinteger
1865 because the user can always use "999999" or some such for unlimited. */
1866 /* We need to throw away the frame cache when we set this, since it
1867 might change our ability to get backtraces. */
1868 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1869 &heuristic_fence_post, _("\
1870 Set the distance searched for the start of a function."), _("\
1871 Show the distance searched for the start of a function."), _("\
1872 If you are debugging a stripped executable, GDB needs to search through the\n\
1873 program for the start of a function. This command sets the distance of the\n\
1874 search. The only need to set it is when debugging a stripped executable."),
1875 reinit_frame_cache_sfunc,
1876 NULL, /* FIXME: i18n: The distance searched for
1877 the start of a function is \"%d\". */
1878 &setlist, &showlist);
1879 }
This page took 0.066576 seconds and 5 git commands to generate.