* alpha-tdep.c (alpha_heuristic_proc_start)
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "doublest.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "dwarf2-frame.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "value.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdb_string.h"
36 #include "linespec.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "arch-utils.h"
40 #include "osabi.h"
41 #include "block.h"
42 #include "infcall.h"
43
44 #include "elf-bfd.h"
45
46 #include "alpha-tdep.h"
47
48 \f
49 /* Return the name of the REGNO register.
50
51 An empty name corresponds to a register number that used to
52 be used for a virtual register. That virtual register has
53 been removed, but the index is still reserved to maintain
54 compatibility with existing remote alpha targets. */
55
56 static const char *
57 alpha_register_name (struct gdbarch *gdbarch, int regno)
58 {
59 static const char * const register_names[] =
60 {
61 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
62 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
63 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
64 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
65 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
66 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
67 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
68 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
69 "pc", "", "unique"
70 };
71
72 if (regno < 0)
73 return NULL;
74 if (regno >= ARRAY_SIZE(register_names))
75 return NULL;
76 return register_names[regno];
77 }
78
79 static int
80 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
81 {
82 return (regno == ALPHA_ZERO_REGNUM
83 || strlen (alpha_register_name (gdbarch, regno)) == 0);
84 }
85
86 static int
87 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
88 {
89 return (regno == ALPHA_ZERO_REGNUM
90 || strlen (alpha_register_name (gdbarch, regno)) == 0);
91 }
92
93 static struct type *
94 alpha_register_type (struct gdbarch *gdbarch, int regno)
95 {
96 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
97 return builtin_type_void_data_ptr;
98 if (regno == ALPHA_PC_REGNUM)
99 return builtin_type_void_func_ptr;
100
101 /* Don't need to worry about little vs big endian until
102 some jerk tries to port to alpha-unicosmk. */
103 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
104 return builtin_type_ieee_double;
105
106 return builtin_type_int64;
107 }
108
109 /* Is REGNUM a member of REGGROUP? */
110
111 static int
112 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
113 struct reggroup *group)
114 {
115 /* Filter out any registers eliminated, but whose regnum is
116 reserved for backward compatibility, e.g. the vfp. */
117 if (gdbarch_register_name (gdbarch, regnum) == NULL
118 || *gdbarch_register_name (gdbarch, regnum) == '\0')
119 return 0;
120
121 if (group == all_reggroup)
122 return 1;
123
124 /* Zero should not be saved or restored. Technically it is a general
125 register (just as $f31 would be a float if we represented it), but
126 there's no point displaying it during "info regs", so leave it out
127 of all groups except for "all". */
128 if (regnum == ALPHA_ZERO_REGNUM)
129 return 0;
130
131 /* All other registers are saved and restored. */
132 if (group == save_reggroup || group == restore_reggroup)
133 return 1;
134
135 /* All other groups are non-overlapping. */
136
137 /* Since this is really a PALcode memory slot... */
138 if (regnum == ALPHA_UNIQUE_REGNUM)
139 return group == system_reggroup;
140
141 /* Force the FPCR to be considered part of the floating point state. */
142 if (regnum == ALPHA_FPCR_REGNUM)
143 return group == float_reggroup;
144
145 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
146 return group == float_reggroup;
147 else
148 return group == general_reggroup;
149 }
150
151 /* The following represents exactly the conversion performed by
152 the LDS instruction. This applies to both single-precision
153 floating point and 32-bit integers. */
154
155 static void
156 alpha_lds (void *out, const void *in)
157 {
158 ULONGEST mem = extract_unsigned_integer (in, 4);
159 ULONGEST frac = (mem >> 0) & 0x7fffff;
160 ULONGEST sign = (mem >> 31) & 1;
161 ULONGEST exp_msb = (mem >> 30) & 1;
162 ULONGEST exp_low = (mem >> 23) & 0x7f;
163 ULONGEST exp, reg;
164
165 exp = (exp_msb << 10) | exp_low;
166 if (exp_msb)
167 {
168 if (exp_low == 0x7f)
169 exp = 0x7ff;
170 }
171 else
172 {
173 if (exp_low != 0x00)
174 exp |= 0x380;
175 }
176
177 reg = (sign << 63) | (exp << 52) | (frac << 29);
178 store_unsigned_integer (out, 8, reg);
179 }
180
181 /* Similarly, this represents exactly the conversion performed by
182 the STS instruction. */
183
184 static void
185 alpha_sts (void *out, const void *in)
186 {
187 ULONGEST reg, mem;
188
189 reg = extract_unsigned_integer (in, 8);
190 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
191 store_unsigned_integer (out, 4, mem);
192 }
193
194 /* The alpha needs a conversion between register and memory format if the
195 register is a floating point register and memory format is float, as the
196 register format must be double or memory format is an integer with 4
197 bytes or less, as the representation of integers in floating point
198 registers is different. */
199
200 static int
201 alpha_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
202 {
203 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
204 && TYPE_LENGTH (type) != 8);
205 }
206
207 static void
208 alpha_register_to_value (struct frame_info *frame, int regnum,
209 struct type *valtype, gdb_byte *out)
210 {
211 gdb_byte in[MAX_REGISTER_SIZE];
212
213 frame_register_read (frame, regnum, in);
214 switch (TYPE_LENGTH (valtype))
215 {
216 case 4:
217 alpha_sts (out, in);
218 break;
219 default:
220 error (_("Cannot retrieve value from floating point register"));
221 }
222 }
223
224 static void
225 alpha_value_to_register (struct frame_info *frame, int regnum,
226 struct type *valtype, const gdb_byte *in)
227 {
228 gdb_byte out[MAX_REGISTER_SIZE];
229
230 switch (TYPE_LENGTH (valtype))
231 {
232 case 4:
233 alpha_lds (out, in);
234 break;
235 default:
236 error (_("Cannot store value in floating point register"));
237 }
238 put_frame_register (frame, regnum, out);
239 }
240
241 \f
242 /* The alpha passes the first six arguments in the registers, the rest on
243 the stack. The register arguments are stored in ARG_REG_BUFFER, and
244 then moved into the register file; this simplifies the passing of a
245 large struct which extends from the registers to the stack, plus avoids
246 three ptrace invocations per word.
247
248 We don't bother tracking which register values should go in integer
249 regs or fp regs; we load the same values into both.
250
251 If the called function is returning a structure, the address of the
252 structure to be returned is passed as a hidden first argument. */
253
254 static CORE_ADDR
255 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
256 struct regcache *regcache, CORE_ADDR bp_addr,
257 int nargs, struct value **args, CORE_ADDR sp,
258 int struct_return, CORE_ADDR struct_addr)
259 {
260 int i;
261 int accumulate_size = struct_return ? 8 : 0;
262 struct alpha_arg
263 {
264 gdb_byte *contents;
265 int len;
266 int offset;
267 };
268 struct alpha_arg *alpha_args
269 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
270 struct alpha_arg *m_arg;
271 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
272 int required_arg_regs;
273 CORE_ADDR func_addr = find_function_addr (function, NULL);
274
275 /* The ABI places the address of the called function in T12. */
276 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
277
278 /* Set the return address register to point to the entry point
279 of the program, where a breakpoint lies in wait. */
280 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
281
282 /* Lay out the arguments in memory. */
283 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
284 {
285 struct value *arg = args[i];
286 struct type *arg_type = check_typedef (value_type (arg));
287
288 /* Cast argument to long if necessary as the compiler does it too. */
289 switch (TYPE_CODE (arg_type))
290 {
291 case TYPE_CODE_INT:
292 case TYPE_CODE_BOOL:
293 case TYPE_CODE_CHAR:
294 case TYPE_CODE_RANGE:
295 case TYPE_CODE_ENUM:
296 if (TYPE_LENGTH (arg_type) == 4)
297 {
298 /* 32-bit values must be sign-extended to 64 bits
299 even if the base data type is unsigned. */
300 arg_type = builtin_type_int32;
301 arg = value_cast (arg_type, arg);
302 }
303 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
304 {
305 arg_type = builtin_type_int64;
306 arg = value_cast (arg_type, arg);
307 }
308 break;
309
310 case TYPE_CODE_FLT:
311 /* "float" arguments loaded in registers must be passed in
312 register format, aka "double". */
313 if (accumulate_size < sizeof (arg_reg_buffer)
314 && TYPE_LENGTH (arg_type) == 4)
315 {
316 arg_type = builtin_type_ieee_double;
317 arg = value_cast (arg_type, arg);
318 }
319 /* Tru64 5.1 has a 128-bit long double, and passes this by
320 invisible reference. No one else uses this data type. */
321 else if (TYPE_LENGTH (arg_type) == 16)
322 {
323 /* Allocate aligned storage. */
324 sp = (sp & -16) - 16;
325
326 /* Write the real data into the stack. */
327 write_memory (sp, value_contents (arg), 16);
328
329 /* Construct the indirection. */
330 arg_type = lookup_pointer_type (arg_type);
331 arg = value_from_pointer (arg_type, sp);
332 }
333 break;
334
335 case TYPE_CODE_COMPLEX:
336 /* ??? The ABI says that complex values are passed as two
337 separate scalar values. This distinction only matters
338 for complex float. However, GCC does not implement this. */
339
340 /* Tru64 5.1 has a 128-bit long double, and passes this by
341 invisible reference. */
342 if (TYPE_LENGTH (arg_type) == 32)
343 {
344 /* Allocate aligned storage. */
345 sp = (sp & -16) - 16;
346
347 /* Write the real data into the stack. */
348 write_memory (sp, value_contents (arg), 32);
349
350 /* Construct the indirection. */
351 arg_type = lookup_pointer_type (arg_type);
352 arg = value_from_pointer (arg_type, sp);
353 }
354 break;
355
356 default:
357 break;
358 }
359 m_arg->len = TYPE_LENGTH (arg_type);
360 m_arg->offset = accumulate_size;
361 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
362 m_arg->contents = value_contents_writeable (arg);
363 }
364
365 /* Determine required argument register loads, loading an argument register
366 is expensive as it uses three ptrace calls. */
367 required_arg_regs = accumulate_size / 8;
368 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
369 required_arg_regs = ALPHA_NUM_ARG_REGS;
370
371 /* Make room for the arguments on the stack. */
372 if (accumulate_size < sizeof(arg_reg_buffer))
373 accumulate_size = 0;
374 else
375 accumulate_size -= sizeof(arg_reg_buffer);
376 sp -= accumulate_size;
377
378 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
379 sp &= ~15;
380
381 /* `Push' arguments on the stack. */
382 for (i = nargs; m_arg--, --i >= 0;)
383 {
384 gdb_byte *contents = m_arg->contents;
385 int offset = m_arg->offset;
386 int len = m_arg->len;
387
388 /* Copy the bytes destined for registers into arg_reg_buffer. */
389 if (offset < sizeof(arg_reg_buffer))
390 {
391 if (offset + len <= sizeof(arg_reg_buffer))
392 {
393 memcpy (arg_reg_buffer + offset, contents, len);
394 continue;
395 }
396 else
397 {
398 int tlen = sizeof(arg_reg_buffer) - offset;
399 memcpy (arg_reg_buffer + offset, contents, tlen);
400 offset += tlen;
401 contents += tlen;
402 len -= tlen;
403 }
404 }
405
406 /* Everything else goes to the stack. */
407 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
408 }
409 if (struct_return)
410 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
411
412 /* Load the argument registers. */
413 for (i = 0; i < required_arg_regs; i++)
414 {
415 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
416 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
417 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
418 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
419 }
420
421 /* Finally, update the stack pointer. */
422 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
423
424 return sp;
425 }
426
427 /* Extract from REGCACHE the value about to be returned from a function
428 and copy it into VALBUF. */
429
430 static void
431 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
432 gdb_byte *valbuf)
433 {
434 int length = TYPE_LENGTH (valtype);
435 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
436 ULONGEST l;
437
438 switch (TYPE_CODE (valtype))
439 {
440 case TYPE_CODE_FLT:
441 switch (length)
442 {
443 case 4:
444 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
445 alpha_sts (valbuf, raw_buffer);
446 break;
447
448 case 8:
449 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
450 break;
451
452 case 16:
453 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
454 read_memory (l, valbuf, 16);
455 break;
456
457 default:
458 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
459 }
460 break;
461
462 case TYPE_CODE_COMPLEX:
463 switch (length)
464 {
465 case 8:
466 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
467 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
468 break;
469
470 case 16:
471 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
472 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
473 break;
474
475 case 32:
476 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
477 read_memory (l, valbuf, 32);
478 break;
479
480 default:
481 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
482 }
483 break;
484
485 default:
486 /* Assume everything else degenerates to an integer. */
487 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
488 store_unsigned_integer (valbuf, length, l);
489 break;
490 }
491 }
492
493 /* Insert the given value into REGCACHE as if it was being
494 returned by a function. */
495
496 static void
497 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
498 const gdb_byte *valbuf)
499 {
500 int length = TYPE_LENGTH (valtype);
501 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
502 ULONGEST l;
503
504 switch (TYPE_CODE (valtype))
505 {
506 case TYPE_CODE_FLT:
507 switch (length)
508 {
509 case 4:
510 alpha_lds (raw_buffer, valbuf);
511 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
512 break;
513
514 case 8:
515 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
516 break;
517
518 case 16:
519 /* FIXME: 128-bit long doubles are returned like structures:
520 by writing into indirect storage provided by the caller
521 as the first argument. */
522 error (_("Cannot set a 128-bit long double return value."));
523
524 default:
525 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
526 }
527 break;
528
529 case TYPE_CODE_COMPLEX:
530 switch (length)
531 {
532 case 8:
533 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
534 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
535 break;
536
537 case 16:
538 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
539 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
540 break;
541
542 case 32:
543 /* FIXME: 128-bit long doubles are returned like structures:
544 by writing into indirect storage provided by the caller
545 as the first argument. */
546 error (_("Cannot set a 128-bit long double return value."));
547
548 default:
549 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
550 }
551 break;
552
553 default:
554 /* Assume everything else degenerates to an integer. */
555 /* 32-bit values must be sign-extended to 64 bits
556 even if the base data type is unsigned. */
557 if (length == 4)
558 valtype = builtin_type_int32;
559 l = unpack_long (valtype, valbuf);
560 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
561 break;
562 }
563 }
564
565 static enum return_value_convention
566 alpha_return_value (struct gdbarch *gdbarch, struct type *type,
567 struct regcache *regcache, gdb_byte *readbuf,
568 const gdb_byte *writebuf)
569 {
570 enum type_code code = TYPE_CODE (type);
571
572 if ((code == TYPE_CODE_STRUCT
573 || code == TYPE_CODE_UNION
574 || code == TYPE_CODE_ARRAY)
575 && gdbarch_tdep (gdbarch)->return_in_memory (type))
576 {
577 if (readbuf)
578 {
579 ULONGEST addr;
580 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
581 read_memory (addr, readbuf, TYPE_LENGTH (type));
582 }
583
584 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
585 }
586
587 if (readbuf)
588 alpha_extract_return_value (type, regcache, readbuf);
589 if (writebuf)
590 alpha_store_return_value (type, regcache, writebuf);
591
592 return RETURN_VALUE_REGISTER_CONVENTION;
593 }
594
595 static int
596 alpha_return_in_memory_always (struct type *type)
597 {
598 return 1;
599 }
600 \f
601 static const gdb_byte *
602 alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
603 {
604 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
605
606 *len = sizeof(break_insn);
607 return break_insn;
608 }
609
610 \f
611 /* This returns the PC of the first insn after the prologue.
612 If we can't find the prologue, then return 0. */
613
614 CORE_ADDR
615 alpha_after_prologue (CORE_ADDR pc)
616 {
617 struct symtab_and_line sal;
618 CORE_ADDR func_addr, func_end;
619
620 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
621 return 0;
622
623 sal = find_pc_line (func_addr, 0);
624 if (sal.end < func_end)
625 return sal.end;
626
627 /* The line after the prologue is after the end of the function. In this
628 case, tell the caller to find the prologue the hard way. */
629 return 0;
630 }
631
632 /* Read an instruction from memory at PC, looking through breakpoints. */
633
634 unsigned int
635 alpha_read_insn (CORE_ADDR pc)
636 {
637 gdb_byte buf[ALPHA_INSN_SIZE];
638 int status;
639
640 status = read_memory_nobpt (pc, buf, sizeof (buf));
641 if (status)
642 memory_error (status, pc);
643 return extract_unsigned_integer (buf, sizeof (buf));
644 }
645
646 /* To skip prologues, I use this predicate. Returns either PC itself
647 if the code at PC does not look like a function prologue; otherwise
648 returns an address that (if we're lucky) follows the prologue. If
649 LENIENT, then we must skip everything which is involved in setting
650 up the frame (it's OK to skip more, just so long as we don't skip
651 anything which might clobber the registers which are being saved. */
652
653 static CORE_ADDR
654 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
655 {
656 unsigned long inst;
657 int offset;
658 CORE_ADDR post_prologue_pc;
659 gdb_byte buf[ALPHA_INSN_SIZE];
660
661 /* Silently return the unaltered pc upon memory errors.
662 This could happen on OSF/1 if decode_line_1 tries to skip the
663 prologue for quickstarted shared library functions when the
664 shared library is not yet mapped in.
665 Reading target memory is slow over serial lines, so we perform
666 this check only if the target has shared libraries (which all
667 Alpha targets do). */
668 if (target_read_memory (pc, buf, sizeof (buf)))
669 return pc;
670
671 /* See if we can determine the end of the prologue via the symbol table.
672 If so, then return either PC, or the PC after the prologue, whichever
673 is greater. */
674
675 post_prologue_pc = alpha_after_prologue (pc);
676 if (post_prologue_pc != 0)
677 return max (pc, post_prologue_pc);
678
679 /* Can't determine prologue from the symbol table, need to examine
680 instructions. */
681
682 /* Skip the typical prologue instructions. These are the stack adjustment
683 instruction and the instructions that save registers on the stack
684 or in the gcc frame. */
685 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
686 {
687 inst = alpha_read_insn (pc + offset);
688
689 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
690 continue;
691 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
692 continue;
693 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
694 continue;
695 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
696 continue;
697
698 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
699 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
700 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
701 continue;
702
703 if (inst == 0x47de040f) /* bis sp,sp,fp */
704 continue;
705 if (inst == 0x47fe040f) /* bis zero,sp,fp */
706 continue;
707
708 break;
709 }
710 return pc + offset;
711 }
712
713 \f
714 /* Figure out where the longjmp will land.
715 We expect the first arg to be a pointer to the jmp_buf structure from
716 which we extract the PC (JB_PC) that we will land at. The PC is copied
717 into the "pc". This routine returns true on success. */
718
719 static int
720 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
721 {
722 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
723 CORE_ADDR jb_addr;
724 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
725
726 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
727
728 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
729 raw_buffer, tdep->jb_elt_size))
730 return 0;
731
732 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
733 return 1;
734 }
735
736 \f
737 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
738 describe the location and shape of the sigcontext structure. After
739 that, all registers are in memory, so it's easy. */
740 /* ??? Shouldn't we be able to do this generically, rather than with
741 OSABI data specific to Alpha? */
742
743 struct alpha_sigtramp_unwind_cache
744 {
745 CORE_ADDR sigcontext_addr;
746 };
747
748 static struct alpha_sigtramp_unwind_cache *
749 alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
750 void **this_prologue_cache)
751 {
752 struct alpha_sigtramp_unwind_cache *info;
753 struct gdbarch_tdep *tdep;
754
755 if (*this_prologue_cache)
756 return *this_prologue_cache;
757
758 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
759 *this_prologue_cache = info;
760
761 tdep = gdbarch_tdep (get_frame_arch (next_frame));
762 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
763
764 return info;
765 }
766
767 /* Return the address of REGNUM in a sigtramp frame. Since this is
768 all arithmetic, it doesn't seem worthwhile to cache it. */
769
770 static CORE_ADDR
771 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
772 CORE_ADDR sigcontext_addr, int regnum)
773 {
774 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
775
776 if (regnum >= 0 && regnum < 32)
777 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
778 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
779 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
780 else if (regnum == ALPHA_PC_REGNUM)
781 return sigcontext_addr + tdep->sc_pc_offset;
782
783 return 0;
784 }
785
786 /* Given a GDB frame, determine the address of the calling function's
787 frame. This will be used to create a new GDB frame struct. */
788
789 static void
790 alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
791 void **this_prologue_cache,
792 struct frame_id *this_id)
793 {
794 struct gdbarch *gdbarch = get_frame_arch (next_frame);
795 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
796 struct alpha_sigtramp_unwind_cache *info
797 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
798 CORE_ADDR stack_addr, code_addr;
799
800 /* If the OSABI couldn't locate the sigcontext, give up. */
801 if (info->sigcontext_addr == 0)
802 return;
803
804 /* If we have dynamic signal trampolines, find their start.
805 If we do not, then we must assume there is a symbol record
806 that can provide the start address. */
807 if (tdep->dynamic_sigtramp_offset)
808 {
809 int offset;
810 code_addr = frame_pc_unwind (next_frame);
811 offset = tdep->dynamic_sigtramp_offset (code_addr);
812 if (offset >= 0)
813 code_addr -= offset;
814 else
815 code_addr = 0;
816 }
817 else
818 code_addr = frame_func_unwind (next_frame, SIGTRAMP_FRAME);
819
820 /* The stack address is trivially read from the sigcontext. */
821 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
822 ALPHA_SP_REGNUM);
823 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
824 ALPHA_REGISTER_SIZE);
825
826 *this_id = frame_id_build (stack_addr, code_addr);
827 }
828
829 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
830
831 static void
832 alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
833 void **this_prologue_cache,
834 int regnum, int *optimizedp,
835 enum lval_type *lvalp, CORE_ADDR *addrp,
836 int *realnump, gdb_byte *bufferp)
837 {
838 struct alpha_sigtramp_unwind_cache *info
839 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
840 CORE_ADDR addr;
841
842 if (info->sigcontext_addr != 0)
843 {
844 /* All integer and fp registers are stored in memory. */
845 addr = alpha_sigtramp_register_address (get_frame_arch (next_frame),
846 info->sigcontext_addr, regnum);
847 if (addr != 0)
848 {
849 *optimizedp = 0;
850 *lvalp = lval_memory;
851 *addrp = addr;
852 *realnump = -1;
853 if (bufferp != NULL)
854 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
855 return;
856 }
857 }
858
859 /* This extra register may actually be in the sigcontext, but our
860 current description of it in alpha_sigtramp_frame_unwind_cache
861 doesn't include it. Too bad. Fall back on whatever's in the
862 outer frame. */
863 *optimizedp = 0;
864 *lvalp = lval_register;
865 *addrp = 0;
866 *realnump = regnum;
867 if (bufferp)
868 frame_unwind_register (next_frame, *realnump, bufferp);
869 }
870
871 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
872 SIGTRAMP_FRAME,
873 alpha_sigtramp_frame_this_id,
874 alpha_sigtramp_frame_prev_register
875 };
876
877 static const struct frame_unwind *
878 alpha_sigtramp_frame_sniffer (struct frame_info *next_frame)
879 {
880 struct gdbarch *gdbarch = get_frame_arch (next_frame);
881 CORE_ADDR pc = frame_pc_unwind (next_frame);
882 char *name;
883
884 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
885 look at tramp-frame.h and other simplier per-architecture
886 sigtramp unwinders. */
887
888 /* We shouldn't even bother to try if the OSABI didn't register a
889 sigcontext_addr handler or pc_in_sigtramp hander. */
890 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
891 return NULL;
892 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
893 return NULL;
894
895 /* Otherwise we should be in a signal frame. */
896 find_pc_partial_function (pc, &name, NULL, NULL);
897 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (pc, name))
898 return &alpha_sigtramp_frame_unwind;
899
900 return NULL;
901 }
902 \f
903 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
904 something about the traditional layout of alpha stack frames. */
905
906 struct alpha_heuristic_unwind_cache
907 {
908 CORE_ADDR *saved_regs;
909 CORE_ADDR vfp;
910 CORE_ADDR start_pc;
911 int return_reg;
912 };
913
914 /* Heuristic_proc_start may hunt through the text section for a long
915 time across a 2400 baud serial line. Allows the user to limit this
916 search. */
917 static unsigned int heuristic_fence_post = 0;
918
919 /* Attempt to locate the start of the function containing PC. We assume that
920 the previous function ends with an about_to_return insn. Not foolproof by
921 any means, since gcc is happy to put the epilogue in the middle of a
922 function. But we're guessing anyway... */
923
924 static CORE_ADDR
925 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
926 {
927 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
928 CORE_ADDR last_non_nop = pc;
929 CORE_ADDR fence = pc - heuristic_fence_post;
930 CORE_ADDR orig_pc = pc;
931 CORE_ADDR func;
932
933 if (pc == 0)
934 return 0;
935
936 /* First see if we can find the start of the function from minimal
937 symbol information. This can succeed with a binary that doesn't
938 have debug info, but hasn't been stripped. */
939 func = get_pc_function_start (pc);
940 if (func)
941 return func;
942
943 if (heuristic_fence_post == UINT_MAX
944 || fence < tdep->vm_min_address)
945 fence = tdep->vm_min_address;
946
947 /* Search back for previous return; also stop at a 0, which might be
948 seen for instance before the start of a code section. Don't include
949 nops, since this usually indicates padding between functions. */
950 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
951 {
952 unsigned int insn = alpha_read_insn (pc);
953 switch (insn)
954 {
955 case 0: /* invalid insn */
956 case 0x6bfa8001: /* ret $31,($26),1 */
957 return last_non_nop;
958
959 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
960 case 0x47ff041f: /* nop: bis $31,$31,$31 */
961 break;
962
963 default:
964 last_non_nop = pc;
965 break;
966 }
967 }
968
969 /* It's not clear to me why we reach this point when stopping quietly,
970 but with this test, at least we don't print out warnings for every
971 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
972 if (stop_soon == NO_STOP_QUIETLY)
973 {
974 static int blurb_printed = 0;
975
976 if (fence == tdep->vm_min_address)
977 warning (_("Hit beginning of text section without finding \
978 enclosing function for address 0x%s"), paddr_nz (orig_pc));
979 else
980 warning (_("Hit heuristic-fence-post without finding \
981 enclosing function for address 0x%s"), paddr_nz (orig_pc));
982
983 if (!blurb_printed)
984 {
985 printf_filtered (_("\
986 This warning occurs if you are debugging a function without any symbols\n\
987 (for example, in a stripped executable). In that case, you may wish to\n\
988 increase the size of the search with the `set heuristic-fence-post' command.\n\
989 \n\
990 Otherwise, you told GDB there was a function where there isn't one, or\n\
991 (more likely) you have encountered a bug in GDB.\n"));
992 blurb_printed = 1;
993 }
994 }
995
996 return 0;
997 }
998
999 static struct alpha_heuristic_unwind_cache *
1000 alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
1001 void **this_prologue_cache,
1002 CORE_ADDR start_pc)
1003 {
1004 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1005 struct alpha_heuristic_unwind_cache *info;
1006 ULONGEST val;
1007 CORE_ADDR limit_pc, cur_pc;
1008 int frame_reg, frame_size, return_reg, reg;
1009
1010 if (*this_prologue_cache)
1011 return *this_prologue_cache;
1012
1013 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1014 *this_prologue_cache = info;
1015 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
1016
1017 limit_pc = frame_pc_unwind (next_frame);
1018 if (start_pc == 0)
1019 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1020 info->start_pc = start_pc;
1021
1022 frame_reg = ALPHA_SP_REGNUM;
1023 frame_size = 0;
1024 return_reg = -1;
1025
1026 /* If we've identified a likely place to start, do code scanning. */
1027 if (start_pc != 0)
1028 {
1029 /* Limit the forward search to 50 instructions. */
1030 if (start_pc + 200 < limit_pc)
1031 limit_pc = start_pc + 200;
1032
1033 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1034 {
1035 unsigned int word = alpha_read_insn (cur_pc);
1036
1037 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1038 {
1039 if (word & 0x8000)
1040 {
1041 /* Consider only the first stack allocation instruction
1042 to contain the static size of the frame. */
1043 if (frame_size == 0)
1044 frame_size = (-word) & 0xffff;
1045 }
1046 else
1047 {
1048 /* Exit loop if a positive stack adjustment is found, which
1049 usually means that the stack cleanup code in the function
1050 epilogue is reached. */
1051 break;
1052 }
1053 }
1054 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1055 {
1056 reg = (word & 0x03e00000) >> 21;
1057
1058 /* Ignore this instruction if we have already encountered
1059 an instruction saving the same register earlier in the
1060 function code. The current instruction does not tell
1061 us where the original value upon function entry is saved.
1062 All it says is that the function we are scanning reused
1063 that register for some computation of its own, and is now
1064 saving its result. */
1065 if (info->saved_regs[reg])
1066 continue;
1067
1068 if (reg == 31)
1069 continue;
1070
1071 /* Do not compute the address where the register was saved yet,
1072 because we don't know yet if the offset will need to be
1073 relative to $sp or $fp (we can not compute the address
1074 relative to $sp if $sp is updated during the execution of
1075 the current subroutine, for instance when doing some alloca).
1076 So just store the offset for the moment, and compute the
1077 address later when we know whether this frame has a frame
1078 pointer or not. */
1079 /* Hack: temporarily add one, so that the offset is non-zero
1080 and we can tell which registers have save offsets below. */
1081 info->saved_regs[reg] = (word & 0xffff) + 1;
1082
1083 /* Starting with OSF/1-3.2C, the system libraries are shipped
1084 without local symbols, but they still contain procedure
1085 descriptors without a symbol reference. GDB is currently
1086 unable to find these procedure descriptors and uses
1087 heuristic_proc_desc instead.
1088 As some low level compiler support routines (__div*, __add*)
1089 use a non-standard return address register, we have to
1090 add some heuristics to determine the return address register,
1091 or stepping over these routines will fail.
1092 Usually the return address register is the first register
1093 saved on the stack, but assembler optimization might
1094 rearrange the register saves.
1095 So we recognize only a few registers (t7, t9, ra) within
1096 the procedure prologue as valid return address registers.
1097 If we encounter a return instruction, we extract the
1098 the return address register from it.
1099
1100 FIXME: Rewriting GDB to access the procedure descriptors,
1101 e.g. via the minimal symbol table, might obviate this hack. */
1102 if (return_reg == -1
1103 && cur_pc < (start_pc + 80)
1104 && (reg == ALPHA_T7_REGNUM
1105 || reg == ALPHA_T9_REGNUM
1106 || reg == ALPHA_RA_REGNUM))
1107 return_reg = reg;
1108 }
1109 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1110 return_reg = (word >> 16) & 0x1f;
1111 else if (word == 0x47de040f) /* bis sp,sp,fp */
1112 frame_reg = ALPHA_GCC_FP_REGNUM;
1113 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1114 frame_reg = ALPHA_GCC_FP_REGNUM;
1115 }
1116
1117 /* If we haven't found a valid return address register yet, keep
1118 searching in the procedure prologue. */
1119 if (return_reg == -1)
1120 {
1121 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1122 {
1123 unsigned int word = alpha_read_insn (cur_pc);
1124
1125 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1126 {
1127 reg = (word & 0x03e00000) >> 21;
1128 if (reg == ALPHA_T7_REGNUM
1129 || reg == ALPHA_T9_REGNUM
1130 || reg == ALPHA_RA_REGNUM)
1131 {
1132 return_reg = reg;
1133 break;
1134 }
1135 }
1136 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1137 {
1138 return_reg = (word >> 16) & 0x1f;
1139 break;
1140 }
1141
1142 cur_pc += ALPHA_INSN_SIZE;
1143 }
1144 }
1145 }
1146
1147 /* Failing that, do default to the customary RA. */
1148 if (return_reg == -1)
1149 return_reg = ALPHA_RA_REGNUM;
1150 info->return_reg = return_reg;
1151
1152 val = frame_unwind_register_unsigned (next_frame, frame_reg);
1153 info->vfp = val + frame_size;
1154
1155 /* Convert offsets to absolute addresses. See above about adding
1156 one to the offsets to make all detected offsets non-zero. */
1157 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1158 if (info->saved_regs[reg])
1159 info->saved_regs[reg] += val - 1;
1160
1161 return info;
1162 }
1163
1164 /* Given a GDB frame, determine the address of the calling function's
1165 frame. This will be used to create a new GDB frame struct. */
1166
1167 static void
1168 alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1169 void **this_prologue_cache,
1170 struct frame_id *this_id)
1171 {
1172 struct alpha_heuristic_unwind_cache *info
1173 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1174
1175 *this_id = frame_id_build (info->vfp, info->start_pc);
1176 }
1177
1178 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1179
1180 static void
1181 alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1182 void **this_prologue_cache,
1183 int regnum, int *optimizedp,
1184 enum lval_type *lvalp, CORE_ADDR *addrp,
1185 int *realnump, gdb_byte *bufferp)
1186 {
1187 struct alpha_heuristic_unwind_cache *info
1188 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1189
1190 /* The PC of the previous frame is stored in the link register of
1191 the current frame. Frob regnum so that we pull the value from
1192 the correct place. */
1193 if (regnum == ALPHA_PC_REGNUM)
1194 regnum = info->return_reg;
1195
1196 /* For all registers known to be saved in the current frame,
1197 do the obvious and pull the value out. */
1198 if (info->saved_regs[regnum])
1199 {
1200 *optimizedp = 0;
1201 *lvalp = lval_memory;
1202 *addrp = info->saved_regs[regnum];
1203 *realnump = -1;
1204 if (bufferp != NULL)
1205 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
1206 return;
1207 }
1208
1209 /* The stack pointer of the previous frame is computed by popping
1210 the current stack frame. */
1211 if (regnum == ALPHA_SP_REGNUM)
1212 {
1213 *optimizedp = 0;
1214 *lvalp = not_lval;
1215 *addrp = 0;
1216 *realnump = -1;
1217 if (bufferp != NULL)
1218 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1219 return;
1220 }
1221
1222 /* Otherwise assume the next frame has the same register value. */
1223 *optimizedp = 0;
1224 *lvalp = lval_register;
1225 *addrp = 0;
1226 *realnump = regnum;
1227 if (bufferp)
1228 frame_unwind_register (next_frame, *realnump, bufferp);
1229 }
1230
1231 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1232 NORMAL_FRAME,
1233 alpha_heuristic_frame_this_id,
1234 alpha_heuristic_frame_prev_register
1235 };
1236
1237 static const struct frame_unwind *
1238 alpha_heuristic_frame_sniffer (struct frame_info *next_frame)
1239 {
1240 return &alpha_heuristic_frame_unwind;
1241 }
1242
1243 static CORE_ADDR
1244 alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1245 void **this_prologue_cache)
1246 {
1247 struct alpha_heuristic_unwind_cache *info
1248 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1249
1250 return info->vfp;
1251 }
1252
1253 static const struct frame_base alpha_heuristic_frame_base = {
1254 &alpha_heuristic_frame_unwind,
1255 alpha_heuristic_frame_base_address,
1256 alpha_heuristic_frame_base_address,
1257 alpha_heuristic_frame_base_address
1258 };
1259
1260 /* Just like reinit_frame_cache, but with the right arguments to be
1261 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1262
1263 static void
1264 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1265 {
1266 reinit_frame_cache ();
1267 }
1268
1269 \f
1270 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1271 dummy frame. The frame ID's base needs to match the TOS value
1272 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1273 breakpoint. */
1274
1275 static struct frame_id
1276 alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1277 {
1278 ULONGEST base;
1279 base = frame_unwind_register_unsigned (next_frame, ALPHA_SP_REGNUM);
1280 return frame_id_build (base, frame_pc_unwind (next_frame));
1281 }
1282
1283 static CORE_ADDR
1284 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1285 {
1286 ULONGEST pc;
1287 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
1288 return pc;
1289 }
1290
1291 \f
1292 /* Helper routines for alpha*-nat.c files to move register sets to and
1293 from core files. The UNIQUE pointer is allowed to be NULL, as most
1294 targets don't supply this value in their core files. */
1295
1296 void
1297 alpha_supply_int_regs (struct regcache *regcache, int regno,
1298 const void *r0_r30, const void *pc, const void *unique)
1299 {
1300 const gdb_byte *regs = r0_r30;
1301 int i;
1302
1303 for (i = 0; i < 31; ++i)
1304 if (regno == i || regno == -1)
1305 regcache_raw_supply (regcache, i, regs + i * 8);
1306
1307 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1308 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, NULL);
1309
1310 if (regno == ALPHA_PC_REGNUM || regno == -1)
1311 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1312
1313 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1314 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1315 }
1316
1317 void
1318 alpha_fill_int_regs (const struct regcache *regcache,
1319 int regno, void *r0_r30, void *pc, void *unique)
1320 {
1321 gdb_byte *regs = r0_r30;
1322 int i;
1323
1324 for (i = 0; i < 31; ++i)
1325 if (regno == i || regno == -1)
1326 regcache_raw_collect (regcache, i, regs + i * 8);
1327
1328 if (regno == ALPHA_PC_REGNUM || regno == -1)
1329 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1330
1331 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1332 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1333 }
1334
1335 void
1336 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1337 const void *f0_f30, const void *fpcr)
1338 {
1339 const gdb_byte *regs = f0_f30;
1340 int i;
1341
1342 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1343 if (regno == i || regno == -1)
1344 regcache_raw_supply (regcache, i,
1345 regs + (i - ALPHA_FP0_REGNUM) * 8);
1346
1347 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1348 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1349 }
1350
1351 void
1352 alpha_fill_fp_regs (const struct regcache *regcache,
1353 int regno, void *f0_f30, void *fpcr)
1354 {
1355 gdb_byte *regs = f0_f30;
1356 int i;
1357
1358 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1359 if (regno == i || regno == -1)
1360 regcache_raw_collect (regcache, i,
1361 regs + (i - ALPHA_FP0_REGNUM) * 8);
1362
1363 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1364 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1365 }
1366
1367 \f
1368
1369 /* Return nonzero if the G_floating register value in REG is equal to
1370 zero for FP control instructions. */
1371
1372 static int
1373 fp_register_zero_p (LONGEST reg)
1374 {
1375 /* Check that all bits except the sign bit are zero. */
1376 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1377
1378 return ((reg & zero_mask) == 0);
1379 }
1380
1381 /* Return the value of the sign bit for the G_floating register
1382 value held in REG. */
1383
1384 static int
1385 fp_register_sign_bit (LONGEST reg)
1386 {
1387 const LONGEST sign_mask = (LONGEST) 1 << 63;
1388
1389 return ((reg & sign_mask) != 0);
1390 }
1391
1392 /* alpha_software_single_step() is called just before we want to resume
1393 the inferior, if we want to single-step it but there is no hardware
1394 or kernel single-step support (NetBSD on Alpha, for example). We find
1395 the target of the coming instruction and breakpoint it. */
1396
1397 static CORE_ADDR
1398 alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
1399 {
1400 unsigned int insn;
1401 unsigned int op;
1402 int regno;
1403 int offset;
1404 LONGEST rav;
1405
1406 insn = alpha_read_insn (pc);
1407
1408 /* Opcode is top 6 bits. */
1409 op = (insn >> 26) & 0x3f;
1410
1411 if (op == 0x1a)
1412 {
1413 /* Jump format: target PC is:
1414 RB & ~3 */
1415 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
1416 }
1417
1418 if ((op & 0x30) == 0x30)
1419 {
1420 /* Branch format: target PC is:
1421 (new PC) + (4 * sext(displacement)) */
1422 if (op == 0x30 || /* BR */
1423 op == 0x34) /* BSR */
1424 {
1425 branch_taken:
1426 offset = (insn & 0x001fffff);
1427 if (offset & 0x00100000)
1428 offset |= 0xffe00000;
1429 offset *= ALPHA_INSN_SIZE;
1430 return (pc + ALPHA_INSN_SIZE + offset);
1431 }
1432
1433 /* Need to determine if branch is taken; read RA. */
1434 regno = (insn >> 21) & 0x1f;
1435 switch (op)
1436 {
1437 case 0x31: /* FBEQ */
1438 case 0x36: /* FBGE */
1439 case 0x37: /* FBGT */
1440 case 0x33: /* FBLE */
1441 case 0x32: /* FBLT */
1442 case 0x35: /* FBNE */
1443 regno += gdbarch_fp0_regnum (get_frame_arch (frame));
1444 }
1445
1446 rav = get_frame_register_signed (frame, regno);
1447
1448 switch (op)
1449 {
1450 case 0x38: /* BLBC */
1451 if ((rav & 1) == 0)
1452 goto branch_taken;
1453 break;
1454 case 0x3c: /* BLBS */
1455 if (rav & 1)
1456 goto branch_taken;
1457 break;
1458 case 0x39: /* BEQ */
1459 if (rav == 0)
1460 goto branch_taken;
1461 break;
1462 case 0x3d: /* BNE */
1463 if (rav != 0)
1464 goto branch_taken;
1465 break;
1466 case 0x3a: /* BLT */
1467 if (rav < 0)
1468 goto branch_taken;
1469 break;
1470 case 0x3b: /* BLE */
1471 if (rav <= 0)
1472 goto branch_taken;
1473 break;
1474 case 0x3f: /* BGT */
1475 if (rav > 0)
1476 goto branch_taken;
1477 break;
1478 case 0x3e: /* BGE */
1479 if (rav >= 0)
1480 goto branch_taken;
1481 break;
1482
1483 /* Floating point branches. */
1484
1485 case 0x31: /* FBEQ */
1486 if (fp_register_zero_p (rav))
1487 goto branch_taken;
1488 break;
1489 case 0x36: /* FBGE */
1490 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1491 goto branch_taken;
1492 break;
1493 case 0x37: /* FBGT */
1494 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1495 goto branch_taken;
1496 break;
1497 case 0x33: /* FBLE */
1498 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1499 goto branch_taken;
1500 break;
1501 case 0x32: /* FBLT */
1502 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1503 goto branch_taken;
1504 break;
1505 case 0x35: /* FBNE */
1506 if (! fp_register_zero_p (rav))
1507 goto branch_taken;
1508 break;
1509 }
1510 }
1511
1512 /* Not a branch or branch not taken; target PC is:
1513 pc + 4 */
1514 return (pc + ALPHA_INSN_SIZE);
1515 }
1516
1517 int
1518 alpha_software_single_step (struct frame_info *frame)
1519 {
1520 CORE_ADDR pc, next_pc;
1521
1522 pc = get_frame_pc (frame);
1523 next_pc = alpha_next_pc (frame, pc);
1524
1525 insert_single_step_breakpoint (next_pc);
1526 return 1;
1527 }
1528
1529 \f
1530 /* Initialize the current architecture based on INFO. If possible, re-use an
1531 architecture from ARCHES, which is a list of architectures already created
1532 during this debugging session.
1533
1534 Called e.g. at program startup, when reading a core file, and when reading
1535 a binary file. */
1536
1537 static struct gdbarch *
1538 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1539 {
1540 struct gdbarch_tdep *tdep;
1541 struct gdbarch *gdbarch;
1542
1543 /* Try to determine the ABI of the object we are loading. */
1544 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1545 {
1546 /* If it's an ECOFF file, assume it's OSF/1. */
1547 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1548 info.osabi = GDB_OSABI_OSF1;
1549 }
1550
1551 /* Find a candidate among extant architectures. */
1552 arches = gdbarch_list_lookup_by_info (arches, &info);
1553 if (arches != NULL)
1554 return arches->gdbarch;
1555
1556 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1557 gdbarch = gdbarch_alloc (&info, tdep);
1558
1559 /* Lowest text address. This is used by heuristic_proc_start()
1560 to decide when to stop looking. */
1561 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1562
1563 tdep->dynamic_sigtramp_offset = NULL;
1564 tdep->sigcontext_addr = NULL;
1565 tdep->sc_pc_offset = 2 * 8;
1566 tdep->sc_regs_offset = 4 * 8;
1567 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1568
1569 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1570
1571 tdep->return_in_memory = alpha_return_in_memory_always;
1572
1573 /* Type sizes */
1574 set_gdbarch_short_bit (gdbarch, 16);
1575 set_gdbarch_int_bit (gdbarch, 32);
1576 set_gdbarch_long_bit (gdbarch, 64);
1577 set_gdbarch_long_long_bit (gdbarch, 64);
1578 set_gdbarch_float_bit (gdbarch, 32);
1579 set_gdbarch_double_bit (gdbarch, 64);
1580 set_gdbarch_long_double_bit (gdbarch, 64);
1581 set_gdbarch_ptr_bit (gdbarch, 64);
1582
1583 /* Register info */
1584 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1585 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1586 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1587 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1588
1589 set_gdbarch_register_name (gdbarch, alpha_register_name);
1590 set_gdbarch_register_type (gdbarch, alpha_register_type);
1591
1592 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1593 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1594
1595 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1596 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1597 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1598
1599 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1600
1601 /* Prologue heuristics. */
1602 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1603
1604 /* Disassembler. */
1605 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1606
1607 /* Call info. */
1608
1609 set_gdbarch_return_value (gdbarch, alpha_return_value);
1610
1611 /* Settings for calling functions in the inferior. */
1612 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1613
1614 /* Methods for saving / extracting a dummy frame's ID. */
1615 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
1616
1617 /* Return the unwound PC value. */
1618 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1619
1620 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1621 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1622
1623 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1624 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1625 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1626
1627 /* Hook in ABI-specific overrides, if they have been registered. */
1628 gdbarch_init_osabi (info, gdbarch);
1629
1630 /* Now that we have tuned the configuration, set a few final things
1631 based on what the OS ABI has told us. */
1632
1633 if (tdep->jb_pc >= 0)
1634 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1635
1636 frame_unwind_append_sniffer (gdbarch, alpha_sigtramp_frame_sniffer);
1637 frame_unwind_append_sniffer (gdbarch, alpha_heuristic_frame_sniffer);
1638
1639 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1640
1641 return gdbarch;
1642 }
1643
1644 void
1645 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1646 {
1647 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1648 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1649 }
1650
1651 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1652
1653 void
1654 _initialize_alpha_tdep (void)
1655 {
1656 struct cmd_list_element *c;
1657
1658 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1659
1660 /* Let the user set the fence post for heuristic_proc_start. */
1661
1662 /* We really would like to have both "0" and "unlimited" work, but
1663 command.c doesn't deal with that. So make it a var_zinteger
1664 because the user can always use "999999" or some such for unlimited. */
1665 /* We need to throw away the frame cache when we set this, since it
1666 might change our ability to get backtraces. */
1667 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1668 &heuristic_fence_post, _("\
1669 Set the distance searched for the start of a function."), _("\
1670 Show the distance searched for the start of a function."), _("\
1671 If you are debugging a stripped executable, GDB needs to search through the\n\
1672 program for the start of a function. This command sets the distance of the\n\
1673 search. The only need to set it is when debugging a stripped executable."),
1674 reinit_frame_cache_sfunc,
1675 NULL, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */
1676 &setlist, &showlist);
1677 }
This page took 0.082671 seconds and 5 git commands to generate.