target_read_memory&co: no longer return target_xfer_status
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "doublest.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "dwarf2-frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "value.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "dis-asm.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "linespec.h"
35 #include "regcache.h"
36 #include "reggroups.h"
37 #include "arch-utils.h"
38 #include "osabi.h"
39 #include "block.h"
40 #include "infcall.h"
41 #include "trad-frame.h"
42
43 #include "elf-bfd.h"
44
45 #include "alpha-tdep.h"
46
47 /* Instruction decoding. The notations for registers, immediates and
48 opcodes are the same as the one used in Compaq's Alpha architecture
49 handbook. */
50
51 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
52
53 /* Memory instruction format */
54 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
55 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
56 #define MEM_DISP(insn) \
57 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
58
59 static const int lda_opcode = 0x08;
60 static const int stq_opcode = 0x2d;
61
62 /* Branch instruction format */
63 #define BR_RA(insn) MEM_RA(insn)
64
65 static const int br_opcode = 0x30;
66 static const int bne_opcode = 0x3d;
67
68 /* Operate instruction format */
69 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
70 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
71 #define OPR_RA(insn) MEM_RA(insn)
72 #define OPR_RC(insn) ((insn & 0x1f))
73 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
74
75 static const int subq_opcode = 0x10;
76 static const int subq_function = 0x29;
77
78 \f
79 /* Return the name of the REGNO register.
80
81 An empty name corresponds to a register number that used to
82 be used for a virtual register. That virtual register has
83 been removed, but the index is still reserved to maintain
84 compatibility with existing remote alpha targets. */
85
86 static const char *
87 alpha_register_name (struct gdbarch *gdbarch, int regno)
88 {
89 static const char * const register_names[] =
90 {
91 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
92 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
93 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
94 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
95 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
96 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
97 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
98 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
99 "pc", "", "unique"
100 };
101
102 if (regno < 0)
103 return NULL;
104 if (regno >= ARRAY_SIZE(register_names))
105 return NULL;
106 return register_names[regno];
107 }
108
109 static int
110 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
111 {
112 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
113 }
114
115 static int
116 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
117 {
118 return (regno == ALPHA_ZERO_REGNUM
119 || strlen (alpha_register_name (gdbarch, regno)) == 0);
120 }
121
122 static struct type *
123 alpha_register_type (struct gdbarch *gdbarch, int regno)
124 {
125 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
126 return builtin_type (gdbarch)->builtin_data_ptr;
127 if (regno == ALPHA_PC_REGNUM)
128 return builtin_type (gdbarch)->builtin_func_ptr;
129
130 /* Don't need to worry about little vs big endian until
131 some jerk tries to port to alpha-unicosmk. */
132 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
133 return builtin_type (gdbarch)->builtin_double;
134
135 return builtin_type (gdbarch)->builtin_int64;
136 }
137
138 /* Is REGNUM a member of REGGROUP? */
139
140 static int
141 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
142 struct reggroup *group)
143 {
144 /* Filter out any registers eliminated, but whose regnum is
145 reserved for backward compatibility, e.g. the vfp. */
146 if (gdbarch_register_name (gdbarch, regnum) == NULL
147 || *gdbarch_register_name (gdbarch, regnum) == '\0')
148 return 0;
149
150 if (group == all_reggroup)
151 return 1;
152
153 /* Zero should not be saved or restored. Technically it is a general
154 register (just as $f31 would be a float if we represented it), but
155 there's no point displaying it during "info regs", so leave it out
156 of all groups except for "all". */
157 if (regnum == ALPHA_ZERO_REGNUM)
158 return 0;
159
160 /* All other registers are saved and restored. */
161 if (group == save_reggroup || group == restore_reggroup)
162 return 1;
163
164 /* All other groups are non-overlapping. */
165
166 /* Since this is really a PALcode memory slot... */
167 if (regnum == ALPHA_UNIQUE_REGNUM)
168 return group == system_reggroup;
169
170 /* Force the FPCR to be considered part of the floating point state. */
171 if (regnum == ALPHA_FPCR_REGNUM)
172 return group == float_reggroup;
173
174 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
175 return group == float_reggroup;
176 else
177 return group == general_reggroup;
178 }
179
180 /* The following represents exactly the conversion performed by
181 the LDS instruction. This applies to both single-precision
182 floating point and 32-bit integers. */
183
184 static void
185 alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
186 {
187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
188 ULONGEST mem
189 = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
190 ULONGEST frac = (mem >> 0) & 0x7fffff;
191 ULONGEST sign = (mem >> 31) & 1;
192 ULONGEST exp_msb = (mem >> 30) & 1;
193 ULONGEST exp_low = (mem >> 23) & 0x7f;
194 ULONGEST exp, reg;
195
196 exp = (exp_msb << 10) | exp_low;
197 if (exp_msb)
198 {
199 if (exp_low == 0x7f)
200 exp = 0x7ff;
201 }
202 else
203 {
204 if (exp_low != 0x00)
205 exp |= 0x380;
206 }
207
208 reg = (sign << 63) | (exp << 52) | (frac << 29);
209 store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
210 }
211
212 /* Similarly, this represents exactly the conversion performed by
213 the STS instruction. */
214
215 static void
216 alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
217 {
218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
219 ULONGEST reg, mem;
220
221 reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
222 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
223 store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
224 }
225
226 /* The alpha needs a conversion between register and memory format if the
227 register is a floating point register and memory format is float, as the
228 register format must be double or memory format is an integer with 4
229 bytes or less, as the representation of integers in floating point
230 registers is different. */
231
232 static int
233 alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
234 struct type *type)
235 {
236 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
237 && TYPE_LENGTH (type) != 8);
238 }
239
240 static int
241 alpha_register_to_value (struct frame_info *frame, int regnum,
242 struct type *valtype, gdb_byte *out,
243 int *optimizedp, int *unavailablep)
244 {
245 struct gdbarch *gdbarch = get_frame_arch (frame);
246 gdb_byte in[MAX_REGISTER_SIZE];
247
248 /* Convert to TYPE. */
249 if (!get_frame_register_bytes (frame, regnum, 0,
250 register_size (gdbarch, regnum),
251 in, optimizedp, unavailablep))
252 return 0;
253
254 if (TYPE_LENGTH (valtype) == 4)
255 {
256 alpha_sts (gdbarch, out, in);
257 *optimizedp = *unavailablep = 0;
258 return 1;
259 }
260
261 error (_("Cannot retrieve value from floating point register"));
262 }
263
264 static void
265 alpha_value_to_register (struct frame_info *frame, int regnum,
266 struct type *valtype, const gdb_byte *in)
267 {
268 gdb_byte out[MAX_REGISTER_SIZE];
269
270 switch (TYPE_LENGTH (valtype))
271 {
272 case 4:
273 alpha_lds (get_frame_arch (frame), out, in);
274 break;
275 default:
276 error (_("Cannot store value in floating point register"));
277 }
278 put_frame_register (frame, regnum, out);
279 }
280
281 \f
282 /* The alpha passes the first six arguments in the registers, the rest on
283 the stack. The register arguments are stored in ARG_REG_BUFFER, and
284 then moved into the register file; this simplifies the passing of a
285 large struct which extends from the registers to the stack, plus avoids
286 three ptrace invocations per word.
287
288 We don't bother tracking which register values should go in integer
289 regs or fp regs; we load the same values into both.
290
291 If the called function is returning a structure, the address of the
292 structure to be returned is passed as a hidden first argument. */
293
294 static CORE_ADDR
295 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
296 struct regcache *regcache, CORE_ADDR bp_addr,
297 int nargs, struct value **args, CORE_ADDR sp,
298 int struct_return, CORE_ADDR struct_addr)
299 {
300 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
301 int i;
302 int accumulate_size = struct_return ? 8 : 0;
303 struct alpha_arg
304 {
305 const gdb_byte *contents;
306 int len;
307 int offset;
308 };
309 struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
310 struct alpha_arg *m_arg;
311 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
312 int required_arg_regs;
313 CORE_ADDR func_addr = find_function_addr (function, NULL);
314
315 /* The ABI places the address of the called function in T12. */
316 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
317
318 /* Set the return address register to point to the entry point
319 of the program, where a breakpoint lies in wait. */
320 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
321
322 /* Lay out the arguments in memory. */
323 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
324 {
325 struct value *arg = args[i];
326 struct type *arg_type = check_typedef (value_type (arg));
327
328 /* Cast argument to long if necessary as the compiler does it too. */
329 switch (TYPE_CODE (arg_type))
330 {
331 case TYPE_CODE_INT:
332 case TYPE_CODE_BOOL:
333 case TYPE_CODE_CHAR:
334 case TYPE_CODE_RANGE:
335 case TYPE_CODE_ENUM:
336 if (TYPE_LENGTH (arg_type) == 4)
337 {
338 /* 32-bit values must be sign-extended to 64 bits
339 even if the base data type is unsigned. */
340 arg_type = builtin_type (gdbarch)->builtin_int32;
341 arg = value_cast (arg_type, arg);
342 }
343 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
344 {
345 arg_type = builtin_type (gdbarch)->builtin_int64;
346 arg = value_cast (arg_type, arg);
347 }
348 break;
349
350 case TYPE_CODE_FLT:
351 /* "float" arguments loaded in registers must be passed in
352 register format, aka "double". */
353 if (accumulate_size < sizeof (arg_reg_buffer)
354 && TYPE_LENGTH (arg_type) == 4)
355 {
356 arg_type = builtin_type (gdbarch)->builtin_double;
357 arg = value_cast (arg_type, arg);
358 }
359 /* Tru64 5.1 has a 128-bit long double, and passes this by
360 invisible reference. No one else uses this data type. */
361 else if (TYPE_LENGTH (arg_type) == 16)
362 {
363 /* Allocate aligned storage. */
364 sp = (sp & -16) - 16;
365
366 /* Write the real data into the stack. */
367 write_memory (sp, value_contents (arg), 16);
368
369 /* Construct the indirection. */
370 arg_type = lookup_pointer_type (arg_type);
371 arg = value_from_pointer (arg_type, sp);
372 }
373 break;
374
375 case TYPE_CODE_COMPLEX:
376 /* ??? The ABI says that complex values are passed as two
377 separate scalar values. This distinction only matters
378 for complex float. However, GCC does not implement this. */
379
380 /* Tru64 5.1 has a 128-bit long double, and passes this by
381 invisible reference. */
382 if (TYPE_LENGTH (arg_type) == 32)
383 {
384 /* Allocate aligned storage. */
385 sp = (sp & -16) - 16;
386
387 /* Write the real data into the stack. */
388 write_memory (sp, value_contents (arg), 32);
389
390 /* Construct the indirection. */
391 arg_type = lookup_pointer_type (arg_type);
392 arg = value_from_pointer (arg_type, sp);
393 }
394 break;
395
396 default:
397 break;
398 }
399 m_arg->len = TYPE_LENGTH (arg_type);
400 m_arg->offset = accumulate_size;
401 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
402 m_arg->contents = value_contents (arg);
403 }
404
405 /* Determine required argument register loads, loading an argument register
406 is expensive as it uses three ptrace calls. */
407 required_arg_regs = accumulate_size / 8;
408 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
409 required_arg_regs = ALPHA_NUM_ARG_REGS;
410
411 /* Make room for the arguments on the stack. */
412 if (accumulate_size < sizeof(arg_reg_buffer))
413 accumulate_size = 0;
414 else
415 accumulate_size -= sizeof(arg_reg_buffer);
416 sp -= accumulate_size;
417
418 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
419 sp &= ~15;
420
421 /* `Push' arguments on the stack. */
422 for (i = nargs; m_arg--, --i >= 0;)
423 {
424 const gdb_byte *contents = m_arg->contents;
425 int offset = m_arg->offset;
426 int len = m_arg->len;
427
428 /* Copy the bytes destined for registers into arg_reg_buffer. */
429 if (offset < sizeof(arg_reg_buffer))
430 {
431 if (offset + len <= sizeof(arg_reg_buffer))
432 {
433 memcpy (arg_reg_buffer + offset, contents, len);
434 continue;
435 }
436 else
437 {
438 int tlen = sizeof(arg_reg_buffer) - offset;
439 memcpy (arg_reg_buffer + offset, contents, tlen);
440 offset += tlen;
441 contents += tlen;
442 len -= tlen;
443 }
444 }
445
446 /* Everything else goes to the stack. */
447 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
448 }
449 if (struct_return)
450 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
451 byte_order, struct_addr);
452
453 /* Load the argument registers. */
454 for (i = 0; i < required_arg_regs; i++)
455 {
456 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
457 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
458 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
459 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
460 }
461
462 /* Finally, update the stack pointer. */
463 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
464
465 return sp;
466 }
467
468 /* Extract from REGCACHE the value about to be returned from a function
469 and copy it into VALBUF. */
470
471 static void
472 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
473 gdb_byte *valbuf)
474 {
475 struct gdbarch *gdbarch = get_regcache_arch (regcache);
476 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
477 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
478 ULONGEST l;
479
480 switch (TYPE_CODE (valtype))
481 {
482 case TYPE_CODE_FLT:
483 switch (TYPE_LENGTH (valtype))
484 {
485 case 4:
486 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
487 alpha_sts (gdbarch, valbuf, raw_buffer);
488 break;
489
490 case 8:
491 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
492 break;
493
494 case 16:
495 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
496 read_memory (l, valbuf, 16);
497 break;
498
499 default:
500 internal_error (__FILE__, __LINE__,
501 _("unknown floating point width"));
502 }
503 break;
504
505 case TYPE_CODE_COMPLEX:
506 switch (TYPE_LENGTH (valtype))
507 {
508 case 8:
509 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
510 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
511 break;
512
513 case 16:
514 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
515 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
516 break;
517
518 case 32:
519 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
520 read_memory (l, valbuf, 32);
521 break;
522
523 default:
524 internal_error (__FILE__, __LINE__,
525 _("unknown floating point width"));
526 }
527 break;
528
529 default:
530 /* Assume everything else degenerates to an integer. */
531 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
532 store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
533 break;
534 }
535 }
536
537 /* Insert the given value into REGCACHE as if it was being
538 returned by a function. */
539
540 static void
541 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
542 const gdb_byte *valbuf)
543 {
544 struct gdbarch *gdbarch = get_regcache_arch (regcache);
545 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
546 ULONGEST l;
547
548 switch (TYPE_CODE (valtype))
549 {
550 case TYPE_CODE_FLT:
551 switch (TYPE_LENGTH (valtype))
552 {
553 case 4:
554 alpha_lds (gdbarch, raw_buffer, valbuf);
555 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
556 break;
557
558 case 8:
559 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
560 break;
561
562 case 16:
563 /* FIXME: 128-bit long doubles are returned like structures:
564 by writing into indirect storage provided by the caller
565 as the first argument. */
566 error (_("Cannot set a 128-bit long double return value."));
567
568 default:
569 internal_error (__FILE__, __LINE__,
570 _("unknown floating point width"));
571 }
572 break;
573
574 case TYPE_CODE_COMPLEX:
575 switch (TYPE_LENGTH (valtype))
576 {
577 case 8:
578 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
579 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
580 break;
581
582 case 16:
583 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
584 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
585 break;
586
587 case 32:
588 /* FIXME: 128-bit long doubles are returned like structures:
589 by writing into indirect storage provided by the caller
590 as the first argument. */
591 error (_("Cannot set a 128-bit long double return value."));
592
593 default:
594 internal_error (__FILE__, __LINE__,
595 _("unknown floating point width"));
596 }
597 break;
598
599 default:
600 /* Assume everything else degenerates to an integer. */
601 /* 32-bit values must be sign-extended to 64 bits
602 even if the base data type is unsigned. */
603 if (TYPE_LENGTH (valtype) == 4)
604 valtype = builtin_type (gdbarch)->builtin_int32;
605 l = unpack_long (valtype, valbuf);
606 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
607 break;
608 }
609 }
610
611 static enum return_value_convention
612 alpha_return_value (struct gdbarch *gdbarch, struct value *function,
613 struct type *type, struct regcache *regcache,
614 gdb_byte *readbuf, const gdb_byte *writebuf)
615 {
616 enum type_code code = TYPE_CODE (type);
617
618 if ((code == TYPE_CODE_STRUCT
619 || code == TYPE_CODE_UNION
620 || code == TYPE_CODE_ARRAY)
621 && gdbarch_tdep (gdbarch)->return_in_memory (type))
622 {
623 if (readbuf)
624 {
625 ULONGEST addr;
626 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
627 read_memory (addr, readbuf, TYPE_LENGTH (type));
628 }
629
630 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
631 }
632
633 if (readbuf)
634 alpha_extract_return_value (type, regcache, readbuf);
635 if (writebuf)
636 alpha_store_return_value (type, regcache, writebuf);
637
638 return RETURN_VALUE_REGISTER_CONVENTION;
639 }
640
641 static int
642 alpha_return_in_memory_always (struct type *type)
643 {
644 return 1;
645 }
646 \f
647 static const gdb_byte *
648 alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
649 {
650 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
651
652 *len = sizeof(break_insn);
653 return break_insn;
654 }
655
656 \f
657 /* This returns the PC of the first insn after the prologue.
658 If we can't find the prologue, then return 0. */
659
660 CORE_ADDR
661 alpha_after_prologue (CORE_ADDR pc)
662 {
663 struct symtab_and_line sal;
664 CORE_ADDR func_addr, func_end;
665
666 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
667 return 0;
668
669 sal = find_pc_line (func_addr, 0);
670 if (sal.end < func_end)
671 return sal.end;
672
673 /* The line after the prologue is after the end of the function. In this
674 case, tell the caller to find the prologue the hard way. */
675 return 0;
676 }
677
678 /* Read an instruction from memory at PC, looking through breakpoints. */
679
680 unsigned int
681 alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
682 {
683 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
684 gdb_byte buf[ALPHA_INSN_SIZE];
685 int res;
686
687 res = target_read_memory (pc, buf, sizeof (buf));
688 if (res != 0)
689 memory_error (TARGET_XFER_E_IO, pc);
690 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
691 }
692
693 /* To skip prologues, I use this predicate. Returns either PC itself
694 if the code at PC does not look like a function prologue; otherwise
695 returns an address that (if we're lucky) follows the prologue. If
696 LENIENT, then we must skip everything which is involved in setting
697 up the frame (it's OK to skip more, just so long as we don't skip
698 anything which might clobber the registers which are being saved. */
699
700 static CORE_ADDR
701 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
702 {
703 unsigned long inst;
704 int offset;
705 CORE_ADDR post_prologue_pc;
706 gdb_byte buf[ALPHA_INSN_SIZE];
707
708 /* Silently return the unaltered pc upon memory errors.
709 This could happen on OSF/1 if decode_line_1 tries to skip the
710 prologue for quickstarted shared library functions when the
711 shared library is not yet mapped in.
712 Reading target memory is slow over serial lines, so we perform
713 this check only if the target has shared libraries (which all
714 Alpha targets do). */
715 if (target_read_memory (pc, buf, sizeof (buf)))
716 return pc;
717
718 /* See if we can determine the end of the prologue via the symbol table.
719 If so, then return either PC, or the PC after the prologue, whichever
720 is greater. */
721
722 post_prologue_pc = alpha_after_prologue (pc);
723 if (post_prologue_pc != 0)
724 return max (pc, post_prologue_pc);
725
726 /* Can't determine prologue from the symbol table, need to examine
727 instructions. */
728
729 /* Skip the typical prologue instructions. These are the stack adjustment
730 instruction and the instructions that save registers on the stack
731 or in the gcc frame. */
732 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
733 {
734 inst = alpha_read_insn (gdbarch, pc + offset);
735
736 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
737 continue;
738 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
739 continue;
740 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
741 continue;
742 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
743 continue;
744
745 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
746 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
747 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
748 continue;
749
750 if (inst == 0x47de040f) /* bis sp,sp,fp */
751 continue;
752 if (inst == 0x47fe040f) /* bis zero,sp,fp */
753 continue;
754
755 break;
756 }
757 return pc + offset;
758 }
759
760 \f
761 static const int ldl_l_opcode = 0x2a;
762 static const int ldq_l_opcode = 0x2b;
763 static const int stl_c_opcode = 0x2e;
764 static const int stq_c_opcode = 0x2f;
765
766 /* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
767 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
768 is found, attempt to step through it. A breakpoint is placed at the end of
769 the sequence. */
770
771 static int
772 alpha_deal_with_atomic_sequence (struct frame_info *frame)
773 {
774 struct gdbarch *gdbarch = get_frame_arch (frame);
775 struct address_space *aspace = get_frame_address_space (frame);
776 CORE_ADDR pc = get_frame_pc (frame);
777 CORE_ADDR breaks[2] = {-1, -1};
778 CORE_ADDR loc = pc;
779 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
780 unsigned int insn = alpha_read_insn (gdbarch, loc);
781 int insn_count;
782 int index;
783 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
784 const int atomic_sequence_length = 16; /* Instruction sequence length. */
785 int bc_insn_count = 0; /* Conditional branch instruction count. */
786
787 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
788 if (INSN_OPCODE (insn) != ldl_l_opcode
789 && INSN_OPCODE (insn) != ldq_l_opcode)
790 return 0;
791
792 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
793 instructions. */
794 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
795 {
796 loc += ALPHA_INSN_SIZE;
797 insn = alpha_read_insn (gdbarch, loc);
798
799 /* Assume that there is at most one branch in the atomic
800 sequence. If a branch is found, put a breakpoint in
801 its destination address. */
802 if (INSN_OPCODE (insn) >= br_opcode)
803 {
804 int immediate = (insn & 0x001fffff) << 2;
805
806 immediate = (immediate ^ 0x400000) - 0x400000;
807
808 if (bc_insn_count >= 1)
809 return 0; /* More than one branch found, fallback
810 to the standard single-step code. */
811
812 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
813
814 bc_insn_count++;
815 last_breakpoint++;
816 }
817
818 if (INSN_OPCODE (insn) == stl_c_opcode
819 || INSN_OPCODE (insn) == stq_c_opcode)
820 break;
821 }
822
823 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
824 if (INSN_OPCODE (insn) != stl_c_opcode
825 && INSN_OPCODE (insn) != stq_c_opcode)
826 return 0;
827
828 closing_insn = loc;
829 loc += ALPHA_INSN_SIZE;
830
831 /* Insert a breakpoint right after the end of the atomic sequence. */
832 breaks[0] = loc;
833
834 /* Check for duplicated breakpoints. Check also for a breakpoint
835 placed (branch instruction's destination) anywhere in sequence. */
836 if (last_breakpoint
837 && (breaks[1] == breaks[0]
838 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
839 last_breakpoint = 0;
840
841 /* Effectively inserts the breakpoints. */
842 for (index = 0; index <= last_breakpoint; index++)
843 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
844
845 return 1;
846 }
847
848 \f
849 /* Figure out where the longjmp will land.
850 We expect the first arg to be a pointer to the jmp_buf structure from
851 which we extract the PC (JB_PC) that we will land at. The PC is copied
852 into the "pc". This routine returns true on success. */
853
854 static int
855 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
856 {
857 struct gdbarch *gdbarch = get_frame_arch (frame);
858 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
859 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
860 CORE_ADDR jb_addr;
861 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
862
863 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
864
865 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
866 raw_buffer, tdep->jb_elt_size))
867 return 0;
868
869 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
870 return 1;
871 }
872
873 \f
874 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
875 describe the location and shape of the sigcontext structure. After
876 that, all registers are in memory, so it's easy. */
877 /* ??? Shouldn't we be able to do this generically, rather than with
878 OSABI data specific to Alpha? */
879
880 struct alpha_sigtramp_unwind_cache
881 {
882 CORE_ADDR sigcontext_addr;
883 };
884
885 static struct alpha_sigtramp_unwind_cache *
886 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
887 void **this_prologue_cache)
888 {
889 struct alpha_sigtramp_unwind_cache *info;
890 struct gdbarch_tdep *tdep;
891
892 if (*this_prologue_cache)
893 return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
894
895 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
896 *this_prologue_cache = info;
897
898 tdep = gdbarch_tdep (get_frame_arch (this_frame));
899 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
900
901 return info;
902 }
903
904 /* Return the address of REGNUM in a sigtramp frame. Since this is
905 all arithmetic, it doesn't seem worthwhile to cache it. */
906
907 static CORE_ADDR
908 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
909 CORE_ADDR sigcontext_addr, int regnum)
910 {
911 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
912
913 if (regnum >= 0 && regnum < 32)
914 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
915 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
916 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
917 else if (regnum == ALPHA_PC_REGNUM)
918 return sigcontext_addr + tdep->sc_pc_offset;
919
920 return 0;
921 }
922
923 /* Given a GDB frame, determine the address of the calling function's
924 frame. This will be used to create a new GDB frame struct. */
925
926 static void
927 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
928 void **this_prologue_cache,
929 struct frame_id *this_id)
930 {
931 struct gdbarch *gdbarch = get_frame_arch (this_frame);
932 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
933 struct alpha_sigtramp_unwind_cache *info
934 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
935 CORE_ADDR stack_addr, code_addr;
936
937 /* If the OSABI couldn't locate the sigcontext, give up. */
938 if (info->sigcontext_addr == 0)
939 return;
940
941 /* If we have dynamic signal trampolines, find their start.
942 If we do not, then we must assume there is a symbol record
943 that can provide the start address. */
944 if (tdep->dynamic_sigtramp_offset)
945 {
946 int offset;
947 code_addr = get_frame_pc (this_frame);
948 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
949 if (offset >= 0)
950 code_addr -= offset;
951 else
952 code_addr = 0;
953 }
954 else
955 code_addr = get_frame_func (this_frame);
956
957 /* The stack address is trivially read from the sigcontext. */
958 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
959 ALPHA_SP_REGNUM);
960 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
961 ALPHA_REGISTER_SIZE);
962
963 *this_id = frame_id_build (stack_addr, code_addr);
964 }
965
966 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
967
968 static struct value *
969 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
970 void **this_prologue_cache, int regnum)
971 {
972 struct alpha_sigtramp_unwind_cache *info
973 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
974 CORE_ADDR addr;
975
976 if (info->sigcontext_addr != 0)
977 {
978 /* All integer and fp registers are stored in memory. */
979 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
980 info->sigcontext_addr, regnum);
981 if (addr != 0)
982 return frame_unwind_got_memory (this_frame, regnum, addr);
983 }
984
985 /* This extra register may actually be in the sigcontext, but our
986 current description of it in alpha_sigtramp_frame_unwind_cache
987 doesn't include it. Too bad. Fall back on whatever's in the
988 outer frame. */
989 return frame_unwind_got_register (this_frame, regnum, regnum);
990 }
991
992 static int
993 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
994 struct frame_info *this_frame,
995 void **this_prologue_cache)
996 {
997 struct gdbarch *gdbarch = get_frame_arch (this_frame);
998 CORE_ADDR pc = get_frame_pc (this_frame);
999 const char *name;
1000
1001 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
1002 look at tramp-frame.h and other simplier per-architecture
1003 sigtramp unwinders. */
1004
1005 /* We shouldn't even bother to try if the OSABI didn't register a
1006 sigcontext_addr handler or pc_in_sigtramp hander. */
1007 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
1008 return 0;
1009 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
1010 return 0;
1011
1012 /* Otherwise we should be in a signal frame. */
1013 find_pc_partial_function (pc, &name, NULL, NULL);
1014 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
1015 return 1;
1016
1017 return 0;
1018 }
1019
1020 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1021 SIGTRAMP_FRAME,
1022 default_frame_unwind_stop_reason,
1023 alpha_sigtramp_frame_this_id,
1024 alpha_sigtramp_frame_prev_register,
1025 NULL,
1026 alpha_sigtramp_frame_sniffer
1027 };
1028
1029 \f
1030
1031 /* Heuristic_proc_start may hunt through the text section for a long
1032 time across a 2400 baud serial line. Allows the user to limit this
1033 search. */
1034 static int heuristic_fence_post = 0;
1035
1036 /* Attempt to locate the start of the function containing PC. We assume that
1037 the previous function ends with an about_to_return insn. Not foolproof by
1038 any means, since gcc is happy to put the epilogue in the middle of a
1039 function. But we're guessing anyway... */
1040
1041 static CORE_ADDR
1042 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
1043 {
1044 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1045 CORE_ADDR last_non_nop = pc;
1046 CORE_ADDR fence = pc - heuristic_fence_post;
1047 CORE_ADDR orig_pc = pc;
1048 CORE_ADDR func;
1049 struct inferior *inf;
1050
1051 if (pc == 0)
1052 return 0;
1053
1054 /* First see if we can find the start of the function from minimal
1055 symbol information. This can succeed with a binary that doesn't
1056 have debug info, but hasn't been stripped. */
1057 func = get_pc_function_start (pc);
1058 if (func)
1059 return func;
1060
1061 if (heuristic_fence_post == -1
1062 || fence < tdep->vm_min_address)
1063 fence = tdep->vm_min_address;
1064
1065 /* Search back for previous return; also stop at a 0, which might be
1066 seen for instance before the start of a code section. Don't include
1067 nops, since this usually indicates padding between functions. */
1068 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
1069 {
1070 unsigned int insn = alpha_read_insn (gdbarch, pc);
1071 switch (insn)
1072 {
1073 case 0: /* invalid insn */
1074 case 0x6bfa8001: /* ret $31,($26),1 */
1075 return last_non_nop;
1076
1077 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1078 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1079 break;
1080
1081 default:
1082 last_non_nop = pc;
1083 break;
1084 }
1085 }
1086
1087 inf = current_inferior ();
1088
1089 /* It's not clear to me why we reach this point when stopping quietly,
1090 but with this test, at least we don't print out warnings for every
1091 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
1092 if (inf->control.stop_soon == NO_STOP_QUIETLY)
1093 {
1094 static int blurb_printed = 0;
1095
1096 if (fence == tdep->vm_min_address)
1097 warning (_("Hit beginning of text section without finding \
1098 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1099 else
1100 warning (_("Hit heuristic-fence-post without finding \
1101 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1102
1103 if (!blurb_printed)
1104 {
1105 printf_filtered (_("\
1106 This warning occurs if you are debugging a function without any symbols\n\
1107 (for example, in a stripped executable). In that case, you may wish to\n\
1108 increase the size of the search with the `set heuristic-fence-post' command.\n\
1109 \n\
1110 Otherwise, you told GDB there was a function where there isn't one, or\n\
1111 (more likely) you have encountered a bug in GDB.\n"));
1112 blurb_printed = 1;
1113 }
1114 }
1115
1116 return 0;
1117 }
1118
1119 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
1120 something about the traditional layout of alpha stack frames. */
1121
1122 struct alpha_heuristic_unwind_cache
1123 {
1124 CORE_ADDR vfp;
1125 CORE_ADDR start_pc;
1126 struct trad_frame_saved_reg *saved_regs;
1127 int return_reg;
1128 };
1129
1130 /* If a probing loop sequence starts at PC, simulate it and compute
1131 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1132 FRAME_SIZE unchanged. */
1133
1134 static void
1135 alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1136 int *frame_size)
1137 {
1138 CORE_ADDR cur_pc = *pc;
1139 int cur_frame_size = *frame_size;
1140 int nb_of_iterations, reg_index, reg_probe;
1141 unsigned int insn;
1142
1143 /* The following pattern is recognized as a probing loop:
1144
1145 lda REG_INDEX,NB_OF_ITERATIONS
1146 lda REG_PROBE,<immediate>(sp)
1147
1148 LOOP_START:
1149 stq zero,<immediate>(REG_PROBE)
1150 subq REG_INDEX,0x1,REG_INDEX
1151 lda REG_PROBE,<immediate>(REG_PROBE)
1152 bne REG_INDEX, LOOP_START
1153
1154 lda sp,<immediate>(REG_PROBE)
1155
1156 If anything different is found, the function returns without
1157 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
1158 after this sequence, and FRAME_SIZE will be updated. */
1159
1160 /* lda REG_INDEX,NB_OF_ITERATIONS */
1161
1162 insn = alpha_read_insn (gdbarch, cur_pc);
1163 if (INSN_OPCODE (insn) != lda_opcode)
1164 return;
1165 reg_index = MEM_RA (insn);
1166 nb_of_iterations = MEM_DISP (insn);
1167
1168 /* lda REG_PROBE,<immediate>(sp) */
1169
1170 cur_pc += ALPHA_INSN_SIZE;
1171 insn = alpha_read_insn (gdbarch, cur_pc);
1172 if (INSN_OPCODE (insn) != lda_opcode
1173 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1174 return;
1175 reg_probe = MEM_RA (insn);
1176 cur_frame_size -= MEM_DISP (insn);
1177
1178 /* stq zero,<immediate>(REG_PROBE) */
1179
1180 cur_pc += ALPHA_INSN_SIZE;
1181 insn = alpha_read_insn (gdbarch, cur_pc);
1182 if (INSN_OPCODE (insn) != stq_opcode
1183 || MEM_RA (insn) != 0x1f
1184 || MEM_RB (insn) != reg_probe)
1185 return;
1186
1187 /* subq REG_INDEX,0x1,REG_INDEX */
1188
1189 cur_pc += ALPHA_INSN_SIZE;
1190 insn = alpha_read_insn (gdbarch, cur_pc);
1191 if (INSN_OPCODE (insn) != subq_opcode
1192 || !OPR_HAS_IMMEDIATE (insn)
1193 || OPR_FUNCTION (insn) != subq_function
1194 || OPR_LIT(insn) != 1
1195 || OPR_RA (insn) != reg_index
1196 || OPR_RC (insn) != reg_index)
1197 return;
1198
1199 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1200
1201 cur_pc += ALPHA_INSN_SIZE;
1202 insn = alpha_read_insn (gdbarch, cur_pc);
1203 if (INSN_OPCODE (insn) != lda_opcode
1204 || MEM_RA (insn) != reg_probe
1205 || MEM_RB (insn) != reg_probe)
1206 return;
1207 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1208
1209 /* bne REG_INDEX, LOOP_START */
1210
1211 cur_pc += ALPHA_INSN_SIZE;
1212 insn = alpha_read_insn (gdbarch, cur_pc);
1213 if (INSN_OPCODE (insn) != bne_opcode
1214 || MEM_RA (insn) != reg_index)
1215 return;
1216
1217 /* lda sp,<immediate>(REG_PROBE) */
1218
1219 cur_pc += ALPHA_INSN_SIZE;
1220 insn = alpha_read_insn (gdbarch, cur_pc);
1221 if (INSN_OPCODE (insn) != lda_opcode
1222 || MEM_RA (insn) != ALPHA_SP_REGNUM
1223 || MEM_RB (insn) != reg_probe)
1224 return;
1225 cur_frame_size -= MEM_DISP (insn);
1226
1227 *pc = cur_pc;
1228 *frame_size = cur_frame_size;
1229 }
1230
1231 static struct alpha_heuristic_unwind_cache *
1232 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
1233 void **this_prologue_cache,
1234 CORE_ADDR start_pc)
1235 {
1236 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1237 struct alpha_heuristic_unwind_cache *info;
1238 ULONGEST val;
1239 CORE_ADDR limit_pc, cur_pc;
1240 int frame_reg, frame_size, return_reg, reg;
1241
1242 if (*this_prologue_cache)
1243 return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
1244
1245 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1246 *this_prologue_cache = info;
1247 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1248
1249 limit_pc = get_frame_pc (this_frame);
1250 if (start_pc == 0)
1251 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1252 info->start_pc = start_pc;
1253
1254 frame_reg = ALPHA_SP_REGNUM;
1255 frame_size = 0;
1256 return_reg = -1;
1257
1258 /* If we've identified a likely place to start, do code scanning. */
1259 if (start_pc != 0)
1260 {
1261 /* Limit the forward search to 50 instructions. */
1262 if (start_pc + 200 < limit_pc)
1263 limit_pc = start_pc + 200;
1264
1265 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1266 {
1267 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1268
1269 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1270 {
1271 if (word & 0x8000)
1272 {
1273 /* Consider only the first stack allocation instruction
1274 to contain the static size of the frame. */
1275 if (frame_size == 0)
1276 frame_size = (-word) & 0xffff;
1277 }
1278 else
1279 {
1280 /* Exit loop if a positive stack adjustment is found, which
1281 usually means that the stack cleanup code in the function
1282 epilogue is reached. */
1283 break;
1284 }
1285 }
1286 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1287 {
1288 reg = (word & 0x03e00000) >> 21;
1289
1290 /* Ignore this instruction if we have already encountered
1291 an instruction saving the same register earlier in the
1292 function code. The current instruction does not tell
1293 us where the original value upon function entry is saved.
1294 All it says is that the function we are scanning reused
1295 that register for some computation of its own, and is now
1296 saving its result. */
1297 if (trad_frame_addr_p(info->saved_regs, reg))
1298 continue;
1299
1300 if (reg == 31)
1301 continue;
1302
1303 /* Do not compute the address where the register was saved yet,
1304 because we don't know yet if the offset will need to be
1305 relative to $sp or $fp (we can not compute the address
1306 relative to $sp if $sp is updated during the execution of
1307 the current subroutine, for instance when doing some alloca).
1308 So just store the offset for the moment, and compute the
1309 address later when we know whether this frame has a frame
1310 pointer or not. */
1311 /* Hack: temporarily add one, so that the offset is non-zero
1312 and we can tell which registers have save offsets below. */
1313 info->saved_regs[reg].addr = (word & 0xffff) + 1;
1314
1315 /* Starting with OSF/1-3.2C, the system libraries are shipped
1316 without local symbols, but they still contain procedure
1317 descriptors without a symbol reference. GDB is currently
1318 unable to find these procedure descriptors and uses
1319 heuristic_proc_desc instead.
1320 As some low level compiler support routines (__div*, __add*)
1321 use a non-standard return address register, we have to
1322 add some heuristics to determine the return address register,
1323 or stepping over these routines will fail.
1324 Usually the return address register is the first register
1325 saved on the stack, but assembler optimization might
1326 rearrange the register saves.
1327 So we recognize only a few registers (t7, t9, ra) within
1328 the procedure prologue as valid return address registers.
1329 If we encounter a return instruction, we extract the
1330 return address register from it.
1331
1332 FIXME: Rewriting GDB to access the procedure descriptors,
1333 e.g. via the minimal symbol table, might obviate this
1334 hack. */
1335 if (return_reg == -1
1336 && cur_pc < (start_pc + 80)
1337 && (reg == ALPHA_T7_REGNUM
1338 || reg == ALPHA_T9_REGNUM
1339 || reg == ALPHA_RA_REGNUM))
1340 return_reg = reg;
1341 }
1342 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1343 return_reg = (word >> 16) & 0x1f;
1344 else if (word == 0x47de040f) /* bis sp,sp,fp */
1345 frame_reg = ALPHA_GCC_FP_REGNUM;
1346 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1347 frame_reg = ALPHA_GCC_FP_REGNUM;
1348
1349 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
1350 }
1351
1352 /* If we haven't found a valid return address register yet, keep
1353 searching in the procedure prologue. */
1354 if (return_reg == -1)
1355 {
1356 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1357 {
1358 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1359
1360 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1361 {
1362 reg = (word & 0x03e00000) >> 21;
1363 if (reg == ALPHA_T7_REGNUM
1364 || reg == ALPHA_T9_REGNUM
1365 || reg == ALPHA_RA_REGNUM)
1366 {
1367 return_reg = reg;
1368 break;
1369 }
1370 }
1371 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1372 {
1373 return_reg = (word >> 16) & 0x1f;
1374 break;
1375 }
1376
1377 cur_pc += ALPHA_INSN_SIZE;
1378 }
1379 }
1380 }
1381
1382 /* Failing that, do default to the customary RA. */
1383 if (return_reg == -1)
1384 return_reg = ALPHA_RA_REGNUM;
1385 info->return_reg = return_reg;
1386
1387 val = get_frame_register_unsigned (this_frame, frame_reg);
1388 info->vfp = val + frame_size;
1389
1390 /* Convert offsets to absolute addresses. See above about adding
1391 one to the offsets to make all detected offsets non-zero. */
1392 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1393 if (trad_frame_addr_p(info->saved_regs, reg))
1394 info->saved_regs[reg].addr += val - 1;
1395
1396 /* The stack pointer of the previous frame is computed by popping
1397 the current stack frame. */
1398 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1399 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1400
1401 return info;
1402 }
1403
1404 /* Given a GDB frame, determine the address of the calling function's
1405 frame. This will be used to create a new GDB frame struct. */
1406
1407 static void
1408 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1409 void **this_prologue_cache,
1410 struct frame_id *this_id)
1411 {
1412 struct alpha_heuristic_unwind_cache *info
1413 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1414
1415 *this_id = frame_id_build (info->vfp, info->start_pc);
1416 }
1417
1418 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1419
1420 static struct value *
1421 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1422 void **this_prologue_cache, int regnum)
1423 {
1424 struct alpha_heuristic_unwind_cache *info
1425 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1426
1427 /* The PC of the previous frame is stored in the link register of
1428 the current frame. Frob regnum so that we pull the value from
1429 the correct place. */
1430 if (regnum == ALPHA_PC_REGNUM)
1431 regnum = info->return_reg;
1432
1433 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1434 }
1435
1436 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1437 NORMAL_FRAME,
1438 default_frame_unwind_stop_reason,
1439 alpha_heuristic_frame_this_id,
1440 alpha_heuristic_frame_prev_register,
1441 NULL,
1442 default_frame_sniffer
1443 };
1444
1445 static CORE_ADDR
1446 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1447 void **this_prologue_cache)
1448 {
1449 struct alpha_heuristic_unwind_cache *info
1450 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1451
1452 return info->vfp;
1453 }
1454
1455 static const struct frame_base alpha_heuristic_frame_base = {
1456 &alpha_heuristic_frame_unwind,
1457 alpha_heuristic_frame_base_address,
1458 alpha_heuristic_frame_base_address,
1459 alpha_heuristic_frame_base_address
1460 };
1461
1462 /* Just like reinit_frame_cache, but with the right arguments to be
1463 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1464
1465 static void
1466 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1467 {
1468 reinit_frame_cache ();
1469 }
1470
1471 \f
1472 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1473 dummy frame. The frame ID's base needs to match the TOS value
1474 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1475 breakpoint. */
1476
1477 static struct frame_id
1478 alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1479 {
1480 ULONGEST base;
1481 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1482 return frame_id_build (base, get_frame_pc (this_frame));
1483 }
1484
1485 static CORE_ADDR
1486 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1487 {
1488 ULONGEST pc;
1489 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
1490 return pc;
1491 }
1492
1493 \f
1494 /* Helper routines for alpha*-nat.c files to move register sets to and
1495 from core files. The UNIQUE pointer is allowed to be NULL, as most
1496 targets don't supply this value in their core files. */
1497
1498 void
1499 alpha_supply_int_regs (struct regcache *regcache, int regno,
1500 const void *r0_r30, const void *pc, const void *unique)
1501 {
1502 const gdb_byte *regs = (const gdb_byte *) r0_r30;
1503 int i;
1504
1505 for (i = 0; i < 31; ++i)
1506 if (regno == i || regno == -1)
1507 regcache_raw_supply (regcache, i, regs + i * 8);
1508
1509 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1510 {
1511 const gdb_byte zero[8] = { 0 };
1512
1513 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1514 }
1515
1516 if (regno == ALPHA_PC_REGNUM || regno == -1)
1517 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1518
1519 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1520 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1521 }
1522
1523 void
1524 alpha_fill_int_regs (const struct regcache *regcache,
1525 int regno, void *r0_r30, void *pc, void *unique)
1526 {
1527 gdb_byte *regs = (gdb_byte *) r0_r30;
1528 int i;
1529
1530 for (i = 0; i < 31; ++i)
1531 if (regno == i || regno == -1)
1532 regcache_raw_collect (regcache, i, regs + i * 8);
1533
1534 if (regno == ALPHA_PC_REGNUM || regno == -1)
1535 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1536
1537 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1538 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1539 }
1540
1541 void
1542 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1543 const void *f0_f30, const void *fpcr)
1544 {
1545 const gdb_byte *regs = (const gdb_byte *) f0_f30;
1546 int i;
1547
1548 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1549 if (regno == i || regno == -1)
1550 regcache_raw_supply (regcache, i,
1551 regs + (i - ALPHA_FP0_REGNUM) * 8);
1552
1553 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1554 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1555 }
1556
1557 void
1558 alpha_fill_fp_regs (const struct regcache *regcache,
1559 int regno, void *f0_f30, void *fpcr)
1560 {
1561 gdb_byte *regs = (gdb_byte *) f0_f30;
1562 int i;
1563
1564 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1565 if (regno == i || regno == -1)
1566 regcache_raw_collect (regcache, i,
1567 regs + (i - ALPHA_FP0_REGNUM) * 8);
1568
1569 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1570 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1571 }
1572
1573 \f
1574
1575 /* Return nonzero if the G_floating register value in REG is equal to
1576 zero for FP control instructions. */
1577
1578 static int
1579 fp_register_zero_p (LONGEST reg)
1580 {
1581 /* Check that all bits except the sign bit are zero. */
1582 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1583
1584 return ((reg & zero_mask) == 0);
1585 }
1586
1587 /* Return the value of the sign bit for the G_floating register
1588 value held in REG. */
1589
1590 static int
1591 fp_register_sign_bit (LONGEST reg)
1592 {
1593 const LONGEST sign_mask = (LONGEST) 1 << 63;
1594
1595 return ((reg & sign_mask) != 0);
1596 }
1597
1598 /* alpha_software_single_step() is called just before we want to resume
1599 the inferior, if we want to single-step it but there is no hardware
1600 or kernel single-step support (NetBSD on Alpha, for example). We find
1601 the target of the coming instruction and breakpoint it. */
1602
1603 static CORE_ADDR
1604 alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
1605 {
1606 struct gdbarch *gdbarch = get_frame_arch (frame);
1607 unsigned int insn;
1608 unsigned int op;
1609 int regno;
1610 int offset;
1611 LONGEST rav;
1612
1613 insn = alpha_read_insn (gdbarch, pc);
1614
1615 /* Opcode is top 6 bits. */
1616 op = (insn >> 26) & 0x3f;
1617
1618 if (op == 0x1a)
1619 {
1620 /* Jump format: target PC is:
1621 RB & ~3 */
1622 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
1623 }
1624
1625 if ((op & 0x30) == 0x30)
1626 {
1627 /* Branch format: target PC is:
1628 (new PC) + (4 * sext(displacement)) */
1629 if (op == 0x30 /* BR */
1630 || op == 0x34) /* BSR */
1631 {
1632 branch_taken:
1633 offset = (insn & 0x001fffff);
1634 if (offset & 0x00100000)
1635 offset |= 0xffe00000;
1636 offset *= ALPHA_INSN_SIZE;
1637 return (pc + ALPHA_INSN_SIZE + offset);
1638 }
1639
1640 /* Need to determine if branch is taken; read RA. */
1641 regno = (insn >> 21) & 0x1f;
1642 switch (op)
1643 {
1644 case 0x31: /* FBEQ */
1645 case 0x36: /* FBGE */
1646 case 0x37: /* FBGT */
1647 case 0x33: /* FBLE */
1648 case 0x32: /* FBLT */
1649 case 0x35: /* FBNE */
1650 regno += gdbarch_fp0_regnum (gdbarch);
1651 }
1652
1653 rav = get_frame_register_signed (frame, regno);
1654
1655 switch (op)
1656 {
1657 case 0x38: /* BLBC */
1658 if ((rav & 1) == 0)
1659 goto branch_taken;
1660 break;
1661 case 0x3c: /* BLBS */
1662 if (rav & 1)
1663 goto branch_taken;
1664 break;
1665 case 0x39: /* BEQ */
1666 if (rav == 0)
1667 goto branch_taken;
1668 break;
1669 case 0x3d: /* BNE */
1670 if (rav != 0)
1671 goto branch_taken;
1672 break;
1673 case 0x3a: /* BLT */
1674 if (rav < 0)
1675 goto branch_taken;
1676 break;
1677 case 0x3b: /* BLE */
1678 if (rav <= 0)
1679 goto branch_taken;
1680 break;
1681 case 0x3f: /* BGT */
1682 if (rav > 0)
1683 goto branch_taken;
1684 break;
1685 case 0x3e: /* BGE */
1686 if (rav >= 0)
1687 goto branch_taken;
1688 break;
1689
1690 /* Floating point branches. */
1691
1692 case 0x31: /* FBEQ */
1693 if (fp_register_zero_p (rav))
1694 goto branch_taken;
1695 break;
1696 case 0x36: /* FBGE */
1697 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1698 goto branch_taken;
1699 break;
1700 case 0x37: /* FBGT */
1701 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1702 goto branch_taken;
1703 break;
1704 case 0x33: /* FBLE */
1705 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1706 goto branch_taken;
1707 break;
1708 case 0x32: /* FBLT */
1709 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1710 goto branch_taken;
1711 break;
1712 case 0x35: /* FBNE */
1713 if (! fp_register_zero_p (rav))
1714 goto branch_taken;
1715 break;
1716 }
1717 }
1718
1719 /* Not a branch or branch not taken; target PC is:
1720 pc + 4 */
1721 return (pc + ALPHA_INSN_SIZE);
1722 }
1723
1724 int
1725 alpha_software_single_step (struct frame_info *frame)
1726 {
1727 struct gdbarch *gdbarch = get_frame_arch (frame);
1728 struct address_space *aspace = get_frame_address_space (frame);
1729 CORE_ADDR pc, next_pc;
1730
1731 pc = get_frame_pc (frame);
1732 next_pc = alpha_next_pc (frame, pc);
1733
1734 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
1735 return 1;
1736 }
1737
1738 \f
1739 /* Initialize the current architecture based on INFO. If possible, re-use an
1740 architecture from ARCHES, which is a list of architectures already created
1741 during this debugging session.
1742
1743 Called e.g. at program startup, when reading a core file, and when reading
1744 a binary file. */
1745
1746 static struct gdbarch *
1747 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1748 {
1749 struct gdbarch_tdep *tdep;
1750 struct gdbarch *gdbarch;
1751
1752 /* Find a candidate among extant architectures. */
1753 arches = gdbarch_list_lookup_by_info (arches, &info);
1754 if (arches != NULL)
1755 return arches->gdbarch;
1756
1757 tdep = XNEW (struct gdbarch_tdep);
1758 gdbarch = gdbarch_alloc (&info, tdep);
1759
1760 /* Lowest text address. This is used by heuristic_proc_start()
1761 to decide when to stop looking. */
1762 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1763
1764 tdep->dynamic_sigtramp_offset = NULL;
1765 tdep->sigcontext_addr = NULL;
1766 tdep->sc_pc_offset = 2 * 8;
1767 tdep->sc_regs_offset = 4 * 8;
1768 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1769
1770 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
1771
1772 tdep->return_in_memory = alpha_return_in_memory_always;
1773
1774 /* Type sizes */
1775 set_gdbarch_short_bit (gdbarch, 16);
1776 set_gdbarch_int_bit (gdbarch, 32);
1777 set_gdbarch_long_bit (gdbarch, 64);
1778 set_gdbarch_long_long_bit (gdbarch, 64);
1779 set_gdbarch_float_bit (gdbarch, 32);
1780 set_gdbarch_double_bit (gdbarch, 64);
1781 set_gdbarch_long_double_bit (gdbarch, 64);
1782 set_gdbarch_ptr_bit (gdbarch, 64);
1783
1784 /* Register info */
1785 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1786 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1787 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1788 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1789
1790 set_gdbarch_register_name (gdbarch, alpha_register_name);
1791 set_gdbarch_register_type (gdbarch, alpha_register_type);
1792
1793 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1794 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1795
1796 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1797 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1798 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1799
1800 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1801
1802 /* Prologue heuristics. */
1803 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1804
1805 /* Disassembler. */
1806 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1807
1808 /* Call info. */
1809
1810 set_gdbarch_return_value (gdbarch, alpha_return_value);
1811
1812 /* Settings for calling functions in the inferior. */
1813 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1814
1815 /* Methods for saving / extracting a dummy frame's ID. */
1816 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
1817
1818 /* Return the unwound PC value. */
1819 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1820
1821 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1822 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1823
1824 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1825 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1826 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1827
1828 /* Handles single stepping of atomic sequences. */
1829 set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1830
1831 /* Hook in ABI-specific overrides, if they have been registered. */
1832 gdbarch_init_osabi (info, gdbarch);
1833
1834 /* Now that we have tuned the configuration, set a few final things
1835 based on what the OS ABI has told us. */
1836
1837 if (tdep->jb_pc >= 0)
1838 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1839
1840 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1841 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1842
1843 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1844
1845 return gdbarch;
1846 }
1847
1848 void
1849 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1850 {
1851 dwarf2_append_unwinders (gdbarch);
1852 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1853 }
1854
1855 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1856
1857 void
1858 _initialize_alpha_tdep (void)
1859 {
1860 struct cmd_list_element *c;
1861
1862 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1863
1864 /* Let the user set the fence post for heuristic_proc_start. */
1865
1866 /* We really would like to have both "0" and "unlimited" work, but
1867 command.c doesn't deal with that. So make it a var_zinteger
1868 because the user can always use "999999" or some such for unlimited. */
1869 /* We need to throw away the frame cache when we set this, since it
1870 might change our ability to get backtraces. */
1871 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1872 &heuristic_fence_post, _("\
1873 Set the distance searched for the start of a function."), _("\
1874 Show the distance searched for the start of a function."), _("\
1875 If you are debugging a stripped executable, GDB needs to search through the\n\
1876 program for the start of a function. This command sets the distance of the\n\
1877 search. The only need to set it is when debugging a stripped executable."),
1878 reinit_frame_cache_sfunc,
1879 NULL, /* FIXME: i18n: The distance searched for
1880 the start of a function is \"%d\". */
1881 &setlist, &showlist);
1882 }
This page took 0.089683 seconds and 5 git commands to generate.