windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "x86-xstate.h"
43
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46 #include "features/i386/amd64-mpx.c"
47 #include "features/i386/amd64-avx512.c"
48
49 #include "features/i386/x32.c"
50 #include "features/i386/x32-avx.c"
51 #include "features/i386/x32-avx512.c"
52
53 #include "ax.h"
54 #include "ax-gdb.h"
55
56 /* Note that the AMD64 architecture was previously known as x86-64.
57 The latter is (forever) engraved into the canonical system name as
58 returned by config.guess, and used as the name for the AMD64 port
59 of GNU/Linux. The BSD's have renamed their ports to amd64; they
60 don't like to shout. For GDB we prefer the amd64_-prefix over the
61 x86_64_-prefix since it's so much easier to type. */
62
63 /* Register information. */
64
65 static const char *amd64_register_names[] =
66 {
67 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
68
69 /* %r8 is indeed register number 8. */
70 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
71 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
72
73 /* %st0 is register number 24. */
74 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
75 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
76
77 /* %xmm0 is register number 40. */
78 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
79 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
80 "mxcsr",
81 };
82
83 static const char *amd64_ymm_names[] =
84 {
85 "ymm0", "ymm1", "ymm2", "ymm3",
86 "ymm4", "ymm5", "ymm6", "ymm7",
87 "ymm8", "ymm9", "ymm10", "ymm11",
88 "ymm12", "ymm13", "ymm14", "ymm15"
89 };
90
91 static const char *amd64_ymm_avx512_names[] =
92 {
93 "ymm16", "ymm17", "ymm18", "ymm19",
94 "ymm20", "ymm21", "ymm22", "ymm23",
95 "ymm24", "ymm25", "ymm26", "ymm27",
96 "ymm28", "ymm29", "ymm30", "ymm31"
97 };
98
99 static const char *amd64_ymmh_names[] =
100 {
101 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
102 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
103 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
104 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
105 };
106
107 static const char *amd64_ymmh_avx512_names[] =
108 {
109 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
110 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
111 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
112 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
113 };
114
115 static const char *amd64_mpx_names[] =
116 {
117 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
118 };
119
120 static const char *amd64_k_names[] =
121 {
122 "k0", "k1", "k2", "k3",
123 "k4", "k5", "k6", "k7"
124 };
125
126 static const char *amd64_zmmh_names[] =
127 {
128 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
129 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
130 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
131 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
132 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
133 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
134 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
135 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
136 };
137
138 static const char *amd64_zmm_names[] =
139 {
140 "zmm0", "zmm1", "zmm2", "zmm3",
141 "zmm4", "zmm5", "zmm6", "zmm7",
142 "zmm8", "zmm9", "zmm10", "zmm11",
143 "zmm12", "zmm13", "zmm14", "zmm15",
144 "zmm16", "zmm17", "zmm18", "zmm19",
145 "zmm20", "zmm21", "zmm22", "zmm23",
146 "zmm24", "zmm25", "zmm26", "zmm27",
147 "zmm28", "zmm29", "zmm30", "zmm31"
148 };
149
150 static const char *amd64_xmm_avx512_names[] = {
151 "xmm16", "xmm17", "xmm18", "xmm19",
152 "xmm20", "xmm21", "xmm22", "xmm23",
153 "xmm24", "xmm25", "xmm26", "xmm27",
154 "xmm28", "xmm29", "xmm30", "xmm31"
155 };
156
157 /* DWARF Register Number Mapping as defined in the System V psABI,
158 section 3.6. */
159
160 static int amd64_dwarf_regmap[] =
161 {
162 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
163 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
164 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
165 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
166
167 /* Frame Pointer Register RBP. */
168 AMD64_RBP_REGNUM,
169
170 /* Stack Pointer Register RSP. */
171 AMD64_RSP_REGNUM,
172
173 /* Extended Integer Registers 8 - 15. */
174 AMD64_R8_REGNUM, /* %r8 */
175 AMD64_R9_REGNUM, /* %r9 */
176 AMD64_R10_REGNUM, /* %r10 */
177 AMD64_R11_REGNUM, /* %r11 */
178 AMD64_R12_REGNUM, /* %r12 */
179 AMD64_R13_REGNUM, /* %r13 */
180 AMD64_R14_REGNUM, /* %r14 */
181 AMD64_R15_REGNUM, /* %r15 */
182
183 /* Return Address RA. Mapped to RIP. */
184 AMD64_RIP_REGNUM,
185
186 /* SSE Registers 0 - 7. */
187 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
188 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
189 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
190 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
191
192 /* Extended SSE Registers 8 - 15. */
193 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
194 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
195 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
196 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
197
198 /* Floating Point Registers 0-7. */
199 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
200 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
201 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
202 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
203
204 /* MMX Registers 0 - 7.
205 We have to handle those registers specifically, as their register
206 number within GDB depends on the target (or they may even not be
207 available at all). */
208 -1, -1, -1, -1, -1, -1, -1, -1,
209
210 /* Control and Status Flags Register. */
211 AMD64_EFLAGS_REGNUM,
212
213 /* Selector Registers. */
214 AMD64_ES_REGNUM,
215 AMD64_CS_REGNUM,
216 AMD64_SS_REGNUM,
217 AMD64_DS_REGNUM,
218 AMD64_FS_REGNUM,
219 AMD64_GS_REGNUM,
220 -1,
221 -1,
222
223 /* Segment Base Address Registers. */
224 -1,
225 -1,
226 -1,
227 -1,
228
229 /* Special Selector Registers. */
230 -1,
231 -1,
232
233 /* Floating Point Control Registers. */
234 AMD64_MXCSR_REGNUM,
235 AMD64_FCTRL_REGNUM,
236 AMD64_FSTAT_REGNUM
237 };
238
239 static const int amd64_dwarf_regmap_len =
240 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
241
242 /* Convert DWARF register number REG to the appropriate register
243 number used by GDB. */
244
245 static int
246 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
247 {
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249 int ymm0_regnum = tdep->ymm0_regnum;
250 int regnum = -1;
251
252 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
253 regnum = amd64_dwarf_regmap[reg];
254
255 if (regnum == -1)
256 warning (_("Unmapped DWARF Register #%d encountered."), reg);
257 else if (ymm0_regnum >= 0
258 && i386_xmm_regnum_p (gdbarch, regnum))
259 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
260
261 return regnum;
262 }
263
264 /* Map architectural register numbers to gdb register numbers. */
265
266 static const int amd64_arch_regmap[16] =
267 {
268 AMD64_RAX_REGNUM, /* %rax */
269 AMD64_RCX_REGNUM, /* %rcx */
270 AMD64_RDX_REGNUM, /* %rdx */
271 AMD64_RBX_REGNUM, /* %rbx */
272 AMD64_RSP_REGNUM, /* %rsp */
273 AMD64_RBP_REGNUM, /* %rbp */
274 AMD64_RSI_REGNUM, /* %rsi */
275 AMD64_RDI_REGNUM, /* %rdi */
276 AMD64_R8_REGNUM, /* %r8 */
277 AMD64_R9_REGNUM, /* %r9 */
278 AMD64_R10_REGNUM, /* %r10 */
279 AMD64_R11_REGNUM, /* %r11 */
280 AMD64_R12_REGNUM, /* %r12 */
281 AMD64_R13_REGNUM, /* %r13 */
282 AMD64_R14_REGNUM, /* %r14 */
283 AMD64_R15_REGNUM /* %r15 */
284 };
285
286 static const int amd64_arch_regmap_len =
287 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
288
289 /* Convert architectural register number REG to the appropriate register
290 number used by GDB. */
291
292 static int
293 amd64_arch_reg_to_regnum (int reg)
294 {
295 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
296
297 return amd64_arch_regmap[reg];
298 }
299
300 /* Register names for byte pseudo-registers. */
301
302 static const char *amd64_byte_names[] =
303 {
304 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
305 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
306 "ah", "bh", "ch", "dh"
307 };
308
309 /* Number of lower byte registers. */
310 #define AMD64_NUM_LOWER_BYTE_REGS 16
311
312 /* Register names for word pseudo-registers. */
313
314 static const char *amd64_word_names[] =
315 {
316 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
317 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
318 };
319
320 /* Register names for dword pseudo-registers. */
321
322 static const char *amd64_dword_names[] =
323 {
324 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
325 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
326 "eip"
327 };
328
329 /* Return the name of register REGNUM. */
330
331 static const char *
332 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
333 {
334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
335 if (i386_byte_regnum_p (gdbarch, regnum))
336 return amd64_byte_names[regnum - tdep->al_regnum];
337 else if (i386_zmm_regnum_p (gdbarch, regnum))
338 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
339 else if (i386_ymm_regnum_p (gdbarch, regnum))
340 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
341 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
342 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
343 else if (i386_word_regnum_p (gdbarch, regnum))
344 return amd64_word_names[regnum - tdep->ax_regnum];
345 else if (i386_dword_regnum_p (gdbarch, regnum))
346 return amd64_dword_names[regnum - tdep->eax_regnum];
347 else
348 return i386_pseudo_register_name (gdbarch, regnum);
349 }
350
351 static struct value *
352 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
353 struct regcache *regcache,
354 int regnum)
355 {
356 gdb_byte raw_buf[MAX_REGISTER_SIZE];
357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
358 enum register_status status;
359 struct value *result_value;
360 gdb_byte *buf;
361
362 result_value = allocate_value (register_type (gdbarch, regnum));
363 VALUE_LVAL (result_value) = lval_register;
364 VALUE_REGNUM (result_value) = regnum;
365 buf = value_contents_raw (result_value);
366
367 if (i386_byte_regnum_p (gdbarch, regnum))
368 {
369 int gpnum = regnum - tdep->al_regnum;
370
371 /* Extract (always little endian). */
372 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
373 {
374 /* Special handling for AH, BH, CH, DH. */
375 status = regcache_raw_read (regcache,
376 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
377 raw_buf);
378 if (status == REG_VALID)
379 memcpy (buf, raw_buf + 1, 1);
380 else
381 mark_value_bytes_unavailable (result_value, 0,
382 TYPE_LENGTH (value_type (result_value)));
383 }
384 else
385 {
386 status = regcache_raw_read (regcache, gpnum, raw_buf);
387 if (status == REG_VALID)
388 memcpy (buf, raw_buf, 1);
389 else
390 mark_value_bytes_unavailable (result_value, 0,
391 TYPE_LENGTH (value_type (result_value)));
392 }
393 }
394 else if (i386_dword_regnum_p (gdbarch, regnum))
395 {
396 int gpnum = regnum - tdep->eax_regnum;
397 /* Extract (always little endian). */
398 status = regcache_raw_read (regcache, gpnum, raw_buf);
399 if (status == REG_VALID)
400 memcpy (buf, raw_buf, 4);
401 else
402 mark_value_bytes_unavailable (result_value, 0,
403 TYPE_LENGTH (value_type (result_value)));
404 }
405 else
406 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
407 result_value);
408
409 return result_value;
410 }
411
412 static void
413 amd64_pseudo_register_write (struct gdbarch *gdbarch,
414 struct regcache *regcache,
415 int regnum, const gdb_byte *buf)
416 {
417 gdb_byte raw_buf[MAX_REGISTER_SIZE];
418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
419
420 if (i386_byte_regnum_p (gdbarch, regnum))
421 {
422 int gpnum = regnum - tdep->al_regnum;
423
424 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
425 {
426 /* Read ... AH, BH, CH, DH. */
427 regcache_raw_read (regcache,
428 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
429 /* ... Modify ... (always little endian). */
430 memcpy (raw_buf + 1, buf, 1);
431 /* ... Write. */
432 regcache_raw_write (regcache,
433 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
434 }
435 else
436 {
437 /* Read ... */
438 regcache_raw_read (regcache, gpnum, raw_buf);
439 /* ... Modify ... (always little endian). */
440 memcpy (raw_buf, buf, 1);
441 /* ... Write. */
442 regcache_raw_write (regcache, gpnum, raw_buf);
443 }
444 }
445 else if (i386_dword_regnum_p (gdbarch, regnum))
446 {
447 int gpnum = regnum - tdep->eax_regnum;
448
449 /* Read ... */
450 regcache_raw_read (regcache, gpnum, raw_buf);
451 /* ... Modify ... (always little endian). */
452 memcpy (raw_buf, buf, 4);
453 /* ... Write. */
454 regcache_raw_write (regcache, gpnum, raw_buf);
455 }
456 else
457 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
458 }
459
460 \f
461
462 /* Register classes as defined in the psABI. */
463
464 enum amd64_reg_class
465 {
466 AMD64_INTEGER,
467 AMD64_SSE,
468 AMD64_SSEUP,
469 AMD64_X87,
470 AMD64_X87UP,
471 AMD64_COMPLEX_X87,
472 AMD64_NO_CLASS,
473 AMD64_MEMORY
474 };
475
476 /* Return the union class of CLASS1 and CLASS2. See the psABI for
477 details. */
478
479 static enum amd64_reg_class
480 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
481 {
482 /* Rule (a): If both classes are equal, this is the resulting class. */
483 if (class1 == class2)
484 return class1;
485
486 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
487 is the other class. */
488 if (class1 == AMD64_NO_CLASS)
489 return class2;
490 if (class2 == AMD64_NO_CLASS)
491 return class1;
492
493 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
494 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
495 return AMD64_MEMORY;
496
497 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
498 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
499 return AMD64_INTEGER;
500
501 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
502 MEMORY is used as class. */
503 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
504 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
505 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
506 return AMD64_MEMORY;
507
508 /* Rule (f): Otherwise class SSE is used. */
509 return AMD64_SSE;
510 }
511
512 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
513
514 /* Return non-zero if TYPE is a non-POD structure or union type. */
515
516 static int
517 amd64_non_pod_p (struct type *type)
518 {
519 /* ??? A class with a base class certainly isn't POD, but does this
520 catch all non-POD structure types? */
521 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
522 return 1;
523
524 return 0;
525 }
526
527 /* Classify TYPE according to the rules for aggregate (structures and
528 arrays) and union types, and store the result in CLASS. */
529
530 static void
531 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
532 {
533 /* 1. If the size of an object is larger than two eightbytes, or in
534 C++, is a non-POD structure or union type, or contains
535 unaligned fields, it has class memory. */
536 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
537 {
538 theclass[0] = theclass[1] = AMD64_MEMORY;
539 return;
540 }
541
542 /* 2. Both eightbytes get initialized to class NO_CLASS. */
543 theclass[0] = theclass[1] = AMD64_NO_CLASS;
544
545 /* 3. Each field of an object is classified recursively so that
546 always two fields are considered. The resulting class is
547 calculated according to the classes of the fields in the
548 eightbyte: */
549
550 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
551 {
552 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
553
554 /* All fields in an array have the same type. */
555 amd64_classify (subtype, theclass);
556 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
557 theclass[1] = theclass[0];
558 }
559 else
560 {
561 int i;
562
563 /* Structure or union. */
564 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
565 || TYPE_CODE (type) == TYPE_CODE_UNION);
566
567 for (i = 0; i < TYPE_NFIELDS (type); i++)
568 {
569 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
570 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
571 enum amd64_reg_class subclass[2];
572 int bitsize = TYPE_FIELD_BITSIZE (type, i);
573 int endpos;
574
575 if (bitsize == 0)
576 bitsize = TYPE_LENGTH (subtype) * 8;
577 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
578
579 /* Ignore static fields. */
580 if (field_is_static (&TYPE_FIELD (type, i)))
581 continue;
582
583 gdb_assert (pos == 0 || pos == 1);
584
585 amd64_classify (subtype, subclass);
586 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
587 if (bitsize <= 64 && pos == 0 && endpos == 1)
588 /* This is a bit of an odd case: We have a field that would
589 normally fit in one of the two eightbytes, except that
590 it is placed in a way that this field straddles them.
591 This has been seen with a structure containing an array.
592
593 The ABI is a bit unclear in this case, but we assume that
594 this field's class (stored in subclass[0]) must also be merged
595 into class[1]. In other words, our field has a piece stored
596 in the second eight-byte, and thus its class applies to
597 the second eight-byte as well.
598
599 In the case where the field length exceeds 8 bytes,
600 it should not be necessary to merge the field class
601 into class[1]. As LEN > 8, subclass[1] is necessarily
602 different from AMD64_NO_CLASS. If subclass[1] is equal
603 to subclass[0], then the normal class[1]/subclass[1]
604 merging will take care of everything. For subclass[1]
605 to be different from subclass[0], I can only see the case
606 where we have a SSE/SSEUP or X87/X87UP pair, which both
607 use up all 16 bytes of the aggregate, and are already
608 handled just fine (because each portion sits on its own
609 8-byte). */
610 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
611 if (pos == 0)
612 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
613 }
614 }
615
616 /* 4. Then a post merger cleanup is done: */
617
618 /* Rule (a): If one of the classes is MEMORY, the whole argument is
619 passed in memory. */
620 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
621 theclass[0] = theclass[1] = AMD64_MEMORY;
622
623 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
624 SSE. */
625 if (theclass[0] == AMD64_SSEUP)
626 theclass[0] = AMD64_SSE;
627 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
628 theclass[1] = AMD64_SSE;
629 }
630
631 /* Classify TYPE, and store the result in CLASS. */
632
633 static void
634 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
635 {
636 enum type_code code = TYPE_CODE (type);
637 int len = TYPE_LENGTH (type);
638
639 theclass[0] = theclass[1] = AMD64_NO_CLASS;
640
641 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
642 long, long long, and pointers are in the INTEGER class. Similarly,
643 range types, used by languages such as Ada, are also in the INTEGER
644 class. */
645 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
646 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
647 || code == TYPE_CODE_CHAR
648 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
649 && (len == 1 || len == 2 || len == 4 || len == 8))
650 theclass[0] = AMD64_INTEGER;
651
652 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
653 are in class SSE. */
654 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
655 && (len == 4 || len == 8))
656 /* FIXME: __m64 . */
657 theclass[0] = AMD64_SSE;
658
659 /* Arguments of types __float128, _Decimal128 and __m128 are split into
660 two halves. The least significant ones belong to class SSE, the most
661 significant one to class SSEUP. */
662 else if (code == TYPE_CODE_DECFLOAT && len == 16)
663 /* FIXME: __float128, __m128. */
664 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
665
666 /* The 64-bit mantissa of arguments of type long double belongs to
667 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
668 class X87UP. */
669 else if (code == TYPE_CODE_FLT && len == 16)
670 /* Class X87 and X87UP. */
671 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
672
673 /* Arguments of complex T where T is one of the types float or
674 double get treated as if they are implemented as:
675
676 struct complexT {
677 T real;
678 T imag;
679 };
680
681 */
682 else if (code == TYPE_CODE_COMPLEX && len == 8)
683 theclass[0] = AMD64_SSE;
684 else if (code == TYPE_CODE_COMPLEX && len == 16)
685 theclass[0] = theclass[1] = AMD64_SSE;
686
687 /* A variable of type complex long double is classified as type
688 COMPLEX_X87. */
689 else if (code == TYPE_CODE_COMPLEX && len == 32)
690 theclass[0] = AMD64_COMPLEX_X87;
691
692 /* Aggregates. */
693 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
694 || code == TYPE_CODE_UNION)
695 amd64_classify_aggregate (type, theclass);
696 }
697
698 static enum return_value_convention
699 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
700 struct type *type, struct regcache *regcache,
701 gdb_byte *readbuf, const gdb_byte *writebuf)
702 {
703 enum amd64_reg_class theclass[2];
704 int len = TYPE_LENGTH (type);
705 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
706 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
707 int integer_reg = 0;
708 int sse_reg = 0;
709 int i;
710
711 gdb_assert (!(readbuf && writebuf));
712
713 /* 1. Classify the return type with the classification algorithm. */
714 amd64_classify (type, theclass);
715
716 /* 2. If the type has class MEMORY, then the caller provides space
717 for the return value and passes the address of this storage in
718 %rdi as if it were the first argument to the function. In effect,
719 this address becomes a hidden first argument.
720
721 On return %rax will contain the address that has been passed in
722 by the caller in %rdi. */
723 if (theclass[0] == AMD64_MEMORY)
724 {
725 /* As indicated by the comment above, the ABI guarantees that we
726 can always find the return value just after the function has
727 returned. */
728
729 if (readbuf)
730 {
731 ULONGEST addr;
732
733 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
734 read_memory (addr, readbuf, TYPE_LENGTH (type));
735 }
736
737 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
738 }
739
740 /* 8. If the class is COMPLEX_X87, the real part of the value is
741 returned in %st0 and the imaginary part in %st1. */
742 if (theclass[0] == AMD64_COMPLEX_X87)
743 {
744 if (readbuf)
745 {
746 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
747 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
748 }
749
750 if (writebuf)
751 {
752 i387_return_value (gdbarch, regcache);
753 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
754 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
755
756 /* Fix up the tag word such that both %st(0) and %st(1) are
757 marked as valid. */
758 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
759 }
760
761 return RETURN_VALUE_REGISTER_CONVENTION;
762 }
763
764 gdb_assert (theclass[1] != AMD64_MEMORY);
765 gdb_assert (len <= 16);
766
767 for (i = 0; len > 0; i++, len -= 8)
768 {
769 int regnum = -1;
770 int offset = 0;
771
772 switch (theclass[i])
773 {
774 case AMD64_INTEGER:
775 /* 3. If the class is INTEGER, the next available register
776 of the sequence %rax, %rdx is used. */
777 regnum = integer_regnum[integer_reg++];
778 break;
779
780 case AMD64_SSE:
781 /* 4. If the class is SSE, the next available SSE register
782 of the sequence %xmm0, %xmm1 is used. */
783 regnum = sse_regnum[sse_reg++];
784 break;
785
786 case AMD64_SSEUP:
787 /* 5. If the class is SSEUP, the eightbyte is passed in the
788 upper half of the last used SSE register. */
789 gdb_assert (sse_reg > 0);
790 regnum = sse_regnum[sse_reg - 1];
791 offset = 8;
792 break;
793
794 case AMD64_X87:
795 /* 6. If the class is X87, the value is returned on the X87
796 stack in %st0 as 80-bit x87 number. */
797 regnum = AMD64_ST0_REGNUM;
798 if (writebuf)
799 i387_return_value (gdbarch, regcache);
800 break;
801
802 case AMD64_X87UP:
803 /* 7. If the class is X87UP, the value is returned together
804 with the previous X87 value in %st0. */
805 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
806 regnum = AMD64_ST0_REGNUM;
807 offset = 8;
808 len = 2;
809 break;
810
811 case AMD64_NO_CLASS:
812 continue;
813
814 default:
815 gdb_assert (!"Unexpected register class.");
816 }
817
818 gdb_assert (regnum != -1);
819
820 if (readbuf)
821 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
822 readbuf + i * 8);
823 if (writebuf)
824 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
825 writebuf + i * 8);
826 }
827
828 return RETURN_VALUE_REGISTER_CONVENTION;
829 }
830 \f
831
832 static CORE_ADDR
833 amd64_push_arguments (struct regcache *regcache, int nargs,
834 struct value **args, CORE_ADDR sp, int struct_return)
835 {
836 static int integer_regnum[] =
837 {
838 AMD64_RDI_REGNUM, /* %rdi */
839 AMD64_RSI_REGNUM, /* %rsi */
840 AMD64_RDX_REGNUM, /* %rdx */
841 AMD64_RCX_REGNUM, /* %rcx */
842 AMD64_R8_REGNUM, /* %r8 */
843 AMD64_R9_REGNUM /* %r9 */
844 };
845 static int sse_regnum[] =
846 {
847 /* %xmm0 ... %xmm7 */
848 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
849 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
850 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
851 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
852 };
853 struct value **stack_args = alloca (nargs * sizeof (struct value *));
854 int num_stack_args = 0;
855 int num_elements = 0;
856 int element = 0;
857 int integer_reg = 0;
858 int sse_reg = 0;
859 int i;
860
861 /* Reserve a register for the "hidden" argument. */
862 if (struct_return)
863 integer_reg++;
864
865 for (i = 0; i < nargs; i++)
866 {
867 struct type *type = value_type (args[i]);
868 int len = TYPE_LENGTH (type);
869 enum amd64_reg_class theclass[2];
870 int needed_integer_regs = 0;
871 int needed_sse_regs = 0;
872 int j;
873
874 /* Classify argument. */
875 amd64_classify (type, theclass);
876
877 /* Calculate the number of integer and SSE registers needed for
878 this argument. */
879 for (j = 0; j < 2; j++)
880 {
881 if (theclass[j] == AMD64_INTEGER)
882 needed_integer_regs++;
883 else if (theclass[j] == AMD64_SSE)
884 needed_sse_regs++;
885 }
886
887 /* Check whether enough registers are available, and if the
888 argument should be passed in registers at all. */
889 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
890 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
891 || (needed_integer_regs == 0 && needed_sse_regs == 0))
892 {
893 /* The argument will be passed on the stack. */
894 num_elements += ((len + 7) / 8);
895 stack_args[num_stack_args++] = args[i];
896 }
897 else
898 {
899 /* The argument will be passed in registers. */
900 const gdb_byte *valbuf = value_contents (args[i]);
901 gdb_byte buf[8];
902
903 gdb_assert (len <= 16);
904
905 for (j = 0; len > 0; j++, len -= 8)
906 {
907 int regnum = -1;
908 int offset = 0;
909
910 switch (theclass[j])
911 {
912 case AMD64_INTEGER:
913 regnum = integer_regnum[integer_reg++];
914 break;
915
916 case AMD64_SSE:
917 regnum = sse_regnum[sse_reg++];
918 break;
919
920 case AMD64_SSEUP:
921 gdb_assert (sse_reg > 0);
922 regnum = sse_regnum[sse_reg - 1];
923 offset = 8;
924 break;
925
926 default:
927 gdb_assert (!"Unexpected register class.");
928 }
929
930 gdb_assert (regnum != -1);
931 memset (buf, 0, sizeof buf);
932 memcpy (buf, valbuf + j * 8, min (len, 8));
933 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
934 }
935 }
936 }
937
938 /* Allocate space for the arguments on the stack. */
939 sp -= num_elements * 8;
940
941 /* The psABI says that "The end of the input argument area shall be
942 aligned on a 16 byte boundary." */
943 sp &= ~0xf;
944
945 /* Write out the arguments to the stack. */
946 for (i = 0; i < num_stack_args; i++)
947 {
948 struct type *type = value_type (stack_args[i]);
949 const gdb_byte *valbuf = value_contents (stack_args[i]);
950 int len = TYPE_LENGTH (type);
951
952 write_memory (sp + element * 8, valbuf, len);
953 element += ((len + 7) / 8);
954 }
955
956 /* The psABI says that "For calls that may call functions that use
957 varargs or stdargs (prototype-less calls or calls to functions
958 containing ellipsis (...) in the declaration) %al is used as
959 hidden argument to specify the number of SSE registers used. */
960 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
961 return sp;
962 }
963
964 static CORE_ADDR
965 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
966 struct regcache *regcache, CORE_ADDR bp_addr,
967 int nargs, struct value **args, CORE_ADDR sp,
968 int struct_return, CORE_ADDR struct_addr)
969 {
970 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
971 gdb_byte buf[8];
972
973 /* Pass arguments. */
974 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
975
976 /* Pass "hidden" argument". */
977 if (struct_return)
978 {
979 store_unsigned_integer (buf, 8, byte_order, struct_addr);
980 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
981 }
982
983 /* Store return address. */
984 sp -= 8;
985 store_unsigned_integer (buf, 8, byte_order, bp_addr);
986 write_memory (sp, buf, 8);
987
988 /* Finally, update the stack pointer... */
989 store_unsigned_integer (buf, 8, byte_order, sp);
990 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
991
992 /* ...and fake a frame pointer. */
993 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
994
995 return sp + 16;
996 }
997 \f
998 /* Displaced instruction handling. */
999
1000 /* A partially decoded instruction.
1001 This contains enough details for displaced stepping purposes. */
1002
1003 struct amd64_insn
1004 {
1005 /* The number of opcode bytes. */
1006 int opcode_len;
1007 /* The offset of the rex prefix or -1 if not present. */
1008 int rex_offset;
1009 /* The offset to the first opcode byte. */
1010 int opcode_offset;
1011 /* The offset to the modrm byte or -1 if not present. */
1012 int modrm_offset;
1013
1014 /* The raw instruction. */
1015 gdb_byte *raw_insn;
1016 };
1017
1018 struct displaced_step_closure
1019 {
1020 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1021 int tmp_used;
1022 int tmp_regno;
1023 ULONGEST tmp_save;
1024
1025 /* Details of the instruction. */
1026 struct amd64_insn insn_details;
1027
1028 /* Amount of space allocated to insn_buf. */
1029 int max_len;
1030
1031 /* The possibly modified insn.
1032 This is a variable-length field. */
1033 gdb_byte insn_buf[1];
1034 };
1035
1036 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1037 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1038 at which point delete these in favor of libopcodes' versions). */
1039
1040 static const unsigned char onebyte_has_modrm[256] = {
1041 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1042 /* ------------------------------- */
1043 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1044 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1045 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1046 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1047 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1048 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1049 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1050 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1051 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1052 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1053 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1054 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1055 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1056 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1057 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1058 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1059 /* ------------------------------- */
1060 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1061 };
1062
1063 static const unsigned char twobyte_has_modrm[256] = {
1064 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1065 /* ------------------------------- */
1066 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1067 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1068 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1069 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1070 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1071 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1072 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1073 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1074 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1075 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1076 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1077 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1078 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1079 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1080 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1081 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1082 /* ------------------------------- */
1083 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1084 };
1085
1086 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1087
1088 static int
1089 rex_prefix_p (gdb_byte pfx)
1090 {
1091 return REX_PREFIX_P (pfx);
1092 }
1093
1094 /* Skip the legacy instruction prefixes in INSN.
1095 We assume INSN is properly sentineled so we don't have to worry
1096 about falling off the end of the buffer. */
1097
1098 static gdb_byte *
1099 amd64_skip_prefixes (gdb_byte *insn)
1100 {
1101 while (1)
1102 {
1103 switch (*insn)
1104 {
1105 case DATA_PREFIX_OPCODE:
1106 case ADDR_PREFIX_OPCODE:
1107 case CS_PREFIX_OPCODE:
1108 case DS_PREFIX_OPCODE:
1109 case ES_PREFIX_OPCODE:
1110 case FS_PREFIX_OPCODE:
1111 case GS_PREFIX_OPCODE:
1112 case SS_PREFIX_OPCODE:
1113 case LOCK_PREFIX_OPCODE:
1114 case REPE_PREFIX_OPCODE:
1115 case REPNE_PREFIX_OPCODE:
1116 ++insn;
1117 continue;
1118 default:
1119 break;
1120 }
1121 break;
1122 }
1123
1124 return insn;
1125 }
1126
1127 /* Return an integer register (other than RSP) that is unused as an input
1128 operand in INSN.
1129 In order to not require adding a rex prefix if the insn doesn't already
1130 have one, the result is restricted to RAX ... RDI, sans RSP.
1131 The register numbering of the result follows architecture ordering,
1132 e.g. RDI = 7. */
1133
1134 static int
1135 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1136 {
1137 /* 1 bit for each reg */
1138 int used_regs_mask = 0;
1139
1140 /* There can be at most 3 int regs used as inputs in an insn, and we have
1141 7 to choose from (RAX ... RDI, sans RSP).
1142 This allows us to take a conservative approach and keep things simple.
1143 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1144 that implicitly specify RAX. */
1145
1146 /* Avoid RAX. */
1147 used_regs_mask |= 1 << EAX_REG_NUM;
1148 /* Similarily avoid RDX, implicit operand in divides. */
1149 used_regs_mask |= 1 << EDX_REG_NUM;
1150 /* Avoid RSP. */
1151 used_regs_mask |= 1 << ESP_REG_NUM;
1152
1153 /* If the opcode is one byte long and there's no ModRM byte,
1154 assume the opcode specifies a register. */
1155 if (details->opcode_len == 1 && details->modrm_offset == -1)
1156 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1157
1158 /* Mark used regs in the modrm/sib bytes. */
1159 if (details->modrm_offset != -1)
1160 {
1161 int modrm = details->raw_insn[details->modrm_offset];
1162 int mod = MODRM_MOD_FIELD (modrm);
1163 int reg = MODRM_REG_FIELD (modrm);
1164 int rm = MODRM_RM_FIELD (modrm);
1165 int have_sib = mod != 3 && rm == 4;
1166
1167 /* Assume the reg field of the modrm byte specifies a register. */
1168 used_regs_mask |= 1 << reg;
1169
1170 if (have_sib)
1171 {
1172 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1173 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1174 used_regs_mask |= 1 << base;
1175 used_regs_mask |= 1 << idx;
1176 }
1177 else
1178 {
1179 used_regs_mask |= 1 << rm;
1180 }
1181 }
1182
1183 gdb_assert (used_regs_mask < 256);
1184 gdb_assert (used_regs_mask != 255);
1185
1186 /* Finally, find a free reg. */
1187 {
1188 int i;
1189
1190 for (i = 0; i < 8; ++i)
1191 {
1192 if (! (used_regs_mask & (1 << i)))
1193 return i;
1194 }
1195
1196 /* We shouldn't get here. */
1197 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1198 }
1199 }
1200
1201 /* Extract the details of INSN that we need. */
1202
1203 static void
1204 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1205 {
1206 gdb_byte *start = insn;
1207 int need_modrm;
1208
1209 details->raw_insn = insn;
1210
1211 details->opcode_len = -1;
1212 details->rex_offset = -1;
1213 details->opcode_offset = -1;
1214 details->modrm_offset = -1;
1215
1216 /* Skip legacy instruction prefixes. */
1217 insn = amd64_skip_prefixes (insn);
1218
1219 /* Skip REX instruction prefix. */
1220 if (rex_prefix_p (*insn))
1221 {
1222 details->rex_offset = insn - start;
1223 ++insn;
1224 }
1225
1226 details->opcode_offset = insn - start;
1227
1228 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1229 {
1230 /* Two or three-byte opcode. */
1231 ++insn;
1232 need_modrm = twobyte_has_modrm[*insn];
1233
1234 /* Check for three-byte opcode. */
1235 switch (*insn)
1236 {
1237 case 0x24:
1238 case 0x25:
1239 case 0x38:
1240 case 0x3a:
1241 case 0x7a:
1242 case 0x7b:
1243 ++insn;
1244 details->opcode_len = 3;
1245 break;
1246 default:
1247 details->opcode_len = 2;
1248 break;
1249 }
1250 }
1251 else
1252 {
1253 /* One-byte opcode. */
1254 need_modrm = onebyte_has_modrm[*insn];
1255 details->opcode_len = 1;
1256 }
1257
1258 if (need_modrm)
1259 {
1260 ++insn;
1261 details->modrm_offset = insn - start;
1262 }
1263 }
1264
1265 /* Update %rip-relative addressing in INSN.
1266
1267 %rip-relative addressing only uses a 32-bit displacement.
1268 32 bits is not enough to be guaranteed to cover the distance between where
1269 the real instruction is and where its copy is.
1270 Convert the insn to use base+disp addressing.
1271 We set base = pc + insn_length so we can leave disp unchanged. */
1272
1273 static void
1274 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1275 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1276 {
1277 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1278 const struct amd64_insn *insn_details = &dsc->insn_details;
1279 int modrm_offset = insn_details->modrm_offset;
1280 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1281 CORE_ADDR rip_base;
1282 int32_t disp;
1283 int insn_length;
1284 int arch_tmp_regno, tmp_regno;
1285 ULONGEST orig_value;
1286
1287 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1288 ++insn;
1289
1290 /* Compute the rip-relative address. */
1291 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1292 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1293 dsc->max_len, from);
1294 rip_base = from + insn_length;
1295
1296 /* We need a register to hold the address.
1297 Pick one not used in the insn.
1298 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1299 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1300 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1301
1302 /* REX.B should be unset as we were using rip-relative addressing,
1303 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1304 if (insn_details->rex_offset != -1)
1305 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1306
1307 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1308 dsc->tmp_regno = tmp_regno;
1309 dsc->tmp_save = orig_value;
1310 dsc->tmp_used = 1;
1311
1312 /* Convert the ModRM field to be base+disp. */
1313 dsc->insn_buf[modrm_offset] &= ~0xc7;
1314 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1315
1316 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1317
1318 if (debug_displaced)
1319 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1320 "displaced: using temp reg %d, old value %s, new value %s\n",
1321 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1322 paddress (gdbarch, rip_base));
1323 }
1324
1325 static void
1326 fixup_displaced_copy (struct gdbarch *gdbarch,
1327 struct displaced_step_closure *dsc,
1328 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1329 {
1330 const struct amd64_insn *details = &dsc->insn_details;
1331
1332 if (details->modrm_offset != -1)
1333 {
1334 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1335
1336 if ((modrm & 0xc7) == 0x05)
1337 {
1338 /* The insn uses rip-relative addressing.
1339 Deal with it. */
1340 fixup_riprel (gdbarch, dsc, from, to, regs);
1341 }
1342 }
1343 }
1344
1345 struct displaced_step_closure *
1346 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1347 CORE_ADDR from, CORE_ADDR to,
1348 struct regcache *regs)
1349 {
1350 int len = gdbarch_max_insn_length (gdbarch);
1351 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1352 continually watch for running off the end of the buffer. */
1353 int fixup_sentinel_space = len;
1354 struct displaced_step_closure *dsc =
1355 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1356 gdb_byte *buf = &dsc->insn_buf[0];
1357 struct amd64_insn *details = &dsc->insn_details;
1358
1359 dsc->tmp_used = 0;
1360 dsc->max_len = len + fixup_sentinel_space;
1361
1362 read_memory (from, buf, len);
1363
1364 /* Set up the sentinel space so we don't have to worry about running
1365 off the end of the buffer. An excessive number of leading prefixes
1366 could otherwise cause this. */
1367 memset (buf + len, 0, fixup_sentinel_space);
1368
1369 amd64_get_insn_details (buf, details);
1370
1371 /* GDB may get control back after the insn after the syscall.
1372 Presumably this is a kernel bug.
1373 If this is a syscall, make sure there's a nop afterwards. */
1374 {
1375 int syscall_length;
1376
1377 if (amd64_syscall_p (details, &syscall_length))
1378 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1379 }
1380
1381 /* Modify the insn to cope with the address where it will be executed from.
1382 In particular, handle any rip-relative addressing. */
1383 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1384
1385 write_memory (to, buf, len);
1386
1387 if (debug_displaced)
1388 {
1389 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1390 paddress (gdbarch, from), paddress (gdbarch, to));
1391 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1392 }
1393
1394 return dsc;
1395 }
1396
1397 static int
1398 amd64_absolute_jmp_p (const struct amd64_insn *details)
1399 {
1400 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1401
1402 if (insn[0] == 0xff)
1403 {
1404 /* jump near, absolute indirect (/4) */
1405 if ((insn[1] & 0x38) == 0x20)
1406 return 1;
1407
1408 /* jump far, absolute indirect (/5) */
1409 if ((insn[1] & 0x38) == 0x28)
1410 return 1;
1411 }
1412
1413 return 0;
1414 }
1415
1416 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1417
1418 static int
1419 amd64_jmp_p (const struct amd64_insn *details)
1420 {
1421 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1422
1423 /* jump short, relative. */
1424 if (insn[0] == 0xeb)
1425 return 1;
1426
1427 /* jump near, relative. */
1428 if (insn[0] == 0xe9)
1429 return 1;
1430
1431 return amd64_absolute_jmp_p (details);
1432 }
1433
1434 static int
1435 amd64_absolute_call_p (const struct amd64_insn *details)
1436 {
1437 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1438
1439 if (insn[0] == 0xff)
1440 {
1441 /* Call near, absolute indirect (/2) */
1442 if ((insn[1] & 0x38) == 0x10)
1443 return 1;
1444
1445 /* Call far, absolute indirect (/3) */
1446 if ((insn[1] & 0x38) == 0x18)
1447 return 1;
1448 }
1449
1450 return 0;
1451 }
1452
1453 static int
1454 amd64_ret_p (const struct amd64_insn *details)
1455 {
1456 /* NOTE: gcc can emit "repz ; ret". */
1457 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1458
1459 switch (insn[0])
1460 {
1461 case 0xc2: /* ret near, pop N bytes */
1462 case 0xc3: /* ret near */
1463 case 0xca: /* ret far, pop N bytes */
1464 case 0xcb: /* ret far */
1465 case 0xcf: /* iret */
1466 return 1;
1467
1468 default:
1469 return 0;
1470 }
1471 }
1472
1473 static int
1474 amd64_call_p (const struct amd64_insn *details)
1475 {
1476 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1477
1478 if (amd64_absolute_call_p (details))
1479 return 1;
1480
1481 /* call near, relative */
1482 if (insn[0] == 0xe8)
1483 return 1;
1484
1485 return 0;
1486 }
1487
1488 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1489 length in bytes. Otherwise, return zero. */
1490
1491 static int
1492 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1493 {
1494 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1495
1496 if (insn[0] == 0x0f && insn[1] == 0x05)
1497 {
1498 *lengthp = 2;
1499 return 1;
1500 }
1501
1502 return 0;
1503 }
1504
1505 /* Classify the instruction at ADDR using PRED.
1506 Throw an error if the memory can't be read. */
1507
1508 static int
1509 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1510 int (*pred) (const struct amd64_insn *))
1511 {
1512 struct amd64_insn details;
1513 gdb_byte *buf;
1514 int len, classification;
1515
1516 len = gdbarch_max_insn_length (gdbarch);
1517 buf = alloca (len);
1518
1519 read_code (addr, buf, len);
1520 amd64_get_insn_details (buf, &details);
1521
1522 classification = pred (&details);
1523
1524 return classification;
1525 }
1526
1527 /* The gdbarch insn_is_call method. */
1528
1529 static int
1530 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1531 {
1532 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1533 }
1534
1535 /* The gdbarch insn_is_ret method. */
1536
1537 static int
1538 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1539 {
1540 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1541 }
1542
1543 /* The gdbarch insn_is_jump method. */
1544
1545 static int
1546 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1547 {
1548 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1549 }
1550
1551 /* Fix up the state of registers and memory after having single-stepped
1552 a displaced instruction. */
1553
1554 void
1555 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1556 struct displaced_step_closure *dsc,
1557 CORE_ADDR from, CORE_ADDR to,
1558 struct regcache *regs)
1559 {
1560 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1561 /* The offset we applied to the instruction's address. */
1562 ULONGEST insn_offset = to - from;
1563 gdb_byte *insn = dsc->insn_buf;
1564 const struct amd64_insn *insn_details = &dsc->insn_details;
1565
1566 if (debug_displaced)
1567 fprintf_unfiltered (gdb_stdlog,
1568 "displaced: fixup (%s, %s), "
1569 "insn = 0x%02x 0x%02x ...\n",
1570 paddress (gdbarch, from), paddress (gdbarch, to),
1571 insn[0], insn[1]);
1572
1573 /* If we used a tmp reg, restore it. */
1574
1575 if (dsc->tmp_used)
1576 {
1577 if (debug_displaced)
1578 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1579 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1580 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1581 }
1582
1583 /* The list of issues to contend with here is taken from
1584 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1585 Yay for Free Software! */
1586
1587 /* Relocate the %rip back to the program's instruction stream,
1588 if necessary. */
1589
1590 /* Except in the case of absolute or indirect jump or call
1591 instructions, or a return instruction, the new rip is relative to
1592 the displaced instruction; make it relative to the original insn.
1593 Well, signal handler returns don't need relocation either, but we use the
1594 value of %rip to recognize those; see below. */
1595 if (! amd64_absolute_jmp_p (insn_details)
1596 && ! amd64_absolute_call_p (insn_details)
1597 && ! amd64_ret_p (insn_details))
1598 {
1599 ULONGEST orig_rip;
1600 int insn_len;
1601
1602 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1603
1604 /* A signal trampoline system call changes the %rip, resuming
1605 execution of the main program after the signal handler has
1606 returned. That makes them like 'return' instructions; we
1607 shouldn't relocate %rip.
1608
1609 But most system calls don't, and we do need to relocate %rip.
1610
1611 Our heuristic for distinguishing these cases: if stepping
1612 over the system call instruction left control directly after
1613 the instruction, the we relocate --- control almost certainly
1614 doesn't belong in the displaced copy. Otherwise, we assume
1615 the instruction has put control where it belongs, and leave
1616 it unrelocated. Goodness help us if there are PC-relative
1617 system calls. */
1618 if (amd64_syscall_p (insn_details, &insn_len)
1619 && orig_rip != to + insn_len
1620 /* GDB can get control back after the insn after the syscall.
1621 Presumably this is a kernel bug.
1622 Fixup ensures its a nop, we add one to the length for it. */
1623 && orig_rip != to + insn_len + 1)
1624 {
1625 if (debug_displaced)
1626 fprintf_unfiltered (gdb_stdlog,
1627 "displaced: syscall changed %%rip; "
1628 "not relocating\n");
1629 }
1630 else
1631 {
1632 ULONGEST rip = orig_rip - insn_offset;
1633
1634 /* If we just stepped over a breakpoint insn, we don't backup
1635 the pc on purpose; this is to match behaviour without
1636 stepping. */
1637
1638 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1639
1640 if (debug_displaced)
1641 fprintf_unfiltered (gdb_stdlog,
1642 "displaced: "
1643 "relocated %%rip from %s to %s\n",
1644 paddress (gdbarch, orig_rip),
1645 paddress (gdbarch, rip));
1646 }
1647 }
1648
1649 /* If the instruction was PUSHFL, then the TF bit will be set in the
1650 pushed value, and should be cleared. We'll leave this for later,
1651 since GDB already messes up the TF flag when stepping over a
1652 pushfl. */
1653
1654 /* If the instruction was a call, the return address now atop the
1655 stack is the address following the copied instruction. We need
1656 to make it the address following the original instruction. */
1657 if (amd64_call_p (insn_details))
1658 {
1659 ULONGEST rsp;
1660 ULONGEST retaddr;
1661 const ULONGEST retaddr_len = 8;
1662
1663 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1664 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1665 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1666 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1667
1668 if (debug_displaced)
1669 fprintf_unfiltered (gdb_stdlog,
1670 "displaced: relocated return addr at %s "
1671 "to %s\n",
1672 paddress (gdbarch, rsp),
1673 paddress (gdbarch, retaddr));
1674 }
1675 }
1676
1677 /* If the instruction INSN uses RIP-relative addressing, return the
1678 offset into the raw INSN where the displacement to be adjusted is
1679 found. Returns 0 if the instruction doesn't use RIP-relative
1680 addressing. */
1681
1682 static int
1683 rip_relative_offset (struct amd64_insn *insn)
1684 {
1685 if (insn->modrm_offset != -1)
1686 {
1687 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1688
1689 if ((modrm & 0xc7) == 0x05)
1690 {
1691 /* The displacement is found right after the ModRM byte. */
1692 return insn->modrm_offset + 1;
1693 }
1694 }
1695
1696 return 0;
1697 }
1698
1699 static void
1700 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1701 {
1702 target_write_memory (*to, buf, len);
1703 *to += len;
1704 }
1705
1706 static void
1707 amd64_relocate_instruction (struct gdbarch *gdbarch,
1708 CORE_ADDR *to, CORE_ADDR oldloc)
1709 {
1710 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1711 int len = gdbarch_max_insn_length (gdbarch);
1712 /* Extra space for sentinels. */
1713 int fixup_sentinel_space = len;
1714 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1715 struct amd64_insn insn_details;
1716 int offset = 0;
1717 LONGEST rel32, newrel;
1718 gdb_byte *insn;
1719 int insn_length;
1720
1721 read_memory (oldloc, buf, len);
1722
1723 /* Set up the sentinel space so we don't have to worry about running
1724 off the end of the buffer. An excessive number of leading prefixes
1725 could otherwise cause this. */
1726 memset (buf + len, 0, fixup_sentinel_space);
1727
1728 insn = buf;
1729 amd64_get_insn_details (insn, &insn_details);
1730
1731 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1732
1733 /* Skip legacy instruction prefixes. */
1734 insn = amd64_skip_prefixes (insn);
1735
1736 /* Adjust calls with 32-bit relative addresses as push/jump, with
1737 the address pushed being the location where the original call in
1738 the user program would return to. */
1739 if (insn[0] == 0xe8)
1740 {
1741 gdb_byte push_buf[16];
1742 unsigned int ret_addr;
1743
1744 /* Where "ret" in the original code will return to. */
1745 ret_addr = oldloc + insn_length;
1746 push_buf[0] = 0x68; /* pushq $... */
1747 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1748 /* Push the push. */
1749 append_insns (to, 5, push_buf);
1750
1751 /* Convert the relative call to a relative jump. */
1752 insn[0] = 0xe9;
1753
1754 /* Adjust the destination offset. */
1755 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1756 newrel = (oldloc - *to) + rel32;
1757 store_signed_integer (insn + 1, 4, byte_order, newrel);
1758
1759 if (debug_displaced)
1760 fprintf_unfiltered (gdb_stdlog,
1761 "Adjusted insn rel32=%s at %s to"
1762 " rel32=%s at %s\n",
1763 hex_string (rel32), paddress (gdbarch, oldloc),
1764 hex_string (newrel), paddress (gdbarch, *to));
1765
1766 /* Write the adjusted jump into its displaced location. */
1767 append_insns (to, 5, insn);
1768 return;
1769 }
1770
1771 offset = rip_relative_offset (&insn_details);
1772 if (!offset)
1773 {
1774 /* Adjust jumps with 32-bit relative addresses. Calls are
1775 already handled above. */
1776 if (insn[0] == 0xe9)
1777 offset = 1;
1778 /* Adjust conditional jumps. */
1779 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1780 offset = 2;
1781 }
1782
1783 if (offset)
1784 {
1785 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1786 newrel = (oldloc - *to) + rel32;
1787 store_signed_integer (insn + offset, 4, byte_order, newrel);
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
1790 "Adjusted insn rel32=%s at %s to"
1791 " rel32=%s at %s\n",
1792 hex_string (rel32), paddress (gdbarch, oldloc),
1793 hex_string (newrel), paddress (gdbarch, *to));
1794 }
1795
1796 /* Write the adjusted instruction into its displaced location. */
1797 append_insns (to, insn_length, buf);
1798 }
1799
1800 \f
1801 /* The maximum number of saved registers. This should include %rip. */
1802 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1803
1804 struct amd64_frame_cache
1805 {
1806 /* Base address. */
1807 CORE_ADDR base;
1808 int base_p;
1809 CORE_ADDR sp_offset;
1810 CORE_ADDR pc;
1811
1812 /* Saved registers. */
1813 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1814 CORE_ADDR saved_sp;
1815 int saved_sp_reg;
1816
1817 /* Do we have a frame? */
1818 int frameless_p;
1819 };
1820
1821 /* Initialize a frame cache. */
1822
1823 static void
1824 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1825 {
1826 int i;
1827
1828 /* Base address. */
1829 cache->base = 0;
1830 cache->base_p = 0;
1831 cache->sp_offset = -8;
1832 cache->pc = 0;
1833
1834 /* Saved registers. We initialize these to -1 since zero is a valid
1835 offset (that's where %rbp is supposed to be stored).
1836 The values start out as being offsets, and are later converted to
1837 addresses (at which point -1 is interpreted as an address, still meaning
1838 "invalid"). */
1839 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1840 cache->saved_regs[i] = -1;
1841 cache->saved_sp = 0;
1842 cache->saved_sp_reg = -1;
1843
1844 /* Frameless until proven otherwise. */
1845 cache->frameless_p = 1;
1846 }
1847
1848 /* Allocate and initialize a frame cache. */
1849
1850 static struct amd64_frame_cache *
1851 amd64_alloc_frame_cache (void)
1852 {
1853 struct amd64_frame_cache *cache;
1854
1855 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1856 amd64_init_frame_cache (cache);
1857 return cache;
1858 }
1859
1860 /* GCC 4.4 and later, can put code in the prologue to realign the
1861 stack pointer. Check whether PC points to such code, and update
1862 CACHE accordingly. Return the first instruction after the code
1863 sequence or CURRENT_PC, whichever is smaller. If we don't
1864 recognize the code, return PC. */
1865
1866 static CORE_ADDR
1867 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1868 struct amd64_frame_cache *cache)
1869 {
1870 /* There are 2 code sequences to re-align stack before the frame
1871 gets set up:
1872
1873 1. Use a caller-saved saved register:
1874
1875 leaq 8(%rsp), %reg
1876 andq $-XXX, %rsp
1877 pushq -8(%reg)
1878
1879 2. Use a callee-saved saved register:
1880
1881 pushq %reg
1882 leaq 16(%rsp), %reg
1883 andq $-XXX, %rsp
1884 pushq -8(%reg)
1885
1886 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1887
1888 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1889 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1890 */
1891
1892 gdb_byte buf[18];
1893 int reg, r;
1894 int offset, offset_and;
1895
1896 if (target_read_code (pc, buf, sizeof buf))
1897 return pc;
1898
1899 /* Check caller-saved saved register. The first instruction has
1900 to be "leaq 8(%rsp), %reg". */
1901 if ((buf[0] & 0xfb) == 0x48
1902 && buf[1] == 0x8d
1903 && buf[3] == 0x24
1904 && buf[4] == 0x8)
1905 {
1906 /* MOD must be binary 10 and R/M must be binary 100. */
1907 if ((buf[2] & 0xc7) != 0x44)
1908 return pc;
1909
1910 /* REG has register number. */
1911 reg = (buf[2] >> 3) & 7;
1912
1913 /* Check the REX.R bit. */
1914 if (buf[0] == 0x4c)
1915 reg += 8;
1916
1917 offset = 5;
1918 }
1919 else
1920 {
1921 /* Check callee-saved saved register. The first instruction
1922 has to be "pushq %reg". */
1923 reg = 0;
1924 if ((buf[0] & 0xf8) == 0x50)
1925 offset = 0;
1926 else if ((buf[0] & 0xf6) == 0x40
1927 && (buf[1] & 0xf8) == 0x50)
1928 {
1929 /* Check the REX.B bit. */
1930 if ((buf[0] & 1) != 0)
1931 reg = 8;
1932
1933 offset = 1;
1934 }
1935 else
1936 return pc;
1937
1938 /* Get register. */
1939 reg += buf[offset] & 0x7;
1940
1941 offset++;
1942
1943 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1944 if ((buf[offset] & 0xfb) != 0x48
1945 || buf[offset + 1] != 0x8d
1946 || buf[offset + 3] != 0x24
1947 || buf[offset + 4] != 0x10)
1948 return pc;
1949
1950 /* MOD must be binary 10 and R/M must be binary 100. */
1951 if ((buf[offset + 2] & 0xc7) != 0x44)
1952 return pc;
1953
1954 /* REG has register number. */
1955 r = (buf[offset + 2] >> 3) & 7;
1956
1957 /* Check the REX.R bit. */
1958 if (buf[offset] == 0x4c)
1959 r += 8;
1960
1961 /* Registers in pushq and leaq have to be the same. */
1962 if (reg != r)
1963 return pc;
1964
1965 offset += 5;
1966 }
1967
1968 /* Rigister can't be %rsp nor %rbp. */
1969 if (reg == 4 || reg == 5)
1970 return pc;
1971
1972 /* The next instruction has to be "andq $-XXX, %rsp". */
1973 if (buf[offset] != 0x48
1974 || buf[offset + 2] != 0xe4
1975 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1976 return pc;
1977
1978 offset_and = offset;
1979 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1980
1981 /* The next instruction has to be "pushq -8(%reg)". */
1982 r = 0;
1983 if (buf[offset] == 0xff)
1984 offset++;
1985 else if ((buf[offset] & 0xf6) == 0x40
1986 && buf[offset + 1] == 0xff)
1987 {
1988 /* Check the REX.B bit. */
1989 if ((buf[offset] & 0x1) != 0)
1990 r = 8;
1991 offset += 2;
1992 }
1993 else
1994 return pc;
1995
1996 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1997 01. */
1998 if (buf[offset + 1] != 0xf8
1999 || (buf[offset] & 0xf8) != 0x70)
2000 return pc;
2001
2002 /* R/M has register. */
2003 r += buf[offset] & 7;
2004
2005 /* Registers in leaq and pushq have to be the same. */
2006 if (reg != r)
2007 return pc;
2008
2009 if (current_pc > pc + offset_and)
2010 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2011
2012 return min (pc + offset + 2, current_pc);
2013 }
2014
2015 /* Similar to amd64_analyze_stack_align for x32. */
2016
2017 static CORE_ADDR
2018 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2019 struct amd64_frame_cache *cache)
2020 {
2021 /* There are 2 code sequences to re-align stack before the frame
2022 gets set up:
2023
2024 1. Use a caller-saved saved register:
2025
2026 leaq 8(%rsp), %reg
2027 andq $-XXX, %rsp
2028 pushq -8(%reg)
2029
2030 or
2031
2032 [addr32] leal 8(%rsp), %reg
2033 andl $-XXX, %esp
2034 [addr32] pushq -8(%reg)
2035
2036 2. Use a callee-saved saved register:
2037
2038 pushq %reg
2039 leaq 16(%rsp), %reg
2040 andq $-XXX, %rsp
2041 pushq -8(%reg)
2042
2043 or
2044
2045 pushq %reg
2046 [addr32] leal 16(%rsp), %reg
2047 andl $-XXX, %esp
2048 [addr32] pushq -8(%reg)
2049
2050 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2051
2052 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2053 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2054
2055 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2056
2057 0x83 0xe4 0xf0 andl $-16, %esp
2058 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2059 */
2060
2061 gdb_byte buf[19];
2062 int reg, r;
2063 int offset, offset_and;
2064
2065 if (target_read_memory (pc, buf, sizeof buf))
2066 return pc;
2067
2068 /* Skip optional addr32 prefix. */
2069 offset = buf[0] == 0x67 ? 1 : 0;
2070
2071 /* Check caller-saved saved register. The first instruction has
2072 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2073 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2074 && buf[offset + 1] == 0x8d
2075 && buf[offset + 3] == 0x24
2076 && buf[offset + 4] == 0x8)
2077 {
2078 /* MOD must be binary 10 and R/M must be binary 100. */
2079 if ((buf[offset + 2] & 0xc7) != 0x44)
2080 return pc;
2081
2082 /* REG has register number. */
2083 reg = (buf[offset + 2] >> 3) & 7;
2084
2085 /* Check the REX.R bit. */
2086 if ((buf[offset] & 0x4) != 0)
2087 reg += 8;
2088
2089 offset += 5;
2090 }
2091 else
2092 {
2093 /* Check callee-saved saved register. The first instruction
2094 has to be "pushq %reg". */
2095 reg = 0;
2096 if ((buf[offset] & 0xf6) == 0x40
2097 && (buf[offset + 1] & 0xf8) == 0x50)
2098 {
2099 /* Check the REX.B bit. */
2100 if ((buf[offset] & 1) != 0)
2101 reg = 8;
2102
2103 offset += 1;
2104 }
2105 else if ((buf[offset] & 0xf8) != 0x50)
2106 return pc;
2107
2108 /* Get register. */
2109 reg += buf[offset] & 0x7;
2110
2111 offset++;
2112
2113 /* Skip optional addr32 prefix. */
2114 if (buf[offset] == 0x67)
2115 offset++;
2116
2117 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2118 "leal 16(%rsp), %reg". */
2119 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2120 || buf[offset + 1] != 0x8d
2121 || buf[offset + 3] != 0x24
2122 || buf[offset + 4] != 0x10)
2123 return pc;
2124
2125 /* MOD must be binary 10 and R/M must be binary 100. */
2126 if ((buf[offset + 2] & 0xc7) != 0x44)
2127 return pc;
2128
2129 /* REG has register number. */
2130 r = (buf[offset + 2] >> 3) & 7;
2131
2132 /* Check the REX.R bit. */
2133 if ((buf[offset] & 0x4) != 0)
2134 r += 8;
2135
2136 /* Registers in pushq and leaq have to be the same. */
2137 if (reg != r)
2138 return pc;
2139
2140 offset += 5;
2141 }
2142
2143 /* Rigister can't be %rsp nor %rbp. */
2144 if (reg == 4 || reg == 5)
2145 return pc;
2146
2147 /* The next instruction may be "andq $-XXX, %rsp" or
2148 "andl $-XXX, %esp". */
2149 if (buf[offset] != 0x48)
2150 offset--;
2151
2152 if (buf[offset + 2] != 0xe4
2153 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2154 return pc;
2155
2156 offset_and = offset;
2157 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2158
2159 /* Skip optional addr32 prefix. */
2160 if (buf[offset] == 0x67)
2161 offset++;
2162
2163 /* The next instruction has to be "pushq -8(%reg)". */
2164 r = 0;
2165 if (buf[offset] == 0xff)
2166 offset++;
2167 else if ((buf[offset] & 0xf6) == 0x40
2168 && buf[offset + 1] == 0xff)
2169 {
2170 /* Check the REX.B bit. */
2171 if ((buf[offset] & 0x1) != 0)
2172 r = 8;
2173 offset += 2;
2174 }
2175 else
2176 return pc;
2177
2178 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2179 01. */
2180 if (buf[offset + 1] != 0xf8
2181 || (buf[offset] & 0xf8) != 0x70)
2182 return pc;
2183
2184 /* R/M has register. */
2185 r += buf[offset] & 7;
2186
2187 /* Registers in leaq and pushq have to be the same. */
2188 if (reg != r)
2189 return pc;
2190
2191 if (current_pc > pc + offset_and)
2192 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2193
2194 return min (pc + offset + 2, current_pc);
2195 }
2196
2197 /* Do a limited analysis of the prologue at PC and update CACHE
2198 accordingly. Bail out early if CURRENT_PC is reached. Return the
2199 address where the analysis stopped.
2200
2201 We will handle only functions beginning with:
2202
2203 pushq %rbp 0x55
2204 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2205
2206 or (for the X32 ABI):
2207
2208 pushq %rbp 0x55
2209 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2210
2211 Any function that doesn't start with one of these sequences will be
2212 assumed to have no prologue and thus no valid frame pointer in
2213 %rbp. */
2214
2215 static CORE_ADDR
2216 amd64_analyze_prologue (struct gdbarch *gdbarch,
2217 CORE_ADDR pc, CORE_ADDR current_pc,
2218 struct amd64_frame_cache *cache)
2219 {
2220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2221 /* There are two variations of movq %rsp, %rbp. */
2222 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2223 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2224 /* Ditto for movl %esp, %ebp. */
2225 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2226 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2227
2228 gdb_byte buf[3];
2229 gdb_byte op;
2230
2231 if (current_pc <= pc)
2232 return current_pc;
2233
2234 if (gdbarch_ptr_bit (gdbarch) == 32)
2235 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2236 else
2237 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2238
2239 op = read_code_unsigned_integer (pc, 1, byte_order);
2240
2241 if (op == 0x55) /* pushq %rbp */
2242 {
2243 /* Take into account that we've executed the `pushq %rbp' that
2244 starts this instruction sequence. */
2245 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2246 cache->sp_offset += 8;
2247
2248 /* If that's all, return now. */
2249 if (current_pc <= pc + 1)
2250 return current_pc;
2251
2252 read_code (pc + 1, buf, 3);
2253
2254 /* Check for `movq %rsp, %rbp'. */
2255 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2256 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2257 {
2258 /* OK, we actually have a frame. */
2259 cache->frameless_p = 0;
2260 return pc + 4;
2261 }
2262
2263 /* For X32, also check for `movq %esp, %ebp'. */
2264 if (gdbarch_ptr_bit (gdbarch) == 32)
2265 {
2266 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2267 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2268 {
2269 /* OK, we actually have a frame. */
2270 cache->frameless_p = 0;
2271 return pc + 3;
2272 }
2273 }
2274
2275 return pc + 1;
2276 }
2277
2278 return pc;
2279 }
2280
2281 /* Work around false termination of prologue - GCC PR debug/48827.
2282
2283 START_PC is the first instruction of a function, PC is its minimal already
2284 determined advanced address. Function returns PC if it has nothing to do.
2285
2286 84 c0 test %al,%al
2287 74 23 je after
2288 <-- here is 0 lines advance - the false prologue end marker.
2289 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2290 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2291 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2292 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2293 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2294 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2295 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2296 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2297 after: */
2298
2299 static CORE_ADDR
2300 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2301 {
2302 struct symtab_and_line start_pc_sal, next_sal;
2303 gdb_byte buf[4 + 8 * 7];
2304 int offset, xmmreg;
2305
2306 if (pc == start_pc)
2307 return pc;
2308
2309 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2310 if (start_pc_sal.symtab == NULL
2311 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2312 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2313 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2314 return pc;
2315
2316 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2317 if (next_sal.line != start_pc_sal.line)
2318 return pc;
2319
2320 /* START_PC can be from overlayed memory, ignored here. */
2321 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2322 return pc;
2323
2324 /* test %al,%al */
2325 if (buf[0] != 0x84 || buf[1] != 0xc0)
2326 return pc;
2327 /* je AFTER */
2328 if (buf[2] != 0x74)
2329 return pc;
2330
2331 offset = 4;
2332 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2333 {
2334 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2335 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2336 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2337 return pc;
2338
2339 /* 0b01?????? */
2340 if ((buf[offset + 2] & 0xc0) == 0x40)
2341 {
2342 /* 8-bit displacement. */
2343 offset += 4;
2344 }
2345 /* 0b10?????? */
2346 else if ((buf[offset + 2] & 0xc0) == 0x80)
2347 {
2348 /* 32-bit displacement. */
2349 offset += 7;
2350 }
2351 else
2352 return pc;
2353 }
2354
2355 /* je AFTER */
2356 if (offset - 4 != buf[3])
2357 return pc;
2358
2359 return next_sal.end;
2360 }
2361
2362 /* Return PC of first real instruction. */
2363
2364 static CORE_ADDR
2365 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2366 {
2367 struct amd64_frame_cache cache;
2368 CORE_ADDR pc;
2369 CORE_ADDR func_addr;
2370
2371 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2372 {
2373 CORE_ADDR post_prologue_pc
2374 = skip_prologue_using_sal (gdbarch, func_addr);
2375 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2376
2377 /* Clang always emits a line note before the prologue and another
2378 one after. We trust clang to emit usable line notes. */
2379 if (post_prologue_pc
2380 && (cust != NULL
2381 && COMPUNIT_PRODUCER (cust) != NULL
2382 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2383 return max (start_pc, post_prologue_pc);
2384 }
2385
2386 amd64_init_frame_cache (&cache);
2387 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2388 &cache);
2389 if (cache.frameless_p)
2390 return start_pc;
2391
2392 return amd64_skip_xmm_prologue (pc, start_pc);
2393 }
2394 \f
2395
2396 /* Normal frames. */
2397
2398 static void
2399 amd64_frame_cache_1 (struct frame_info *this_frame,
2400 struct amd64_frame_cache *cache)
2401 {
2402 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2403 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2404 gdb_byte buf[8];
2405 int i;
2406
2407 cache->pc = get_frame_func (this_frame);
2408 if (cache->pc != 0)
2409 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2410 cache);
2411
2412 if (cache->frameless_p)
2413 {
2414 /* We didn't find a valid frame. If we're at the start of a
2415 function, or somewhere half-way its prologue, the function's
2416 frame probably hasn't been fully setup yet. Try to
2417 reconstruct the base address for the stack frame by looking
2418 at the stack pointer. For truly "frameless" functions this
2419 might work too. */
2420
2421 if (cache->saved_sp_reg != -1)
2422 {
2423 /* Stack pointer has been saved. */
2424 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2425 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2426
2427 /* We're halfway aligning the stack. */
2428 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2429 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2430
2431 /* This will be added back below. */
2432 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2433 }
2434 else
2435 {
2436 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2437 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2438 + cache->sp_offset;
2439 }
2440 }
2441 else
2442 {
2443 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2444 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2445 }
2446
2447 /* Now that we have the base address for the stack frame we can
2448 calculate the value of %rsp in the calling frame. */
2449 cache->saved_sp = cache->base + 16;
2450
2451 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2452 frame we find it at the same offset from the reconstructed base
2453 address. If we're halfway aligning the stack, %rip is handled
2454 differently (see above). */
2455 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2456 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2457
2458 /* Adjust all the saved registers such that they contain addresses
2459 instead of offsets. */
2460 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2461 if (cache->saved_regs[i] != -1)
2462 cache->saved_regs[i] += cache->base;
2463
2464 cache->base_p = 1;
2465 }
2466
2467 static struct amd64_frame_cache *
2468 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2469 {
2470 struct amd64_frame_cache *cache;
2471
2472 if (*this_cache)
2473 return *this_cache;
2474
2475 cache = amd64_alloc_frame_cache ();
2476 *this_cache = cache;
2477
2478 TRY
2479 {
2480 amd64_frame_cache_1 (this_frame, cache);
2481 }
2482 CATCH (ex, RETURN_MASK_ERROR)
2483 {
2484 if (ex.error != NOT_AVAILABLE_ERROR)
2485 throw_exception (ex);
2486 }
2487 END_CATCH
2488
2489 return cache;
2490 }
2491
2492 static enum unwind_stop_reason
2493 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2494 void **this_cache)
2495 {
2496 struct amd64_frame_cache *cache =
2497 amd64_frame_cache (this_frame, this_cache);
2498
2499 if (!cache->base_p)
2500 return UNWIND_UNAVAILABLE;
2501
2502 /* This marks the outermost frame. */
2503 if (cache->base == 0)
2504 return UNWIND_OUTERMOST;
2505
2506 return UNWIND_NO_REASON;
2507 }
2508
2509 static void
2510 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2511 struct frame_id *this_id)
2512 {
2513 struct amd64_frame_cache *cache =
2514 amd64_frame_cache (this_frame, this_cache);
2515
2516 if (!cache->base_p)
2517 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2518 else if (cache->base == 0)
2519 {
2520 /* This marks the outermost frame. */
2521 return;
2522 }
2523 else
2524 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2525 }
2526
2527 static struct value *
2528 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2529 int regnum)
2530 {
2531 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2532 struct amd64_frame_cache *cache =
2533 amd64_frame_cache (this_frame, this_cache);
2534
2535 gdb_assert (regnum >= 0);
2536
2537 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2538 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2539
2540 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2541 return frame_unwind_got_memory (this_frame, regnum,
2542 cache->saved_regs[regnum]);
2543
2544 return frame_unwind_got_register (this_frame, regnum, regnum);
2545 }
2546
2547 static const struct frame_unwind amd64_frame_unwind =
2548 {
2549 NORMAL_FRAME,
2550 amd64_frame_unwind_stop_reason,
2551 amd64_frame_this_id,
2552 amd64_frame_prev_register,
2553 NULL,
2554 default_frame_sniffer
2555 };
2556 \f
2557 /* Generate a bytecode expression to get the value of the saved PC. */
2558
2559 static void
2560 amd64_gen_return_address (struct gdbarch *gdbarch,
2561 struct agent_expr *ax, struct axs_value *value,
2562 CORE_ADDR scope)
2563 {
2564 /* The following sequence assumes the traditional use of the base
2565 register. */
2566 ax_reg (ax, AMD64_RBP_REGNUM);
2567 ax_const_l (ax, 8);
2568 ax_simple (ax, aop_add);
2569 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2570 value->kind = axs_lvalue_memory;
2571 }
2572 \f
2573
2574 /* Signal trampolines. */
2575
2576 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2577 64-bit variants. This would require using identical frame caches
2578 on both platforms. */
2579
2580 static struct amd64_frame_cache *
2581 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2582 {
2583 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2584 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2586 struct amd64_frame_cache *cache;
2587 CORE_ADDR addr;
2588 gdb_byte buf[8];
2589 int i;
2590
2591 if (*this_cache)
2592 return *this_cache;
2593
2594 cache = amd64_alloc_frame_cache ();
2595
2596 TRY
2597 {
2598 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2599 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2600
2601 addr = tdep->sigcontext_addr (this_frame);
2602 gdb_assert (tdep->sc_reg_offset);
2603 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2604 for (i = 0; i < tdep->sc_num_regs; i++)
2605 if (tdep->sc_reg_offset[i] != -1)
2606 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2607
2608 cache->base_p = 1;
2609 }
2610 CATCH (ex, RETURN_MASK_ERROR)
2611 {
2612 if (ex.error != NOT_AVAILABLE_ERROR)
2613 throw_exception (ex);
2614 }
2615 END_CATCH
2616
2617 *this_cache = cache;
2618 return cache;
2619 }
2620
2621 static enum unwind_stop_reason
2622 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2623 void **this_cache)
2624 {
2625 struct amd64_frame_cache *cache =
2626 amd64_sigtramp_frame_cache (this_frame, this_cache);
2627
2628 if (!cache->base_p)
2629 return UNWIND_UNAVAILABLE;
2630
2631 return UNWIND_NO_REASON;
2632 }
2633
2634 static void
2635 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2636 void **this_cache, struct frame_id *this_id)
2637 {
2638 struct amd64_frame_cache *cache =
2639 amd64_sigtramp_frame_cache (this_frame, this_cache);
2640
2641 if (!cache->base_p)
2642 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2643 else if (cache->base == 0)
2644 {
2645 /* This marks the outermost frame. */
2646 return;
2647 }
2648 else
2649 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2650 }
2651
2652 static struct value *
2653 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2654 void **this_cache, int regnum)
2655 {
2656 /* Make sure we've initialized the cache. */
2657 amd64_sigtramp_frame_cache (this_frame, this_cache);
2658
2659 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2660 }
2661
2662 static int
2663 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2664 struct frame_info *this_frame,
2665 void **this_cache)
2666 {
2667 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2668
2669 /* We shouldn't even bother if we don't have a sigcontext_addr
2670 handler. */
2671 if (tdep->sigcontext_addr == NULL)
2672 return 0;
2673
2674 if (tdep->sigtramp_p != NULL)
2675 {
2676 if (tdep->sigtramp_p (this_frame))
2677 return 1;
2678 }
2679
2680 if (tdep->sigtramp_start != 0)
2681 {
2682 CORE_ADDR pc = get_frame_pc (this_frame);
2683
2684 gdb_assert (tdep->sigtramp_end != 0);
2685 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2686 return 1;
2687 }
2688
2689 return 0;
2690 }
2691
2692 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2693 {
2694 SIGTRAMP_FRAME,
2695 amd64_sigtramp_frame_unwind_stop_reason,
2696 amd64_sigtramp_frame_this_id,
2697 amd64_sigtramp_frame_prev_register,
2698 NULL,
2699 amd64_sigtramp_frame_sniffer
2700 };
2701 \f
2702
2703 static CORE_ADDR
2704 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2705 {
2706 struct amd64_frame_cache *cache =
2707 amd64_frame_cache (this_frame, this_cache);
2708
2709 return cache->base;
2710 }
2711
2712 static const struct frame_base amd64_frame_base =
2713 {
2714 &amd64_frame_unwind,
2715 amd64_frame_base_address,
2716 amd64_frame_base_address,
2717 amd64_frame_base_address
2718 };
2719
2720 /* Normal frames, but in a function epilogue. */
2721
2722 /* The epilogue is defined here as the 'ret' instruction, which will
2723 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2724 the function's stack frame. */
2725
2726 static int
2727 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2728 {
2729 gdb_byte insn;
2730 struct compunit_symtab *cust;
2731
2732 cust = find_pc_compunit_symtab (pc);
2733 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2734 return 0;
2735
2736 if (target_read_memory (pc, &insn, 1))
2737 return 0; /* Can't read memory at pc. */
2738
2739 if (insn != 0xc3) /* 'ret' instruction. */
2740 return 0;
2741
2742 return 1;
2743 }
2744
2745 static int
2746 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2747 struct frame_info *this_frame,
2748 void **this_prologue_cache)
2749 {
2750 if (frame_relative_level (this_frame) == 0)
2751 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2752 get_frame_pc (this_frame));
2753 else
2754 return 0;
2755 }
2756
2757 static struct amd64_frame_cache *
2758 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2759 {
2760 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2761 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2762 struct amd64_frame_cache *cache;
2763 gdb_byte buf[8];
2764
2765 if (*this_cache)
2766 return *this_cache;
2767
2768 cache = amd64_alloc_frame_cache ();
2769 *this_cache = cache;
2770
2771 TRY
2772 {
2773 /* Cache base will be %esp plus cache->sp_offset (-8). */
2774 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2775 cache->base = extract_unsigned_integer (buf, 8,
2776 byte_order) + cache->sp_offset;
2777
2778 /* Cache pc will be the frame func. */
2779 cache->pc = get_frame_pc (this_frame);
2780
2781 /* The saved %esp will be at cache->base plus 16. */
2782 cache->saved_sp = cache->base + 16;
2783
2784 /* The saved %eip will be at cache->base plus 8. */
2785 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2786
2787 cache->base_p = 1;
2788 }
2789 CATCH (ex, RETURN_MASK_ERROR)
2790 {
2791 if (ex.error != NOT_AVAILABLE_ERROR)
2792 throw_exception (ex);
2793 }
2794 END_CATCH
2795
2796 return cache;
2797 }
2798
2799 static enum unwind_stop_reason
2800 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2801 void **this_cache)
2802 {
2803 struct amd64_frame_cache *cache
2804 = amd64_epilogue_frame_cache (this_frame, this_cache);
2805
2806 if (!cache->base_p)
2807 return UNWIND_UNAVAILABLE;
2808
2809 return UNWIND_NO_REASON;
2810 }
2811
2812 static void
2813 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2814 void **this_cache,
2815 struct frame_id *this_id)
2816 {
2817 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2818 this_cache);
2819
2820 if (!cache->base_p)
2821 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2822 else
2823 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2824 }
2825
2826 static const struct frame_unwind amd64_epilogue_frame_unwind =
2827 {
2828 NORMAL_FRAME,
2829 amd64_epilogue_frame_unwind_stop_reason,
2830 amd64_epilogue_frame_this_id,
2831 amd64_frame_prev_register,
2832 NULL,
2833 amd64_epilogue_frame_sniffer
2834 };
2835
2836 static struct frame_id
2837 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2838 {
2839 CORE_ADDR fp;
2840
2841 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2842
2843 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2844 }
2845
2846 /* 16 byte align the SP per frame requirements. */
2847
2848 static CORE_ADDR
2849 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2850 {
2851 return sp & -(CORE_ADDR)16;
2852 }
2853 \f
2854
2855 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2856 in the floating-point register set REGSET to register cache
2857 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2858
2859 static void
2860 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2861 int regnum, const void *fpregs, size_t len)
2862 {
2863 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2864 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2865
2866 gdb_assert (len >= tdep->sizeof_fpregset);
2867 amd64_supply_fxsave (regcache, regnum, fpregs);
2868 }
2869
2870 /* Collect register REGNUM from the register cache REGCACHE and store
2871 it in the buffer specified by FPREGS and LEN as described by the
2872 floating-point register set REGSET. If REGNUM is -1, do this for
2873 all registers in REGSET. */
2874
2875 static void
2876 amd64_collect_fpregset (const struct regset *regset,
2877 const struct regcache *regcache,
2878 int regnum, void *fpregs, size_t len)
2879 {
2880 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2881 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2882
2883 gdb_assert (len >= tdep->sizeof_fpregset);
2884 amd64_collect_fxsave (regcache, regnum, fpregs);
2885 }
2886
2887 const struct regset amd64_fpregset =
2888 {
2889 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2890 };
2891 \f
2892
2893 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2894 %rdi. We expect its value to be a pointer to the jmp_buf structure
2895 from which we extract the address that we will land at. This
2896 address is copied into PC. This routine returns non-zero on
2897 success. */
2898
2899 static int
2900 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2901 {
2902 gdb_byte buf[8];
2903 CORE_ADDR jb_addr;
2904 struct gdbarch *gdbarch = get_frame_arch (frame);
2905 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2906 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2907
2908 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2909 longjmp will land. */
2910 if (jb_pc_offset == -1)
2911 return 0;
2912
2913 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2914 jb_addr= extract_typed_address
2915 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2916 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2917 return 0;
2918
2919 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2920
2921 return 1;
2922 }
2923
2924 static const int amd64_record_regmap[] =
2925 {
2926 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2927 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2928 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2929 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2930 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2931 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2932 };
2933
2934 void
2935 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2936 {
2937 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2938 const struct target_desc *tdesc = info.target_desc;
2939 static const char *const stap_integer_prefixes[] = { "$", NULL };
2940 static const char *const stap_register_prefixes[] = { "%", NULL };
2941 static const char *const stap_register_indirection_prefixes[] = { "(",
2942 NULL };
2943 static const char *const stap_register_indirection_suffixes[] = { ")",
2944 NULL };
2945
2946 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2947 floating-point registers. */
2948 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2949 tdep->fpregset = &amd64_fpregset;
2950
2951 if (! tdesc_has_registers (tdesc))
2952 tdesc = tdesc_amd64;
2953 tdep->tdesc = tdesc;
2954
2955 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2956 tdep->register_names = amd64_register_names;
2957
2958 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
2959 {
2960 tdep->zmmh_register_names = amd64_zmmh_names;
2961 tdep->k_register_names = amd64_k_names;
2962 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
2963 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
2964
2965 tdep->num_zmm_regs = 32;
2966 tdep->num_xmm_avx512_regs = 16;
2967 tdep->num_ymm_avx512_regs = 16;
2968
2969 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
2970 tdep->k0_regnum = AMD64_K0_REGNUM;
2971 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
2972 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
2973 }
2974
2975 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2976 {
2977 tdep->ymmh_register_names = amd64_ymmh_names;
2978 tdep->num_ymm_regs = 16;
2979 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2980 }
2981
2982 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
2983 {
2984 tdep->mpx_register_names = amd64_mpx_names;
2985 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
2986 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
2987 }
2988
2989 tdep->num_byte_regs = 20;
2990 tdep->num_word_regs = 16;
2991 tdep->num_dword_regs = 16;
2992 /* Avoid wiring in the MMX registers for now. */
2993 tdep->num_mmx_regs = 0;
2994
2995 set_gdbarch_pseudo_register_read_value (gdbarch,
2996 amd64_pseudo_register_read_value);
2997 set_gdbarch_pseudo_register_write (gdbarch,
2998 amd64_pseudo_register_write);
2999
3000 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3001
3002 /* AMD64 has an FPU and 16 SSE registers. */
3003 tdep->st0_regnum = AMD64_ST0_REGNUM;
3004 tdep->num_xmm_regs = 16;
3005
3006 /* This is what all the fuss is about. */
3007 set_gdbarch_long_bit (gdbarch, 64);
3008 set_gdbarch_long_long_bit (gdbarch, 64);
3009 set_gdbarch_ptr_bit (gdbarch, 64);
3010
3011 /* In contrast to the i386, on AMD64 a `long double' actually takes
3012 up 128 bits, even though it's still based on the i387 extended
3013 floating-point format which has only 80 significant bits. */
3014 set_gdbarch_long_double_bit (gdbarch, 128);
3015
3016 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3017
3018 /* Register numbers of various important registers. */
3019 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3020 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3021 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3022 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3023
3024 /* The "default" register numbering scheme for AMD64 is referred to
3025 as the "DWARF Register Number Mapping" in the System V psABI.
3026 The preferred debugging format for all known AMD64 targets is
3027 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3028 DWARF-1), but we provide the same mapping just in case. This
3029 mapping is also used for stabs, which GCC does support. */
3030 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3031 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3032
3033 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3034 be in use on any of the supported AMD64 targets. */
3035
3036 /* Call dummy code. */
3037 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3038 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3039 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3040
3041 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3042 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3043 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3044
3045 set_gdbarch_return_value (gdbarch, amd64_return_value);
3046
3047 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3048
3049 tdep->record_regmap = amd64_record_regmap;
3050
3051 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3052
3053 /* Hook the function epilogue frame unwinder. This unwinder is
3054 appended to the list first, so that it supercedes the other
3055 unwinders in function epilogues. */
3056 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3057
3058 /* Hook the prologue-based frame unwinders. */
3059 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3060 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3061 frame_base_set_default (gdbarch, &amd64_frame_base);
3062
3063 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3064
3065 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3066
3067 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3068
3069 /* SystemTap variables and functions. */
3070 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3071 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3072 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3073 stap_register_indirection_prefixes);
3074 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3075 stap_register_indirection_suffixes);
3076 set_gdbarch_stap_is_single_operand (gdbarch,
3077 i386_stap_is_single_operand);
3078 set_gdbarch_stap_parse_special_token (gdbarch,
3079 i386_stap_parse_special_token);
3080 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3081 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3082 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3083 }
3084 \f
3085
3086 static struct type *
3087 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3088 {
3089 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3090
3091 switch (regnum - tdep->eax_regnum)
3092 {
3093 case AMD64_RBP_REGNUM: /* %ebp */
3094 case AMD64_RSP_REGNUM: /* %esp */
3095 return builtin_type (gdbarch)->builtin_data_ptr;
3096 case AMD64_RIP_REGNUM: /* %eip */
3097 return builtin_type (gdbarch)->builtin_func_ptr;
3098 }
3099
3100 return i386_pseudo_register_type (gdbarch, regnum);
3101 }
3102
3103 void
3104 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3105 {
3106 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3107 const struct target_desc *tdesc = info.target_desc;
3108
3109 amd64_init_abi (info, gdbarch);
3110
3111 if (! tdesc_has_registers (tdesc))
3112 tdesc = tdesc_x32;
3113 tdep->tdesc = tdesc;
3114
3115 tdep->num_dword_regs = 17;
3116 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3117
3118 set_gdbarch_long_bit (gdbarch, 32);
3119 set_gdbarch_ptr_bit (gdbarch, 32);
3120 }
3121
3122 /* Return the target description for a specified XSAVE feature mask. */
3123
3124 const struct target_desc *
3125 amd64_target_description (uint64_t xcr0)
3126 {
3127 switch (xcr0 & X86_XSTATE_ALL_MASK)
3128 {
3129 case X86_XSTATE_MPX_AVX512_MASK:
3130 case X86_XSTATE_AVX512_MASK:
3131 return tdesc_amd64_avx512;
3132 case X86_XSTATE_MPX_MASK:
3133 return tdesc_amd64_mpx;
3134 case X86_XSTATE_AVX_MASK:
3135 return tdesc_amd64_avx;
3136 default:
3137 return tdesc_amd64;
3138 }
3139 }
3140
3141 /* Provide a prototype to silence -Wmissing-prototypes. */
3142 void _initialize_amd64_tdep (void);
3143
3144 void
3145 _initialize_amd64_tdep (void)
3146 {
3147 initialize_tdesc_amd64 ();
3148 initialize_tdesc_amd64_avx ();
3149 initialize_tdesc_amd64_mpx ();
3150 initialize_tdesc_amd64_avx512 ();
3151
3152 initialize_tdesc_x32 ();
3153 initialize_tdesc_x32_avx ();
3154 initialize_tdesc_x32_avx512 ();
3155 }
3156 \f
3157
3158 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3159 sense that the instruction pointer and data pointer are simply
3160 64-bit offsets into the code segment and the data segment instead
3161 of a selector offset pair. The functions below store the upper 32
3162 bits of these pointers (instead of just the 16-bits of the segment
3163 selector). */
3164
3165 /* Fill register REGNUM in REGCACHE with the appropriate
3166 floating-point or SSE register value from *FXSAVE. If REGNUM is
3167 -1, do this for all registers. This function masks off any of the
3168 reserved bits in *FXSAVE. */
3169
3170 void
3171 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3172 const void *fxsave)
3173 {
3174 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3176
3177 i387_supply_fxsave (regcache, regnum, fxsave);
3178
3179 if (fxsave
3180 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3181 {
3182 const gdb_byte *regs = fxsave;
3183
3184 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3185 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3186 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3187 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3188 }
3189 }
3190
3191 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3192
3193 void
3194 amd64_supply_xsave (struct regcache *regcache, int regnum,
3195 const void *xsave)
3196 {
3197 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3198 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3199
3200 i387_supply_xsave (regcache, regnum, xsave);
3201
3202 if (xsave
3203 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3204 {
3205 const gdb_byte *regs = xsave;
3206
3207 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3208 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3209 regs + 12);
3210 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3211 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3212 regs + 20);
3213 }
3214 }
3215
3216 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3217 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3218 all registers. This function doesn't touch any of the reserved
3219 bits in *FXSAVE. */
3220
3221 void
3222 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3223 void *fxsave)
3224 {
3225 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3226 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3227 gdb_byte *regs = fxsave;
3228
3229 i387_collect_fxsave (regcache, regnum, fxsave);
3230
3231 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3232 {
3233 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3234 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3235 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3236 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3237 }
3238 }
3239
3240 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3241
3242 void
3243 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3244 void *xsave, int gcore)
3245 {
3246 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3248 gdb_byte *regs = xsave;
3249
3250 i387_collect_xsave (regcache, regnum, xsave, gcore);
3251
3252 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3253 {
3254 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3255 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3256 regs + 12);
3257 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3258 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3259 regs + 20);
3260 }
3261 }
This page took 0.117116 seconds and 4 git commands to generate.