2012-04-27 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "regset.h"
37 #include "symfile.h"
38 #include "disasm.h"
39 #include "gdb_assert.h"
40 #include "exceptions.h"
41 #include "amd64-tdep.h"
42 #include "i387-tdep.h"
43
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46
47 #include "ax.h"
48 #include "ax-gdb.h"
49
50 /* Note that the AMD64 architecture was previously known as x86-64.
51 The latter is (forever) engraved into the canonical system name as
52 returned by config.guess, and used as the name for the AMD64 port
53 of GNU/Linux. The BSD's have renamed their ports to amd64; they
54 don't like to shout. For GDB we prefer the amd64_-prefix over the
55 x86_64_-prefix since it's so much easier to type. */
56
57 /* Register information. */
58
59 static const char *amd64_register_names[] =
60 {
61 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
62
63 /* %r8 is indeed register number 8. */
64 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
65 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
66
67 /* %st0 is register number 24. */
68 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
69 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
70
71 /* %xmm0 is register number 40. */
72 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
73 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
74 "mxcsr",
75 };
76
77 static const char *amd64_ymm_names[] =
78 {
79 "ymm0", "ymm1", "ymm2", "ymm3",
80 "ymm4", "ymm5", "ymm6", "ymm7",
81 "ymm8", "ymm9", "ymm10", "ymm11",
82 "ymm12", "ymm13", "ymm14", "ymm15"
83 };
84
85 static const char *amd64_ymmh_names[] =
86 {
87 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
88 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
89 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
90 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
91 };
92
93 /* The registers used to pass integer arguments during a function call. */
94 static int amd64_dummy_call_integer_regs[] =
95 {
96 AMD64_RDI_REGNUM, /* %rdi */
97 AMD64_RSI_REGNUM, /* %rsi */
98 AMD64_RDX_REGNUM, /* %rdx */
99 AMD64_RCX_REGNUM, /* %rcx */
100 8, /* %r8 */
101 9 /* %r9 */
102 };
103
104 /* DWARF Register Number Mapping as defined in the System V psABI,
105 section 3.6. */
106
107 static int amd64_dwarf_regmap[] =
108 {
109 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
110 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
111 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
112 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
113
114 /* Frame Pointer Register RBP. */
115 AMD64_RBP_REGNUM,
116
117 /* Stack Pointer Register RSP. */
118 AMD64_RSP_REGNUM,
119
120 /* Extended Integer Registers 8 - 15. */
121 8, 9, 10, 11, 12, 13, 14, 15,
122
123 /* Return Address RA. Mapped to RIP. */
124 AMD64_RIP_REGNUM,
125
126 /* SSE Registers 0 - 7. */
127 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
128 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
129 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
130 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
131
132 /* Extended SSE Registers 8 - 15. */
133 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
134 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
135 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
136 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
137
138 /* Floating Point Registers 0-7. */
139 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
140 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
141 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
142 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
143
144 /* Control and Status Flags Register. */
145 AMD64_EFLAGS_REGNUM,
146
147 /* Selector Registers. */
148 AMD64_ES_REGNUM,
149 AMD64_CS_REGNUM,
150 AMD64_SS_REGNUM,
151 AMD64_DS_REGNUM,
152 AMD64_FS_REGNUM,
153 AMD64_GS_REGNUM,
154 -1,
155 -1,
156
157 /* Segment Base Address Registers. */
158 -1,
159 -1,
160 -1,
161 -1,
162
163 /* Special Selector Registers. */
164 -1,
165 -1,
166
167 /* Floating Point Control Registers. */
168 AMD64_MXCSR_REGNUM,
169 AMD64_FCTRL_REGNUM,
170 AMD64_FSTAT_REGNUM
171 };
172
173 static const int amd64_dwarf_regmap_len =
174 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
175
176 /* Convert DWARF register number REG to the appropriate register
177 number used by GDB. */
178
179 static int
180 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
181 {
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
183 int ymm0_regnum = tdep->ymm0_regnum;
184 int regnum = -1;
185
186 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
187 regnum = amd64_dwarf_regmap[reg];
188
189 if (regnum == -1)
190 warning (_("Unmapped DWARF Register #%d encountered."), reg);
191 else if (ymm0_regnum >= 0
192 && i386_xmm_regnum_p (gdbarch, regnum))
193 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
194
195 return regnum;
196 }
197
198 /* Map architectural register numbers to gdb register numbers. */
199
200 static const int amd64_arch_regmap[16] =
201 {
202 AMD64_RAX_REGNUM, /* %rax */
203 AMD64_RCX_REGNUM, /* %rcx */
204 AMD64_RDX_REGNUM, /* %rdx */
205 AMD64_RBX_REGNUM, /* %rbx */
206 AMD64_RSP_REGNUM, /* %rsp */
207 AMD64_RBP_REGNUM, /* %rbp */
208 AMD64_RSI_REGNUM, /* %rsi */
209 AMD64_RDI_REGNUM, /* %rdi */
210 AMD64_R8_REGNUM, /* %r8 */
211 AMD64_R9_REGNUM, /* %r9 */
212 AMD64_R10_REGNUM, /* %r10 */
213 AMD64_R11_REGNUM, /* %r11 */
214 AMD64_R12_REGNUM, /* %r12 */
215 AMD64_R13_REGNUM, /* %r13 */
216 AMD64_R14_REGNUM, /* %r14 */
217 AMD64_R15_REGNUM /* %r15 */
218 };
219
220 static const int amd64_arch_regmap_len =
221 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
222
223 /* Convert architectural register number REG to the appropriate register
224 number used by GDB. */
225
226 static int
227 amd64_arch_reg_to_regnum (int reg)
228 {
229 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
230
231 return amd64_arch_regmap[reg];
232 }
233
234 /* Register names for byte pseudo-registers. */
235
236 static const char *amd64_byte_names[] =
237 {
238 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
239 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
240 "ah", "bh", "ch", "dh"
241 };
242
243 /* Number of lower byte registers. */
244 #define AMD64_NUM_LOWER_BYTE_REGS 16
245
246 /* Register names for word pseudo-registers. */
247
248 static const char *amd64_word_names[] =
249 {
250 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
251 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
252 };
253
254 /* Register names for dword pseudo-registers. */
255
256 static const char *amd64_dword_names[] =
257 {
258 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
259 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d"
260 };
261
262 /* Return the name of register REGNUM. */
263
264 static const char *
265 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
266 {
267 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
268 if (i386_byte_regnum_p (gdbarch, regnum))
269 return amd64_byte_names[regnum - tdep->al_regnum];
270 else if (i386_ymm_regnum_p (gdbarch, regnum))
271 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
272 else if (i386_word_regnum_p (gdbarch, regnum))
273 return amd64_word_names[regnum - tdep->ax_regnum];
274 else if (i386_dword_regnum_p (gdbarch, regnum))
275 return amd64_dword_names[regnum - tdep->eax_regnum];
276 else
277 return i386_pseudo_register_name (gdbarch, regnum);
278 }
279
280 static struct value *
281 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
282 struct regcache *regcache,
283 int regnum)
284 {
285 gdb_byte raw_buf[MAX_REGISTER_SIZE];
286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287 enum register_status status;
288 struct value *result_value;
289 gdb_byte *buf;
290
291 result_value = allocate_value (register_type (gdbarch, regnum));
292 VALUE_LVAL (result_value) = lval_register;
293 VALUE_REGNUM (result_value) = regnum;
294 buf = value_contents_raw (result_value);
295
296 if (i386_byte_regnum_p (gdbarch, regnum))
297 {
298 int gpnum = regnum - tdep->al_regnum;
299
300 /* Extract (always little endian). */
301 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
302 {
303 /* Special handling for AH, BH, CH, DH. */
304 status = regcache_raw_read (regcache,
305 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
306 raw_buf);
307 if (status == REG_VALID)
308 memcpy (buf, raw_buf + 1, 1);
309 else
310 mark_value_bytes_unavailable (result_value, 0,
311 TYPE_LENGTH (value_type (result_value)));
312 }
313 else
314 {
315 status = regcache_raw_read (regcache, gpnum, raw_buf);
316 if (status == REG_VALID)
317 memcpy (buf, raw_buf, 1);
318 else
319 mark_value_bytes_unavailable (result_value, 0,
320 TYPE_LENGTH (value_type (result_value)));
321 }
322 }
323 else if (i386_dword_regnum_p (gdbarch, regnum))
324 {
325 int gpnum = regnum - tdep->eax_regnum;
326 /* Extract (always little endian). */
327 status = regcache_raw_read (regcache, gpnum, raw_buf);
328 if (status == REG_VALID)
329 memcpy (buf, raw_buf, 4);
330 else
331 mark_value_bytes_unavailable (result_value, 0,
332 TYPE_LENGTH (value_type (result_value)));
333 }
334 else
335 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
336 result_value);
337
338 return result_value;
339 }
340
341 static void
342 amd64_pseudo_register_write (struct gdbarch *gdbarch,
343 struct regcache *regcache,
344 int regnum, const gdb_byte *buf)
345 {
346 gdb_byte raw_buf[MAX_REGISTER_SIZE];
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348
349 if (i386_byte_regnum_p (gdbarch, regnum))
350 {
351 int gpnum = regnum - tdep->al_regnum;
352
353 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
354 {
355 /* Read ... AH, BH, CH, DH. */
356 regcache_raw_read (regcache,
357 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
358 /* ... Modify ... (always little endian). */
359 memcpy (raw_buf + 1, buf, 1);
360 /* ... Write. */
361 regcache_raw_write (regcache,
362 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
363 }
364 else
365 {
366 /* Read ... */
367 regcache_raw_read (regcache, gpnum, raw_buf);
368 /* ... Modify ... (always little endian). */
369 memcpy (raw_buf, buf, 1);
370 /* ... Write. */
371 regcache_raw_write (regcache, gpnum, raw_buf);
372 }
373 }
374 else if (i386_dword_regnum_p (gdbarch, regnum))
375 {
376 int gpnum = regnum - tdep->eax_regnum;
377
378 /* Read ... */
379 regcache_raw_read (regcache, gpnum, raw_buf);
380 /* ... Modify ... (always little endian). */
381 memcpy (raw_buf, buf, 4);
382 /* ... Write. */
383 regcache_raw_write (regcache, gpnum, raw_buf);
384 }
385 else
386 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
387 }
388
389 \f
390
391 /* Return the union class of CLASS1 and CLASS2. See the psABI for
392 details. */
393
394 static enum amd64_reg_class
395 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
396 {
397 /* Rule (a): If both classes are equal, this is the resulting class. */
398 if (class1 == class2)
399 return class1;
400
401 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
402 is the other class. */
403 if (class1 == AMD64_NO_CLASS)
404 return class2;
405 if (class2 == AMD64_NO_CLASS)
406 return class1;
407
408 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
409 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
410 return AMD64_MEMORY;
411
412 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
413 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
414 return AMD64_INTEGER;
415
416 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
417 MEMORY is used as class. */
418 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
419 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
420 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
421 return AMD64_MEMORY;
422
423 /* Rule (f): Otherwise class SSE is used. */
424 return AMD64_SSE;
425 }
426
427 /* Return non-zero if TYPE is a non-POD structure or union type. */
428
429 static int
430 amd64_non_pod_p (struct type *type)
431 {
432 /* ??? A class with a base class certainly isn't POD, but does this
433 catch all non-POD structure types? */
434 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
435 return 1;
436
437 return 0;
438 }
439
440 /* Classify TYPE according to the rules for aggregate (structures and
441 arrays) and union types, and store the result in CLASS. */
442
443 static void
444 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
445 {
446 int len = TYPE_LENGTH (type);
447
448 /* 1. If the size of an object is larger than two eightbytes, or in
449 C++, is a non-POD structure or union type, or contains
450 unaligned fields, it has class memory. */
451 if (len > 16 || amd64_non_pod_p (type))
452 {
453 class[0] = class[1] = AMD64_MEMORY;
454 return;
455 }
456
457 /* 2. Both eightbytes get initialized to class NO_CLASS. */
458 class[0] = class[1] = AMD64_NO_CLASS;
459
460 /* 3. Each field of an object is classified recursively so that
461 always two fields are considered. The resulting class is
462 calculated according to the classes of the fields in the
463 eightbyte: */
464
465 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
466 {
467 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
468
469 /* All fields in an array have the same type. */
470 amd64_classify (subtype, class);
471 if (len > 8 && class[1] == AMD64_NO_CLASS)
472 class[1] = class[0];
473 }
474 else
475 {
476 int i;
477
478 /* Structure or union. */
479 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
480 || TYPE_CODE (type) == TYPE_CODE_UNION);
481
482 for (i = 0; i < TYPE_NFIELDS (type); i++)
483 {
484 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
485 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
486 enum amd64_reg_class subclass[2];
487 int bitsize = TYPE_FIELD_BITSIZE (type, i);
488 int endpos;
489
490 if (bitsize == 0)
491 bitsize = TYPE_LENGTH (subtype) * 8;
492 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
493
494 /* Ignore static fields. */
495 if (field_is_static (&TYPE_FIELD (type, i)))
496 continue;
497
498 gdb_assert (pos == 0 || pos == 1);
499
500 amd64_classify (subtype, subclass);
501 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
502 if (bitsize <= 64 && pos == 0 && endpos == 1)
503 /* This is a bit of an odd case: We have a field that would
504 normally fit in one of the two eightbytes, except that
505 it is placed in a way that this field straddles them.
506 This has been seen with a structure containing an array.
507
508 The ABI is a bit unclear in this case, but we assume that
509 this field's class (stored in subclass[0]) must also be merged
510 into class[1]. In other words, our field has a piece stored
511 in the second eight-byte, and thus its class applies to
512 the second eight-byte as well.
513
514 In the case where the field length exceeds 8 bytes,
515 it should not be necessary to merge the field class
516 into class[1]. As LEN > 8, subclass[1] is necessarily
517 different from AMD64_NO_CLASS. If subclass[1] is equal
518 to subclass[0], then the normal class[1]/subclass[1]
519 merging will take care of everything. For subclass[1]
520 to be different from subclass[0], I can only see the case
521 where we have a SSE/SSEUP or X87/X87UP pair, which both
522 use up all 16 bytes of the aggregate, and are already
523 handled just fine (because each portion sits on its own
524 8-byte). */
525 class[1] = amd64_merge_classes (class[1], subclass[0]);
526 if (pos == 0)
527 class[1] = amd64_merge_classes (class[1], subclass[1]);
528 }
529 }
530
531 /* 4. Then a post merger cleanup is done: */
532
533 /* Rule (a): If one of the classes is MEMORY, the whole argument is
534 passed in memory. */
535 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
536 class[0] = class[1] = AMD64_MEMORY;
537
538 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
539 SSE. */
540 if (class[0] == AMD64_SSEUP)
541 class[0] = AMD64_SSE;
542 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
543 class[1] = AMD64_SSE;
544 }
545
546 /* Classify TYPE, and store the result in CLASS. */
547
548 void
549 amd64_classify (struct type *type, enum amd64_reg_class class[2])
550 {
551 enum type_code code = TYPE_CODE (type);
552 int len = TYPE_LENGTH (type);
553
554 class[0] = class[1] = AMD64_NO_CLASS;
555
556 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
557 long, long long, and pointers are in the INTEGER class. Similarly,
558 range types, used by languages such as Ada, are also in the INTEGER
559 class. */
560 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
561 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
562 || code == TYPE_CODE_CHAR
563 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
564 && (len == 1 || len == 2 || len == 4 || len == 8))
565 class[0] = AMD64_INTEGER;
566
567 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
568 are in class SSE. */
569 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
570 && (len == 4 || len == 8))
571 /* FIXME: __m64 . */
572 class[0] = AMD64_SSE;
573
574 /* Arguments of types __float128, _Decimal128 and __m128 are split into
575 two halves. The least significant ones belong to class SSE, the most
576 significant one to class SSEUP. */
577 else if (code == TYPE_CODE_DECFLOAT && len == 16)
578 /* FIXME: __float128, __m128. */
579 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
580
581 /* The 64-bit mantissa of arguments of type long double belongs to
582 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
583 class X87UP. */
584 else if (code == TYPE_CODE_FLT && len == 16)
585 /* Class X87 and X87UP. */
586 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
587
588 /* Aggregates. */
589 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
590 || code == TYPE_CODE_UNION)
591 amd64_classify_aggregate (type, class);
592 }
593
594 static enum return_value_convention
595 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
596 struct type *type, struct regcache *regcache,
597 gdb_byte *readbuf, const gdb_byte *writebuf)
598 {
599 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
600 enum amd64_reg_class class[2];
601 int len = TYPE_LENGTH (type);
602 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
603 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
604 int integer_reg = 0;
605 int sse_reg = 0;
606 int i;
607
608 gdb_assert (!(readbuf && writebuf));
609 gdb_assert (tdep->classify);
610
611 /* 1. Classify the return type with the classification algorithm. */
612 tdep->classify (type, class);
613
614 /* 2. If the type has class MEMORY, then the caller provides space
615 for the return value and passes the address of this storage in
616 %rdi as if it were the first argument to the function. In effect,
617 this address becomes a hidden first argument.
618
619 On return %rax will contain the address that has been passed in
620 by the caller in %rdi. */
621 if (class[0] == AMD64_MEMORY)
622 {
623 /* As indicated by the comment above, the ABI guarantees that we
624 can always find the return value just after the function has
625 returned. */
626
627 if (readbuf)
628 {
629 ULONGEST addr;
630
631 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
632 read_memory (addr, readbuf, TYPE_LENGTH (type));
633 }
634
635 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
636 }
637
638 gdb_assert (class[1] != AMD64_MEMORY);
639 gdb_assert (len <= 16);
640
641 for (i = 0; len > 0; i++, len -= 8)
642 {
643 int regnum = -1;
644 int offset = 0;
645
646 switch (class[i])
647 {
648 case AMD64_INTEGER:
649 /* 3. If the class is INTEGER, the next available register
650 of the sequence %rax, %rdx is used. */
651 regnum = integer_regnum[integer_reg++];
652 break;
653
654 case AMD64_SSE:
655 /* 4. If the class is SSE, the next available SSE register
656 of the sequence %xmm0, %xmm1 is used. */
657 regnum = sse_regnum[sse_reg++];
658 break;
659
660 case AMD64_SSEUP:
661 /* 5. If the class is SSEUP, the eightbyte is passed in the
662 upper half of the last used SSE register. */
663 gdb_assert (sse_reg > 0);
664 regnum = sse_regnum[sse_reg - 1];
665 offset = 8;
666 break;
667
668 case AMD64_X87:
669 /* 6. If the class is X87, the value is returned on the X87
670 stack in %st0 as 80-bit x87 number. */
671 regnum = AMD64_ST0_REGNUM;
672 if (writebuf)
673 i387_return_value (gdbarch, regcache);
674 break;
675
676 case AMD64_X87UP:
677 /* 7. If the class is X87UP, the value is returned together
678 with the previous X87 value in %st0. */
679 gdb_assert (i > 0 && class[0] == AMD64_X87);
680 regnum = AMD64_ST0_REGNUM;
681 offset = 8;
682 len = 2;
683 break;
684
685 case AMD64_NO_CLASS:
686 continue;
687
688 default:
689 gdb_assert (!"Unexpected register class.");
690 }
691
692 gdb_assert (regnum != -1);
693
694 if (readbuf)
695 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
696 readbuf + i * 8);
697 if (writebuf)
698 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
699 writebuf + i * 8);
700 }
701
702 return RETURN_VALUE_REGISTER_CONVENTION;
703 }
704 \f
705
706 static CORE_ADDR
707 amd64_push_arguments (struct regcache *regcache, int nargs,
708 struct value **args, CORE_ADDR sp, int struct_return)
709 {
710 struct gdbarch *gdbarch = get_regcache_arch (regcache);
711 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
712 int *integer_regs = tdep->call_dummy_integer_regs;
713 int num_integer_regs = tdep->call_dummy_num_integer_regs;
714
715 static int sse_regnum[] =
716 {
717 /* %xmm0 ... %xmm7 */
718 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
719 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
720 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
721 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
722 };
723 struct value **stack_args = alloca (nargs * sizeof (struct value *));
724 /* An array that mirrors the stack_args array. For all arguments
725 that are passed by MEMORY, if that argument's address also needs
726 to be stored in a register, the ARG_ADDR_REGNO array will contain
727 that register number (or a negative value otherwise). */
728 int *arg_addr_regno = alloca (nargs * sizeof (int));
729 int num_stack_args = 0;
730 int num_elements = 0;
731 int element = 0;
732 int integer_reg = 0;
733 int sse_reg = 0;
734 int i;
735
736 gdb_assert (tdep->classify);
737
738 /* Reserve a register for the "hidden" argument. */
739 if (struct_return)
740 integer_reg++;
741
742 for (i = 0; i < nargs; i++)
743 {
744 struct type *type = value_type (args[i]);
745 int len = TYPE_LENGTH (type);
746 enum amd64_reg_class class[2];
747 int needed_integer_regs = 0;
748 int needed_sse_regs = 0;
749 int j;
750
751 /* Classify argument. */
752 tdep->classify (type, class);
753
754 /* Calculate the number of integer and SSE registers needed for
755 this argument. */
756 for (j = 0; j < 2; j++)
757 {
758 if (class[j] == AMD64_INTEGER)
759 needed_integer_regs++;
760 else if (class[j] == AMD64_SSE)
761 needed_sse_regs++;
762 }
763
764 /* Check whether enough registers are available, and if the
765 argument should be passed in registers at all. */
766 if (integer_reg + needed_integer_regs > num_integer_regs
767 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
768 || (needed_integer_regs == 0 && needed_sse_regs == 0))
769 {
770 /* The argument will be passed on the stack. */
771 num_elements += ((len + 7) / 8);
772 stack_args[num_stack_args] = args[i];
773 /* If this is an AMD64_MEMORY argument whose address must also
774 be passed in one of the integer registers, reserve that
775 register and associate this value to that register so that
776 we can store the argument address as soon as we know it. */
777 if (class[0] == AMD64_MEMORY
778 && tdep->memory_args_by_pointer
779 && integer_reg < tdep->call_dummy_num_integer_regs)
780 arg_addr_regno[num_stack_args] =
781 tdep->call_dummy_integer_regs[integer_reg++];
782 else
783 arg_addr_regno[num_stack_args] = -1;
784 num_stack_args++;
785 }
786 else
787 {
788 /* The argument will be passed in registers. */
789 const gdb_byte *valbuf = value_contents (args[i]);
790 gdb_byte buf[8];
791
792 gdb_assert (len <= 16);
793
794 for (j = 0; len > 0; j++, len -= 8)
795 {
796 int regnum = -1;
797 int offset = 0;
798
799 switch (class[j])
800 {
801 case AMD64_INTEGER:
802 regnum = integer_regs[integer_reg++];
803 break;
804
805 case AMD64_SSE:
806 regnum = sse_regnum[sse_reg++];
807 break;
808
809 case AMD64_SSEUP:
810 gdb_assert (sse_reg > 0);
811 regnum = sse_regnum[sse_reg - 1];
812 offset = 8;
813 break;
814
815 default:
816 gdb_assert (!"Unexpected register class.");
817 }
818
819 gdb_assert (regnum != -1);
820 memset (buf, 0, sizeof buf);
821 memcpy (buf, valbuf + j * 8, min (len, 8));
822 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
823 }
824 }
825 }
826
827 /* Allocate space for the arguments on the stack. */
828 sp -= num_elements * 8;
829
830 /* The psABI says that "The end of the input argument area shall be
831 aligned on a 16 byte boundary." */
832 sp &= ~0xf;
833
834 /* Write out the arguments to the stack. */
835 for (i = 0; i < num_stack_args; i++)
836 {
837 struct type *type = value_type (stack_args[i]);
838 const gdb_byte *valbuf = value_contents (stack_args[i]);
839 int len = TYPE_LENGTH (type);
840 CORE_ADDR arg_addr = sp + element * 8;
841
842 write_memory (arg_addr, valbuf, len);
843 if (arg_addr_regno[i] >= 0)
844 {
845 /* We also need to store the address of that argument in
846 the given register. */
847 gdb_byte buf[8];
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 store_unsigned_integer (buf, 8, byte_order, arg_addr);
851 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
852 }
853 element += ((len + 7) / 8);
854 }
855
856 /* The psABI says that "For calls that may call functions that use
857 varargs or stdargs (prototype-less calls or calls to functions
858 containing ellipsis (...) in the declaration) %al is used as
859 hidden argument to specify the number of SSE registers used. */
860 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
861 return sp;
862 }
863
864 static CORE_ADDR
865 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
866 struct regcache *regcache, CORE_ADDR bp_addr,
867 int nargs, struct value **args, CORE_ADDR sp,
868 int struct_return, CORE_ADDR struct_addr)
869 {
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
872 gdb_byte buf[8];
873
874 /* Pass arguments. */
875 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
876
877 /* Pass "hidden" argument". */
878 if (struct_return)
879 {
880 /* The "hidden" argument is passed throught the first argument
881 register. */
882 const int arg_regnum = tdep->call_dummy_integer_regs[0];
883
884 store_unsigned_integer (buf, 8, byte_order, struct_addr);
885 regcache_cooked_write (regcache, arg_regnum, buf);
886 }
887
888 /* Reserve some memory on the stack for the integer-parameter registers,
889 if required by the ABI. */
890 if (tdep->integer_param_regs_saved_in_caller_frame)
891 sp -= tdep->call_dummy_num_integer_regs * 8;
892
893 /* Store return address. */
894 sp -= 8;
895 store_unsigned_integer (buf, 8, byte_order, bp_addr);
896 write_memory (sp, buf, 8);
897
898 /* Finally, update the stack pointer... */
899 store_unsigned_integer (buf, 8, byte_order, sp);
900 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
901
902 /* ...and fake a frame pointer. */
903 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
904
905 return sp + 16;
906 }
907 \f
908 /* Displaced instruction handling. */
909
910 /* A partially decoded instruction.
911 This contains enough details for displaced stepping purposes. */
912
913 struct amd64_insn
914 {
915 /* The number of opcode bytes. */
916 int opcode_len;
917 /* The offset of the rex prefix or -1 if not present. */
918 int rex_offset;
919 /* The offset to the first opcode byte. */
920 int opcode_offset;
921 /* The offset to the modrm byte or -1 if not present. */
922 int modrm_offset;
923
924 /* The raw instruction. */
925 gdb_byte *raw_insn;
926 };
927
928 struct displaced_step_closure
929 {
930 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
931 int tmp_used;
932 int tmp_regno;
933 ULONGEST tmp_save;
934
935 /* Details of the instruction. */
936 struct amd64_insn insn_details;
937
938 /* Amount of space allocated to insn_buf. */
939 int max_len;
940
941 /* The possibly modified insn.
942 This is a variable-length field. */
943 gdb_byte insn_buf[1];
944 };
945
946 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
947 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
948 at which point delete these in favor of libopcodes' versions). */
949
950 static const unsigned char onebyte_has_modrm[256] = {
951 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
952 /* ------------------------------- */
953 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
954 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
955 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
956 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
957 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
958 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
959 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
960 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
961 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
962 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
963 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
964 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
965 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
966 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
967 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
968 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
969 /* ------------------------------- */
970 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
971 };
972
973 static const unsigned char twobyte_has_modrm[256] = {
974 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
975 /* ------------------------------- */
976 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
977 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
978 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
979 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
980 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
981 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
982 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
983 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
984 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
985 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
986 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
987 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
988 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
989 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
990 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
991 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
992 /* ------------------------------- */
993 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
994 };
995
996 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
997
998 static int
999 rex_prefix_p (gdb_byte pfx)
1000 {
1001 return REX_PREFIX_P (pfx);
1002 }
1003
1004 /* Skip the legacy instruction prefixes in INSN.
1005 We assume INSN is properly sentineled so we don't have to worry
1006 about falling off the end of the buffer. */
1007
1008 static gdb_byte *
1009 amd64_skip_prefixes (gdb_byte *insn)
1010 {
1011 while (1)
1012 {
1013 switch (*insn)
1014 {
1015 case DATA_PREFIX_OPCODE:
1016 case ADDR_PREFIX_OPCODE:
1017 case CS_PREFIX_OPCODE:
1018 case DS_PREFIX_OPCODE:
1019 case ES_PREFIX_OPCODE:
1020 case FS_PREFIX_OPCODE:
1021 case GS_PREFIX_OPCODE:
1022 case SS_PREFIX_OPCODE:
1023 case LOCK_PREFIX_OPCODE:
1024 case REPE_PREFIX_OPCODE:
1025 case REPNE_PREFIX_OPCODE:
1026 ++insn;
1027 continue;
1028 default:
1029 break;
1030 }
1031 break;
1032 }
1033
1034 return insn;
1035 }
1036
1037 /* Return an integer register (other than RSP) that is unused as an input
1038 operand in INSN.
1039 In order to not require adding a rex prefix if the insn doesn't already
1040 have one, the result is restricted to RAX ... RDI, sans RSP.
1041 The register numbering of the result follows architecture ordering,
1042 e.g. RDI = 7. */
1043
1044 static int
1045 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1046 {
1047 /* 1 bit for each reg */
1048 int used_regs_mask = 0;
1049
1050 /* There can be at most 3 int regs used as inputs in an insn, and we have
1051 7 to choose from (RAX ... RDI, sans RSP).
1052 This allows us to take a conservative approach and keep things simple.
1053 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1054 that implicitly specify RAX. */
1055
1056 /* Avoid RAX. */
1057 used_regs_mask |= 1 << EAX_REG_NUM;
1058 /* Similarily avoid RDX, implicit operand in divides. */
1059 used_regs_mask |= 1 << EDX_REG_NUM;
1060 /* Avoid RSP. */
1061 used_regs_mask |= 1 << ESP_REG_NUM;
1062
1063 /* If the opcode is one byte long and there's no ModRM byte,
1064 assume the opcode specifies a register. */
1065 if (details->opcode_len == 1 && details->modrm_offset == -1)
1066 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1067
1068 /* Mark used regs in the modrm/sib bytes. */
1069 if (details->modrm_offset != -1)
1070 {
1071 int modrm = details->raw_insn[details->modrm_offset];
1072 int mod = MODRM_MOD_FIELD (modrm);
1073 int reg = MODRM_REG_FIELD (modrm);
1074 int rm = MODRM_RM_FIELD (modrm);
1075 int have_sib = mod != 3 && rm == 4;
1076
1077 /* Assume the reg field of the modrm byte specifies a register. */
1078 used_regs_mask |= 1 << reg;
1079
1080 if (have_sib)
1081 {
1082 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1083 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1084 used_regs_mask |= 1 << base;
1085 used_regs_mask |= 1 << idx;
1086 }
1087 else
1088 {
1089 used_regs_mask |= 1 << rm;
1090 }
1091 }
1092
1093 gdb_assert (used_regs_mask < 256);
1094 gdb_assert (used_regs_mask != 255);
1095
1096 /* Finally, find a free reg. */
1097 {
1098 int i;
1099
1100 for (i = 0; i < 8; ++i)
1101 {
1102 if (! (used_regs_mask & (1 << i)))
1103 return i;
1104 }
1105
1106 /* We shouldn't get here. */
1107 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1108 }
1109 }
1110
1111 /* Extract the details of INSN that we need. */
1112
1113 static void
1114 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1115 {
1116 gdb_byte *start = insn;
1117 int need_modrm;
1118
1119 details->raw_insn = insn;
1120
1121 details->opcode_len = -1;
1122 details->rex_offset = -1;
1123 details->opcode_offset = -1;
1124 details->modrm_offset = -1;
1125
1126 /* Skip legacy instruction prefixes. */
1127 insn = amd64_skip_prefixes (insn);
1128
1129 /* Skip REX instruction prefix. */
1130 if (rex_prefix_p (*insn))
1131 {
1132 details->rex_offset = insn - start;
1133 ++insn;
1134 }
1135
1136 details->opcode_offset = insn - start;
1137
1138 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1139 {
1140 /* Two or three-byte opcode. */
1141 ++insn;
1142 need_modrm = twobyte_has_modrm[*insn];
1143
1144 /* Check for three-byte opcode. */
1145 switch (*insn)
1146 {
1147 case 0x24:
1148 case 0x25:
1149 case 0x38:
1150 case 0x3a:
1151 case 0x7a:
1152 case 0x7b:
1153 ++insn;
1154 details->opcode_len = 3;
1155 break;
1156 default:
1157 details->opcode_len = 2;
1158 break;
1159 }
1160 }
1161 else
1162 {
1163 /* One-byte opcode. */
1164 need_modrm = onebyte_has_modrm[*insn];
1165 details->opcode_len = 1;
1166 }
1167
1168 if (need_modrm)
1169 {
1170 ++insn;
1171 details->modrm_offset = insn - start;
1172 }
1173 }
1174
1175 /* Update %rip-relative addressing in INSN.
1176
1177 %rip-relative addressing only uses a 32-bit displacement.
1178 32 bits is not enough to be guaranteed to cover the distance between where
1179 the real instruction is and where its copy is.
1180 Convert the insn to use base+disp addressing.
1181 We set base = pc + insn_length so we can leave disp unchanged. */
1182
1183 static void
1184 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1185 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1186 {
1187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1188 const struct amd64_insn *insn_details = &dsc->insn_details;
1189 int modrm_offset = insn_details->modrm_offset;
1190 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1191 CORE_ADDR rip_base;
1192 int32_t disp;
1193 int insn_length;
1194 int arch_tmp_regno, tmp_regno;
1195 ULONGEST orig_value;
1196
1197 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1198 ++insn;
1199
1200 /* Compute the rip-relative address. */
1201 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1202 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1203 dsc->max_len, from);
1204 rip_base = from + insn_length;
1205
1206 /* We need a register to hold the address.
1207 Pick one not used in the insn.
1208 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1209 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1210 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1211
1212 /* REX.B should be unset as we were using rip-relative addressing,
1213 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1214 if (insn_details->rex_offset != -1)
1215 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1216
1217 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1218 dsc->tmp_regno = tmp_regno;
1219 dsc->tmp_save = orig_value;
1220 dsc->tmp_used = 1;
1221
1222 /* Convert the ModRM field to be base+disp. */
1223 dsc->insn_buf[modrm_offset] &= ~0xc7;
1224 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1225
1226 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1227
1228 if (debug_displaced)
1229 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1230 "displaced: using temp reg %d, old value %s, new value %s\n",
1231 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1232 paddress (gdbarch, rip_base));
1233 }
1234
1235 static void
1236 fixup_displaced_copy (struct gdbarch *gdbarch,
1237 struct displaced_step_closure *dsc,
1238 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1239 {
1240 const struct amd64_insn *details = &dsc->insn_details;
1241
1242 if (details->modrm_offset != -1)
1243 {
1244 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1245
1246 if ((modrm & 0xc7) == 0x05)
1247 {
1248 /* The insn uses rip-relative addressing.
1249 Deal with it. */
1250 fixup_riprel (gdbarch, dsc, from, to, regs);
1251 }
1252 }
1253 }
1254
1255 struct displaced_step_closure *
1256 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1257 CORE_ADDR from, CORE_ADDR to,
1258 struct regcache *regs)
1259 {
1260 int len = gdbarch_max_insn_length (gdbarch);
1261 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1262 continually watch for running off the end of the buffer. */
1263 int fixup_sentinel_space = len;
1264 struct displaced_step_closure *dsc =
1265 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1266 gdb_byte *buf = &dsc->insn_buf[0];
1267 struct amd64_insn *details = &dsc->insn_details;
1268
1269 dsc->tmp_used = 0;
1270 dsc->max_len = len + fixup_sentinel_space;
1271
1272 read_memory (from, buf, len);
1273
1274 /* Set up the sentinel space so we don't have to worry about running
1275 off the end of the buffer. An excessive number of leading prefixes
1276 could otherwise cause this. */
1277 memset (buf + len, 0, fixup_sentinel_space);
1278
1279 amd64_get_insn_details (buf, details);
1280
1281 /* GDB may get control back after the insn after the syscall.
1282 Presumably this is a kernel bug.
1283 If this is a syscall, make sure there's a nop afterwards. */
1284 {
1285 int syscall_length;
1286
1287 if (amd64_syscall_p (details, &syscall_length))
1288 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1289 }
1290
1291 /* Modify the insn to cope with the address where it will be executed from.
1292 In particular, handle any rip-relative addressing. */
1293 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1294
1295 write_memory (to, buf, len);
1296
1297 if (debug_displaced)
1298 {
1299 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1300 paddress (gdbarch, from), paddress (gdbarch, to));
1301 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1302 }
1303
1304 return dsc;
1305 }
1306
1307 static int
1308 amd64_absolute_jmp_p (const struct amd64_insn *details)
1309 {
1310 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1311
1312 if (insn[0] == 0xff)
1313 {
1314 /* jump near, absolute indirect (/4) */
1315 if ((insn[1] & 0x38) == 0x20)
1316 return 1;
1317
1318 /* jump far, absolute indirect (/5) */
1319 if ((insn[1] & 0x38) == 0x28)
1320 return 1;
1321 }
1322
1323 return 0;
1324 }
1325
1326 static int
1327 amd64_absolute_call_p (const struct amd64_insn *details)
1328 {
1329 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1330
1331 if (insn[0] == 0xff)
1332 {
1333 /* Call near, absolute indirect (/2) */
1334 if ((insn[1] & 0x38) == 0x10)
1335 return 1;
1336
1337 /* Call far, absolute indirect (/3) */
1338 if ((insn[1] & 0x38) == 0x18)
1339 return 1;
1340 }
1341
1342 return 0;
1343 }
1344
1345 static int
1346 amd64_ret_p (const struct amd64_insn *details)
1347 {
1348 /* NOTE: gcc can emit "repz ; ret". */
1349 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1350
1351 switch (insn[0])
1352 {
1353 case 0xc2: /* ret near, pop N bytes */
1354 case 0xc3: /* ret near */
1355 case 0xca: /* ret far, pop N bytes */
1356 case 0xcb: /* ret far */
1357 case 0xcf: /* iret */
1358 return 1;
1359
1360 default:
1361 return 0;
1362 }
1363 }
1364
1365 static int
1366 amd64_call_p (const struct amd64_insn *details)
1367 {
1368 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1369
1370 if (amd64_absolute_call_p (details))
1371 return 1;
1372
1373 /* call near, relative */
1374 if (insn[0] == 0xe8)
1375 return 1;
1376
1377 return 0;
1378 }
1379
1380 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1381 length in bytes. Otherwise, return zero. */
1382
1383 static int
1384 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1385 {
1386 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1387
1388 if (insn[0] == 0x0f && insn[1] == 0x05)
1389 {
1390 *lengthp = 2;
1391 return 1;
1392 }
1393
1394 return 0;
1395 }
1396
1397 /* Fix up the state of registers and memory after having single-stepped
1398 a displaced instruction. */
1399
1400 void
1401 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1402 struct displaced_step_closure *dsc,
1403 CORE_ADDR from, CORE_ADDR to,
1404 struct regcache *regs)
1405 {
1406 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1407 /* The offset we applied to the instruction's address. */
1408 ULONGEST insn_offset = to - from;
1409 gdb_byte *insn = dsc->insn_buf;
1410 const struct amd64_insn *insn_details = &dsc->insn_details;
1411
1412 if (debug_displaced)
1413 fprintf_unfiltered (gdb_stdlog,
1414 "displaced: fixup (%s, %s), "
1415 "insn = 0x%02x 0x%02x ...\n",
1416 paddress (gdbarch, from), paddress (gdbarch, to),
1417 insn[0], insn[1]);
1418
1419 /* If we used a tmp reg, restore it. */
1420
1421 if (dsc->tmp_used)
1422 {
1423 if (debug_displaced)
1424 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1425 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1426 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1427 }
1428
1429 /* The list of issues to contend with here is taken from
1430 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1431 Yay for Free Software! */
1432
1433 /* Relocate the %rip back to the program's instruction stream,
1434 if necessary. */
1435
1436 /* Except in the case of absolute or indirect jump or call
1437 instructions, or a return instruction, the new rip is relative to
1438 the displaced instruction; make it relative to the original insn.
1439 Well, signal handler returns don't need relocation either, but we use the
1440 value of %rip to recognize those; see below. */
1441 if (! amd64_absolute_jmp_p (insn_details)
1442 && ! amd64_absolute_call_p (insn_details)
1443 && ! amd64_ret_p (insn_details))
1444 {
1445 ULONGEST orig_rip;
1446 int insn_len;
1447
1448 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1449
1450 /* A signal trampoline system call changes the %rip, resuming
1451 execution of the main program after the signal handler has
1452 returned. That makes them like 'return' instructions; we
1453 shouldn't relocate %rip.
1454
1455 But most system calls don't, and we do need to relocate %rip.
1456
1457 Our heuristic for distinguishing these cases: if stepping
1458 over the system call instruction left control directly after
1459 the instruction, the we relocate --- control almost certainly
1460 doesn't belong in the displaced copy. Otherwise, we assume
1461 the instruction has put control where it belongs, and leave
1462 it unrelocated. Goodness help us if there are PC-relative
1463 system calls. */
1464 if (amd64_syscall_p (insn_details, &insn_len)
1465 && orig_rip != to + insn_len
1466 /* GDB can get control back after the insn after the syscall.
1467 Presumably this is a kernel bug.
1468 Fixup ensures its a nop, we add one to the length for it. */
1469 && orig_rip != to + insn_len + 1)
1470 {
1471 if (debug_displaced)
1472 fprintf_unfiltered (gdb_stdlog,
1473 "displaced: syscall changed %%rip; "
1474 "not relocating\n");
1475 }
1476 else
1477 {
1478 ULONGEST rip = orig_rip - insn_offset;
1479
1480 /* If we just stepped over a breakpoint insn, we don't backup
1481 the pc on purpose; this is to match behaviour without
1482 stepping. */
1483
1484 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1485
1486 if (debug_displaced)
1487 fprintf_unfiltered (gdb_stdlog,
1488 "displaced: "
1489 "relocated %%rip from %s to %s\n",
1490 paddress (gdbarch, orig_rip),
1491 paddress (gdbarch, rip));
1492 }
1493 }
1494
1495 /* If the instruction was PUSHFL, then the TF bit will be set in the
1496 pushed value, and should be cleared. We'll leave this for later,
1497 since GDB already messes up the TF flag when stepping over a
1498 pushfl. */
1499
1500 /* If the instruction was a call, the return address now atop the
1501 stack is the address following the copied instruction. We need
1502 to make it the address following the original instruction. */
1503 if (amd64_call_p (insn_details))
1504 {
1505 ULONGEST rsp;
1506 ULONGEST retaddr;
1507 const ULONGEST retaddr_len = 8;
1508
1509 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1510 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1511 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1512 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1513
1514 if (debug_displaced)
1515 fprintf_unfiltered (gdb_stdlog,
1516 "displaced: relocated return addr at %s "
1517 "to %s\n",
1518 paddress (gdbarch, rsp),
1519 paddress (gdbarch, retaddr));
1520 }
1521 }
1522
1523 /* If the instruction INSN uses RIP-relative addressing, return the
1524 offset into the raw INSN where the displacement to be adjusted is
1525 found. Returns 0 if the instruction doesn't use RIP-relative
1526 addressing. */
1527
1528 static int
1529 rip_relative_offset (struct amd64_insn *insn)
1530 {
1531 if (insn->modrm_offset != -1)
1532 {
1533 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1534
1535 if ((modrm & 0xc7) == 0x05)
1536 {
1537 /* The displacement is found right after the ModRM byte. */
1538 return insn->modrm_offset + 1;
1539 }
1540 }
1541
1542 return 0;
1543 }
1544
1545 static void
1546 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1547 {
1548 target_write_memory (*to, buf, len);
1549 *to += len;
1550 }
1551
1552 static void
1553 amd64_relocate_instruction (struct gdbarch *gdbarch,
1554 CORE_ADDR *to, CORE_ADDR oldloc)
1555 {
1556 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1557 int len = gdbarch_max_insn_length (gdbarch);
1558 /* Extra space for sentinels. */
1559 int fixup_sentinel_space = len;
1560 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1561 struct amd64_insn insn_details;
1562 int offset = 0;
1563 LONGEST rel32, newrel;
1564 gdb_byte *insn;
1565 int insn_length;
1566
1567 read_memory (oldloc, buf, len);
1568
1569 /* Set up the sentinel space so we don't have to worry about running
1570 off the end of the buffer. An excessive number of leading prefixes
1571 could otherwise cause this. */
1572 memset (buf + len, 0, fixup_sentinel_space);
1573
1574 insn = buf;
1575 amd64_get_insn_details (insn, &insn_details);
1576
1577 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1578
1579 /* Skip legacy instruction prefixes. */
1580 insn = amd64_skip_prefixes (insn);
1581
1582 /* Adjust calls with 32-bit relative addresses as push/jump, with
1583 the address pushed being the location where the original call in
1584 the user program would return to. */
1585 if (insn[0] == 0xe8)
1586 {
1587 gdb_byte push_buf[16];
1588 unsigned int ret_addr;
1589
1590 /* Where "ret" in the original code will return to. */
1591 ret_addr = oldloc + insn_length;
1592 push_buf[0] = 0x68; /* pushq $... */
1593 memcpy (&push_buf[1], &ret_addr, 4);
1594 /* Push the push. */
1595 append_insns (to, 5, push_buf);
1596
1597 /* Convert the relative call to a relative jump. */
1598 insn[0] = 0xe9;
1599
1600 /* Adjust the destination offset. */
1601 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1602 newrel = (oldloc - *to) + rel32;
1603 store_signed_integer (insn + 1, 4, byte_order, newrel);
1604
1605 if (debug_displaced)
1606 fprintf_unfiltered (gdb_stdlog,
1607 "Adjusted insn rel32=%s at %s to"
1608 " rel32=%s at %s\n",
1609 hex_string (rel32), paddress (gdbarch, oldloc),
1610 hex_string (newrel), paddress (gdbarch, *to));
1611
1612 /* Write the adjusted jump into its displaced location. */
1613 append_insns (to, 5, insn);
1614 return;
1615 }
1616
1617 offset = rip_relative_offset (&insn_details);
1618 if (!offset)
1619 {
1620 /* Adjust jumps with 32-bit relative addresses. Calls are
1621 already handled above. */
1622 if (insn[0] == 0xe9)
1623 offset = 1;
1624 /* Adjust conditional jumps. */
1625 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1626 offset = 2;
1627 }
1628
1629 if (offset)
1630 {
1631 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1632 newrel = (oldloc - *to) + rel32;
1633 store_signed_integer (insn + offset, 4, byte_order, newrel);
1634 if (debug_displaced)
1635 fprintf_unfiltered (gdb_stdlog,
1636 "Adjusted insn rel32=%s at %s to"
1637 " rel32=%s at %s\n",
1638 hex_string (rel32), paddress (gdbarch, oldloc),
1639 hex_string (newrel), paddress (gdbarch, *to));
1640 }
1641
1642 /* Write the adjusted instruction into its displaced location. */
1643 append_insns (to, insn_length, buf);
1644 }
1645
1646 \f
1647 /* The maximum number of saved registers. This should include %rip. */
1648 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1649
1650 struct amd64_frame_cache
1651 {
1652 /* Base address. */
1653 CORE_ADDR base;
1654 int base_p;
1655 CORE_ADDR sp_offset;
1656 CORE_ADDR pc;
1657
1658 /* Saved registers. */
1659 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1660 CORE_ADDR saved_sp;
1661 int saved_sp_reg;
1662
1663 /* Do we have a frame? */
1664 int frameless_p;
1665 };
1666
1667 /* Initialize a frame cache. */
1668
1669 static void
1670 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1671 {
1672 int i;
1673
1674 /* Base address. */
1675 cache->base = 0;
1676 cache->base_p = 0;
1677 cache->sp_offset = -8;
1678 cache->pc = 0;
1679
1680 /* Saved registers. We initialize these to -1 since zero is a valid
1681 offset (that's where %rbp is supposed to be stored).
1682 The values start out as being offsets, and are later converted to
1683 addresses (at which point -1 is interpreted as an address, still meaning
1684 "invalid"). */
1685 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1686 cache->saved_regs[i] = -1;
1687 cache->saved_sp = 0;
1688 cache->saved_sp_reg = -1;
1689
1690 /* Frameless until proven otherwise. */
1691 cache->frameless_p = 1;
1692 }
1693
1694 /* Allocate and initialize a frame cache. */
1695
1696 static struct amd64_frame_cache *
1697 amd64_alloc_frame_cache (void)
1698 {
1699 struct amd64_frame_cache *cache;
1700
1701 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1702 amd64_init_frame_cache (cache);
1703 return cache;
1704 }
1705
1706 /* GCC 4.4 and later, can put code in the prologue to realign the
1707 stack pointer. Check whether PC points to such code, and update
1708 CACHE accordingly. Return the first instruction after the code
1709 sequence or CURRENT_PC, whichever is smaller. If we don't
1710 recognize the code, return PC. */
1711
1712 static CORE_ADDR
1713 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1714 struct amd64_frame_cache *cache)
1715 {
1716 /* There are 2 code sequences to re-align stack before the frame
1717 gets set up:
1718
1719 1. Use a caller-saved saved register:
1720
1721 leaq 8(%rsp), %reg
1722 andq $-XXX, %rsp
1723 pushq -8(%reg)
1724
1725 2. Use a callee-saved saved register:
1726
1727 pushq %reg
1728 leaq 16(%rsp), %reg
1729 andq $-XXX, %rsp
1730 pushq -8(%reg)
1731
1732 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1733
1734 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1735 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1736 */
1737
1738 gdb_byte buf[18];
1739 int reg, r;
1740 int offset, offset_and;
1741
1742 if (target_read_memory (pc, buf, sizeof buf))
1743 return pc;
1744
1745 /* Check caller-saved saved register. The first instruction has
1746 to be "leaq 8(%rsp), %reg". */
1747 if ((buf[0] & 0xfb) == 0x48
1748 && buf[1] == 0x8d
1749 && buf[3] == 0x24
1750 && buf[4] == 0x8)
1751 {
1752 /* MOD must be binary 10 and R/M must be binary 100. */
1753 if ((buf[2] & 0xc7) != 0x44)
1754 return pc;
1755
1756 /* REG has register number. */
1757 reg = (buf[2] >> 3) & 7;
1758
1759 /* Check the REX.R bit. */
1760 if (buf[0] == 0x4c)
1761 reg += 8;
1762
1763 offset = 5;
1764 }
1765 else
1766 {
1767 /* Check callee-saved saved register. The first instruction
1768 has to be "pushq %reg". */
1769 reg = 0;
1770 if ((buf[0] & 0xf8) == 0x50)
1771 offset = 0;
1772 else if ((buf[0] & 0xf6) == 0x40
1773 && (buf[1] & 0xf8) == 0x50)
1774 {
1775 /* Check the REX.B bit. */
1776 if ((buf[0] & 1) != 0)
1777 reg = 8;
1778
1779 offset = 1;
1780 }
1781 else
1782 return pc;
1783
1784 /* Get register. */
1785 reg += buf[offset] & 0x7;
1786
1787 offset++;
1788
1789 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1790 if ((buf[offset] & 0xfb) != 0x48
1791 || buf[offset + 1] != 0x8d
1792 || buf[offset + 3] != 0x24
1793 || buf[offset + 4] != 0x10)
1794 return pc;
1795
1796 /* MOD must be binary 10 and R/M must be binary 100. */
1797 if ((buf[offset + 2] & 0xc7) != 0x44)
1798 return pc;
1799
1800 /* REG has register number. */
1801 r = (buf[offset + 2] >> 3) & 7;
1802
1803 /* Check the REX.R bit. */
1804 if (buf[offset] == 0x4c)
1805 r += 8;
1806
1807 /* Registers in pushq and leaq have to be the same. */
1808 if (reg != r)
1809 return pc;
1810
1811 offset += 5;
1812 }
1813
1814 /* Rigister can't be %rsp nor %rbp. */
1815 if (reg == 4 || reg == 5)
1816 return pc;
1817
1818 /* The next instruction has to be "andq $-XXX, %rsp". */
1819 if (buf[offset] != 0x48
1820 || buf[offset + 2] != 0xe4
1821 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1822 return pc;
1823
1824 offset_and = offset;
1825 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1826
1827 /* The next instruction has to be "pushq -8(%reg)". */
1828 r = 0;
1829 if (buf[offset] == 0xff)
1830 offset++;
1831 else if ((buf[offset] & 0xf6) == 0x40
1832 && buf[offset + 1] == 0xff)
1833 {
1834 /* Check the REX.B bit. */
1835 if ((buf[offset] & 0x1) != 0)
1836 r = 8;
1837 offset += 2;
1838 }
1839 else
1840 return pc;
1841
1842 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1843 01. */
1844 if (buf[offset + 1] != 0xf8
1845 || (buf[offset] & 0xf8) != 0x70)
1846 return pc;
1847
1848 /* R/M has register. */
1849 r += buf[offset] & 7;
1850
1851 /* Registers in leaq and pushq have to be the same. */
1852 if (reg != r)
1853 return pc;
1854
1855 if (current_pc > pc + offset_and)
1856 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1857
1858 return min (pc + offset + 2, current_pc);
1859 }
1860
1861 /* Do a limited analysis of the prologue at PC and update CACHE
1862 accordingly. Bail out early if CURRENT_PC is reached. Return the
1863 address where the analysis stopped.
1864
1865 We will handle only functions beginning with:
1866
1867 pushq %rbp 0x55
1868 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
1869
1870 Any function that doesn't start with this sequence will be assumed
1871 to have no prologue and thus no valid frame pointer in %rbp. */
1872
1873 static CORE_ADDR
1874 amd64_analyze_prologue (struct gdbarch *gdbarch,
1875 CORE_ADDR pc, CORE_ADDR current_pc,
1876 struct amd64_frame_cache *cache)
1877 {
1878 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1879 /* There are two variations of movq %rsp, %rbp. */
1880 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
1881 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
1882 gdb_byte buf[3];
1883 gdb_byte op;
1884
1885 if (current_pc <= pc)
1886 return current_pc;
1887
1888 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1889
1890 op = read_memory_unsigned_integer (pc, 1, byte_order);
1891
1892 if (op == 0x55) /* pushq %rbp */
1893 {
1894 /* Take into account that we've executed the `pushq %rbp' that
1895 starts this instruction sequence. */
1896 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1897 cache->sp_offset += 8;
1898
1899 /* If that's all, return now. */
1900 if (current_pc <= pc + 1)
1901 return current_pc;
1902
1903 /* Check for `movq %rsp, %rbp'. */
1904 read_memory (pc + 1, buf, 3);
1905 if (memcmp (buf, mov_rsp_rbp_1, 3) != 0
1906 && memcmp (buf, mov_rsp_rbp_2, 3) != 0)
1907 return pc + 1;
1908
1909 /* OK, we actually have a frame. */
1910 cache->frameless_p = 0;
1911 return pc + 4;
1912 }
1913
1914 return pc;
1915 }
1916
1917 /* Work around false termination of prologue - GCC PR debug/48827.
1918
1919 START_PC is the first instruction of a function, PC is its minimal already
1920 determined advanced address. Function returns PC if it has nothing to do.
1921
1922 84 c0 test %al,%al
1923 74 23 je after
1924 <-- here is 0 lines advance - the false prologue end marker.
1925 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
1926 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
1927 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
1928 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
1929 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
1930 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
1931 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
1932 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
1933 after: */
1934
1935 static CORE_ADDR
1936 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
1937 {
1938 struct symtab_and_line start_pc_sal, next_sal;
1939 gdb_byte buf[4 + 8 * 7];
1940 int offset, xmmreg;
1941
1942 if (pc == start_pc)
1943 return pc;
1944
1945 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
1946 if (start_pc_sal.symtab == NULL
1947 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
1948 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
1949 return pc;
1950
1951 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
1952 if (next_sal.line != start_pc_sal.line)
1953 return pc;
1954
1955 /* START_PC can be from overlayed memory, ignored here. */
1956 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
1957 return pc;
1958
1959 /* test %al,%al */
1960 if (buf[0] != 0x84 || buf[1] != 0xc0)
1961 return pc;
1962 /* je AFTER */
1963 if (buf[2] != 0x74)
1964 return pc;
1965
1966 offset = 4;
1967 for (xmmreg = 0; xmmreg < 8; xmmreg++)
1968 {
1969 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
1970 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
1971 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
1972 return pc;
1973
1974 /* 0b01?????? */
1975 if ((buf[offset + 2] & 0xc0) == 0x40)
1976 {
1977 /* 8-bit displacement. */
1978 offset += 4;
1979 }
1980 /* 0b10?????? */
1981 else if ((buf[offset + 2] & 0xc0) == 0x80)
1982 {
1983 /* 32-bit displacement. */
1984 offset += 7;
1985 }
1986 else
1987 return pc;
1988 }
1989
1990 /* je AFTER */
1991 if (offset - 4 != buf[3])
1992 return pc;
1993
1994 return next_sal.end;
1995 }
1996
1997 /* Return PC of first real instruction. */
1998
1999 static CORE_ADDR
2000 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2001 {
2002 struct amd64_frame_cache cache;
2003 CORE_ADDR pc;
2004
2005 amd64_init_frame_cache (&cache);
2006 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2007 &cache);
2008 if (cache.frameless_p)
2009 return start_pc;
2010
2011 return amd64_skip_xmm_prologue (pc, start_pc);
2012 }
2013 \f
2014
2015 /* Normal frames. */
2016
2017 static void
2018 amd64_frame_cache_1 (struct frame_info *this_frame,
2019 struct amd64_frame_cache *cache)
2020 {
2021 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2022 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2023 gdb_byte buf[8];
2024 int i;
2025
2026 cache->pc = get_frame_func (this_frame);
2027 if (cache->pc != 0)
2028 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2029 cache);
2030
2031 if (cache->frameless_p)
2032 {
2033 /* We didn't find a valid frame. If we're at the start of a
2034 function, or somewhere half-way its prologue, the function's
2035 frame probably hasn't been fully setup yet. Try to
2036 reconstruct the base address for the stack frame by looking
2037 at the stack pointer. For truly "frameless" functions this
2038 might work too. */
2039
2040 if (cache->saved_sp_reg != -1)
2041 {
2042 /* Stack pointer has been saved. */
2043 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2044 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2045
2046 /* We're halfway aligning the stack. */
2047 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2048 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2049
2050 /* This will be added back below. */
2051 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2052 }
2053 else
2054 {
2055 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2056 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2057 + cache->sp_offset;
2058 }
2059 }
2060 else
2061 {
2062 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2063 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2064 }
2065
2066 /* Now that we have the base address for the stack frame we can
2067 calculate the value of %rsp in the calling frame. */
2068 cache->saved_sp = cache->base + 16;
2069
2070 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2071 frame we find it at the same offset from the reconstructed base
2072 address. If we're halfway aligning the stack, %rip is handled
2073 differently (see above). */
2074 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2075 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2076
2077 /* Adjust all the saved registers such that they contain addresses
2078 instead of offsets. */
2079 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2080 if (cache->saved_regs[i] != -1)
2081 cache->saved_regs[i] += cache->base;
2082
2083 cache->base_p = 1;
2084 }
2085
2086 static struct amd64_frame_cache *
2087 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2088 {
2089 volatile struct gdb_exception ex;
2090 struct amd64_frame_cache *cache;
2091
2092 if (*this_cache)
2093 return *this_cache;
2094
2095 cache = amd64_alloc_frame_cache ();
2096 *this_cache = cache;
2097
2098 TRY_CATCH (ex, RETURN_MASK_ERROR)
2099 {
2100 amd64_frame_cache_1 (this_frame, cache);
2101 }
2102 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2103 throw_exception (ex);
2104
2105 return cache;
2106 }
2107
2108 static enum unwind_stop_reason
2109 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2110 void **this_cache)
2111 {
2112 struct amd64_frame_cache *cache =
2113 amd64_frame_cache (this_frame, this_cache);
2114
2115 if (!cache->base_p)
2116 return UNWIND_UNAVAILABLE;
2117
2118 /* This marks the outermost frame. */
2119 if (cache->base == 0)
2120 return UNWIND_OUTERMOST;
2121
2122 return UNWIND_NO_REASON;
2123 }
2124
2125 static void
2126 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2127 struct frame_id *this_id)
2128 {
2129 struct amd64_frame_cache *cache =
2130 amd64_frame_cache (this_frame, this_cache);
2131
2132 if (!cache->base_p)
2133 return;
2134
2135 /* This marks the outermost frame. */
2136 if (cache->base == 0)
2137 return;
2138
2139 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2140 }
2141
2142 static struct value *
2143 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2144 int regnum)
2145 {
2146 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2147 struct amd64_frame_cache *cache =
2148 amd64_frame_cache (this_frame, this_cache);
2149
2150 gdb_assert (regnum >= 0);
2151
2152 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2153 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2154
2155 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2156 return frame_unwind_got_memory (this_frame, regnum,
2157 cache->saved_regs[regnum]);
2158
2159 return frame_unwind_got_register (this_frame, regnum, regnum);
2160 }
2161
2162 static const struct frame_unwind amd64_frame_unwind =
2163 {
2164 NORMAL_FRAME,
2165 amd64_frame_unwind_stop_reason,
2166 amd64_frame_this_id,
2167 amd64_frame_prev_register,
2168 NULL,
2169 default_frame_sniffer
2170 };
2171 \f
2172 /* Generate a bytecode expression to get the value of the saved PC. */
2173
2174 static void
2175 amd64_gen_return_address (struct gdbarch *gdbarch,
2176 struct agent_expr *ax, struct axs_value *value,
2177 CORE_ADDR scope)
2178 {
2179 /* The following sequence assumes the traditional use of the base
2180 register. */
2181 ax_reg (ax, AMD64_RBP_REGNUM);
2182 ax_const_l (ax, 8);
2183 ax_simple (ax, aop_add);
2184 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2185 value->kind = axs_lvalue_memory;
2186 }
2187 \f
2188
2189 /* Signal trampolines. */
2190
2191 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2192 64-bit variants. This would require using identical frame caches
2193 on both platforms. */
2194
2195 static struct amd64_frame_cache *
2196 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2197 {
2198 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2200 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2201 volatile struct gdb_exception ex;
2202 struct amd64_frame_cache *cache;
2203 CORE_ADDR addr;
2204 gdb_byte buf[8];
2205 int i;
2206
2207 if (*this_cache)
2208 return *this_cache;
2209
2210 cache = amd64_alloc_frame_cache ();
2211
2212 TRY_CATCH (ex, RETURN_MASK_ERROR)
2213 {
2214 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2215 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2216
2217 addr = tdep->sigcontext_addr (this_frame);
2218 gdb_assert (tdep->sc_reg_offset);
2219 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2220 for (i = 0; i < tdep->sc_num_regs; i++)
2221 if (tdep->sc_reg_offset[i] != -1)
2222 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2223
2224 cache->base_p = 1;
2225 }
2226 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2227 throw_exception (ex);
2228
2229 *this_cache = cache;
2230 return cache;
2231 }
2232
2233 static enum unwind_stop_reason
2234 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2235 void **this_cache)
2236 {
2237 struct amd64_frame_cache *cache =
2238 amd64_sigtramp_frame_cache (this_frame, this_cache);
2239
2240 if (!cache->base_p)
2241 return UNWIND_UNAVAILABLE;
2242
2243 return UNWIND_NO_REASON;
2244 }
2245
2246 static void
2247 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2248 void **this_cache, struct frame_id *this_id)
2249 {
2250 struct amd64_frame_cache *cache =
2251 amd64_sigtramp_frame_cache (this_frame, this_cache);
2252
2253 if (!cache->base_p)
2254 return;
2255
2256 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2257 }
2258
2259 static struct value *
2260 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2261 void **this_cache, int regnum)
2262 {
2263 /* Make sure we've initialized the cache. */
2264 amd64_sigtramp_frame_cache (this_frame, this_cache);
2265
2266 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2267 }
2268
2269 static int
2270 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2271 struct frame_info *this_frame,
2272 void **this_cache)
2273 {
2274 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2275
2276 /* We shouldn't even bother if we don't have a sigcontext_addr
2277 handler. */
2278 if (tdep->sigcontext_addr == NULL)
2279 return 0;
2280
2281 if (tdep->sigtramp_p != NULL)
2282 {
2283 if (tdep->sigtramp_p (this_frame))
2284 return 1;
2285 }
2286
2287 if (tdep->sigtramp_start != 0)
2288 {
2289 CORE_ADDR pc = get_frame_pc (this_frame);
2290
2291 gdb_assert (tdep->sigtramp_end != 0);
2292 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2293 return 1;
2294 }
2295
2296 return 0;
2297 }
2298
2299 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2300 {
2301 SIGTRAMP_FRAME,
2302 amd64_sigtramp_frame_unwind_stop_reason,
2303 amd64_sigtramp_frame_this_id,
2304 amd64_sigtramp_frame_prev_register,
2305 NULL,
2306 amd64_sigtramp_frame_sniffer
2307 };
2308 \f
2309
2310 static CORE_ADDR
2311 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2312 {
2313 struct amd64_frame_cache *cache =
2314 amd64_frame_cache (this_frame, this_cache);
2315
2316 return cache->base;
2317 }
2318
2319 static const struct frame_base amd64_frame_base =
2320 {
2321 &amd64_frame_unwind,
2322 amd64_frame_base_address,
2323 amd64_frame_base_address,
2324 amd64_frame_base_address
2325 };
2326
2327 /* Normal frames, but in a function epilogue. */
2328
2329 /* The epilogue is defined here as the 'ret' instruction, which will
2330 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2331 the function's stack frame. */
2332
2333 static int
2334 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2335 {
2336 gdb_byte insn;
2337 struct symtab *symtab;
2338
2339 symtab = find_pc_symtab (pc);
2340 if (symtab && symtab->epilogue_unwind_valid)
2341 return 0;
2342
2343 if (target_read_memory (pc, &insn, 1))
2344 return 0; /* Can't read memory at pc. */
2345
2346 if (insn != 0xc3) /* 'ret' instruction. */
2347 return 0;
2348
2349 return 1;
2350 }
2351
2352 static int
2353 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2354 struct frame_info *this_frame,
2355 void **this_prologue_cache)
2356 {
2357 if (frame_relative_level (this_frame) == 0)
2358 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2359 get_frame_pc (this_frame));
2360 else
2361 return 0;
2362 }
2363
2364 static struct amd64_frame_cache *
2365 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2366 {
2367 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2368 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2369 volatile struct gdb_exception ex;
2370 struct amd64_frame_cache *cache;
2371 gdb_byte buf[8];
2372
2373 if (*this_cache)
2374 return *this_cache;
2375
2376 cache = amd64_alloc_frame_cache ();
2377 *this_cache = cache;
2378
2379 TRY_CATCH (ex, RETURN_MASK_ERROR)
2380 {
2381 /* Cache base will be %esp plus cache->sp_offset (-8). */
2382 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2383 cache->base = extract_unsigned_integer (buf, 8,
2384 byte_order) + cache->sp_offset;
2385
2386 /* Cache pc will be the frame func. */
2387 cache->pc = get_frame_pc (this_frame);
2388
2389 /* The saved %esp will be at cache->base plus 16. */
2390 cache->saved_sp = cache->base + 16;
2391
2392 /* The saved %eip will be at cache->base plus 8. */
2393 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2394
2395 cache->base_p = 1;
2396 }
2397 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2398 throw_exception (ex);
2399
2400 return cache;
2401 }
2402
2403 static enum unwind_stop_reason
2404 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2405 void **this_cache)
2406 {
2407 struct amd64_frame_cache *cache
2408 = amd64_epilogue_frame_cache (this_frame, this_cache);
2409
2410 if (!cache->base_p)
2411 return UNWIND_UNAVAILABLE;
2412
2413 return UNWIND_NO_REASON;
2414 }
2415
2416 static void
2417 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2418 void **this_cache,
2419 struct frame_id *this_id)
2420 {
2421 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2422 this_cache);
2423
2424 if (!cache->base_p)
2425 return;
2426
2427 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2428 }
2429
2430 static const struct frame_unwind amd64_epilogue_frame_unwind =
2431 {
2432 NORMAL_FRAME,
2433 amd64_epilogue_frame_unwind_stop_reason,
2434 amd64_epilogue_frame_this_id,
2435 amd64_frame_prev_register,
2436 NULL,
2437 amd64_epilogue_frame_sniffer
2438 };
2439
2440 static struct frame_id
2441 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2442 {
2443 CORE_ADDR fp;
2444
2445 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2446
2447 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2448 }
2449
2450 /* 16 byte align the SP per frame requirements. */
2451
2452 static CORE_ADDR
2453 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2454 {
2455 return sp & -(CORE_ADDR)16;
2456 }
2457 \f
2458
2459 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2460 in the floating-point register set REGSET to register cache
2461 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2462
2463 static void
2464 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2465 int regnum, const void *fpregs, size_t len)
2466 {
2467 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2468
2469 gdb_assert (len == tdep->sizeof_fpregset);
2470 amd64_supply_fxsave (regcache, regnum, fpregs);
2471 }
2472
2473 /* Collect register REGNUM from the register cache REGCACHE and store
2474 it in the buffer specified by FPREGS and LEN as described by the
2475 floating-point register set REGSET. If REGNUM is -1, do this for
2476 all registers in REGSET. */
2477
2478 static void
2479 amd64_collect_fpregset (const struct regset *regset,
2480 const struct regcache *regcache,
2481 int regnum, void *fpregs, size_t len)
2482 {
2483 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2484
2485 gdb_assert (len == tdep->sizeof_fpregset);
2486 amd64_collect_fxsave (regcache, regnum, fpregs);
2487 }
2488
2489 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2490
2491 static void
2492 amd64_supply_xstateregset (const struct regset *regset,
2493 struct regcache *regcache, int regnum,
2494 const void *xstateregs, size_t len)
2495 {
2496 amd64_supply_xsave (regcache, regnum, xstateregs);
2497 }
2498
2499 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2500
2501 static void
2502 amd64_collect_xstateregset (const struct regset *regset,
2503 const struct regcache *regcache,
2504 int regnum, void *xstateregs, size_t len)
2505 {
2506 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2507 }
2508
2509 /* Return the appropriate register set for the core section identified
2510 by SECT_NAME and SECT_SIZE. */
2511
2512 static const struct regset *
2513 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2514 const char *sect_name, size_t sect_size)
2515 {
2516 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2517
2518 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2519 {
2520 if (tdep->fpregset == NULL)
2521 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2522 amd64_collect_fpregset);
2523
2524 return tdep->fpregset;
2525 }
2526
2527 if (strcmp (sect_name, ".reg-xstate") == 0)
2528 {
2529 if (tdep->xstateregset == NULL)
2530 tdep->xstateregset = regset_alloc (gdbarch,
2531 amd64_supply_xstateregset,
2532 amd64_collect_xstateregset);
2533
2534 return tdep->xstateregset;
2535 }
2536
2537 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2538 }
2539 \f
2540
2541 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2542 %rdi. We expect its value to be a pointer to the jmp_buf structure
2543 from which we extract the address that we will land at. This
2544 address is copied into PC. This routine returns non-zero on
2545 success. */
2546
2547 static int
2548 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2549 {
2550 gdb_byte buf[8];
2551 CORE_ADDR jb_addr;
2552 struct gdbarch *gdbarch = get_frame_arch (frame);
2553 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2554 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2555
2556 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2557 longjmp will land. */
2558 if (jb_pc_offset == -1)
2559 return 0;
2560
2561 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2562 jb_addr= extract_typed_address
2563 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2564 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2565 return 0;
2566
2567 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2568
2569 return 1;
2570 }
2571
2572 static const int amd64_record_regmap[] =
2573 {
2574 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2575 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2576 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2577 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2578 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2579 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2580 };
2581
2582 void
2583 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2584 {
2585 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2586 const struct target_desc *tdesc = info.target_desc;
2587
2588 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2589 floating-point registers. */
2590 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2591
2592 if (! tdesc_has_registers (tdesc))
2593 tdesc = tdesc_amd64;
2594 tdep->tdesc = tdesc;
2595
2596 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2597 tdep->register_names = amd64_register_names;
2598
2599 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2600 {
2601 tdep->ymmh_register_names = amd64_ymmh_names;
2602 tdep->num_ymm_regs = 16;
2603 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2604 }
2605
2606 tdep->num_byte_regs = 20;
2607 tdep->num_word_regs = 16;
2608 tdep->num_dword_regs = 16;
2609 /* Avoid wiring in the MMX registers for now. */
2610 tdep->num_mmx_regs = 0;
2611
2612 set_gdbarch_pseudo_register_read_value (gdbarch,
2613 amd64_pseudo_register_read_value);
2614 set_gdbarch_pseudo_register_write (gdbarch,
2615 amd64_pseudo_register_write);
2616
2617 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2618
2619 /* AMD64 has an FPU and 16 SSE registers. */
2620 tdep->st0_regnum = AMD64_ST0_REGNUM;
2621 tdep->num_xmm_regs = 16;
2622
2623 /* This is what all the fuss is about. */
2624 set_gdbarch_long_bit (gdbarch, 64);
2625 set_gdbarch_long_long_bit (gdbarch, 64);
2626 set_gdbarch_ptr_bit (gdbarch, 64);
2627
2628 /* In contrast to the i386, on AMD64 a `long double' actually takes
2629 up 128 bits, even though it's still based on the i387 extended
2630 floating-point format which has only 80 significant bits. */
2631 set_gdbarch_long_double_bit (gdbarch, 128);
2632
2633 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2634
2635 /* Register numbers of various important registers. */
2636 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2637 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2638 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2639 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2640
2641 /* The "default" register numbering scheme for AMD64 is referred to
2642 as the "DWARF Register Number Mapping" in the System V psABI.
2643 The preferred debugging format for all known AMD64 targets is
2644 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2645 DWARF-1), but we provide the same mapping just in case. This
2646 mapping is also used for stabs, which GCC does support. */
2647 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2648 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2649
2650 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2651 be in use on any of the supported AMD64 targets. */
2652
2653 /* Call dummy code. */
2654 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2655 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2656 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2657 tdep->call_dummy_num_integer_regs =
2658 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2659 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2660 tdep->classify = amd64_classify;
2661
2662 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2663 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2664 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2665
2666 set_gdbarch_return_value (gdbarch, amd64_return_value);
2667
2668 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2669
2670 tdep->record_regmap = amd64_record_regmap;
2671
2672 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2673
2674 /* Hook the function epilogue frame unwinder. This unwinder is
2675 appended to the list first, so that it supercedes the other
2676 unwinders in function epilogues. */
2677 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2678
2679 /* Hook the prologue-based frame unwinders. */
2680 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2681 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2682 frame_base_set_default (gdbarch, &amd64_frame_base);
2683
2684 /* If we have a register mapping, enable the generic core file support. */
2685 if (tdep->gregset_reg_offset)
2686 set_gdbarch_regset_from_core_section (gdbarch,
2687 amd64_regset_from_core_section);
2688
2689 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2690
2691 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2692
2693 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
2694
2695 /* SystemTap variables and functions. */
2696 set_gdbarch_stap_integer_prefix (gdbarch, "$");
2697 set_gdbarch_stap_register_prefix (gdbarch, "%");
2698 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
2699 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
2700 set_gdbarch_stap_is_single_operand (gdbarch,
2701 i386_stap_is_single_operand);
2702 set_gdbarch_stap_parse_special_token (gdbarch,
2703 i386_stap_parse_special_token);
2704 }
2705
2706 /* Provide a prototype to silence -Wmissing-prototypes. */
2707 void _initialize_amd64_tdep (void);
2708
2709 void
2710 _initialize_amd64_tdep (void)
2711 {
2712 initialize_tdesc_amd64 ();
2713 initialize_tdesc_amd64_avx ();
2714 }
2715 \f
2716
2717 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2718 sense that the instruction pointer and data pointer are simply
2719 64-bit offsets into the code segment and the data segment instead
2720 of a selector offset pair. The functions below store the upper 32
2721 bits of these pointers (instead of just the 16-bits of the segment
2722 selector). */
2723
2724 /* Fill register REGNUM in REGCACHE with the appropriate
2725 floating-point or SSE register value from *FXSAVE. If REGNUM is
2726 -1, do this for all registers. This function masks off any of the
2727 reserved bits in *FXSAVE. */
2728
2729 void
2730 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2731 const void *fxsave)
2732 {
2733 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2735
2736 i387_supply_fxsave (regcache, regnum, fxsave);
2737
2738 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2739 {
2740 const gdb_byte *regs = fxsave;
2741
2742 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2743 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2744 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2745 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2746 }
2747 }
2748
2749 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
2750
2751 void
2752 amd64_supply_xsave (struct regcache *regcache, int regnum,
2753 const void *xsave)
2754 {
2755 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2756 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2757
2758 i387_supply_xsave (regcache, regnum, xsave);
2759
2760 if (xsave && gdbarch_ptr_bit (gdbarch) == 64)
2761 {
2762 const gdb_byte *regs = xsave;
2763
2764 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2765 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
2766 regs + 12);
2767 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2768 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
2769 regs + 20);
2770 }
2771 }
2772
2773 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2774 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2775 all registers. This function doesn't touch any of the reserved
2776 bits in *FXSAVE. */
2777
2778 void
2779 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2780 void *fxsave)
2781 {
2782 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2784 gdb_byte *regs = fxsave;
2785
2786 i387_collect_fxsave (regcache, regnum, fxsave);
2787
2788 if (gdbarch_ptr_bit (gdbarch) == 64)
2789 {
2790 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2791 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2792 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2793 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2794 }
2795 }
2796
2797 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
2798
2799 void
2800 amd64_collect_xsave (const struct regcache *regcache, int regnum,
2801 void *xsave, int gcore)
2802 {
2803 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2804 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2805 gdb_byte *regs = xsave;
2806
2807 i387_collect_xsave (regcache, regnum, xsave, gcore);
2808
2809 if (gdbarch_ptr_bit (gdbarch) == 64)
2810 {
2811 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2812 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
2813 regs + 12);
2814 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2815 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
2816 regs + 20);
2817 }
2818 }
This page took 0.110563 seconds and 4 git commands to generate.