Switch the license of all .c files to GPLv3.
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 Contributed by Jiri Smid, SuSE Labs.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "block.h"
26 #include "dummy-frame.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37
38 #include "gdb_assert.h"
39
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42
43 /* Note that the AMD64 architecture was previously known as x86-64.
44 The latter is (forever) engraved into the canonical system name as
45 returned by config.guess, and used as the name for the AMD64 port
46 of GNU/Linux. The BSD's have renamed their ports to amd64; they
47 don't like to shout. For GDB we prefer the amd64_-prefix over the
48 x86_64_-prefix since it's so much easier to type. */
49
50 /* Register information. */
51
52 static const char *amd64_register_names[] =
53 {
54 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
55
56 /* %r8 is indeed register number 8. */
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
59
60 /* %st0 is register number 24. */
61 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
63
64 /* %xmm0 is register number 40. */
65 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
66 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
67 "mxcsr",
68 };
69
70 /* Total number of registers. */
71 #define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names)
72
73 /* Return the name of register REGNUM. */
74
75 const char *
76 amd64_register_name (int regnum)
77 {
78 if (regnum >= 0 && regnum < AMD64_NUM_REGS)
79 return amd64_register_names[regnum];
80
81 return NULL;
82 }
83
84 /* Return the GDB type object for the "standard" data type of data in
85 register REGNUM. */
86
87 struct type *
88 amd64_register_type (struct gdbarch *gdbarch, int regnum)
89 {
90 if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM)
91 return builtin_type_int64;
92 if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM)
93 return builtin_type_void_data_ptr;
94 if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM)
95 return builtin_type_int64;
96 if (regnum == AMD64_RIP_REGNUM)
97 return builtin_type_void_func_ptr;
98 if (regnum == AMD64_EFLAGS_REGNUM)
99 return i386_eflags_type;
100 if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM)
101 return builtin_type_int32;
102 if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7)
103 return builtin_type_i387_ext;
104 if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7)
105 return builtin_type_int32;
106 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
107 return i386_sse_type (gdbarch);
108 if (regnum == AMD64_MXCSR_REGNUM)
109 return i386_mxcsr_type;
110
111 internal_error (__FILE__, __LINE__, _("invalid regnum"));
112 }
113
114 /* DWARF Register Number Mapping as defined in the System V psABI,
115 section 3.6. */
116
117 static int amd64_dwarf_regmap[] =
118 {
119 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
120 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
121 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
122 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
123
124 /* Frame Pointer Register RBP. */
125 AMD64_RBP_REGNUM,
126
127 /* Stack Pointer Register RSP. */
128 AMD64_RSP_REGNUM,
129
130 /* Extended Integer Registers 8 - 15. */
131 8, 9, 10, 11, 12, 13, 14, 15,
132
133 /* Return Address RA. Mapped to RIP. */
134 AMD64_RIP_REGNUM,
135
136 /* SSE Registers 0 - 7. */
137 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
138 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
139 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
140 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
141
142 /* Extended SSE Registers 8 - 15. */
143 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
144 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
145 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
146 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
147
148 /* Floating Point Registers 0-7. */
149 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
150 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
151 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
152 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
153
154 /* Control and Status Flags Register. */
155 AMD64_EFLAGS_REGNUM,
156
157 /* Selector Registers. */
158 AMD64_ES_REGNUM,
159 AMD64_CS_REGNUM,
160 AMD64_SS_REGNUM,
161 AMD64_DS_REGNUM,
162 AMD64_FS_REGNUM,
163 AMD64_GS_REGNUM,
164 -1,
165 -1,
166
167 /* Segment Base Address Registers. */
168 -1,
169 -1,
170 -1,
171 -1,
172
173 /* Special Selector Registers. */
174 -1,
175 -1,
176
177 /* Floating Point Control Registers. */
178 AMD64_MXCSR_REGNUM,
179 AMD64_FCTRL_REGNUM,
180 AMD64_FSTAT_REGNUM
181 };
182
183 static const int amd64_dwarf_regmap_len =
184 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
185
186 /* Convert DWARF register number REG to the appropriate register
187 number used by GDB. */
188
189 static int
190 amd64_dwarf_reg_to_regnum (int reg)
191 {
192 int regnum = -1;
193
194 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
195 regnum = amd64_dwarf_regmap[reg];
196
197 if (regnum == -1)
198 warning (_("Unmapped DWARF Register #%d encountered."), reg);
199
200 return regnum;
201 }
202
203 /* Return nonzero if a value of type TYPE stored in register REGNUM
204 needs any special handling. */
205
206 static int
207 amd64_convert_register_p (int regnum, struct type *type)
208 {
209 return i386_fp_regnum_p (regnum);
210 }
211 \f
212
213 /* Register classes as defined in the psABI. */
214
215 enum amd64_reg_class
216 {
217 AMD64_INTEGER,
218 AMD64_SSE,
219 AMD64_SSEUP,
220 AMD64_X87,
221 AMD64_X87UP,
222 AMD64_COMPLEX_X87,
223 AMD64_NO_CLASS,
224 AMD64_MEMORY
225 };
226
227 /* Return the union class of CLASS1 and CLASS2. See the psABI for
228 details. */
229
230 static enum amd64_reg_class
231 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
232 {
233 /* Rule (a): If both classes are equal, this is the resulting class. */
234 if (class1 == class2)
235 return class1;
236
237 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
238 is the other class. */
239 if (class1 == AMD64_NO_CLASS)
240 return class2;
241 if (class2 == AMD64_NO_CLASS)
242 return class1;
243
244 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
245 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
246 return AMD64_MEMORY;
247
248 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
249 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
250 return AMD64_INTEGER;
251
252 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
253 MEMORY is used as class. */
254 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
255 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
256 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
257 return AMD64_MEMORY;
258
259 /* Rule (f): Otherwise class SSE is used. */
260 return AMD64_SSE;
261 }
262
263 static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
264
265 /* Return non-zero if TYPE is a non-POD structure or union type. */
266
267 static int
268 amd64_non_pod_p (struct type *type)
269 {
270 /* ??? A class with a base class certainly isn't POD, but does this
271 catch all non-POD structure types? */
272 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
273 return 1;
274
275 return 0;
276 }
277
278 /* Classify TYPE according to the rules for aggregate (structures and
279 arrays) and union types, and store the result in CLASS. */
280
281 static void
282 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
283 {
284 int len = TYPE_LENGTH (type);
285
286 /* 1. If the size of an object is larger than two eightbytes, or in
287 C++, is a non-POD structure or union type, or contains
288 unaligned fields, it has class memory. */
289 if (len > 16 || amd64_non_pod_p (type))
290 {
291 class[0] = class[1] = AMD64_MEMORY;
292 return;
293 }
294
295 /* 2. Both eightbytes get initialized to class NO_CLASS. */
296 class[0] = class[1] = AMD64_NO_CLASS;
297
298 /* 3. Each field of an object is classified recursively so that
299 always two fields are considered. The resulting class is
300 calculated according to the classes of the fields in the
301 eightbyte: */
302
303 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
304 {
305 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
306
307 /* All fields in an array have the same type. */
308 amd64_classify (subtype, class);
309 if (len > 8 && class[1] == AMD64_NO_CLASS)
310 class[1] = class[0];
311 }
312 else
313 {
314 int i;
315
316 /* Structure or union. */
317 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
318 || TYPE_CODE (type) == TYPE_CODE_UNION);
319
320 for (i = 0; i < TYPE_NFIELDS (type); i++)
321 {
322 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
323 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
324 enum amd64_reg_class subclass[2];
325
326 /* Ignore static fields. */
327 if (TYPE_FIELD_STATIC (type, i))
328 continue;
329
330 gdb_assert (pos == 0 || pos == 1);
331
332 amd64_classify (subtype, subclass);
333 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
334 if (pos == 0)
335 class[1] = amd64_merge_classes (class[1], subclass[1]);
336 }
337 }
338
339 /* 4. Then a post merger cleanup is done: */
340
341 /* Rule (a): If one of the classes is MEMORY, the whole argument is
342 passed in memory. */
343 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
344 class[0] = class[1] = AMD64_MEMORY;
345
346 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
347 SSE. */
348 if (class[0] == AMD64_SSEUP)
349 class[0] = AMD64_SSE;
350 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
351 class[1] = AMD64_SSE;
352 }
353
354 /* Classify TYPE, and store the result in CLASS. */
355
356 static void
357 amd64_classify (struct type *type, enum amd64_reg_class class[2])
358 {
359 enum type_code code = TYPE_CODE (type);
360 int len = TYPE_LENGTH (type);
361
362 class[0] = class[1] = AMD64_NO_CLASS;
363
364 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
365 long, long long, and pointers are in the INTEGER class. Similarly,
366 range types, used by languages such as Ada, are also in the INTEGER
367 class. */
368 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
369 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
370 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
371 && (len == 1 || len == 2 || len == 4 || len == 8))
372 class[0] = AMD64_INTEGER;
373
374 /* Arguments of types float, double and __m64 are in class SSE. */
375 else if (code == TYPE_CODE_FLT && (len == 4 || len == 8))
376 /* FIXME: __m64 . */
377 class[0] = AMD64_SSE;
378
379 /* Arguments of types __float128 and __m128 are split into two
380 halves. The least significant ones belong to class SSE, the most
381 significant one to class SSEUP. */
382 /* FIXME: __float128, __m128. */
383
384 /* The 64-bit mantissa of arguments of type long double belongs to
385 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
386 class X87UP. */
387 else if (code == TYPE_CODE_FLT && len == 16)
388 /* Class X87 and X87UP. */
389 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
390
391 /* Aggregates. */
392 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
393 || code == TYPE_CODE_UNION)
394 amd64_classify_aggregate (type, class);
395 }
396
397 static enum return_value_convention
398 amd64_return_value (struct gdbarch *gdbarch, struct type *type,
399 struct regcache *regcache,
400 gdb_byte *readbuf, const gdb_byte *writebuf)
401 {
402 enum amd64_reg_class class[2];
403 int len = TYPE_LENGTH (type);
404 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
405 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
406 int integer_reg = 0;
407 int sse_reg = 0;
408 int i;
409
410 gdb_assert (!(readbuf && writebuf));
411
412 /* 1. Classify the return type with the classification algorithm. */
413 amd64_classify (type, class);
414
415 /* 2. If the type has class MEMORY, then the caller provides space
416 for the return value and passes the address of this storage in
417 %rdi as if it were the first argument to the function. In effect,
418 this address becomes a hidden first argument.
419
420 On return %rax will contain the address that has been passed in
421 by the caller in %rdi. */
422 if (class[0] == AMD64_MEMORY)
423 {
424 /* As indicated by the comment above, the ABI guarantees that we
425 can always find the return value just after the function has
426 returned. */
427
428 if (readbuf)
429 {
430 ULONGEST addr;
431
432 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
433 read_memory (addr, readbuf, TYPE_LENGTH (type));
434 }
435
436 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
437 }
438
439 gdb_assert (class[1] != AMD64_MEMORY);
440 gdb_assert (len <= 16);
441
442 for (i = 0; len > 0; i++, len -= 8)
443 {
444 int regnum = -1;
445 int offset = 0;
446
447 switch (class[i])
448 {
449 case AMD64_INTEGER:
450 /* 3. If the class is INTEGER, the next available register
451 of the sequence %rax, %rdx is used. */
452 regnum = integer_regnum[integer_reg++];
453 break;
454
455 case AMD64_SSE:
456 /* 4. If the class is SSE, the next available SSE register
457 of the sequence %xmm0, %xmm1 is used. */
458 regnum = sse_regnum[sse_reg++];
459 break;
460
461 case AMD64_SSEUP:
462 /* 5. If the class is SSEUP, the eightbyte is passed in the
463 upper half of the last used SSE register. */
464 gdb_assert (sse_reg > 0);
465 regnum = sse_regnum[sse_reg - 1];
466 offset = 8;
467 break;
468
469 case AMD64_X87:
470 /* 6. If the class is X87, the value is returned on the X87
471 stack in %st0 as 80-bit x87 number. */
472 regnum = AMD64_ST0_REGNUM;
473 if (writebuf)
474 i387_return_value (gdbarch, regcache);
475 break;
476
477 case AMD64_X87UP:
478 /* 7. If the class is X87UP, the value is returned together
479 with the previous X87 value in %st0. */
480 gdb_assert (i > 0 && class[0] == AMD64_X87);
481 regnum = AMD64_ST0_REGNUM;
482 offset = 8;
483 len = 2;
484 break;
485
486 case AMD64_NO_CLASS:
487 continue;
488
489 default:
490 gdb_assert (!"Unexpected register class.");
491 }
492
493 gdb_assert (regnum != -1);
494
495 if (readbuf)
496 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
497 readbuf + i * 8);
498 if (writebuf)
499 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
500 writebuf + i * 8);
501 }
502
503 return RETURN_VALUE_REGISTER_CONVENTION;
504 }
505 \f
506
507 static CORE_ADDR
508 amd64_push_arguments (struct regcache *regcache, int nargs,
509 struct value **args, CORE_ADDR sp, int struct_return)
510 {
511 static int integer_regnum[] =
512 {
513 AMD64_RDI_REGNUM, /* %rdi */
514 AMD64_RSI_REGNUM, /* %rsi */
515 AMD64_RDX_REGNUM, /* %rdx */
516 AMD64_RCX_REGNUM, /* %rcx */
517 8, /* %r8 */
518 9 /* %r9 */
519 };
520 static int sse_regnum[] =
521 {
522 /* %xmm0 ... %xmm7 */
523 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
524 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
525 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
526 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
527 };
528 struct value **stack_args = alloca (nargs * sizeof (struct value *));
529 int num_stack_args = 0;
530 int num_elements = 0;
531 int element = 0;
532 int integer_reg = 0;
533 int sse_reg = 0;
534 int i;
535
536 /* Reserve a register for the "hidden" argument. */
537 if (struct_return)
538 integer_reg++;
539
540 for (i = 0; i < nargs; i++)
541 {
542 struct type *type = value_type (args[i]);
543 int len = TYPE_LENGTH (type);
544 enum amd64_reg_class class[2];
545 int needed_integer_regs = 0;
546 int needed_sse_regs = 0;
547 int j;
548
549 /* Classify argument. */
550 amd64_classify (type, class);
551
552 /* Calculate the number of integer and SSE registers needed for
553 this argument. */
554 for (j = 0; j < 2; j++)
555 {
556 if (class[j] == AMD64_INTEGER)
557 needed_integer_regs++;
558 else if (class[j] == AMD64_SSE)
559 needed_sse_regs++;
560 }
561
562 /* Check whether enough registers are available, and if the
563 argument should be passed in registers at all. */
564 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
565 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
566 || (needed_integer_regs == 0 && needed_sse_regs == 0))
567 {
568 /* The argument will be passed on the stack. */
569 num_elements += ((len + 7) / 8);
570 stack_args[num_stack_args++] = args[i];
571 }
572 else
573 {
574 /* The argument will be passed in registers. */
575 const gdb_byte *valbuf = value_contents (args[i]);
576 gdb_byte buf[8];
577
578 gdb_assert (len <= 16);
579
580 for (j = 0; len > 0; j++, len -= 8)
581 {
582 int regnum = -1;
583 int offset = 0;
584
585 switch (class[j])
586 {
587 case AMD64_INTEGER:
588 regnum = integer_regnum[integer_reg++];
589 break;
590
591 case AMD64_SSE:
592 regnum = sse_regnum[sse_reg++];
593 break;
594
595 case AMD64_SSEUP:
596 gdb_assert (sse_reg > 0);
597 regnum = sse_regnum[sse_reg - 1];
598 offset = 8;
599 break;
600
601 default:
602 gdb_assert (!"Unexpected register class.");
603 }
604
605 gdb_assert (regnum != -1);
606 memset (buf, 0, sizeof buf);
607 memcpy (buf, valbuf + j * 8, min (len, 8));
608 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
609 }
610 }
611 }
612
613 /* Allocate space for the arguments on the stack. */
614 sp -= num_elements * 8;
615
616 /* The psABI says that "The end of the input argument area shall be
617 aligned on a 16 byte boundary." */
618 sp &= ~0xf;
619
620 /* Write out the arguments to the stack. */
621 for (i = 0; i < num_stack_args; i++)
622 {
623 struct type *type = value_type (stack_args[i]);
624 const gdb_byte *valbuf = value_contents (stack_args[i]);
625 int len = TYPE_LENGTH (type);
626
627 write_memory (sp + element * 8, valbuf, len);
628 element += ((len + 7) / 8);
629 }
630
631 /* The psABI says that "For calls that may call functions that use
632 varargs or stdargs (prototype-less calls or calls to functions
633 containing ellipsis (...) in the declaration) %al is used as
634 hidden argument to specify the number of SSE registers used. */
635 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
636 return sp;
637 }
638
639 static CORE_ADDR
640 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
641 struct regcache *regcache, CORE_ADDR bp_addr,
642 int nargs, struct value **args, CORE_ADDR sp,
643 int struct_return, CORE_ADDR struct_addr)
644 {
645 gdb_byte buf[8];
646
647 /* Pass arguments. */
648 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
649
650 /* Pass "hidden" argument". */
651 if (struct_return)
652 {
653 store_unsigned_integer (buf, 8, struct_addr);
654 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
655 }
656
657 /* Store return address. */
658 sp -= 8;
659 store_unsigned_integer (buf, 8, bp_addr);
660 write_memory (sp, buf, 8);
661
662 /* Finally, update the stack pointer... */
663 store_unsigned_integer (buf, 8, sp);
664 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
665
666 /* ...and fake a frame pointer. */
667 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
668
669 return sp + 16;
670 }
671 \f
672
673 /* The maximum number of saved registers. This should include %rip. */
674 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
675
676 struct amd64_frame_cache
677 {
678 /* Base address. */
679 CORE_ADDR base;
680 CORE_ADDR sp_offset;
681 CORE_ADDR pc;
682
683 /* Saved registers. */
684 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
685 CORE_ADDR saved_sp;
686
687 /* Do we have a frame? */
688 int frameless_p;
689 };
690
691 /* Initialize a frame cache. */
692
693 static void
694 amd64_init_frame_cache (struct amd64_frame_cache *cache)
695 {
696 int i;
697
698 /* Base address. */
699 cache->base = 0;
700 cache->sp_offset = -8;
701 cache->pc = 0;
702
703 /* Saved registers. We initialize these to -1 since zero is a valid
704 offset (that's where %rbp is supposed to be stored). */
705 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
706 cache->saved_regs[i] = -1;
707 cache->saved_sp = 0;
708
709 /* Frameless until proven otherwise. */
710 cache->frameless_p = 1;
711 }
712
713 /* Allocate and initialize a frame cache. */
714
715 static struct amd64_frame_cache *
716 amd64_alloc_frame_cache (void)
717 {
718 struct amd64_frame_cache *cache;
719
720 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
721 amd64_init_frame_cache (cache);
722 return cache;
723 }
724
725 /* Do a limited analysis of the prologue at PC and update CACHE
726 accordingly. Bail out early if CURRENT_PC is reached. Return the
727 address where the analysis stopped.
728
729 We will handle only functions beginning with:
730
731 pushq %rbp 0x55
732 movq %rsp, %rbp 0x48 0x89 0xe5
733
734 Any function that doesn't start with this sequence will be assumed
735 to have no prologue and thus no valid frame pointer in %rbp. */
736
737 static CORE_ADDR
738 amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
739 struct amd64_frame_cache *cache)
740 {
741 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
742 gdb_byte buf[3];
743 gdb_byte op;
744
745 if (current_pc <= pc)
746 return current_pc;
747
748 op = read_memory_unsigned_integer (pc, 1);
749
750 if (op == 0x55) /* pushq %rbp */
751 {
752 /* Take into account that we've executed the `pushq %rbp' that
753 starts this instruction sequence. */
754 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
755 cache->sp_offset += 8;
756
757 /* If that's all, return now. */
758 if (current_pc <= pc + 1)
759 return current_pc;
760
761 /* Check for `movq %rsp, %rbp'. */
762 read_memory (pc + 1, buf, 3);
763 if (memcmp (buf, proto, 3) != 0)
764 return pc + 1;
765
766 /* OK, we actually have a frame. */
767 cache->frameless_p = 0;
768 return pc + 4;
769 }
770
771 return pc;
772 }
773
774 /* Return PC of first real instruction. */
775
776 static CORE_ADDR
777 amd64_skip_prologue (CORE_ADDR start_pc)
778 {
779 struct amd64_frame_cache cache;
780 CORE_ADDR pc;
781
782 amd64_init_frame_cache (&cache);
783 pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffffLL, &cache);
784 if (cache.frameless_p)
785 return start_pc;
786
787 return pc;
788 }
789 \f
790
791 /* Normal frames. */
792
793 static struct amd64_frame_cache *
794 amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
795 {
796 struct amd64_frame_cache *cache;
797 gdb_byte buf[8];
798 int i;
799
800 if (*this_cache)
801 return *this_cache;
802
803 cache = amd64_alloc_frame_cache ();
804 *this_cache = cache;
805
806 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
807 if (cache->pc != 0)
808 amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
809
810 if (cache->frameless_p)
811 {
812 /* We didn't find a valid frame. If we're at the start of a
813 function, or somewhere half-way its prologue, the function's
814 frame probably hasn't been fully setup yet. Try to
815 reconstruct the base address for the stack frame by looking
816 at the stack pointer. For truly "frameless" functions this
817 might work too. */
818
819 frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
820 cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
821 }
822 else
823 {
824 frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
825 cache->base = extract_unsigned_integer (buf, 8);
826 }
827
828 /* Now that we have the base address for the stack frame we can
829 calculate the value of %rsp in the calling frame. */
830 cache->saved_sp = cache->base + 16;
831
832 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
833 frame we find it at the same offset from the reconstructed base
834 address. */
835 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
836
837 /* Adjust all the saved registers such that they contain addresses
838 instead of offsets. */
839 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
840 if (cache->saved_regs[i] != -1)
841 cache->saved_regs[i] += cache->base;
842
843 return cache;
844 }
845
846 static void
847 amd64_frame_this_id (struct frame_info *next_frame, void **this_cache,
848 struct frame_id *this_id)
849 {
850 struct amd64_frame_cache *cache =
851 amd64_frame_cache (next_frame, this_cache);
852
853 /* This marks the outermost frame. */
854 if (cache->base == 0)
855 return;
856
857 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
858 }
859
860 static void
861 amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
862 int regnum, int *optimizedp,
863 enum lval_type *lvalp, CORE_ADDR *addrp,
864 int *realnump, gdb_byte *valuep)
865 {
866 struct amd64_frame_cache *cache =
867 amd64_frame_cache (next_frame, this_cache);
868
869 gdb_assert (regnum >= 0);
870
871 if (regnum == gdbarch_sp_regnum (current_gdbarch) && cache->saved_sp)
872 {
873 *optimizedp = 0;
874 *lvalp = not_lval;
875 *addrp = 0;
876 *realnump = -1;
877 if (valuep)
878 {
879 /* Store the value. */
880 store_unsigned_integer (valuep, 8, cache->saved_sp);
881 }
882 return;
883 }
884
885 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
886 {
887 *optimizedp = 0;
888 *lvalp = lval_memory;
889 *addrp = cache->saved_regs[regnum];
890 *realnump = -1;
891 if (valuep)
892 {
893 /* Read the value in from memory. */
894 read_memory (*addrp, valuep,
895 register_size (current_gdbarch, regnum));
896 }
897 return;
898 }
899
900 *optimizedp = 0;
901 *lvalp = lval_register;
902 *addrp = 0;
903 *realnump = regnum;
904 if (valuep)
905 frame_unwind_register (next_frame, (*realnump), valuep);
906 }
907
908 static const struct frame_unwind amd64_frame_unwind =
909 {
910 NORMAL_FRAME,
911 amd64_frame_this_id,
912 amd64_frame_prev_register
913 };
914
915 static const struct frame_unwind *
916 amd64_frame_sniffer (struct frame_info *next_frame)
917 {
918 return &amd64_frame_unwind;
919 }
920 \f
921
922 /* Signal trampolines. */
923
924 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
925 64-bit variants. This would require using identical frame caches
926 on both platforms. */
927
928 static struct amd64_frame_cache *
929 amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
930 {
931 struct amd64_frame_cache *cache;
932 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
933 CORE_ADDR addr;
934 gdb_byte buf[8];
935 int i;
936
937 if (*this_cache)
938 return *this_cache;
939
940 cache = amd64_alloc_frame_cache ();
941
942 frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
943 cache->base = extract_unsigned_integer (buf, 8) - 8;
944
945 addr = tdep->sigcontext_addr (next_frame);
946 gdb_assert (tdep->sc_reg_offset);
947 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
948 for (i = 0; i < tdep->sc_num_regs; i++)
949 if (tdep->sc_reg_offset[i] != -1)
950 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
951
952 *this_cache = cache;
953 return cache;
954 }
955
956 static void
957 amd64_sigtramp_frame_this_id (struct frame_info *next_frame,
958 void **this_cache, struct frame_id *this_id)
959 {
960 struct amd64_frame_cache *cache =
961 amd64_sigtramp_frame_cache (next_frame, this_cache);
962
963 (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
964 }
965
966 static void
967 amd64_sigtramp_frame_prev_register (struct frame_info *next_frame,
968 void **this_cache,
969 int regnum, int *optimizedp,
970 enum lval_type *lvalp, CORE_ADDR *addrp,
971 int *realnump, gdb_byte *valuep)
972 {
973 /* Make sure we've initialized the cache. */
974 amd64_sigtramp_frame_cache (next_frame, this_cache);
975
976 amd64_frame_prev_register (next_frame, this_cache, regnum,
977 optimizedp, lvalp, addrp, realnump, valuep);
978 }
979
980 static const struct frame_unwind amd64_sigtramp_frame_unwind =
981 {
982 SIGTRAMP_FRAME,
983 amd64_sigtramp_frame_this_id,
984 amd64_sigtramp_frame_prev_register
985 };
986
987 static const struct frame_unwind *
988 amd64_sigtramp_frame_sniffer (struct frame_info *next_frame)
989 {
990 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
991
992 /* We shouldn't even bother if we don't have a sigcontext_addr
993 handler. */
994 if (tdep->sigcontext_addr == NULL)
995 return NULL;
996
997 if (tdep->sigtramp_p != NULL)
998 {
999 if (tdep->sigtramp_p (next_frame))
1000 return &amd64_sigtramp_frame_unwind;
1001 }
1002
1003 if (tdep->sigtramp_start != 0)
1004 {
1005 CORE_ADDR pc = frame_pc_unwind (next_frame);
1006
1007 gdb_assert (tdep->sigtramp_end != 0);
1008 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1009 return &amd64_sigtramp_frame_unwind;
1010 }
1011
1012 return NULL;
1013 }
1014 \f
1015
1016 static CORE_ADDR
1017 amd64_frame_base_address (struct frame_info *next_frame, void **this_cache)
1018 {
1019 struct amd64_frame_cache *cache =
1020 amd64_frame_cache (next_frame, this_cache);
1021
1022 return cache->base;
1023 }
1024
1025 static const struct frame_base amd64_frame_base =
1026 {
1027 &amd64_frame_unwind,
1028 amd64_frame_base_address,
1029 amd64_frame_base_address,
1030 amd64_frame_base_address
1031 };
1032
1033 static struct frame_id
1034 amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1035 {
1036 gdb_byte buf[8];
1037 CORE_ADDR fp;
1038
1039 frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
1040 fp = extract_unsigned_integer (buf, 8);
1041
1042 return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
1043 }
1044
1045 /* 16 byte align the SP per frame requirements. */
1046
1047 static CORE_ADDR
1048 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1049 {
1050 return sp & -(CORE_ADDR)16;
1051 }
1052 \f
1053
1054 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1055 in the floating-point register set REGSET to register cache
1056 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1057
1058 static void
1059 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1060 int regnum, const void *fpregs, size_t len)
1061 {
1062 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1063
1064 gdb_assert (len == tdep->sizeof_fpregset);
1065 amd64_supply_fxsave (regcache, regnum, fpregs);
1066 }
1067
1068 /* Collect register REGNUM from the register cache REGCACHE and store
1069 it in the buffer specified by FPREGS and LEN as described by the
1070 floating-point register set REGSET. If REGNUM is -1, do this for
1071 all registers in REGSET. */
1072
1073 static void
1074 amd64_collect_fpregset (const struct regset *regset,
1075 const struct regcache *regcache,
1076 int regnum, void *fpregs, size_t len)
1077 {
1078 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1079
1080 gdb_assert (len == tdep->sizeof_fpregset);
1081 amd64_collect_fxsave (regcache, regnum, fpregs);
1082 }
1083
1084 /* Return the appropriate register set for the core section identified
1085 by SECT_NAME and SECT_SIZE. */
1086
1087 static const struct regset *
1088 amd64_regset_from_core_section (struct gdbarch *gdbarch,
1089 const char *sect_name, size_t sect_size)
1090 {
1091 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1092
1093 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1094 {
1095 if (tdep->fpregset == NULL)
1096 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
1097 amd64_collect_fpregset);
1098
1099 return tdep->fpregset;
1100 }
1101
1102 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
1103 }
1104 \f
1105
1106 void
1107 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1108 {
1109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1110
1111 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
1112 floating-point registers. */
1113 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
1114
1115 /* AMD64 has an FPU and 16 SSE registers. */
1116 tdep->st0_regnum = AMD64_ST0_REGNUM;
1117 tdep->num_xmm_regs = 16;
1118
1119 /* This is what all the fuss is about. */
1120 set_gdbarch_long_bit (gdbarch, 64);
1121 set_gdbarch_long_long_bit (gdbarch, 64);
1122 set_gdbarch_ptr_bit (gdbarch, 64);
1123
1124 /* In contrast to the i386, on AMD64 a `long double' actually takes
1125 up 128 bits, even though it's still based on the i387 extended
1126 floating-point format which has only 80 significant bits. */
1127 set_gdbarch_long_double_bit (gdbarch, 128);
1128
1129 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
1130 set_gdbarch_register_name (gdbarch, amd64_register_name);
1131 set_gdbarch_register_type (gdbarch, amd64_register_type);
1132
1133 /* Register numbers of various important registers. */
1134 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
1135 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
1136 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
1137 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
1138
1139 /* The "default" register numbering scheme for AMD64 is referred to
1140 as the "DWARF Register Number Mapping" in the System V psABI.
1141 The preferred debugging format for all known AMD64 targets is
1142 actually DWARF2, and GCC doesn't seem to support DWARF (that is
1143 DWARF-1), but we provide the same mapping just in case. This
1144 mapping is also used for stabs, which GCC does support. */
1145 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1146 set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1147 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1148
1149 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
1150 be in use on any of the supported AMD64 targets. */
1151
1152 /* Call dummy code. */
1153 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
1154 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
1155 set_gdbarch_frame_red_zone_size (gdbarch, 128);
1156
1157 set_gdbarch_convert_register_p (gdbarch, amd64_convert_register_p);
1158 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
1159 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
1160
1161 set_gdbarch_return_value (gdbarch, amd64_return_value);
1162
1163 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
1164
1165 /* Avoid wiring in the MMX registers for now. */
1166 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1167 tdep->mm0_regnum = -1;
1168
1169 set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id);
1170
1171 frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer);
1172 frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer);
1173 frame_base_set_default (gdbarch, &amd64_frame_base);
1174
1175 /* If we have a register mapping, enable the generic core file support. */
1176 if (tdep->gregset_reg_offset)
1177 set_gdbarch_regset_from_core_section (gdbarch,
1178 amd64_regset_from_core_section);
1179 }
1180 \f
1181
1182 #define I387_ST0_REGNUM AMD64_ST0_REGNUM
1183
1184 /* The 64-bit FXSAVE format differs from the 32-bit format in the
1185 sense that the instruction pointer and data pointer are simply
1186 64-bit offsets into the code segment and the data segment instead
1187 of a selector offset pair. The functions below store the upper 32
1188 bits of these pointers (instead of just the 16-bits of the segment
1189 selector). */
1190
1191 /* Fill register REGNUM in REGCACHE with the appropriate
1192 floating-point or SSE register value from *FXSAVE. If REGNUM is
1193 -1, do this for all registers. This function masks off any of the
1194 reserved bits in *FXSAVE. */
1195
1196 void
1197 amd64_supply_fxsave (struct regcache *regcache, int regnum,
1198 const void *fxsave)
1199 {
1200 i387_supply_fxsave (regcache, regnum, fxsave);
1201
1202 if (fxsave && gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1203 {
1204 const gdb_byte *regs = fxsave;
1205
1206 if (regnum == -1 || regnum == I387_FISEG_REGNUM)
1207 regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
1208 if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
1209 regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
1210 }
1211 }
1212
1213 /* Fill register REGNUM (if it is a floating-point or SSE register) in
1214 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
1215 all registers. This function doesn't touch any of the reserved
1216 bits in *FXSAVE. */
1217
1218 void
1219 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
1220 void *fxsave)
1221 {
1222 gdb_byte *regs = fxsave;
1223
1224 i387_collect_fxsave (regcache, regnum, fxsave);
1225
1226 if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
1227 {
1228 if (regnum == -1 || regnum == I387_FISEG_REGNUM)
1229 regcache_raw_collect (regcache, I387_FISEG_REGNUM, regs + 12);
1230 if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
1231 regcache_raw_collect (regcache, I387_FOSEG_REGNUM, regs + 20);
1232 }
1233 }
This page took 0.08745 seconds and 4 git commands to generate.