2011-01-07 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 Contributed by Jiri Smid, SuSE Labs.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "opcode/i386.h"
25 #include "dis-asm.h"
26 #include "arch-utils.h"
27 #include "block.h"
28 #include "dummy-frame.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "gdb_assert.h"
41
42 #include "amd64-tdep.h"
43 #include "i387-tdep.h"
44
45 #include "features/i386/amd64.c"
46 #include "features/i386/amd64-avx.c"
47
48 /* Note that the AMD64 architecture was previously known as x86-64.
49 The latter is (forever) engraved into the canonical system name as
50 returned by config.guess, and used as the name for the AMD64 port
51 of GNU/Linux. The BSD's have renamed their ports to amd64; they
52 don't like to shout. For GDB we prefer the amd64_-prefix over the
53 x86_64_-prefix since it's so much easier to type. */
54
55 /* Register information. */
56
57 static const char *amd64_register_names[] =
58 {
59 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
60
61 /* %r8 is indeed register number 8. */
62 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
63 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
64
65 /* %st0 is register number 24. */
66 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
67 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
68
69 /* %xmm0 is register number 40. */
70 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
71 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
72 "mxcsr",
73 };
74
75 static const char *amd64_ymm_names[] =
76 {
77 "ymm0", "ymm1", "ymm2", "ymm3",
78 "ymm4", "ymm5", "ymm6", "ymm7",
79 "ymm8", "ymm9", "ymm10", "ymm11",
80 "ymm12", "ymm13", "ymm14", "ymm15"
81 };
82
83 static const char *amd64_ymmh_names[] =
84 {
85 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
86 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
87 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
88 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
89 };
90
91 /* The registers used to pass integer arguments during a function call. */
92 static int amd64_dummy_call_integer_regs[] =
93 {
94 AMD64_RDI_REGNUM, /* %rdi */
95 AMD64_RSI_REGNUM, /* %rsi */
96 AMD64_RDX_REGNUM, /* %rdx */
97 AMD64_RCX_REGNUM, /* %rcx */
98 8, /* %r8 */
99 9 /* %r9 */
100 };
101
102 /* DWARF Register Number Mapping as defined in the System V psABI,
103 section 3.6. */
104
105 static int amd64_dwarf_regmap[] =
106 {
107 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
108 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
109 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
110 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
111
112 /* Frame Pointer Register RBP. */
113 AMD64_RBP_REGNUM,
114
115 /* Stack Pointer Register RSP. */
116 AMD64_RSP_REGNUM,
117
118 /* Extended Integer Registers 8 - 15. */
119 8, 9, 10, 11, 12, 13, 14, 15,
120
121 /* Return Address RA. Mapped to RIP. */
122 AMD64_RIP_REGNUM,
123
124 /* SSE Registers 0 - 7. */
125 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
126 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
127 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
128 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
129
130 /* Extended SSE Registers 8 - 15. */
131 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
132 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
133 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
134 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
135
136 /* Floating Point Registers 0-7. */
137 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
138 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
139 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
140 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
141
142 /* Control and Status Flags Register. */
143 AMD64_EFLAGS_REGNUM,
144
145 /* Selector Registers. */
146 AMD64_ES_REGNUM,
147 AMD64_CS_REGNUM,
148 AMD64_SS_REGNUM,
149 AMD64_DS_REGNUM,
150 AMD64_FS_REGNUM,
151 AMD64_GS_REGNUM,
152 -1,
153 -1,
154
155 /* Segment Base Address Registers. */
156 -1,
157 -1,
158 -1,
159 -1,
160
161 /* Special Selector Registers. */
162 -1,
163 -1,
164
165 /* Floating Point Control Registers. */
166 AMD64_MXCSR_REGNUM,
167 AMD64_FCTRL_REGNUM,
168 AMD64_FSTAT_REGNUM
169 };
170
171 static const int amd64_dwarf_regmap_len =
172 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
173
174 /* Convert DWARF register number REG to the appropriate register
175 number used by GDB. */
176
177 static int
178 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int ymm0_regnum = tdep->ymm0_regnum;
182 int regnum = -1;
183
184 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
185 regnum = amd64_dwarf_regmap[reg];
186
187 if (regnum == -1)
188 warning (_("Unmapped DWARF Register #%d encountered."), reg);
189 else if (ymm0_regnum >= 0
190 && i386_xmm_regnum_p (gdbarch, regnum))
191 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
192
193 return regnum;
194 }
195
196 /* Map architectural register numbers to gdb register numbers. */
197
198 static const int amd64_arch_regmap[16] =
199 {
200 AMD64_RAX_REGNUM, /* %rax */
201 AMD64_RCX_REGNUM, /* %rcx */
202 AMD64_RDX_REGNUM, /* %rdx */
203 AMD64_RBX_REGNUM, /* %rbx */
204 AMD64_RSP_REGNUM, /* %rsp */
205 AMD64_RBP_REGNUM, /* %rbp */
206 AMD64_RSI_REGNUM, /* %rsi */
207 AMD64_RDI_REGNUM, /* %rdi */
208 AMD64_R8_REGNUM, /* %r8 */
209 AMD64_R9_REGNUM, /* %r9 */
210 AMD64_R10_REGNUM, /* %r10 */
211 AMD64_R11_REGNUM, /* %r11 */
212 AMD64_R12_REGNUM, /* %r12 */
213 AMD64_R13_REGNUM, /* %r13 */
214 AMD64_R14_REGNUM, /* %r14 */
215 AMD64_R15_REGNUM /* %r15 */
216 };
217
218 static const int amd64_arch_regmap_len =
219 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
220
221 /* Convert architectural register number REG to the appropriate register
222 number used by GDB. */
223
224 static int
225 amd64_arch_reg_to_regnum (int reg)
226 {
227 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
228
229 return amd64_arch_regmap[reg];
230 }
231
232 /* Register names for byte pseudo-registers. */
233
234 static const char *amd64_byte_names[] =
235 {
236 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
237 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
238 "ah", "bh", "ch", "dh"
239 };
240
241 /* Number of lower byte registers. */
242 #define AMD64_NUM_LOWER_BYTE_REGS 16
243
244 /* Register names for word pseudo-registers. */
245
246 static const char *amd64_word_names[] =
247 {
248 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
249 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
250 };
251
252 /* Register names for dword pseudo-registers. */
253
254 static const char *amd64_dword_names[] =
255 {
256 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
257 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d"
258 };
259
260 /* Return the name of register REGNUM. */
261
262 static const char *
263 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
264 {
265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
266 if (i386_byte_regnum_p (gdbarch, regnum))
267 return amd64_byte_names[regnum - tdep->al_regnum];
268 else if (i386_ymm_regnum_p (gdbarch, regnum))
269 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
270 else if (i386_word_regnum_p (gdbarch, regnum))
271 return amd64_word_names[regnum - tdep->ax_regnum];
272 else if (i386_dword_regnum_p (gdbarch, regnum))
273 return amd64_dword_names[regnum - tdep->eax_regnum];
274 else
275 return i386_pseudo_register_name (gdbarch, regnum);
276 }
277
278 static void
279 amd64_pseudo_register_read (struct gdbarch *gdbarch,
280 struct regcache *regcache,
281 int regnum, gdb_byte *buf)
282 {
283 gdb_byte raw_buf[MAX_REGISTER_SIZE];
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285
286 if (i386_byte_regnum_p (gdbarch, regnum))
287 {
288 int gpnum = regnum - tdep->al_regnum;
289
290 /* Extract (always little endian). */
291 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
292 {
293 /* Special handling for AH, BH, CH, DH. */
294 regcache_raw_read (regcache,
295 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
296 memcpy (buf, raw_buf + 1, 1);
297 }
298 else
299 {
300 regcache_raw_read (regcache, gpnum, raw_buf);
301 memcpy (buf, raw_buf, 1);
302 }
303 }
304 else if (i386_dword_regnum_p (gdbarch, regnum))
305 {
306 int gpnum = regnum - tdep->eax_regnum;
307 /* Extract (always little endian). */
308 regcache_raw_read (regcache, gpnum, raw_buf);
309 memcpy (buf, raw_buf, 4);
310 }
311 else
312 i386_pseudo_register_read (gdbarch, regcache, regnum, buf);
313 }
314
315 static void
316 amd64_pseudo_register_write (struct gdbarch *gdbarch,
317 struct regcache *regcache,
318 int regnum, const gdb_byte *buf)
319 {
320 gdb_byte raw_buf[MAX_REGISTER_SIZE];
321 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
322
323 if (i386_byte_regnum_p (gdbarch, regnum))
324 {
325 int gpnum = regnum - tdep->al_regnum;
326
327 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
328 {
329 /* Read ... AH, BH, CH, DH. */
330 regcache_raw_read (regcache,
331 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
332 /* ... Modify ... (always little endian). */
333 memcpy (raw_buf + 1, buf, 1);
334 /* ... Write. */
335 regcache_raw_write (regcache,
336 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
337 }
338 else
339 {
340 /* Read ... */
341 regcache_raw_read (regcache, gpnum, raw_buf);
342 /* ... Modify ... (always little endian). */
343 memcpy (raw_buf, buf, 1);
344 /* ... Write. */
345 regcache_raw_write (regcache, gpnum, raw_buf);
346 }
347 }
348 else if (i386_dword_regnum_p (gdbarch, regnum))
349 {
350 int gpnum = regnum - tdep->eax_regnum;
351
352 /* Read ... */
353 regcache_raw_read (regcache, gpnum, raw_buf);
354 /* ... Modify ... (always little endian). */
355 memcpy (raw_buf, buf, 4);
356 /* ... Write. */
357 regcache_raw_write (regcache, gpnum, raw_buf);
358 }
359 else
360 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
361 }
362
363 \f
364
365 /* Return the union class of CLASS1 and CLASS2. See the psABI for
366 details. */
367
368 static enum amd64_reg_class
369 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
370 {
371 /* Rule (a): If both classes are equal, this is the resulting class. */
372 if (class1 == class2)
373 return class1;
374
375 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
376 is the other class. */
377 if (class1 == AMD64_NO_CLASS)
378 return class2;
379 if (class2 == AMD64_NO_CLASS)
380 return class1;
381
382 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
383 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
384 return AMD64_MEMORY;
385
386 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
387 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
388 return AMD64_INTEGER;
389
390 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
391 MEMORY is used as class. */
392 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
393 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
394 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
395 return AMD64_MEMORY;
396
397 /* Rule (f): Otherwise class SSE is used. */
398 return AMD64_SSE;
399 }
400
401 /* Return non-zero if TYPE is a non-POD structure or union type. */
402
403 static int
404 amd64_non_pod_p (struct type *type)
405 {
406 /* ??? A class with a base class certainly isn't POD, but does this
407 catch all non-POD structure types? */
408 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
409 return 1;
410
411 return 0;
412 }
413
414 /* Classify TYPE according to the rules for aggregate (structures and
415 arrays) and union types, and store the result in CLASS. */
416
417 static void
418 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
419 {
420 int len = TYPE_LENGTH (type);
421
422 /* 1. If the size of an object is larger than two eightbytes, or in
423 C++, is a non-POD structure or union type, or contains
424 unaligned fields, it has class memory. */
425 if (len > 16 || amd64_non_pod_p (type))
426 {
427 class[0] = class[1] = AMD64_MEMORY;
428 return;
429 }
430
431 /* 2. Both eightbytes get initialized to class NO_CLASS. */
432 class[0] = class[1] = AMD64_NO_CLASS;
433
434 /* 3. Each field of an object is classified recursively so that
435 always two fields are considered. The resulting class is
436 calculated according to the classes of the fields in the
437 eightbyte: */
438
439 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
440 {
441 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
442
443 /* All fields in an array have the same type. */
444 amd64_classify (subtype, class);
445 if (len > 8 && class[1] == AMD64_NO_CLASS)
446 class[1] = class[0];
447 }
448 else
449 {
450 int i;
451
452 /* Structure or union. */
453 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
454 || TYPE_CODE (type) == TYPE_CODE_UNION);
455
456 for (i = 0; i < TYPE_NFIELDS (type); i++)
457 {
458 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
459 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
460 enum amd64_reg_class subclass[2];
461 int bitsize = TYPE_FIELD_BITSIZE (type, i);
462 int endpos;
463
464 if (bitsize == 0)
465 bitsize = TYPE_LENGTH (subtype) * 8;
466 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
467
468 /* Ignore static fields. */
469 if (field_is_static (&TYPE_FIELD (type, i)))
470 continue;
471
472 gdb_assert (pos == 0 || pos == 1);
473
474 amd64_classify (subtype, subclass);
475 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
476 if (bitsize <= 64 && pos == 0 && endpos == 1)
477 /* This is a bit of an odd case: We have a field that would
478 normally fit in one of the two eightbytes, except that
479 it is placed in a way that this field straddles them.
480 This has been seen with a structure containing an array.
481
482 The ABI is a bit unclear in this case, but we assume that
483 this field's class (stored in subclass[0]) must also be merged
484 into class[1]. In other words, our field has a piece stored
485 in the second eight-byte, and thus its class applies to
486 the second eight-byte as well.
487
488 In the case where the field length exceeds 8 bytes,
489 it should not be necessary to merge the field class
490 into class[1]. As LEN > 8, subclass[1] is necessarily
491 different from AMD64_NO_CLASS. If subclass[1] is equal
492 to subclass[0], then the normal class[1]/subclass[1]
493 merging will take care of everything. For subclass[1]
494 to be different from subclass[0], I can only see the case
495 where we have a SSE/SSEUP or X87/X87UP pair, which both
496 use up all 16 bytes of the aggregate, and are already
497 handled just fine (because each portion sits on its own
498 8-byte). */
499 class[1] = amd64_merge_classes (class[1], subclass[0]);
500 if (pos == 0)
501 class[1] = amd64_merge_classes (class[1], subclass[1]);
502 }
503 }
504
505 /* 4. Then a post merger cleanup is done: */
506
507 /* Rule (a): If one of the classes is MEMORY, the whole argument is
508 passed in memory. */
509 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
510 class[0] = class[1] = AMD64_MEMORY;
511
512 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
513 SSE. */
514 if (class[0] == AMD64_SSEUP)
515 class[0] = AMD64_SSE;
516 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
517 class[1] = AMD64_SSE;
518 }
519
520 /* Classify TYPE, and store the result in CLASS. */
521
522 void
523 amd64_classify (struct type *type, enum amd64_reg_class class[2])
524 {
525 enum type_code code = TYPE_CODE (type);
526 int len = TYPE_LENGTH (type);
527
528 class[0] = class[1] = AMD64_NO_CLASS;
529
530 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
531 long, long long, and pointers are in the INTEGER class. Similarly,
532 range types, used by languages such as Ada, are also in the INTEGER
533 class. */
534 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
535 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
536 || code == TYPE_CODE_CHAR
537 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
538 && (len == 1 || len == 2 || len == 4 || len == 8))
539 class[0] = AMD64_INTEGER;
540
541 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
542 are in class SSE. */
543 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
544 && (len == 4 || len == 8))
545 /* FIXME: __m64 . */
546 class[0] = AMD64_SSE;
547
548 /* Arguments of types __float128, _Decimal128 and __m128 are split into
549 two halves. The least significant ones belong to class SSE, the most
550 significant one to class SSEUP. */
551 else if (code == TYPE_CODE_DECFLOAT && len == 16)
552 /* FIXME: __float128, __m128. */
553 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
554
555 /* The 64-bit mantissa of arguments of type long double belongs to
556 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
557 class X87UP. */
558 else if (code == TYPE_CODE_FLT && len == 16)
559 /* Class X87 and X87UP. */
560 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
561
562 /* Aggregates. */
563 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
564 || code == TYPE_CODE_UNION)
565 amd64_classify_aggregate (type, class);
566 }
567
568 static enum return_value_convention
569 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
570 struct type *type, struct regcache *regcache,
571 gdb_byte *readbuf, const gdb_byte *writebuf)
572 {
573 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
574 enum amd64_reg_class class[2];
575 int len = TYPE_LENGTH (type);
576 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
577 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
578 int integer_reg = 0;
579 int sse_reg = 0;
580 int i;
581
582 gdb_assert (!(readbuf && writebuf));
583 gdb_assert (tdep->classify);
584
585 /* 1. Classify the return type with the classification algorithm. */
586 tdep->classify (type, class);
587
588 /* 2. If the type has class MEMORY, then the caller provides space
589 for the return value and passes the address of this storage in
590 %rdi as if it were the first argument to the function. In effect,
591 this address becomes a hidden first argument.
592
593 On return %rax will contain the address that has been passed in
594 by the caller in %rdi. */
595 if (class[0] == AMD64_MEMORY)
596 {
597 /* As indicated by the comment above, the ABI guarantees that we
598 can always find the return value just after the function has
599 returned. */
600
601 if (readbuf)
602 {
603 ULONGEST addr;
604
605 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
606 read_memory (addr, readbuf, TYPE_LENGTH (type));
607 }
608
609 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
610 }
611
612 gdb_assert (class[1] != AMD64_MEMORY);
613 gdb_assert (len <= 16);
614
615 for (i = 0; len > 0; i++, len -= 8)
616 {
617 int regnum = -1;
618 int offset = 0;
619
620 switch (class[i])
621 {
622 case AMD64_INTEGER:
623 /* 3. If the class is INTEGER, the next available register
624 of the sequence %rax, %rdx is used. */
625 regnum = integer_regnum[integer_reg++];
626 break;
627
628 case AMD64_SSE:
629 /* 4. If the class is SSE, the next available SSE register
630 of the sequence %xmm0, %xmm1 is used. */
631 regnum = sse_regnum[sse_reg++];
632 break;
633
634 case AMD64_SSEUP:
635 /* 5. If the class is SSEUP, the eightbyte is passed in the
636 upper half of the last used SSE register. */
637 gdb_assert (sse_reg > 0);
638 regnum = sse_regnum[sse_reg - 1];
639 offset = 8;
640 break;
641
642 case AMD64_X87:
643 /* 6. If the class is X87, the value is returned on the X87
644 stack in %st0 as 80-bit x87 number. */
645 regnum = AMD64_ST0_REGNUM;
646 if (writebuf)
647 i387_return_value (gdbarch, regcache);
648 break;
649
650 case AMD64_X87UP:
651 /* 7. If the class is X87UP, the value is returned together
652 with the previous X87 value in %st0. */
653 gdb_assert (i > 0 && class[0] == AMD64_X87);
654 regnum = AMD64_ST0_REGNUM;
655 offset = 8;
656 len = 2;
657 break;
658
659 case AMD64_NO_CLASS:
660 continue;
661
662 default:
663 gdb_assert (!"Unexpected register class.");
664 }
665
666 gdb_assert (regnum != -1);
667
668 if (readbuf)
669 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
670 readbuf + i * 8);
671 if (writebuf)
672 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
673 writebuf + i * 8);
674 }
675
676 return RETURN_VALUE_REGISTER_CONVENTION;
677 }
678 \f
679
680 static CORE_ADDR
681 amd64_push_arguments (struct regcache *regcache, int nargs,
682 struct value **args, CORE_ADDR sp, int struct_return)
683 {
684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
685 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
686 int *integer_regs = tdep->call_dummy_integer_regs;
687 int num_integer_regs = tdep->call_dummy_num_integer_regs;
688
689 static int sse_regnum[] =
690 {
691 /* %xmm0 ... %xmm7 */
692 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
693 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
694 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
695 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
696 };
697 struct value **stack_args = alloca (nargs * sizeof (struct value *));
698 /* An array that mirrors the stack_args array. For all arguments
699 that are passed by MEMORY, if that argument's address also needs
700 to be stored in a register, the ARG_ADDR_REGNO array will contain
701 that register number (or a negative value otherwise). */
702 int *arg_addr_regno = alloca (nargs * sizeof (int));
703 int num_stack_args = 0;
704 int num_elements = 0;
705 int element = 0;
706 int integer_reg = 0;
707 int sse_reg = 0;
708 int i;
709
710 gdb_assert (tdep->classify);
711
712 /* Reserve a register for the "hidden" argument. */
713 if (struct_return)
714 integer_reg++;
715
716 for (i = 0; i < nargs; i++)
717 {
718 struct type *type = value_type (args[i]);
719 int len = TYPE_LENGTH (type);
720 enum amd64_reg_class class[2];
721 int needed_integer_regs = 0;
722 int needed_sse_regs = 0;
723 int j;
724
725 /* Classify argument. */
726 tdep->classify (type, class);
727
728 /* Calculate the number of integer and SSE registers needed for
729 this argument. */
730 for (j = 0; j < 2; j++)
731 {
732 if (class[j] == AMD64_INTEGER)
733 needed_integer_regs++;
734 else if (class[j] == AMD64_SSE)
735 needed_sse_regs++;
736 }
737
738 /* Check whether enough registers are available, and if the
739 argument should be passed in registers at all. */
740 if (integer_reg + needed_integer_regs > num_integer_regs
741 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
742 || (needed_integer_regs == 0 && needed_sse_regs == 0))
743 {
744 /* The argument will be passed on the stack. */
745 num_elements += ((len + 7) / 8);
746 stack_args[num_stack_args] = args[i];
747 /* If this is an AMD64_MEMORY argument whose address must also
748 be passed in one of the integer registers, reserve that
749 register and associate this value to that register so that
750 we can store the argument address as soon as we know it. */
751 if (class[0] == AMD64_MEMORY
752 && tdep->memory_args_by_pointer
753 && integer_reg < tdep->call_dummy_num_integer_regs)
754 arg_addr_regno[num_stack_args] =
755 tdep->call_dummy_integer_regs[integer_reg++];
756 else
757 arg_addr_regno[num_stack_args] = -1;
758 num_stack_args++;
759 }
760 else
761 {
762 /* The argument will be passed in registers. */
763 const gdb_byte *valbuf = value_contents (args[i]);
764 gdb_byte buf[8];
765
766 gdb_assert (len <= 16);
767
768 for (j = 0; len > 0; j++, len -= 8)
769 {
770 int regnum = -1;
771 int offset = 0;
772
773 switch (class[j])
774 {
775 case AMD64_INTEGER:
776 regnum = integer_regs[integer_reg++];
777 break;
778
779 case AMD64_SSE:
780 regnum = sse_regnum[sse_reg++];
781 break;
782
783 case AMD64_SSEUP:
784 gdb_assert (sse_reg > 0);
785 regnum = sse_regnum[sse_reg - 1];
786 offset = 8;
787 break;
788
789 default:
790 gdb_assert (!"Unexpected register class.");
791 }
792
793 gdb_assert (regnum != -1);
794 memset (buf, 0, sizeof buf);
795 memcpy (buf, valbuf + j * 8, min (len, 8));
796 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
797 }
798 }
799 }
800
801 /* Allocate space for the arguments on the stack. */
802 sp -= num_elements * 8;
803
804 /* The psABI says that "The end of the input argument area shall be
805 aligned on a 16 byte boundary." */
806 sp &= ~0xf;
807
808 /* Write out the arguments to the stack. */
809 for (i = 0; i < num_stack_args; i++)
810 {
811 struct type *type = value_type (stack_args[i]);
812 const gdb_byte *valbuf = value_contents (stack_args[i]);
813 int len = TYPE_LENGTH (type);
814 CORE_ADDR arg_addr = sp + element * 8;
815
816 write_memory (arg_addr, valbuf, len);
817 if (arg_addr_regno[i] >= 0)
818 {
819 /* We also need to store the address of that argument in
820 the given register. */
821 gdb_byte buf[8];
822 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
823
824 store_unsigned_integer (buf, 8, byte_order, arg_addr);
825 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
826 }
827 element += ((len + 7) / 8);
828 }
829
830 /* The psABI says that "For calls that may call functions that use
831 varargs or stdargs (prototype-less calls or calls to functions
832 containing ellipsis (...) in the declaration) %al is used as
833 hidden argument to specify the number of SSE registers used. */
834 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
835 return sp;
836 }
837
838 static CORE_ADDR
839 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
840 struct regcache *regcache, CORE_ADDR bp_addr,
841 int nargs, struct value **args, CORE_ADDR sp,
842 int struct_return, CORE_ADDR struct_addr)
843 {
844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
845 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
846 gdb_byte buf[8];
847
848 /* Pass arguments. */
849 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
850
851 /* Pass "hidden" argument". */
852 if (struct_return)
853 {
854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
855 /* The "hidden" argument is passed throught the first argument
856 register. */
857 const int arg_regnum = tdep->call_dummy_integer_regs[0];
858
859 store_unsigned_integer (buf, 8, byte_order, struct_addr);
860 regcache_cooked_write (regcache, arg_regnum, buf);
861 }
862
863 /* Reserve some memory on the stack for the integer-parameter registers,
864 if required by the ABI. */
865 if (tdep->integer_param_regs_saved_in_caller_frame)
866 sp -= tdep->call_dummy_num_integer_regs * 8;
867
868 /* Store return address. */
869 sp -= 8;
870 store_unsigned_integer (buf, 8, byte_order, bp_addr);
871 write_memory (sp, buf, 8);
872
873 /* Finally, update the stack pointer... */
874 store_unsigned_integer (buf, 8, byte_order, sp);
875 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
876
877 /* ...and fake a frame pointer. */
878 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
879
880 return sp + 16;
881 }
882 \f
883 /* Displaced instruction handling. */
884
885 /* A partially decoded instruction.
886 This contains enough details for displaced stepping purposes. */
887
888 struct amd64_insn
889 {
890 /* The number of opcode bytes. */
891 int opcode_len;
892 /* The offset of the rex prefix or -1 if not present. */
893 int rex_offset;
894 /* The offset to the first opcode byte. */
895 int opcode_offset;
896 /* The offset to the modrm byte or -1 if not present. */
897 int modrm_offset;
898
899 /* The raw instruction. */
900 gdb_byte *raw_insn;
901 };
902
903 struct displaced_step_closure
904 {
905 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
906 int tmp_used;
907 int tmp_regno;
908 ULONGEST tmp_save;
909
910 /* Details of the instruction. */
911 struct amd64_insn insn_details;
912
913 /* Amount of space allocated to insn_buf. */
914 int max_len;
915
916 /* The possibly modified insn.
917 This is a variable-length field. */
918 gdb_byte insn_buf[1];
919 };
920
921 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
922 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
923 at which point delete these in favor of libopcodes' versions). */
924
925 static const unsigned char onebyte_has_modrm[256] = {
926 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
927 /* ------------------------------- */
928 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
929 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
930 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
931 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
932 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
933 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
934 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
935 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
936 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
937 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
938 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
939 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
940 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
941 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
942 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
943 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
944 /* ------------------------------- */
945 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
946 };
947
948 static const unsigned char twobyte_has_modrm[256] = {
949 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
950 /* ------------------------------- */
951 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
952 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
953 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
954 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
955 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
956 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
957 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
958 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
959 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
960 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
961 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
962 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
963 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
964 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
965 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
966 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
967 /* ------------------------------- */
968 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
969 };
970
971 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
972
973 static int
974 rex_prefix_p (gdb_byte pfx)
975 {
976 return REX_PREFIX_P (pfx);
977 }
978
979 /* Skip the legacy instruction prefixes in INSN.
980 We assume INSN is properly sentineled so we don't have to worry
981 about falling off the end of the buffer. */
982
983 static gdb_byte *
984 amd64_skip_prefixes (gdb_byte *insn)
985 {
986 while (1)
987 {
988 switch (*insn)
989 {
990 case DATA_PREFIX_OPCODE:
991 case ADDR_PREFIX_OPCODE:
992 case CS_PREFIX_OPCODE:
993 case DS_PREFIX_OPCODE:
994 case ES_PREFIX_OPCODE:
995 case FS_PREFIX_OPCODE:
996 case GS_PREFIX_OPCODE:
997 case SS_PREFIX_OPCODE:
998 case LOCK_PREFIX_OPCODE:
999 case REPE_PREFIX_OPCODE:
1000 case REPNE_PREFIX_OPCODE:
1001 ++insn;
1002 continue;
1003 default:
1004 break;
1005 }
1006 break;
1007 }
1008
1009 return insn;
1010 }
1011
1012 /* Return an integer register (other than RSP) that is unused as an input
1013 operand in INSN.
1014 In order to not require adding a rex prefix if the insn doesn't already
1015 have one, the result is restricted to RAX ... RDI, sans RSP.
1016 The register numbering of the result follows architecture ordering,
1017 e.g. RDI = 7. */
1018
1019 static int
1020 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1021 {
1022 /* 1 bit for each reg */
1023 int used_regs_mask = 0;
1024
1025 /* There can be at most 3 int regs used as inputs in an insn, and we have
1026 7 to choose from (RAX ... RDI, sans RSP).
1027 This allows us to take a conservative approach and keep things simple.
1028 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1029 that implicitly specify RAX. */
1030
1031 /* Avoid RAX. */
1032 used_regs_mask |= 1 << EAX_REG_NUM;
1033 /* Similarily avoid RDX, implicit operand in divides. */
1034 used_regs_mask |= 1 << EDX_REG_NUM;
1035 /* Avoid RSP. */
1036 used_regs_mask |= 1 << ESP_REG_NUM;
1037
1038 /* If the opcode is one byte long and there's no ModRM byte,
1039 assume the opcode specifies a register. */
1040 if (details->opcode_len == 1 && details->modrm_offset == -1)
1041 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1042
1043 /* Mark used regs in the modrm/sib bytes. */
1044 if (details->modrm_offset != -1)
1045 {
1046 int modrm = details->raw_insn[details->modrm_offset];
1047 int mod = MODRM_MOD_FIELD (modrm);
1048 int reg = MODRM_REG_FIELD (modrm);
1049 int rm = MODRM_RM_FIELD (modrm);
1050 int have_sib = mod != 3 && rm == 4;
1051
1052 /* Assume the reg field of the modrm byte specifies a register. */
1053 used_regs_mask |= 1 << reg;
1054
1055 if (have_sib)
1056 {
1057 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1058 int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1059 used_regs_mask |= 1 << base;
1060 used_regs_mask |= 1 << index;
1061 }
1062 else
1063 {
1064 used_regs_mask |= 1 << rm;
1065 }
1066 }
1067
1068 gdb_assert (used_regs_mask < 256);
1069 gdb_assert (used_regs_mask != 255);
1070
1071 /* Finally, find a free reg. */
1072 {
1073 int i;
1074
1075 for (i = 0; i < 8; ++i)
1076 {
1077 if (! (used_regs_mask & (1 << i)))
1078 return i;
1079 }
1080
1081 /* We shouldn't get here. */
1082 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1083 }
1084 }
1085
1086 /* Extract the details of INSN that we need. */
1087
1088 static void
1089 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1090 {
1091 gdb_byte *start = insn;
1092 int need_modrm;
1093
1094 details->raw_insn = insn;
1095
1096 details->opcode_len = -1;
1097 details->rex_offset = -1;
1098 details->opcode_offset = -1;
1099 details->modrm_offset = -1;
1100
1101 /* Skip legacy instruction prefixes. */
1102 insn = amd64_skip_prefixes (insn);
1103
1104 /* Skip REX instruction prefix. */
1105 if (rex_prefix_p (*insn))
1106 {
1107 details->rex_offset = insn - start;
1108 ++insn;
1109 }
1110
1111 details->opcode_offset = insn - start;
1112
1113 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1114 {
1115 /* Two or three-byte opcode. */
1116 ++insn;
1117 need_modrm = twobyte_has_modrm[*insn];
1118
1119 /* Check for three-byte opcode. */
1120 switch (*insn)
1121 {
1122 case 0x24:
1123 case 0x25:
1124 case 0x38:
1125 case 0x3a:
1126 case 0x7a:
1127 case 0x7b:
1128 ++insn;
1129 details->opcode_len = 3;
1130 break;
1131 default:
1132 details->opcode_len = 2;
1133 break;
1134 }
1135 }
1136 else
1137 {
1138 /* One-byte opcode. */
1139 need_modrm = onebyte_has_modrm[*insn];
1140 details->opcode_len = 1;
1141 }
1142
1143 if (need_modrm)
1144 {
1145 ++insn;
1146 details->modrm_offset = insn - start;
1147 }
1148 }
1149
1150 /* Update %rip-relative addressing in INSN.
1151
1152 %rip-relative addressing only uses a 32-bit displacement.
1153 32 bits is not enough to be guaranteed to cover the distance between where
1154 the real instruction is and where its copy is.
1155 Convert the insn to use base+disp addressing.
1156 We set base = pc + insn_length so we can leave disp unchanged. */
1157
1158 static void
1159 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1160 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1161 {
1162 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1163 const struct amd64_insn *insn_details = &dsc->insn_details;
1164 int modrm_offset = insn_details->modrm_offset;
1165 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1166 CORE_ADDR rip_base;
1167 int32_t disp;
1168 int insn_length;
1169 int arch_tmp_regno, tmp_regno;
1170 ULONGEST orig_value;
1171
1172 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1173 ++insn;
1174
1175 /* Compute the rip-relative address. */
1176 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1177 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1178 dsc->max_len, from);
1179 rip_base = from + insn_length;
1180
1181 /* We need a register to hold the address.
1182 Pick one not used in the insn.
1183 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1184 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1185 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1186
1187 /* REX.B should be unset as we were using rip-relative addressing,
1188 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1189 if (insn_details->rex_offset != -1)
1190 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1191
1192 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1193 dsc->tmp_regno = tmp_regno;
1194 dsc->tmp_save = orig_value;
1195 dsc->tmp_used = 1;
1196
1197 /* Convert the ModRM field to be base+disp. */
1198 dsc->insn_buf[modrm_offset] &= ~0xc7;
1199 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1200
1201 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1202
1203 if (debug_displaced)
1204 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1205 "displaced: using temp reg %d, old value %s, new value %s\n",
1206 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1207 paddress (gdbarch, rip_base));
1208 }
1209
1210 static void
1211 fixup_displaced_copy (struct gdbarch *gdbarch,
1212 struct displaced_step_closure *dsc,
1213 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1214 {
1215 const struct amd64_insn *details = &dsc->insn_details;
1216
1217 if (details->modrm_offset != -1)
1218 {
1219 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1220
1221 if ((modrm & 0xc7) == 0x05)
1222 {
1223 /* The insn uses rip-relative addressing.
1224 Deal with it. */
1225 fixup_riprel (gdbarch, dsc, from, to, regs);
1226 }
1227 }
1228 }
1229
1230 struct displaced_step_closure *
1231 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1232 CORE_ADDR from, CORE_ADDR to,
1233 struct regcache *regs)
1234 {
1235 int len = gdbarch_max_insn_length (gdbarch);
1236 /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to
1237 continually watch for running off the end of the buffer. */
1238 int fixup_sentinel_space = len;
1239 struct displaced_step_closure *dsc =
1240 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1241 gdb_byte *buf = &dsc->insn_buf[0];
1242 struct amd64_insn *details = &dsc->insn_details;
1243
1244 dsc->tmp_used = 0;
1245 dsc->max_len = len + fixup_sentinel_space;
1246
1247 read_memory (from, buf, len);
1248
1249 /* Set up the sentinel space so we don't have to worry about running
1250 off the end of the buffer. An excessive number of leading prefixes
1251 could otherwise cause this. */
1252 memset (buf + len, 0, fixup_sentinel_space);
1253
1254 amd64_get_insn_details (buf, details);
1255
1256 /* GDB may get control back after the insn after the syscall.
1257 Presumably this is a kernel bug.
1258 If this is a syscall, make sure there's a nop afterwards. */
1259 {
1260 int syscall_length;
1261
1262 if (amd64_syscall_p (details, &syscall_length))
1263 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1264 }
1265
1266 /* Modify the insn to cope with the address where it will be executed from.
1267 In particular, handle any rip-relative addressing. */
1268 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1269
1270 write_memory (to, buf, len);
1271
1272 if (debug_displaced)
1273 {
1274 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1275 paddress (gdbarch, from), paddress (gdbarch, to));
1276 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1277 }
1278
1279 return dsc;
1280 }
1281
1282 static int
1283 amd64_absolute_jmp_p (const struct amd64_insn *details)
1284 {
1285 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1286
1287 if (insn[0] == 0xff)
1288 {
1289 /* jump near, absolute indirect (/4) */
1290 if ((insn[1] & 0x38) == 0x20)
1291 return 1;
1292
1293 /* jump far, absolute indirect (/5) */
1294 if ((insn[1] & 0x38) == 0x28)
1295 return 1;
1296 }
1297
1298 return 0;
1299 }
1300
1301 static int
1302 amd64_absolute_call_p (const struct amd64_insn *details)
1303 {
1304 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1305
1306 if (insn[0] == 0xff)
1307 {
1308 /* Call near, absolute indirect (/2) */
1309 if ((insn[1] & 0x38) == 0x10)
1310 return 1;
1311
1312 /* Call far, absolute indirect (/3) */
1313 if ((insn[1] & 0x38) == 0x18)
1314 return 1;
1315 }
1316
1317 return 0;
1318 }
1319
1320 static int
1321 amd64_ret_p (const struct amd64_insn *details)
1322 {
1323 /* NOTE: gcc can emit "repz ; ret". */
1324 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1325
1326 switch (insn[0])
1327 {
1328 case 0xc2: /* ret near, pop N bytes */
1329 case 0xc3: /* ret near */
1330 case 0xca: /* ret far, pop N bytes */
1331 case 0xcb: /* ret far */
1332 case 0xcf: /* iret */
1333 return 1;
1334
1335 default:
1336 return 0;
1337 }
1338 }
1339
1340 static int
1341 amd64_call_p (const struct amd64_insn *details)
1342 {
1343 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1344
1345 if (amd64_absolute_call_p (details))
1346 return 1;
1347
1348 /* call near, relative */
1349 if (insn[0] == 0xe8)
1350 return 1;
1351
1352 return 0;
1353 }
1354
1355 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1356 length in bytes. Otherwise, return zero. */
1357
1358 static int
1359 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1360 {
1361 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1362
1363 if (insn[0] == 0x0f && insn[1] == 0x05)
1364 {
1365 *lengthp = 2;
1366 return 1;
1367 }
1368
1369 return 0;
1370 }
1371
1372 /* Fix up the state of registers and memory after having single-stepped
1373 a displaced instruction. */
1374
1375 void
1376 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1377 struct displaced_step_closure *dsc,
1378 CORE_ADDR from, CORE_ADDR to,
1379 struct regcache *regs)
1380 {
1381 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1382 /* The offset we applied to the instruction's address. */
1383 ULONGEST insn_offset = to - from;
1384 gdb_byte *insn = dsc->insn_buf;
1385 const struct amd64_insn *insn_details = &dsc->insn_details;
1386
1387 if (debug_displaced)
1388 fprintf_unfiltered (gdb_stdlog,
1389 "displaced: fixup (%s, %s), "
1390 "insn = 0x%02x 0x%02x ...\n",
1391 paddress (gdbarch, from), paddress (gdbarch, to),
1392 insn[0], insn[1]);
1393
1394 /* If we used a tmp reg, restore it. */
1395
1396 if (dsc->tmp_used)
1397 {
1398 if (debug_displaced)
1399 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1400 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1401 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1402 }
1403
1404 /* The list of issues to contend with here is taken from
1405 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1406 Yay for Free Software! */
1407
1408 /* Relocate the %rip back to the program's instruction stream,
1409 if necessary. */
1410
1411 /* Except in the case of absolute or indirect jump or call
1412 instructions, or a return instruction, the new rip is relative to
1413 the displaced instruction; make it relative to the original insn.
1414 Well, signal handler returns don't need relocation either, but we use the
1415 value of %rip to recognize those; see below. */
1416 if (! amd64_absolute_jmp_p (insn_details)
1417 && ! amd64_absolute_call_p (insn_details)
1418 && ! amd64_ret_p (insn_details))
1419 {
1420 ULONGEST orig_rip;
1421 int insn_len;
1422
1423 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1424
1425 /* A signal trampoline system call changes the %rip, resuming
1426 execution of the main program after the signal handler has
1427 returned. That makes them like 'return' instructions; we
1428 shouldn't relocate %rip.
1429
1430 But most system calls don't, and we do need to relocate %rip.
1431
1432 Our heuristic for distinguishing these cases: if stepping
1433 over the system call instruction left control directly after
1434 the instruction, the we relocate --- control almost certainly
1435 doesn't belong in the displaced copy. Otherwise, we assume
1436 the instruction has put control where it belongs, and leave
1437 it unrelocated. Goodness help us if there are PC-relative
1438 system calls. */
1439 if (amd64_syscall_p (insn_details, &insn_len)
1440 && orig_rip != to + insn_len
1441 /* GDB can get control back after the insn after the syscall.
1442 Presumably this is a kernel bug.
1443 Fixup ensures its a nop, we add one to the length for it. */
1444 && orig_rip != to + insn_len + 1)
1445 {
1446 if (debug_displaced)
1447 fprintf_unfiltered (gdb_stdlog,
1448 "displaced: syscall changed %%rip; "
1449 "not relocating\n");
1450 }
1451 else
1452 {
1453 ULONGEST rip = orig_rip - insn_offset;
1454
1455 /* If we just stepped over a breakpoint insn, we don't backup
1456 the pc on purpose; this is to match behaviour without
1457 stepping. */
1458
1459 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1460
1461 if (debug_displaced)
1462 fprintf_unfiltered (gdb_stdlog,
1463 "displaced: "
1464 "relocated %%rip from %s to %s\n",
1465 paddress (gdbarch, orig_rip),
1466 paddress (gdbarch, rip));
1467 }
1468 }
1469
1470 /* If the instruction was PUSHFL, then the TF bit will be set in the
1471 pushed value, and should be cleared. We'll leave this for later,
1472 since GDB already messes up the TF flag when stepping over a
1473 pushfl. */
1474
1475 /* If the instruction was a call, the return address now atop the
1476 stack is the address following the copied instruction. We need
1477 to make it the address following the original instruction. */
1478 if (amd64_call_p (insn_details))
1479 {
1480 ULONGEST rsp;
1481 ULONGEST retaddr;
1482 const ULONGEST retaddr_len = 8;
1483
1484 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1485 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1486 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1487 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1488
1489 if (debug_displaced)
1490 fprintf_unfiltered (gdb_stdlog,
1491 "displaced: relocated return addr at %s "
1492 "to %s\n",
1493 paddress (gdbarch, rsp),
1494 paddress (gdbarch, retaddr));
1495 }
1496 }
1497
1498 /* If the instruction INSN uses RIP-relative addressing, return the
1499 offset into the raw INSN where the displacement to be adjusted is
1500 found. Returns 0 if the instruction doesn't use RIP-relative
1501 addressing. */
1502
1503 static int
1504 rip_relative_offset (struct amd64_insn *insn)
1505 {
1506 if (insn->modrm_offset != -1)
1507 {
1508 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1509
1510 if ((modrm & 0xc7) == 0x05)
1511 {
1512 /* The displacement is found right after the ModRM byte. */
1513 return insn->modrm_offset + 1;
1514 }
1515 }
1516
1517 return 0;
1518 }
1519
1520 static void
1521 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1522 {
1523 target_write_memory (*to, buf, len);
1524 *to += len;
1525 }
1526
1527 void
1528 amd64_relocate_instruction (struct gdbarch *gdbarch,
1529 CORE_ADDR *to, CORE_ADDR oldloc)
1530 {
1531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1532 int len = gdbarch_max_insn_length (gdbarch);
1533 /* Extra space for sentinels. */
1534 int fixup_sentinel_space = len;
1535 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1536 struct amd64_insn insn_details;
1537 int offset = 0;
1538 LONGEST rel32, newrel;
1539 gdb_byte *insn;
1540 int insn_length;
1541
1542 read_memory (oldloc, buf, len);
1543
1544 /* Set up the sentinel space so we don't have to worry about running
1545 off the end of the buffer. An excessive number of leading prefixes
1546 could otherwise cause this. */
1547 memset (buf + len, 0, fixup_sentinel_space);
1548
1549 insn = buf;
1550 amd64_get_insn_details (insn, &insn_details);
1551
1552 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1553
1554 /* Skip legacy instruction prefixes. */
1555 insn = amd64_skip_prefixes (insn);
1556
1557 /* Adjust calls with 32-bit relative addresses as push/jump, with
1558 the address pushed being the location where the original call in
1559 the user program would return to. */
1560 if (insn[0] == 0xe8)
1561 {
1562 gdb_byte push_buf[16];
1563 unsigned int ret_addr;
1564
1565 /* Where "ret" in the original code will return to. */
1566 ret_addr = oldloc + insn_length;
1567 push_buf[0] = 0x68; /* pushq $... */
1568 memcpy (&push_buf[1], &ret_addr, 4);
1569 /* Push the push. */
1570 append_insns (to, 5, push_buf);
1571
1572 /* Convert the relative call to a relative jump. */
1573 insn[0] = 0xe9;
1574
1575 /* Adjust the destination offset. */
1576 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1577 newrel = (oldloc - *to) + rel32;
1578 store_signed_integer (insn + 1, 4, newrel, byte_order);
1579
1580 /* Write the adjusted jump into its displaced location. */
1581 append_insns (to, 5, insn);
1582 return;
1583 }
1584
1585 offset = rip_relative_offset (&insn_details);
1586 if (!offset)
1587 {
1588 /* Adjust jumps with 32-bit relative addresses. Calls are
1589 already handled above. */
1590 if (insn[0] == 0xe9)
1591 offset = 1;
1592 /* Adjust conditional jumps. */
1593 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1594 offset = 2;
1595 }
1596
1597 if (offset)
1598 {
1599 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1600 newrel = (oldloc - *to) + rel32;
1601 store_signed_integer (insn + offset, 4, newrel, byte_order);
1602 if (debug_displaced)
1603 fprintf_unfiltered (gdb_stdlog,
1604 "Adjusted insn rel32=0x%s at 0x%s to"
1605 " rel32=0x%s at 0x%s\n",
1606 hex_string (rel32), paddress (gdbarch, oldloc),
1607 hex_string (newrel), paddress (gdbarch, *to));
1608 }
1609
1610 /* Write the adjusted instruction into its displaced location. */
1611 append_insns (to, insn_length, buf);
1612 }
1613
1614 \f
1615 /* The maximum number of saved registers. This should include %rip. */
1616 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1617
1618 struct amd64_frame_cache
1619 {
1620 /* Base address. */
1621 CORE_ADDR base;
1622 CORE_ADDR sp_offset;
1623 CORE_ADDR pc;
1624
1625 /* Saved registers. */
1626 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1627 CORE_ADDR saved_sp;
1628 int saved_sp_reg;
1629
1630 /* Do we have a frame? */
1631 int frameless_p;
1632 };
1633
1634 /* Initialize a frame cache. */
1635
1636 static void
1637 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1638 {
1639 int i;
1640
1641 /* Base address. */
1642 cache->base = 0;
1643 cache->sp_offset = -8;
1644 cache->pc = 0;
1645
1646 /* Saved registers. We initialize these to -1 since zero is a valid
1647 offset (that's where %rbp is supposed to be stored).
1648 The values start out as being offsets, and are later converted to
1649 addresses (at which point -1 is interpreted as an address, still meaning
1650 "invalid"). */
1651 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1652 cache->saved_regs[i] = -1;
1653 cache->saved_sp = 0;
1654 cache->saved_sp_reg = -1;
1655
1656 /* Frameless until proven otherwise. */
1657 cache->frameless_p = 1;
1658 }
1659
1660 /* Allocate and initialize a frame cache. */
1661
1662 static struct amd64_frame_cache *
1663 amd64_alloc_frame_cache (void)
1664 {
1665 struct amd64_frame_cache *cache;
1666
1667 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1668 amd64_init_frame_cache (cache);
1669 return cache;
1670 }
1671
1672 /* GCC 4.4 and later, can put code in the prologue to realign the
1673 stack pointer. Check whether PC points to such code, and update
1674 CACHE accordingly. Return the first instruction after the code
1675 sequence or CURRENT_PC, whichever is smaller. If we don't
1676 recognize the code, return PC. */
1677
1678 static CORE_ADDR
1679 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1680 struct amd64_frame_cache *cache)
1681 {
1682 /* There are 2 code sequences to re-align stack before the frame
1683 gets set up:
1684
1685 1. Use a caller-saved saved register:
1686
1687 leaq 8(%rsp), %reg
1688 andq $-XXX, %rsp
1689 pushq -8(%reg)
1690
1691 2. Use a callee-saved saved register:
1692
1693 pushq %reg
1694 leaq 16(%rsp), %reg
1695 andq $-XXX, %rsp
1696 pushq -8(%reg)
1697
1698 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1699
1700 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1701 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1702 */
1703
1704 gdb_byte buf[18];
1705 int reg, r;
1706 int offset, offset_and;
1707
1708 if (target_read_memory (pc, buf, sizeof buf))
1709 return pc;
1710
1711 /* Check caller-saved saved register. The first instruction has
1712 to be "leaq 8(%rsp), %reg". */
1713 if ((buf[0] & 0xfb) == 0x48
1714 && buf[1] == 0x8d
1715 && buf[3] == 0x24
1716 && buf[4] == 0x8)
1717 {
1718 /* MOD must be binary 10 and R/M must be binary 100. */
1719 if ((buf[2] & 0xc7) != 0x44)
1720 return pc;
1721
1722 /* REG has register number. */
1723 reg = (buf[2] >> 3) & 7;
1724
1725 /* Check the REX.R bit. */
1726 if (buf[0] == 0x4c)
1727 reg += 8;
1728
1729 offset = 5;
1730 }
1731 else
1732 {
1733 /* Check callee-saved saved register. The first instruction
1734 has to be "pushq %reg". */
1735 reg = 0;
1736 if ((buf[0] & 0xf8) == 0x50)
1737 offset = 0;
1738 else if ((buf[0] & 0xf6) == 0x40
1739 && (buf[1] & 0xf8) == 0x50)
1740 {
1741 /* Check the REX.B bit. */
1742 if ((buf[0] & 1) != 0)
1743 reg = 8;
1744
1745 offset = 1;
1746 }
1747 else
1748 return pc;
1749
1750 /* Get register. */
1751 reg += buf[offset] & 0x7;
1752
1753 offset++;
1754
1755 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1756 if ((buf[offset] & 0xfb) != 0x48
1757 || buf[offset + 1] != 0x8d
1758 || buf[offset + 3] != 0x24
1759 || buf[offset + 4] != 0x10)
1760 return pc;
1761
1762 /* MOD must be binary 10 and R/M must be binary 100. */
1763 if ((buf[offset + 2] & 0xc7) != 0x44)
1764 return pc;
1765
1766 /* REG has register number. */
1767 r = (buf[offset + 2] >> 3) & 7;
1768
1769 /* Check the REX.R bit. */
1770 if (buf[offset] == 0x4c)
1771 r += 8;
1772
1773 /* Registers in pushq and leaq have to be the same. */
1774 if (reg != r)
1775 return pc;
1776
1777 offset += 5;
1778 }
1779
1780 /* Rigister can't be %rsp nor %rbp. */
1781 if (reg == 4 || reg == 5)
1782 return pc;
1783
1784 /* The next instruction has to be "andq $-XXX, %rsp". */
1785 if (buf[offset] != 0x48
1786 || buf[offset + 2] != 0xe4
1787 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1788 return pc;
1789
1790 offset_and = offset;
1791 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1792
1793 /* The next instruction has to be "pushq -8(%reg)". */
1794 r = 0;
1795 if (buf[offset] == 0xff)
1796 offset++;
1797 else if ((buf[offset] & 0xf6) == 0x40
1798 && buf[offset + 1] == 0xff)
1799 {
1800 /* Check the REX.B bit. */
1801 if ((buf[offset] & 0x1) != 0)
1802 r = 8;
1803 offset += 2;
1804 }
1805 else
1806 return pc;
1807
1808 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1809 01. */
1810 if (buf[offset + 1] != 0xf8
1811 || (buf[offset] & 0xf8) != 0x70)
1812 return pc;
1813
1814 /* R/M has register. */
1815 r += buf[offset] & 7;
1816
1817 /* Registers in leaq and pushq have to be the same. */
1818 if (reg != r)
1819 return pc;
1820
1821 if (current_pc > pc + offset_and)
1822 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1823
1824 return min (pc + offset + 2, current_pc);
1825 }
1826
1827 /* Do a limited analysis of the prologue at PC and update CACHE
1828 accordingly. Bail out early if CURRENT_PC is reached. Return the
1829 address where the analysis stopped.
1830
1831 We will handle only functions beginning with:
1832
1833 pushq %rbp 0x55
1834 movq %rsp, %rbp 0x48 0x89 0xe5
1835
1836 Any function that doesn't start with this sequence will be assumed
1837 to have no prologue and thus no valid frame pointer in %rbp. */
1838
1839 static CORE_ADDR
1840 amd64_analyze_prologue (struct gdbarch *gdbarch,
1841 CORE_ADDR pc, CORE_ADDR current_pc,
1842 struct amd64_frame_cache *cache)
1843 {
1844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1845 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
1846 gdb_byte buf[3];
1847 gdb_byte op;
1848
1849 if (current_pc <= pc)
1850 return current_pc;
1851
1852 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1853
1854 op = read_memory_unsigned_integer (pc, 1, byte_order);
1855
1856 if (op == 0x55) /* pushq %rbp */
1857 {
1858 /* Take into account that we've executed the `pushq %rbp' that
1859 starts this instruction sequence. */
1860 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1861 cache->sp_offset += 8;
1862
1863 /* If that's all, return now. */
1864 if (current_pc <= pc + 1)
1865 return current_pc;
1866
1867 /* Check for `movq %rsp, %rbp'. */
1868 read_memory (pc + 1, buf, 3);
1869 if (memcmp (buf, proto, 3) != 0)
1870 return pc + 1;
1871
1872 /* OK, we actually have a frame. */
1873 cache->frameless_p = 0;
1874 return pc + 4;
1875 }
1876
1877 return pc;
1878 }
1879
1880 /* Return PC of first real instruction. */
1881
1882 static CORE_ADDR
1883 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1884 {
1885 struct amd64_frame_cache cache;
1886 CORE_ADDR pc;
1887
1888 amd64_init_frame_cache (&cache);
1889 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
1890 &cache);
1891 if (cache.frameless_p)
1892 return start_pc;
1893
1894 return pc;
1895 }
1896 \f
1897
1898 /* Normal frames. */
1899
1900 static struct amd64_frame_cache *
1901 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
1902 {
1903 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1904 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1905 struct amd64_frame_cache *cache;
1906 gdb_byte buf[8];
1907 int i;
1908
1909 if (*this_cache)
1910 return *this_cache;
1911
1912 cache = amd64_alloc_frame_cache ();
1913 *this_cache = cache;
1914
1915 cache->pc = get_frame_func (this_frame);
1916 if (cache->pc != 0)
1917 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1918 cache);
1919
1920 if (cache->saved_sp_reg != -1)
1921 {
1922 /* Stack pointer has been saved. */
1923 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1924 cache->saved_sp = extract_unsigned_integer(buf, 8, byte_order);
1925 }
1926
1927 if (cache->frameless_p)
1928 {
1929 /* We didn't find a valid frame. If we're at the start of a
1930 function, or somewhere half-way its prologue, the function's
1931 frame probably hasn't been fully setup yet. Try to
1932 reconstruct the base address for the stack frame by looking
1933 at the stack pointer. For truly "frameless" functions this
1934 might work too. */
1935
1936 if (cache->saved_sp_reg != -1)
1937 {
1938 /* We're halfway aligning the stack. */
1939 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
1940 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
1941
1942 /* This will be added back below. */
1943 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
1944 }
1945 else
1946 {
1947 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1948 cache->base = extract_unsigned_integer (buf, 8, byte_order)
1949 + cache->sp_offset;
1950 }
1951 }
1952 else
1953 {
1954 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
1955 cache->base = extract_unsigned_integer (buf, 8, byte_order);
1956 }
1957
1958 /* Now that we have the base address for the stack frame we can
1959 calculate the value of %rsp in the calling frame. */
1960 cache->saved_sp = cache->base + 16;
1961
1962 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
1963 frame we find it at the same offset from the reconstructed base
1964 address. If we're halfway aligning the stack, %rip is handled
1965 differently (see above). */
1966 if (!cache->frameless_p || cache->saved_sp_reg == -1)
1967 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
1968
1969 /* Adjust all the saved registers such that they contain addresses
1970 instead of offsets. */
1971 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1972 if (cache->saved_regs[i] != -1)
1973 cache->saved_regs[i] += cache->base;
1974
1975 return cache;
1976 }
1977
1978 static void
1979 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1980 struct frame_id *this_id)
1981 {
1982 struct amd64_frame_cache *cache =
1983 amd64_frame_cache (this_frame, this_cache);
1984
1985 /* This marks the outermost frame. */
1986 if (cache->base == 0)
1987 return;
1988
1989 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
1990 }
1991
1992 static struct value *
1993 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1994 int regnum)
1995 {
1996 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1997 struct amd64_frame_cache *cache =
1998 amd64_frame_cache (this_frame, this_cache);
1999
2000 gdb_assert (regnum >= 0);
2001
2002 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2003 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2004
2005 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2006 return frame_unwind_got_memory (this_frame, regnum,
2007 cache->saved_regs[regnum]);
2008
2009 return frame_unwind_got_register (this_frame, regnum, regnum);
2010 }
2011
2012 static const struct frame_unwind amd64_frame_unwind =
2013 {
2014 NORMAL_FRAME,
2015 amd64_frame_this_id,
2016 amd64_frame_prev_register,
2017 NULL,
2018 default_frame_sniffer
2019 };
2020 \f
2021
2022 /* Signal trampolines. */
2023
2024 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2025 64-bit variants. This would require using identical frame caches
2026 on both platforms. */
2027
2028 static struct amd64_frame_cache *
2029 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2030 {
2031 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2033 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2034 struct amd64_frame_cache *cache;
2035 CORE_ADDR addr;
2036 gdb_byte buf[8];
2037 int i;
2038
2039 if (*this_cache)
2040 return *this_cache;
2041
2042 cache = amd64_alloc_frame_cache ();
2043
2044 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2045 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2046
2047 addr = tdep->sigcontext_addr (this_frame);
2048 gdb_assert (tdep->sc_reg_offset);
2049 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2050 for (i = 0; i < tdep->sc_num_regs; i++)
2051 if (tdep->sc_reg_offset[i] != -1)
2052 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2053
2054 *this_cache = cache;
2055 return cache;
2056 }
2057
2058 static void
2059 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2060 void **this_cache, struct frame_id *this_id)
2061 {
2062 struct amd64_frame_cache *cache =
2063 amd64_sigtramp_frame_cache (this_frame, this_cache);
2064
2065 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2066 }
2067
2068 static struct value *
2069 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2070 void **this_cache, int regnum)
2071 {
2072 /* Make sure we've initialized the cache. */
2073 amd64_sigtramp_frame_cache (this_frame, this_cache);
2074
2075 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2076 }
2077
2078 static int
2079 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2080 struct frame_info *this_frame,
2081 void **this_cache)
2082 {
2083 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2084
2085 /* We shouldn't even bother if we don't have a sigcontext_addr
2086 handler. */
2087 if (tdep->sigcontext_addr == NULL)
2088 return 0;
2089
2090 if (tdep->sigtramp_p != NULL)
2091 {
2092 if (tdep->sigtramp_p (this_frame))
2093 return 1;
2094 }
2095
2096 if (tdep->sigtramp_start != 0)
2097 {
2098 CORE_ADDR pc = get_frame_pc (this_frame);
2099
2100 gdb_assert (tdep->sigtramp_end != 0);
2101 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2102 return 1;
2103 }
2104
2105 return 0;
2106 }
2107
2108 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2109 {
2110 SIGTRAMP_FRAME,
2111 amd64_sigtramp_frame_this_id,
2112 amd64_sigtramp_frame_prev_register,
2113 NULL,
2114 amd64_sigtramp_frame_sniffer
2115 };
2116 \f
2117
2118 static CORE_ADDR
2119 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2120 {
2121 struct amd64_frame_cache *cache =
2122 amd64_frame_cache (this_frame, this_cache);
2123
2124 return cache->base;
2125 }
2126
2127 static const struct frame_base amd64_frame_base =
2128 {
2129 &amd64_frame_unwind,
2130 amd64_frame_base_address,
2131 amd64_frame_base_address,
2132 amd64_frame_base_address
2133 };
2134
2135 /* Normal frames, but in a function epilogue. */
2136
2137 /* The epilogue is defined here as the 'ret' instruction, which will
2138 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2139 the function's stack frame. */
2140
2141 static int
2142 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2143 {
2144 gdb_byte insn;
2145
2146 if (target_read_memory (pc, &insn, 1))
2147 return 0; /* Can't read memory at pc. */
2148
2149 if (insn != 0xc3) /* 'ret' instruction. */
2150 return 0;
2151
2152 return 1;
2153 }
2154
2155 static int
2156 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2157 struct frame_info *this_frame,
2158 void **this_prologue_cache)
2159 {
2160 if (frame_relative_level (this_frame) == 0)
2161 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2162 get_frame_pc (this_frame));
2163 else
2164 return 0;
2165 }
2166
2167 static struct amd64_frame_cache *
2168 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2169 {
2170 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2171 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2172 struct amd64_frame_cache *cache;
2173 gdb_byte buf[8];
2174
2175 if (*this_cache)
2176 return *this_cache;
2177
2178 cache = amd64_alloc_frame_cache ();
2179 *this_cache = cache;
2180
2181 /* Cache base will be %esp plus cache->sp_offset (-8). */
2182 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2183 cache->base = extract_unsigned_integer (buf, 8,
2184 byte_order) + cache->sp_offset;
2185
2186 /* Cache pc will be the frame func. */
2187 cache->pc = get_frame_pc (this_frame);
2188
2189 /* The saved %esp will be at cache->base plus 16. */
2190 cache->saved_sp = cache->base + 16;
2191
2192 /* The saved %eip will be at cache->base plus 8. */
2193 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2194
2195 return cache;
2196 }
2197
2198 static void
2199 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2200 void **this_cache,
2201 struct frame_id *this_id)
2202 {
2203 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2204 this_cache);
2205
2206 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2207 }
2208
2209 static const struct frame_unwind amd64_epilogue_frame_unwind =
2210 {
2211 NORMAL_FRAME,
2212 amd64_epilogue_frame_this_id,
2213 amd64_frame_prev_register,
2214 NULL,
2215 amd64_epilogue_frame_sniffer
2216 };
2217
2218 static struct frame_id
2219 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2220 {
2221 CORE_ADDR fp;
2222
2223 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2224
2225 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2226 }
2227
2228 /* 16 byte align the SP per frame requirements. */
2229
2230 static CORE_ADDR
2231 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2232 {
2233 return sp & -(CORE_ADDR)16;
2234 }
2235 \f
2236
2237 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2238 in the floating-point register set REGSET to register cache
2239 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2240
2241 static void
2242 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2243 int regnum, const void *fpregs, size_t len)
2244 {
2245 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2246
2247 gdb_assert (len == tdep->sizeof_fpregset);
2248 amd64_supply_fxsave (regcache, regnum, fpregs);
2249 }
2250
2251 /* Collect register REGNUM from the register cache REGCACHE and store
2252 it in the buffer specified by FPREGS and LEN as described by the
2253 floating-point register set REGSET. If REGNUM is -1, do this for
2254 all registers in REGSET. */
2255
2256 static void
2257 amd64_collect_fpregset (const struct regset *regset,
2258 const struct regcache *regcache,
2259 int regnum, void *fpregs, size_t len)
2260 {
2261 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2262
2263 gdb_assert (len == tdep->sizeof_fpregset);
2264 amd64_collect_fxsave (regcache, regnum, fpregs);
2265 }
2266
2267 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2268
2269 static void
2270 amd64_supply_xstateregset (const struct regset *regset,
2271 struct regcache *regcache, int regnum,
2272 const void *xstateregs, size_t len)
2273 {
2274 amd64_supply_xsave (regcache, regnum, xstateregs);
2275 }
2276
2277 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2278
2279 static void
2280 amd64_collect_xstateregset (const struct regset *regset,
2281 const struct regcache *regcache,
2282 int regnum, void *xstateregs, size_t len)
2283 {
2284 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2285 }
2286
2287 /* Return the appropriate register set for the core section identified
2288 by SECT_NAME and SECT_SIZE. */
2289
2290 static const struct regset *
2291 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2292 const char *sect_name, size_t sect_size)
2293 {
2294 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2295
2296 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2297 {
2298 if (tdep->fpregset == NULL)
2299 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2300 amd64_collect_fpregset);
2301
2302 return tdep->fpregset;
2303 }
2304
2305 if (strcmp (sect_name, ".reg-xstate") == 0)
2306 {
2307 if (tdep->xstateregset == NULL)
2308 tdep->xstateregset = regset_alloc (gdbarch,
2309 amd64_supply_xstateregset,
2310 amd64_collect_xstateregset);
2311
2312 return tdep->xstateregset;
2313 }
2314
2315 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2316 }
2317 \f
2318
2319 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2320 %rdi. We expect its value to be a pointer to the jmp_buf structure
2321 from which we extract the address that we will land at. This
2322 address is copied into PC. This routine returns non-zero on
2323 success. */
2324
2325 static int
2326 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2327 {
2328 gdb_byte buf[8];
2329 CORE_ADDR jb_addr;
2330 struct gdbarch *gdbarch = get_frame_arch (frame);
2331 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2332 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2333
2334 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2335 longjmp will land. */
2336 if (jb_pc_offset == -1)
2337 return 0;
2338
2339 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2340 jb_addr= extract_typed_address
2341 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2342 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2343 return 0;
2344
2345 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2346
2347 return 1;
2348 }
2349
2350 static const int amd64_record_regmap[] =
2351 {
2352 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2353 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2354 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2355 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2356 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2357 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2358 };
2359
2360 void
2361 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2362 {
2363 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2364 const struct target_desc *tdesc = info.target_desc;
2365
2366 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2367 floating-point registers. */
2368 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2369
2370 if (! tdesc_has_registers (tdesc))
2371 tdesc = tdesc_amd64;
2372 tdep->tdesc = tdesc;
2373
2374 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2375 tdep->register_names = amd64_register_names;
2376
2377 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2378 {
2379 tdep->ymmh_register_names = amd64_ymmh_names;
2380 tdep->num_ymm_regs = 16;
2381 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2382 }
2383
2384 tdep->num_byte_regs = 20;
2385 tdep->num_word_regs = 16;
2386 tdep->num_dword_regs = 16;
2387 /* Avoid wiring in the MMX registers for now. */
2388 tdep->num_mmx_regs = 0;
2389
2390 set_gdbarch_pseudo_register_read (gdbarch,
2391 amd64_pseudo_register_read);
2392 set_gdbarch_pseudo_register_write (gdbarch,
2393 amd64_pseudo_register_write);
2394
2395 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2396
2397 /* AMD64 has an FPU and 16 SSE registers. */
2398 tdep->st0_regnum = AMD64_ST0_REGNUM;
2399 tdep->num_xmm_regs = 16;
2400
2401 /* This is what all the fuss is about. */
2402 set_gdbarch_long_bit (gdbarch, 64);
2403 set_gdbarch_long_long_bit (gdbarch, 64);
2404 set_gdbarch_ptr_bit (gdbarch, 64);
2405
2406 /* In contrast to the i386, on AMD64 a `long double' actually takes
2407 up 128 bits, even though it's still based on the i387 extended
2408 floating-point format which has only 80 significant bits. */
2409 set_gdbarch_long_double_bit (gdbarch, 128);
2410
2411 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2412
2413 /* Register numbers of various important registers. */
2414 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2415 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2416 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2417 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2418
2419 /* The "default" register numbering scheme for AMD64 is referred to
2420 as the "DWARF Register Number Mapping" in the System V psABI.
2421 The preferred debugging format for all known AMD64 targets is
2422 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2423 DWARF-1), but we provide the same mapping just in case. This
2424 mapping is also used for stabs, which GCC does support. */
2425 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2426 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2427
2428 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2429 be in use on any of the supported AMD64 targets. */
2430
2431 /* Call dummy code. */
2432 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2433 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2434 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2435 tdep->call_dummy_num_integer_regs =
2436 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2437 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2438 tdep->classify = amd64_classify;
2439
2440 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2441 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2442 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2443
2444 set_gdbarch_return_value (gdbarch, amd64_return_value);
2445
2446 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2447
2448 tdep->record_regmap = amd64_record_regmap;
2449
2450 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2451
2452 /* Hook the function epilogue frame unwinder. This unwinder is
2453 appended to the list first, so that it supercedes the other
2454 unwinders in function epilogues. */
2455 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2456
2457 /* Hook the prologue-based frame unwinders. */
2458 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2459 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2460 frame_base_set_default (gdbarch, &amd64_frame_base);
2461
2462 /* If we have a register mapping, enable the generic core file support. */
2463 if (tdep->gregset_reg_offset)
2464 set_gdbarch_regset_from_core_section (gdbarch,
2465 amd64_regset_from_core_section);
2466
2467 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2468
2469 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2470 }
2471
2472 /* Provide a prototype to silence -Wmissing-prototypes. */
2473 void _initialize_amd64_tdep (void);
2474
2475 void
2476 _initialize_amd64_tdep (void)
2477 {
2478 initialize_tdesc_amd64 ();
2479 initialize_tdesc_amd64_avx ();
2480 }
2481 \f
2482
2483 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2484 sense that the instruction pointer and data pointer are simply
2485 64-bit offsets into the code segment and the data segment instead
2486 of a selector offset pair. The functions below store the upper 32
2487 bits of these pointers (instead of just the 16-bits of the segment
2488 selector). */
2489
2490 /* Fill register REGNUM in REGCACHE with the appropriate
2491 floating-point or SSE register value from *FXSAVE. If REGNUM is
2492 -1, do this for all registers. This function masks off any of the
2493 reserved bits in *FXSAVE. */
2494
2495 void
2496 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2497 const void *fxsave)
2498 {
2499 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2500 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2501
2502 i387_supply_fxsave (regcache, regnum, fxsave);
2503
2504 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2505 {
2506 const gdb_byte *regs = fxsave;
2507
2508 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2509 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2510 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2511 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2512 }
2513 }
2514
2515 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
2516
2517 void
2518 amd64_supply_xsave (struct regcache *regcache, int regnum,
2519 const void *xsave)
2520 {
2521 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2522 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2523
2524 i387_supply_xsave (regcache, regnum, xsave);
2525
2526 if (xsave && gdbarch_ptr_bit (gdbarch) == 64)
2527 {
2528 const gdb_byte *regs = xsave;
2529
2530 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2531 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
2532 regs + 12);
2533 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2534 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
2535 regs + 20);
2536 }
2537 }
2538
2539 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2540 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2541 all registers. This function doesn't touch any of the reserved
2542 bits in *FXSAVE. */
2543
2544 void
2545 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2546 void *fxsave)
2547 {
2548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2549 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2550 gdb_byte *regs = fxsave;
2551
2552 i387_collect_fxsave (regcache, regnum, fxsave);
2553
2554 if (gdbarch_ptr_bit (gdbarch) == 64)
2555 {
2556 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2557 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2558 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2559 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2560 }
2561 }
2562
2563 /* Similar to amd64_collect_fxsave, but but use XSAVE extended state. */
2564
2565 void
2566 amd64_collect_xsave (const struct regcache *regcache, int regnum,
2567 void *xsave, int gcore)
2568 {
2569 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2570 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2571 gdb_byte *regs = xsave;
2572
2573 i387_collect_xsave (regcache, regnum, xsave, gcore);
2574
2575 if (gdbarch_ptr_bit (gdbarch) == 64)
2576 {
2577 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2578 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
2579 regs + 12);
2580 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2581 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
2582 regs + 20);
2583 }
2584 }
This page took 0.111576 seconds and 4 git commands to generate.