Remove regcache_raw_read
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2018 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "x86-xstate.h"
43 #include <algorithm>
44 #include "target-descriptions.h"
45 #include "arch/amd64.h"
46 #include "producer.h"
47 #include "ax.h"
48 #include "ax-gdb.h"
49 #include "common/byte-vector.h"
50 #include "osabi.h"
51 #include "x86-tdep.h"
52
53 /* Note that the AMD64 architecture was previously known as x86-64.
54 The latter is (forever) engraved into the canonical system name as
55 returned by config.guess, and used as the name for the AMD64 port
56 of GNU/Linux. The BSD's have renamed their ports to amd64; they
57 don't like to shout. For GDB we prefer the amd64_-prefix over the
58 x86_64_-prefix since it's so much easier to type. */
59
60 /* Register information. */
61
62 static const char *amd64_register_names[] =
63 {
64 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
65
66 /* %r8 is indeed register number 8. */
67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
68 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
69
70 /* %st0 is register number 24. */
71 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
72 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
73
74 /* %xmm0 is register number 40. */
75 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
76 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
77 "mxcsr",
78 };
79
80 static const char *amd64_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 "ymm8", "ymm9", "ymm10", "ymm11",
85 "ymm12", "ymm13", "ymm14", "ymm15"
86 };
87
88 static const char *amd64_ymm_avx512_names[] =
89 {
90 "ymm16", "ymm17", "ymm18", "ymm19",
91 "ymm20", "ymm21", "ymm22", "ymm23",
92 "ymm24", "ymm25", "ymm26", "ymm27",
93 "ymm28", "ymm29", "ymm30", "ymm31"
94 };
95
96 static const char *amd64_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
101 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
102 };
103
104 static const char *amd64_ymmh_avx512_names[] =
105 {
106 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
107 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
108 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
109 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
110 };
111
112 static const char *amd64_mpx_names[] =
113 {
114 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
115 };
116
117 static const char *amd64_k_names[] =
118 {
119 "k0", "k1", "k2", "k3",
120 "k4", "k5", "k6", "k7"
121 };
122
123 static const char *amd64_zmmh_names[] =
124 {
125 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
126 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
127 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
128 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
129 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
130 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
131 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
132 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
133 };
134
135 static const char *amd64_zmm_names[] =
136 {
137 "zmm0", "zmm1", "zmm2", "zmm3",
138 "zmm4", "zmm5", "zmm6", "zmm7",
139 "zmm8", "zmm9", "zmm10", "zmm11",
140 "zmm12", "zmm13", "zmm14", "zmm15",
141 "zmm16", "zmm17", "zmm18", "zmm19",
142 "zmm20", "zmm21", "zmm22", "zmm23",
143 "zmm24", "zmm25", "zmm26", "zmm27",
144 "zmm28", "zmm29", "zmm30", "zmm31"
145 };
146
147 static const char *amd64_xmm_avx512_names[] = {
148 "xmm16", "xmm17", "xmm18", "xmm19",
149 "xmm20", "xmm21", "xmm22", "xmm23",
150 "xmm24", "xmm25", "xmm26", "xmm27",
151 "xmm28", "xmm29", "xmm30", "xmm31"
152 };
153
154 static const char *amd64_pkeys_names[] = {
155 "pkru"
156 };
157
158 /* DWARF Register Number Mapping as defined in the System V psABI,
159 section 3.6. */
160
161 static int amd64_dwarf_regmap[] =
162 {
163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
164 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
165 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
166 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
167
168 /* Frame Pointer Register RBP. */
169 AMD64_RBP_REGNUM,
170
171 /* Stack Pointer Register RSP. */
172 AMD64_RSP_REGNUM,
173
174 /* Extended Integer Registers 8 - 15. */
175 AMD64_R8_REGNUM, /* %r8 */
176 AMD64_R9_REGNUM, /* %r9 */
177 AMD64_R10_REGNUM, /* %r10 */
178 AMD64_R11_REGNUM, /* %r11 */
179 AMD64_R12_REGNUM, /* %r12 */
180 AMD64_R13_REGNUM, /* %r13 */
181 AMD64_R14_REGNUM, /* %r14 */
182 AMD64_R15_REGNUM, /* %r15 */
183
184 /* Return Address RA. Mapped to RIP. */
185 AMD64_RIP_REGNUM,
186
187 /* SSE Registers 0 - 7. */
188 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
189 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
190 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
191 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
192
193 /* Extended SSE Registers 8 - 15. */
194 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
195 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
196 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
197 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
198
199 /* Floating Point Registers 0-7. */
200 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
201 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
202 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
203 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
204
205 /* MMX Registers 0 - 7.
206 We have to handle those registers specifically, as their register
207 number within GDB depends on the target (or they may even not be
208 available at all). */
209 -1, -1, -1, -1, -1, -1, -1, -1,
210
211 /* Control and Status Flags Register. */
212 AMD64_EFLAGS_REGNUM,
213
214 /* Selector Registers. */
215 AMD64_ES_REGNUM,
216 AMD64_CS_REGNUM,
217 AMD64_SS_REGNUM,
218 AMD64_DS_REGNUM,
219 AMD64_FS_REGNUM,
220 AMD64_GS_REGNUM,
221 -1,
222 -1,
223
224 /* Segment Base Address Registers. */
225 -1,
226 -1,
227 -1,
228 -1,
229
230 /* Special Selector Registers. */
231 -1,
232 -1,
233
234 /* Floating Point Control Registers. */
235 AMD64_MXCSR_REGNUM,
236 AMD64_FCTRL_REGNUM,
237 AMD64_FSTAT_REGNUM
238 };
239
240 static const int amd64_dwarf_regmap_len =
241 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
242
243 /* Convert DWARF register number REG to the appropriate register
244 number used by GDB. */
245
246 static int
247 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int ymm0_regnum = tdep->ymm0_regnum;
251 int regnum = -1;
252
253 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
254 regnum = amd64_dwarf_regmap[reg];
255
256 if (ymm0_regnum >= 0
257 && i386_xmm_regnum_p (gdbarch, regnum))
258 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
259
260 return regnum;
261 }
262
263 /* Map architectural register numbers to gdb register numbers. */
264
265 static const int amd64_arch_regmap[16] =
266 {
267 AMD64_RAX_REGNUM, /* %rax */
268 AMD64_RCX_REGNUM, /* %rcx */
269 AMD64_RDX_REGNUM, /* %rdx */
270 AMD64_RBX_REGNUM, /* %rbx */
271 AMD64_RSP_REGNUM, /* %rsp */
272 AMD64_RBP_REGNUM, /* %rbp */
273 AMD64_RSI_REGNUM, /* %rsi */
274 AMD64_RDI_REGNUM, /* %rdi */
275 AMD64_R8_REGNUM, /* %r8 */
276 AMD64_R9_REGNUM, /* %r9 */
277 AMD64_R10_REGNUM, /* %r10 */
278 AMD64_R11_REGNUM, /* %r11 */
279 AMD64_R12_REGNUM, /* %r12 */
280 AMD64_R13_REGNUM, /* %r13 */
281 AMD64_R14_REGNUM, /* %r14 */
282 AMD64_R15_REGNUM /* %r15 */
283 };
284
285 static const int amd64_arch_regmap_len =
286 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
287
288 /* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 amd64_arch_reg_to_regnum (int reg)
293 {
294 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
295
296 return amd64_arch_regmap[reg];
297 }
298
299 /* Register names for byte pseudo-registers. */
300
301 static const char *amd64_byte_names[] =
302 {
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
306 };
307
308 /* Number of lower byte registers. */
309 #define AMD64_NUM_LOWER_BYTE_REGS 16
310
311 /* Register names for word pseudo-registers. */
312
313 static const char *amd64_word_names[] =
314 {
315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317 };
318
319 /* Register names for dword pseudo-registers. */
320
321 static const char *amd64_dword_names[] =
322 {
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
325 "eip"
326 };
327
328 /* Return the name of register REGNUM. */
329
330 static const char *
331 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 if (i386_byte_regnum_p (gdbarch, regnum))
335 return amd64_byte_names[regnum - tdep->al_regnum];
336 else if (i386_zmm_regnum_p (gdbarch, regnum))
337 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
338 else if (i386_ymm_regnum_p (gdbarch, regnum))
339 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
340 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
341 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
342 else if (i386_word_regnum_p (gdbarch, regnum))
343 return amd64_word_names[regnum - tdep->ax_regnum];
344 else if (i386_dword_regnum_p (gdbarch, regnum))
345 return amd64_dword_names[regnum - tdep->eax_regnum];
346 else
347 return i386_pseudo_register_name (gdbarch, regnum);
348 }
349
350 static struct value *
351 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
352 readable_regcache *regcache,
353 int regnum)
354 {
355 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 enum register_status status;
358 struct value *result_value;
359 gdb_byte *buf;
360
361 result_value = allocate_value (register_type (gdbarch, regnum));
362 VALUE_LVAL (result_value) = lval_register;
363 VALUE_REGNUM (result_value) = regnum;
364 buf = value_contents_raw (result_value);
365
366 if (i386_byte_regnum_p (gdbarch, regnum))
367 {
368 int gpnum = regnum - tdep->al_regnum;
369
370 /* Extract (always little endian). */
371 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
372 {
373 /* Special handling for AH, BH, CH, DH. */
374 status = regcache->raw_read (gpnum - AMD64_NUM_LOWER_BYTE_REGS,
375 raw_buf);
376 if (status == REG_VALID)
377 memcpy (buf, raw_buf + 1, 1);
378 else
379 mark_value_bytes_unavailable (result_value, 0,
380 TYPE_LENGTH (value_type (result_value)));
381 }
382 else
383 {
384 status = regcache->raw_read (gpnum, raw_buf);
385 if (status == REG_VALID)
386 memcpy (buf, raw_buf, 1);
387 else
388 mark_value_bytes_unavailable (result_value, 0,
389 TYPE_LENGTH (value_type (result_value)));
390 }
391 }
392 else if (i386_dword_regnum_p (gdbarch, regnum))
393 {
394 int gpnum = regnum - tdep->eax_regnum;
395 /* Extract (always little endian). */
396 status = regcache->raw_read (gpnum, raw_buf);
397 if (status == REG_VALID)
398 memcpy (buf, raw_buf, 4);
399 else
400 mark_value_bytes_unavailable (result_value, 0,
401 TYPE_LENGTH (value_type (result_value)));
402 }
403 else
404 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
405 result_value);
406
407 return result_value;
408 }
409
410 static void
411 amd64_pseudo_register_write (struct gdbarch *gdbarch,
412 struct regcache *regcache,
413 int regnum, const gdb_byte *buf)
414 {
415 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
417
418 if (i386_byte_regnum_p (gdbarch, regnum))
419 {
420 int gpnum = regnum - tdep->al_regnum;
421
422 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
423 {
424 /* Read ... AH, BH, CH, DH. */
425 regcache->raw_read (gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
426 /* ... Modify ... (always little endian). */
427 memcpy (raw_buf + 1, buf, 1);
428 /* ... Write. */
429 regcache_raw_write (regcache,
430 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
431 }
432 else
433 {
434 /* Read ... */
435 regcache->raw_read (gpnum, raw_buf);
436 /* ... Modify ... (always little endian). */
437 memcpy (raw_buf, buf, 1);
438 /* ... Write. */
439 regcache_raw_write (regcache, gpnum, raw_buf);
440 }
441 }
442 else if (i386_dword_regnum_p (gdbarch, regnum))
443 {
444 int gpnum = regnum - tdep->eax_regnum;
445
446 /* Read ... */
447 regcache->raw_read (gpnum, raw_buf);
448 /* ... Modify ... (always little endian). */
449 memcpy (raw_buf, buf, 4);
450 /* ... Write. */
451 regcache_raw_write (regcache, gpnum, raw_buf);
452 }
453 else
454 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
455 }
456
457 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
458
459 static int
460 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
461 struct agent_expr *ax, int regnum)
462 {
463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
464
465 if (i386_byte_regnum_p (gdbarch, regnum))
466 {
467 int gpnum = regnum - tdep->al_regnum;
468
469 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
470 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
471 else
472 ax_reg_mask (ax, gpnum);
473 return 0;
474 }
475 else if (i386_dword_regnum_p (gdbarch, regnum))
476 {
477 int gpnum = regnum - tdep->eax_regnum;
478
479 ax_reg_mask (ax, gpnum);
480 return 0;
481 }
482 else
483 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
484 }
485
486 \f
487
488 /* Register classes as defined in the psABI. */
489
490 enum amd64_reg_class
491 {
492 AMD64_INTEGER,
493 AMD64_SSE,
494 AMD64_SSEUP,
495 AMD64_X87,
496 AMD64_X87UP,
497 AMD64_COMPLEX_X87,
498 AMD64_NO_CLASS,
499 AMD64_MEMORY
500 };
501
502 /* Return the union class of CLASS1 and CLASS2. See the psABI for
503 details. */
504
505 static enum amd64_reg_class
506 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
507 {
508 /* Rule (a): If both classes are equal, this is the resulting class. */
509 if (class1 == class2)
510 return class1;
511
512 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
513 is the other class. */
514 if (class1 == AMD64_NO_CLASS)
515 return class2;
516 if (class2 == AMD64_NO_CLASS)
517 return class1;
518
519 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
520 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
521 return AMD64_MEMORY;
522
523 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
524 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
525 return AMD64_INTEGER;
526
527 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
528 MEMORY is used as class. */
529 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
530 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
531 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
532 return AMD64_MEMORY;
533
534 /* Rule (f): Otherwise class SSE is used. */
535 return AMD64_SSE;
536 }
537
538 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
539
540 /* Return non-zero if TYPE is a non-POD structure or union type. */
541
542 static int
543 amd64_non_pod_p (struct type *type)
544 {
545 /* ??? A class with a base class certainly isn't POD, but does this
546 catch all non-POD structure types? */
547 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
548 return 1;
549
550 return 0;
551 }
552
553 /* Classify TYPE according to the rules for aggregate (structures and
554 arrays) and union types, and store the result in CLASS. */
555
556 static void
557 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
558 {
559 /* 1. If the size of an object is larger than two eightbytes, or in
560 C++, is a non-POD structure or union type, or contains
561 unaligned fields, it has class memory. */
562 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
563 {
564 theclass[0] = theclass[1] = AMD64_MEMORY;
565 return;
566 }
567
568 /* 2. Both eightbytes get initialized to class NO_CLASS. */
569 theclass[0] = theclass[1] = AMD64_NO_CLASS;
570
571 /* 3. Each field of an object is classified recursively so that
572 always two fields are considered. The resulting class is
573 calculated according to the classes of the fields in the
574 eightbyte: */
575
576 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
577 {
578 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
579
580 /* All fields in an array have the same type. */
581 amd64_classify (subtype, theclass);
582 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
583 theclass[1] = theclass[0];
584 }
585 else
586 {
587 int i;
588
589 /* Structure or union. */
590 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
591 || TYPE_CODE (type) == TYPE_CODE_UNION);
592
593 for (i = 0; i < TYPE_NFIELDS (type); i++)
594 {
595 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
596 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
597 enum amd64_reg_class subclass[2];
598 int bitsize = TYPE_FIELD_BITSIZE (type, i);
599 int endpos;
600
601 if (bitsize == 0)
602 bitsize = TYPE_LENGTH (subtype) * 8;
603 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
604
605 /* Ignore static fields, or empty fields, for example nested
606 empty structures.*/
607 if (field_is_static (&TYPE_FIELD (type, i)) || bitsize == 0)
608 continue;
609
610 gdb_assert (pos == 0 || pos == 1);
611
612 amd64_classify (subtype, subclass);
613 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
614 if (bitsize <= 64 && pos == 0 && endpos == 1)
615 /* This is a bit of an odd case: We have a field that would
616 normally fit in one of the two eightbytes, except that
617 it is placed in a way that this field straddles them.
618 This has been seen with a structure containing an array.
619
620 The ABI is a bit unclear in this case, but we assume that
621 this field's class (stored in subclass[0]) must also be merged
622 into class[1]. In other words, our field has a piece stored
623 in the second eight-byte, and thus its class applies to
624 the second eight-byte as well.
625
626 In the case where the field length exceeds 8 bytes,
627 it should not be necessary to merge the field class
628 into class[1]. As LEN > 8, subclass[1] is necessarily
629 different from AMD64_NO_CLASS. If subclass[1] is equal
630 to subclass[0], then the normal class[1]/subclass[1]
631 merging will take care of everything. For subclass[1]
632 to be different from subclass[0], I can only see the case
633 where we have a SSE/SSEUP or X87/X87UP pair, which both
634 use up all 16 bytes of the aggregate, and are already
635 handled just fine (because each portion sits on its own
636 8-byte). */
637 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
638 if (pos == 0)
639 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
640 }
641 }
642
643 /* 4. Then a post merger cleanup is done: */
644
645 /* Rule (a): If one of the classes is MEMORY, the whole argument is
646 passed in memory. */
647 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
648 theclass[0] = theclass[1] = AMD64_MEMORY;
649
650 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
651 SSE. */
652 if (theclass[0] == AMD64_SSEUP)
653 theclass[0] = AMD64_SSE;
654 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
655 theclass[1] = AMD64_SSE;
656 }
657
658 /* Classify TYPE, and store the result in CLASS. */
659
660 static void
661 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
662 {
663 enum type_code code = TYPE_CODE (type);
664 int len = TYPE_LENGTH (type);
665
666 theclass[0] = theclass[1] = AMD64_NO_CLASS;
667
668 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
669 long, long long, and pointers are in the INTEGER class. Similarly,
670 range types, used by languages such as Ada, are also in the INTEGER
671 class. */
672 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
673 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
674 || code == TYPE_CODE_CHAR
675 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
676 && (len == 1 || len == 2 || len == 4 || len == 8))
677 theclass[0] = AMD64_INTEGER;
678
679 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
680 are in class SSE. */
681 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
682 && (len == 4 || len == 8))
683 /* FIXME: __m64 . */
684 theclass[0] = AMD64_SSE;
685
686 /* Arguments of types __float128, _Decimal128 and __m128 are split into
687 two halves. The least significant ones belong to class SSE, the most
688 significant one to class SSEUP. */
689 else if (code == TYPE_CODE_DECFLOAT && len == 16)
690 /* FIXME: __float128, __m128. */
691 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
692
693 /* The 64-bit mantissa of arguments of type long double belongs to
694 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
695 class X87UP. */
696 else if (code == TYPE_CODE_FLT && len == 16)
697 /* Class X87 and X87UP. */
698 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
699
700 /* Arguments of complex T where T is one of the types float or
701 double get treated as if they are implemented as:
702
703 struct complexT {
704 T real;
705 T imag;
706 };
707
708 */
709 else if (code == TYPE_CODE_COMPLEX && len == 8)
710 theclass[0] = AMD64_SSE;
711 else if (code == TYPE_CODE_COMPLEX && len == 16)
712 theclass[0] = theclass[1] = AMD64_SSE;
713
714 /* A variable of type complex long double is classified as type
715 COMPLEX_X87. */
716 else if (code == TYPE_CODE_COMPLEX && len == 32)
717 theclass[0] = AMD64_COMPLEX_X87;
718
719 /* Aggregates. */
720 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
721 || code == TYPE_CODE_UNION)
722 amd64_classify_aggregate (type, theclass);
723 }
724
725 static enum return_value_convention
726 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
727 struct type *type, struct regcache *regcache,
728 gdb_byte *readbuf, const gdb_byte *writebuf)
729 {
730 enum amd64_reg_class theclass[2];
731 int len = TYPE_LENGTH (type);
732 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
733 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
734 int integer_reg = 0;
735 int sse_reg = 0;
736 int i;
737
738 gdb_assert (!(readbuf && writebuf));
739
740 /* 1. Classify the return type with the classification algorithm. */
741 amd64_classify (type, theclass);
742
743 /* 2. If the type has class MEMORY, then the caller provides space
744 for the return value and passes the address of this storage in
745 %rdi as if it were the first argument to the function. In effect,
746 this address becomes a hidden first argument.
747
748 On return %rax will contain the address that has been passed in
749 by the caller in %rdi. */
750 if (theclass[0] == AMD64_MEMORY)
751 {
752 /* As indicated by the comment above, the ABI guarantees that we
753 can always find the return value just after the function has
754 returned. */
755
756 if (readbuf)
757 {
758 ULONGEST addr;
759
760 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
761 read_memory (addr, readbuf, TYPE_LENGTH (type));
762 }
763
764 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
765 }
766
767 /* 8. If the class is COMPLEX_X87, the real part of the value is
768 returned in %st0 and the imaginary part in %st1. */
769 if (theclass[0] == AMD64_COMPLEX_X87)
770 {
771 if (readbuf)
772 {
773 regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
774 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
775 }
776
777 if (writebuf)
778 {
779 i387_return_value (gdbarch, regcache);
780 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
781 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
782
783 /* Fix up the tag word such that both %st(0) and %st(1) are
784 marked as valid. */
785 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
786 }
787
788 return RETURN_VALUE_REGISTER_CONVENTION;
789 }
790
791 gdb_assert (theclass[1] != AMD64_MEMORY);
792 gdb_assert (len <= 16);
793
794 for (i = 0; len > 0; i++, len -= 8)
795 {
796 int regnum = -1;
797 int offset = 0;
798
799 switch (theclass[i])
800 {
801 case AMD64_INTEGER:
802 /* 3. If the class is INTEGER, the next available register
803 of the sequence %rax, %rdx is used. */
804 regnum = integer_regnum[integer_reg++];
805 break;
806
807 case AMD64_SSE:
808 /* 4. If the class is SSE, the next available SSE register
809 of the sequence %xmm0, %xmm1 is used. */
810 regnum = sse_regnum[sse_reg++];
811 break;
812
813 case AMD64_SSEUP:
814 /* 5. If the class is SSEUP, the eightbyte is passed in the
815 upper half of the last used SSE register. */
816 gdb_assert (sse_reg > 0);
817 regnum = sse_regnum[sse_reg - 1];
818 offset = 8;
819 break;
820
821 case AMD64_X87:
822 /* 6. If the class is X87, the value is returned on the X87
823 stack in %st0 as 80-bit x87 number. */
824 regnum = AMD64_ST0_REGNUM;
825 if (writebuf)
826 i387_return_value (gdbarch, regcache);
827 break;
828
829 case AMD64_X87UP:
830 /* 7. If the class is X87UP, the value is returned together
831 with the previous X87 value in %st0. */
832 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
833 regnum = AMD64_ST0_REGNUM;
834 offset = 8;
835 len = 2;
836 break;
837
838 case AMD64_NO_CLASS:
839 continue;
840
841 default:
842 gdb_assert (!"Unexpected register class.");
843 }
844
845 gdb_assert (regnum != -1);
846
847 if (readbuf)
848 regcache_raw_read_part (regcache, regnum, offset, std::min (len, 8),
849 readbuf + i * 8);
850 if (writebuf)
851 regcache_raw_write_part (regcache, regnum, offset, std::min (len, 8),
852 writebuf + i * 8);
853 }
854
855 return RETURN_VALUE_REGISTER_CONVENTION;
856 }
857 \f
858
859 static CORE_ADDR
860 amd64_push_arguments (struct regcache *regcache, int nargs,
861 struct value **args, CORE_ADDR sp, int struct_return)
862 {
863 static int integer_regnum[] =
864 {
865 AMD64_RDI_REGNUM, /* %rdi */
866 AMD64_RSI_REGNUM, /* %rsi */
867 AMD64_RDX_REGNUM, /* %rdx */
868 AMD64_RCX_REGNUM, /* %rcx */
869 AMD64_R8_REGNUM, /* %r8 */
870 AMD64_R9_REGNUM /* %r9 */
871 };
872 static int sse_regnum[] =
873 {
874 /* %xmm0 ... %xmm7 */
875 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
876 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
877 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
878 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
879 };
880 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
881 int num_stack_args = 0;
882 int num_elements = 0;
883 int element = 0;
884 int integer_reg = 0;
885 int sse_reg = 0;
886 int i;
887
888 /* Reserve a register for the "hidden" argument. */
889 if (struct_return)
890 integer_reg++;
891
892 for (i = 0; i < nargs; i++)
893 {
894 struct type *type = value_type (args[i]);
895 int len = TYPE_LENGTH (type);
896 enum amd64_reg_class theclass[2];
897 int needed_integer_regs = 0;
898 int needed_sse_regs = 0;
899 int j;
900
901 /* Classify argument. */
902 amd64_classify (type, theclass);
903
904 /* Calculate the number of integer and SSE registers needed for
905 this argument. */
906 for (j = 0; j < 2; j++)
907 {
908 if (theclass[j] == AMD64_INTEGER)
909 needed_integer_regs++;
910 else if (theclass[j] == AMD64_SSE)
911 needed_sse_regs++;
912 }
913
914 /* Check whether enough registers are available, and if the
915 argument should be passed in registers at all. */
916 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
917 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
918 || (needed_integer_regs == 0 && needed_sse_regs == 0))
919 {
920 /* The argument will be passed on the stack. */
921 num_elements += ((len + 7) / 8);
922 stack_args[num_stack_args++] = args[i];
923 }
924 else
925 {
926 /* The argument will be passed in registers. */
927 const gdb_byte *valbuf = value_contents (args[i]);
928 gdb_byte buf[8];
929
930 gdb_assert (len <= 16);
931
932 for (j = 0; len > 0; j++, len -= 8)
933 {
934 int regnum = -1;
935 int offset = 0;
936
937 switch (theclass[j])
938 {
939 case AMD64_INTEGER:
940 regnum = integer_regnum[integer_reg++];
941 break;
942
943 case AMD64_SSE:
944 regnum = sse_regnum[sse_reg++];
945 break;
946
947 case AMD64_SSEUP:
948 gdb_assert (sse_reg > 0);
949 regnum = sse_regnum[sse_reg - 1];
950 offset = 8;
951 break;
952
953 default:
954 gdb_assert (!"Unexpected register class.");
955 }
956
957 gdb_assert (regnum != -1);
958 memset (buf, 0, sizeof buf);
959 memcpy (buf, valbuf + j * 8, std::min (len, 8));
960 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
961 }
962 }
963 }
964
965 /* Allocate space for the arguments on the stack. */
966 sp -= num_elements * 8;
967
968 /* The psABI says that "The end of the input argument area shall be
969 aligned on a 16 byte boundary." */
970 sp &= ~0xf;
971
972 /* Write out the arguments to the stack. */
973 for (i = 0; i < num_stack_args; i++)
974 {
975 struct type *type = value_type (stack_args[i]);
976 const gdb_byte *valbuf = value_contents (stack_args[i]);
977 int len = TYPE_LENGTH (type);
978
979 write_memory (sp + element * 8, valbuf, len);
980 element += ((len + 7) / 8);
981 }
982
983 /* The psABI says that "For calls that may call functions that use
984 varargs or stdargs (prototype-less calls or calls to functions
985 containing ellipsis (...) in the declaration) %al is used as
986 hidden argument to specify the number of SSE registers used. */
987 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
988 return sp;
989 }
990
991 static CORE_ADDR
992 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
993 struct regcache *regcache, CORE_ADDR bp_addr,
994 int nargs, struct value **args, CORE_ADDR sp,
995 int struct_return, CORE_ADDR struct_addr)
996 {
997 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
998 gdb_byte buf[8];
999
1000 /* BND registers can be in arbitrary values at the moment of the
1001 inferior call. This can cause boundary violations that are not
1002 due to a real bug or even desired by the user. The best to be done
1003 is set the BND registers to allow access to the whole memory, INIT
1004 state, before pushing the inferior call. */
1005 i387_reset_bnd_regs (gdbarch, regcache);
1006
1007 /* Pass arguments. */
1008 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
1009
1010 /* Pass "hidden" argument". */
1011 if (struct_return)
1012 {
1013 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1014 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
1015 }
1016
1017 /* Store return address. */
1018 sp -= 8;
1019 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1020 write_memory (sp, buf, 8);
1021
1022 /* Finally, update the stack pointer... */
1023 store_unsigned_integer (buf, 8, byte_order, sp);
1024 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
1025
1026 /* ...and fake a frame pointer. */
1027 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
1028
1029 return sp + 16;
1030 }
1031 \f
1032 /* Displaced instruction handling. */
1033
1034 /* A partially decoded instruction.
1035 This contains enough details for displaced stepping purposes. */
1036
1037 struct amd64_insn
1038 {
1039 /* The number of opcode bytes. */
1040 int opcode_len;
1041 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1042 not present. */
1043 int enc_prefix_offset;
1044 /* The offset to the first opcode byte. */
1045 int opcode_offset;
1046 /* The offset to the modrm byte or -1 if not present. */
1047 int modrm_offset;
1048
1049 /* The raw instruction. */
1050 gdb_byte *raw_insn;
1051 };
1052
1053 struct amd64_displaced_step_closure : public displaced_step_closure
1054 {
1055 amd64_displaced_step_closure (int insn_buf_len)
1056 : insn_buf (insn_buf_len, 0)
1057 {}
1058
1059 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1060 int tmp_used = 0;
1061 int tmp_regno;
1062 ULONGEST tmp_save;
1063
1064 /* Details of the instruction. */
1065 struct amd64_insn insn_details;
1066
1067 /* The possibly modified insn. */
1068 gdb::byte_vector insn_buf;
1069 };
1070
1071 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1072 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1073 at which point delete these in favor of libopcodes' versions). */
1074
1075 static const unsigned char onebyte_has_modrm[256] = {
1076 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1077 /* ------------------------------- */
1078 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1079 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1080 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1081 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1082 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1083 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1084 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1085 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1086 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1087 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1088 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1089 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1090 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1091 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1092 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1093 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1094 /* ------------------------------- */
1095 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1096 };
1097
1098 static const unsigned char twobyte_has_modrm[256] = {
1099 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1100 /* ------------------------------- */
1101 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1102 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1103 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1104 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1105 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1106 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1107 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1108 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1109 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1110 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1111 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1112 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1113 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1114 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1115 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1116 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1117 /* ------------------------------- */
1118 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1119 };
1120
1121 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1122
1123 static int
1124 rex_prefix_p (gdb_byte pfx)
1125 {
1126 return REX_PREFIX_P (pfx);
1127 }
1128
1129 /* True if PFX is the start of the 2-byte VEX prefix. */
1130
1131 static bool
1132 vex2_prefix_p (gdb_byte pfx)
1133 {
1134 return pfx == 0xc5;
1135 }
1136
1137 /* True if PFX is the start of the 3-byte VEX prefix. */
1138
1139 static bool
1140 vex3_prefix_p (gdb_byte pfx)
1141 {
1142 return pfx == 0xc4;
1143 }
1144
1145 /* Skip the legacy instruction prefixes in INSN.
1146 We assume INSN is properly sentineled so we don't have to worry
1147 about falling off the end of the buffer. */
1148
1149 static gdb_byte *
1150 amd64_skip_prefixes (gdb_byte *insn)
1151 {
1152 while (1)
1153 {
1154 switch (*insn)
1155 {
1156 case DATA_PREFIX_OPCODE:
1157 case ADDR_PREFIX_OPCODE:
1158 case CS_PREFIX_OPCODE:
1159 case DS_PREFIX_OPCODE:
1160 case ES_PREFIX_OPCODE:
1161 case FS_PREFIX_OPCODE:
1162 case GS_PREFIX_OPCODE:
1163 case SS_PREFIX_OPCODE:
1164 case LOCK_PREFIX_OPCODE:
1165 case REPE_PREFIX_OPCODE:
1166 case REPNE_PREFIX_OPCODE:
1167 ++insn;
1168 continue;
1169 default:
1170 break;
1171 }
1172 break;
1173 }
1174
1175 return insn;
1176 }
1177
1178 /* Return an integer register (other than RSP) that is unused as an input
1179 operand in INSN.
1180 In order to not require adding a rex prefix if the insn doesn't already
1181 have one, the result is restricted to RAX ... RDI, sans RSP.
1182 The register numbering of the result follows architecture ordering,
1183 e.g. RDI = 7. */
1184
1185 static int
1186 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1187 {
1188 /* 1 bit for each reg */
1189 int used_regs_mask = 0;
1190
1191 /* There can be at most 3 int regs used as inputs in an insn, and we have
1192 7 to choose from (RAX ... RDI, sans RSP).
1193 This allows us to take a conservative approach and keep things simple.
1194 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1195 that implicitly specify RAX. */
1196
1197 /* Avoid RAX. */
1198 used_regs_mask |= 1 << EAX_REG_NUM;
1199 /* Similarily avoid RDX, implicit operand in divides. */
1200 used_regs_mask |= 1 << EDX_REG_NUM;
1201 /* Avoid RSP. */
1202 used_regs_mask |= 1 << ESP_REG_NUM;
1203
1204 /* If the opcode is one byte long and there's no ModRM byte,
1205 assume the opcode specifies a register. */
1206 if (details->opcode_len == 1 && details->modrm_offset == -1)
1207 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1208
1209 /* Mark used regs in the modrm/sib bytes. */
1210 if (details->modrm_offset != -1)
1211 {
1212 int modrm = details->raw_insn[details->modrm_offset];
1213 int mod = MODRM_MOD_FIELD (modrm);
1214 int reg = MODRM_REG_FIELD (modrm);
1215 int rm = MODRM_RM_FIELD (modrm);
1216 int have_sib = mod != 3 && rm == 4;
1217
1218 /* Assume the reg field of the modrm byte specifies a register. */
1219 used_regs_mask |= 1 << reg;
1220
1221 if (have_sib)
1222 {
1223 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1224 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1225 used_regs_mask |= 1 << base;
1226 used_regs_mask |= 1 << idx;
1227 }
1228 else
1229 {
1230 used_regs_mask |= 1 << rm;
1231 }
1232 }
1233
1234 gdb_assert (used_regs_mask < 256);
1235 gdb_assert (used_regs_mask != 255);
1236
1237 /* Finally, find a free reg. */
1238 {
1239 int i;
1240
1241 for (i = 0; i < 8; ++i)
1242 {
1243 if (! (used_regs_mask & (1 << i)))
1244 return i;
1245 }
1246
1247 /* We shouldn't get here. */
1248 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1249 }
1250 }
1251
1252 /* Extract the details of INSN that we need. */
1253
1254 static void
1255 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1256 {
1257 gdb_byte *start = insn;
1258 int need_modrm;
1259
1260 details->raw_insn = insn;
1261
1262 details->opcode_len = -1;
1263 details->enc_prefix_offset = -1;
1264 details->opcode_offset = -1;
1265 details->modrm_offset = -1;
1266
1267 /* Skip legacy instruction prefixes. */
1268 insn = amd64_skip_prefixes (insn);
1269
1270 /* Skip REX/VEX instruction encoding prefixes. */
1271 if (rex_prefix_p (*insn))
1272 {
1273 details->enc_prefix_offset = insn - start;
1274 ++insn;
1275 }
1276 else if (vex2_prefix_p (*insn))
1277 {
1278 /* Don't record the offset in this case because this prefix has
1279 no REX.B equivalent. */
1280 insn += 2;
1281 }
1282 else if (vex3_prefix_p (*insn))
1283 {
1284 details->enc_prefix_offset = insn - start;
1285 insn += 3;
1286 }
1287
1288 details->opcode_offset = insn - start;
1289
1290 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1291 {
1292 /* Two or three-byte opcode. */
1293 ++insn;
1294 need_modrm = twobyte_has_modrm[*insn];
1295
1296 /* Check for three-byte opcode. */
1297 switch (*insn)
1298 {
1299 case 0x24:
1300 case 0x25:
1301 case 0x38:
1302 case 0x3a:
1303 case 0x7a:
1304 case 0x7b:
1305 ++insn;
1306 details->opcode_len = 3;
1307 break;
1308 default:
1309 details->opcode_len = 2;
1310 break;
1311 }
1312 }
1313 else
1314 {
1315 /* One-byte opcode. */
1316 need_modrm = onebyte_has_modrm[*insn];
1317 details->opcode_len = 1;
1318 }
1319
1320 if (need_modrm)
1321 {
1322 ++insn;
1323 details->modrm_offset = insn - start;
1324 }
1325 }
1326
1327 /* Update %rip-relative addressing in INSN.
1328
1329 %rip-relative addressing only uses a 32-bit displacement.
1330 32 bits is not enough to be guaranteed to cover the distance between where
1331 the real instruction is and where its copy is.
1332 Convert the insn to use base+disp addressing.
1333 We set base = pc + insn_length so we can leave disp unchanged. */
1334
1335 static void
1336 fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_closure *dsc,
1337 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1338 {
1339 const struct amd64_insn *insn_details = &dsc->insn_details;
1340 int modrm_offset = insn_details->modrm_offset;
1341 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1342 CORE_ADDR rip_base;
1343 int insn_length;
1344 int arch_tmp_regno, tmp_regno;
1345 ULONGEST orig_value;
1346
1347 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1348 ++insn;
1349
1350 /* Compute the rip-relative address. */
1351 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1352 dsc->insn_buf.size (), from);
1353 rip_base = from + insn_length;
1354
1355 /* We need a register to hold the address.
1356 Pick one not used in the insn.
1357 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1358 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1359 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1360
1361 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1362 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1363
1364 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1365 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1366 is not r8-r15. */
1367 if (insn_details->enc_prefix_offset != -1)
1368 {
1369 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1370 if (rex_prefix_p (pfx[0]))
1371 pfx[0] &= ~REX_B;
1372 else if (vex3_prefix_p (pfx[0]))
1373 pfx[1] |= VEX3_NOT_B;
1374 else
1375 gdb_assert_not_reached ("unhandled prefix");
1376 }
1377
1378 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1379 dsc->tmp_regno = tmp_regno;
1380 dsc->tmp_save = orig_value;
1381 dsc->tmp_used = 1;
1382
1383 /* Convert the ModRM field to be base+disp. */
1384 dsc->insn_buf[modrm_offset] &= ~0xc7;
1385 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1386
1387 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1388
1389 if (debug_displaced)
1390 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1391 "displaced: using temp reg %d, old value %s, new value %s\n",
1392 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1393 paddress (gdbarch, rip_base));
1394 }
1395
1396 static void
1397 fixup_displaced_copy (struct gdbarch *gdbarch,
1398 amd64_displaced_step_closure *dsc,
1399 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1400 {
1401 const struct amd64_insn *details = &dsc->insn_details;
1402
1403 if (details->modrm_offset != -1)
1404 {
1405 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1406
1407 if ((modrm & 0xc7) == 0x05)
1408 {
1409 /* The insn uses rip-relative addressing.
1410 Deal with it. */
1411 fixup_riprel (gdbarch, dsc, from, to, regs);
1412 }
1413 }
1414 }
1415
1416 struct displaced_step_closure *
1417 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1418 CORE_ADDR from, CORE_ADDR to,
1419 struct regcache *regs)
1420 {
1421 int len = gdbarch_max_insn_length (gdbarch);
1422 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1423 continually watch for running off the end of the buffer. */
1424 int fixup_sentinel_space = len;
1425 amd64_displaced_step_closure *dsc
1426 = new amd64_displaced_step_closure (len + fixup_sentinel_space);
1427 gdb_byte *buf = &dsc->insn_buf[0];
1428 struct amd64_insn *details = &dsc->insn_details;
1429
1430 read_memory (from, buf, len);
1431
1432 /* Set up the sentinel space so we don't have to worry about running
1433 off the end of the buffer. An excessive number of leading prefixes
1434 could otherwise cause this. */
1435 memset (buf + len, 0, fixup_sentinel_space);
1436
1437 amd64_get_insn_details (buf, details);
1438
1439 /* GDB may get control back after the insn after the syscall.
1440 Presumably this is a kernel bug.
1441 If this is a syscall, make sure there's a nop afterwards. */
1442 {
1443 int syscall_length;
1444
1445 if (amd64_syscall_p (details, &syscall_length))
1446 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1447 }
1448
1449 /* Modify the insn to cope with the address where it will be executed from.
1450 In particular, handle any rip-relative addressing. */
1451 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1452
1453 write_memory (to, buf, len);
1454
1455 if (debug_displaced)
1456 {
1457 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1458 paddress (gdbarch, from), paddress (gdbarch, to));
1459 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1460 }
1461
1462 return dsc;
1463 }
1464
1465 static int
1466 amd64_absolute_jmp_p (const struct amd64_insn *details)
1467 {
1468 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1469
1470 if (insn[0] == 0xff)
1471 {
1472 /* jump near, absolute indirect (/4) */
1473 if ((insn[1] & 0x38) == 0x20)
1474 return 1;
1475
1476 /* jump far, absolute indirect (/5) */
1477 if ((insn[1] & 0x38) == 0x28)
1478 return 1;
1479 }
1480
1481 return 0;
1482 }
1483
1484 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1485
1486 static int
1487 amd64_jmp_p (const struct amd64_insn *details)
1488 {
1489 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1490
1491 /* jump short, relative. */
1492 if (insn[0] == 0xeb)
1493 return 1;
1494
1495 /* jump near, relative. */
1496 if (insn[0] == 0xe9)
1497 return 1;
1498
1499 return amd64_absolute_jmp_p (details);
1500 }
1501
1502 static int
1503 amd64_absolute_call_p (const struct amd64_insn *details)
1504 {
1505 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1506
1507 if (insn[0] == 0xff)
1508 {
1509 /* Call near, absolute indirect (/2) */
1510 if ((insn[1] & 0x38) == 0x10)
1511 return 1;
1512
1513 /* Call far, absolute indirect (/3) */
1514 if ((insn[1] & 0x38) == 0x18)
1515 return 1;
1516 }
1517
1518 return 0;
1519 }
1520
1521 static int
1522 amd64_ret_p (const struct amd64_insn *details)
1523 {
1524 /* NOTE: gcc can emit "repz ; ret". */
1525 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1526
1527 switch (insn[0])
1528 {
1529 case 0xc2: /* ret near, pop N bytes */
1530 case 0xc3: /* ret near */
1531 case 0xca: /* ret far, pop N bytes */
1532 case 0xcb: /* ret far */
1533 case 0xcf: /* iret */
1534 return 1;
1535
1536 default:
1537 return 0;
1538 }
1539 }
1540
1541 static int
1542 amd64_call_p (const struct amd64_insn *details)
1543 {
1544 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1545
1546 if (amd64_absolute_call_p (details))
1547 return 1;
1548
1549 /* call near, relative */
1550 if (insn[0] == 0xe8)
1551 return 1;
1552
1553 return 0;
1554 }
1555
1556 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1557 length in bytes. Otherwise, return zero. */
1558
1559 static int
1560 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1561 {
1562 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1563
1564 if (insn[0] == 0x0f && insn[1] == 0x05)
1565 {
1566 *lengthp = 2;
1567 return 1;
1568 }
1569
1570 return 0;
1571 }
1572
1573 /* Classify the instruction at ADDR using PRED.
1574 Throw an error if the memory can't be read. */
1575
1576 static int
1577 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1578 int (*pred) (const struct amd64_insn *))
1579 {
1580 struct amd64_insn details;
1581 gdb_byte *buf;
1582 int len, classification;
1583
1584 len = gdbarch_max_insn_length (gdbarch);
1585 buf = (gdb_byte *) alloca (len);
1586
1587 read_code (addr, buf, len);
1588 amd64_get_insn_details (buf, &details);
1589
1590 classification = pred (&details);
1591
1592 return classification;
1593 }
1594
1595 /* The gdbarch insn_is_call method. */
1596
1597 static int
1598 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1599 {
1600 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1601 }
1602
1603 /* The gdbarch insn_is_ret method. */
1604
1605 static int
1606 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1607 {
1608 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1609 }
1610
1611 /* The gdbarch insn_is_jump method. */
1612
1613 static int
1614 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1615 {
1616 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1617 }
1618
1619 /* Fix up the state of registers and memory after having single-stepped
1620 a displaced instruction. */
1621
1622 void
1623 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1624 struct displaced_step_closure *dsc_,
1625 CORE_ADDR from, CORE_ADDR to,
1626 struct regcache *regs)
1627 {
1628 amd64_displaced_step_closure *dsc = (amd64_displaced_step_closure *) dsc_;
1629 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1630 /* The offset we applied to the instruction's address. */
1631 ULONGEST insn_offset = to - from;
1632 gdb_byte *insn = dsc->insn_buf.data ();
1633 const struct amd64_insn *insn_details = &dsc->insn_details;
1634
1635 if (debug_displaced)
1636 fprintf_unfiltered (gdb_stdlog,
1637 "displaced: fixup (%s, %s), "
1638 "insn = 0x%02x 0x%02x ...\n",
1639 paddress (gdbarch, from), paddress (gdbarch, to),
1640 insn[0], insn[1]);
1641
1642 /* If we used a tmp reg, restore it. */
1643
1644 if (dsc->tmp_used)
1645 {
1646 if (debug_displaced)
1647 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1648 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1649 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1650 }
1651
1652 /* The list of issues to contend with here is taken from
1653 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1654 Yay for Free Software! */
1655
1656 /* Relocate the %rip back to the program's instruction stream,
1657 if necessary. */
1658
1659 /* Except in the case of absolute or indirect jump or call
1660 instructions, or a return instruction, the new rip is relative to
1661 the displaced instruction; make it relative to the original insn.
1662 Well, signal handler returns don't need relocation either, but we use the
1663 value of %rip to recognize those; see below. */
1664 if (! amd64_absolute_jmp_p (insn_details)
1665 && ! amd64_absolute_call_p (insn_details)
1666 && ! amd64_ret_p (insn_details))
1667 {
1668 ULONGEST orig_rip;
1669 int insn_len;
1670
1671 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1672
1673 /* A signal trampoline system call changes the %rip, resuming
1674 execution of the main program after the signal handler has
1675 returned. That makes them like 'return' instructions; we
1676 shouldn't relocate %rip.
1677
1678 But most system calls don't, and we do need to relocate %rip.
1679
1680 Our heuristic for distinguishing these cases: if stepping
1681 over the system call instruction left control directly after
1682 the instruction, the we relocate --- control almost certainly
1683 doesn't belong in the displaced copy. Otherwise, we assume
1684 the instruction has put control where it belongs, and leave
1685 it unrelocated. Goodness help us if there are PC-relative
1686 system calls. */
1687 if (amd64_syscall_p (insn_details, &insn_len)
1688 && orig_rip != to + insn_len
1689 /* GDB can get control back after the insn after the syscall.
1690 Presumably this is a kernel bug.
1691 Fixup ensures its a nop, we add one to the length for it. */
1692 && orig_rip != to + insn_len + 1)
1693 {
1694 if (debug_displaced)
1695 fprintf_unfiltered (gdb_stdlog,
1696 "displaced: syscall changed %%rip; "
1697 "not relocating\n");
1698 }
1699 else
1700 {
1701 ULONGEST rip = orig_rip - insn_offset;
1702
1703 /* If we just stepped over a breakpoint insn, we don't backup
1704 the pc on purpose; this is to match behaviour without
1705 stepping. */
1706
1707 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1708
1709 if (debug_displaced)
1710 fprintf_unfiltered (gdb_stdlog,
1711 "displaced: "
1712 "relocated %%rip from %s to %s\n",
1713 paddress (gdbarch, orig_rip),
1714 paddress (gdbarch, rip));
1715 }
1716 }
1717
1718 /* If the instruction was PUSHFL, then the TF bit will be set in the
1719 pushed value, and should be cleared. We'll leave this for later,
1720 since GDB already messes up the TF flag when stepping over a
1721 pushfl. */
1722
1723 /* If the instruction was a call, the return address now atop the
1724 stack is the address following the copied instruction. We need
1725 to make it the address following the original instruction. */
1726 if (amd64_call_p (insn_details))
1727 {
1728 ULONGEST rsp;
1729 ULONGEST retaddr;
1730 const ULONGEST retaddr_len = 8;
1731
1732 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1733 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1734 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1735 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1736
1737 if (debug_displaced)
1738 fprintf_unfiltered (gdb_stdlog,
1739 "displaced: relocated return addr at %s "
1740 "to %s\n",
1741 paddress (gdbarch, rsp),
1742 paddress (gdbarch, retaddr));
1743 }
1744 }
1745
1746 /* If the instruction INSN uses RIP-relative addressing, return the
1747 offset into the raw INSN where the displacement to be adjusted is
1748 found. Returns 0 if the instruction doesn't use RIP-relative
1749 addressing. */
1750
1751 static int
1752 rip_relative_offset (struct amd64_insn *insn)
1753 {
1754 if (insn->modrm_offset != -1)
1755 {
1756 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1757
1758 if ((modrm & 0xc7) == 0x05)
1759 {
1760 /* The displacement is found right after the ModRM byte. */
1761 return insn->modrm_offset + 1;
1762 }
1763 }
1764
1765 return 0;
1766 }
1767
1768 static void
1769 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1770 {
1771 target_write_memory (*to, buf, len);
1772 *to += len;
1773 }
1774
1775 static void
1776 amd64_relocate_instruction (struct gdbarch *gdbarch,
1777 CORE_ADDR *to, CORE_ADDR oldloc)
1778 {
1779 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1780 int len = gdbarch_max_insn_length (gdbarch);
1781 /* Extra space for sentinels. */
1782 int fixup_sentinel_space = len;
1783 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1784 struct amd64_insn insn_details;
1785 int offset = 0;
1786 LONGEST rel32, newrel;
1787 gdb_byte *insn;
1788 int insn_length;
1789
1790 read_memory (oldloc, buf, len);
1791
1792 /* Set up the sentinel space so we don't have to worry about running
1793 off the end of the buffer. An excessive number of leading prefixes
1794 could otherwise cause this. */
1795 memset (buf + len, 0, fixup_sentinel_space);
1796
1797 insn = buf;
1798 amd64_get_insn_details (insn, &insn_details);
1799
1800 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1801
1802 /* Skip legacy instruction prefixes. */
1803 insn = amd64_skip_prefixes (insn);
1804
1805 /* Adjust calls with 32-bit relative addresses as push/jump, with
1806 the address pushed being the location where the original call in
1807 the user program would return to. */
1808 if (insn[0] == 0xe8)
1809 {
1810 gdb_byte push_buf[32];
1811 CORE_ADDR ret_addr;
1812 int i = 0;
1813
1814 /* Where "ret" in the original code will return to. */
1815 ret_addr = oldloc + insn_length;
1816
1817 /* If pushing an address higher than or equal to 0x80000000,
1818 avoid 'pushq', as that sign extends its 32-bit operand, which
1819 would be incorrect. */
1820 if (ret_addr <= 0x7fffffff)
1821 {
1822 push_buf[0] = 0x68; /* pushq $... */
1823 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1824 i = 5;
1825 }
1826 else
1827 {
1828 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1829 push_buf[i++] = 0x83;
1830 push_buf[i++] = 0xec;
1831 push_buf[i++] = 0x08;
1832
1833 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1834 push_buf[i++] = 0x04;
1835 push_buf[i++] = 0x24;
1836 store_unsigned_integer (&push_buf[i], 4, byte_order,
1837 ret_addr & 0xffffffff);
1838 i += 4;
1839
1840 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1841 push_buf[i++] = 0x44;
1842 push_buf[i++] = 0x24;
1843 push_buf[i++] = 0x04;
1844 store_unsigned_integer (&push_buf[i], 4, byte_order,
1845 ret_addr >> 32);
1846 i += 4;
1847 }
1848 gdb_assert (i <= sizeof (push_buf));
1849 /* Push the push. */
1850 append_insns (to, i, push_buf);
1851
1852 /* Convert the relative call to a relative jump. */
1853 insn[0] = 0xe9;
1854
1855 /* Adjust the destination offset. */
1856 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1857 newrel = (oldloc - *to) + rel32;
1858 store_signed_integer (insn + 1, 4, byte_order, newrel);
1859
1860 if (debug_displaced)
1861 fprintf_unfiltered (gdb_stdlog,
1862 "Adjusted insn rel32=%s at %s to"
1863 " rel32=%s at %s\n",
1864 hex_string (rel32), paddress (gdbarch, oldloc),
1865 hex_string (newrel), paddress (gdbarch, *to));
1866
1867 /* Write the adjusted jump into its displaced location. */
1868 append_insns (to, 5, insn);
1869 return;
1870 }
1871
1872 offset = rip_relative_offset (&insn_details);
1873 if (!offset)
1874 {
1875 /* Adjust jumps with 32-bit relative addresses. Calls are
1876 already handled above. */
1877 if (insn[0] == 0xe9)
1878 offset = 1;
1879 /* Adjust conditional jumps. */
1880 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1881 offset = 2;
1882 }
1883
1884 if (offset)
1885 {
1886 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1887 newrel = (oldloc - *to) + rel32;
1888 store_signed_integer (insn + offset, 4, byte_order, newrel);
1889 if (debug_displaced)
1890 fprintf_unfiltered (gdb_stdlog,
1891 "Adjusted insn rel32=%s at %s to"
1892 " rel32=%s at %s\n",
1893 hex_string (rel32), paddress (gdbarch, oldloc),
1894 hex_string (newrel), paddress (gdbarch, *to));
1895 }
1896
1897 /* Write the adjusted instruction into its displaced location. */
1898 append_insns (to, insn_length, buf);
1899 }
1900
1901 \f
1902 /* The maximum number of saved registers. This should include %rip. */
1903 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1904
1905 struct amd64_frame_cache
1906 {
1907 /* Base address. */
1908 CORE_ADDR base;
1909 int base_p;
1910 CORE_ADDR sp_offset;
1911 CORE_ADDR pc;
1912
1913 /* Saved registers. */
1914 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1915 CORE_ADDR saved_sp;
1916 int saved_sp_reg;
1917
1918 /* Do we have a frame? */
1919 int frameless_p;
1920 };
1921
1922 /* Initialize a frame cache. */
1923
1924 static void
1925 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1926 {
1927 int i;
1928
1929 /* Base address. */
1930 cache->base = 0;
1931 cache->base_p = 0;
1932 cache->sp_offset = -8;
1933 cache->pc = 0;
1934
1935 /* Saved registers. We initialize these to -1 since zero is a valid
1936 offset (that's where %rbp is supposed to be stored).
1937 The values start out as being offsets, and are later converted to
1938 addresses (at which point -1 is interpreted as an address, still meaning
1939 "invalid"). */
1940 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1941 cache->saved_regs[i] = -1;
1942 cache->saved_sp = 0;
1943 cache->saved_sp_reg = -1;
1944
1945 /* Frameless until proven otherwise. */
1946 cache->frameless_p = 1;
1947 }
1948
1949 /* Allocate and initialize a frame cache. */
1950
1951 static struct amd64_frame_cache *
1952 amd64_alloc_frame_cache (void)
1953 {
1954 struct amd64_frame_cache *cache;
1955
1956 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1957 amd64_init_frame_cache (cache);
1958 return cache;
1959 }
1960
1961 /* GCC 4.4 and later, can put code in the prologue to realign the
1962 stack pointer. Check whether PC points to such code, and update
1963 CACHE accordingly. Return the first instruction after the code
1964 sequence or CURRENT_PC, whichever is smaller. If we don't
1965 recognize the code, return PC. */
1966
1967 static CORE_ADDR
1968 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1969 struct amd64_frame_cache *cache)
1970 {
1971 /* There are 2 code sequences to re-align stack before the frame
1972 gets set up:
1973
1974 1. Use a caller-saved saved register:
1975
1976 leaq 8(%rsp), %reg
1977 andq $-XXX, %rsp
1978 pushq -8(%reg)
1979
1980 2. Use a callee-saved saved register:
1981
1982 pushq %reg
1983 leaq 16(%rsp), %reg
1984 andq $-XXX, %rsp
1985 pushq -8(%reg)
1986
1987 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1988
1989 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1990 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1991 */
1992
1993 gdb_byte buf[18];
1994 int reg, r;
1995 int offset, offset_and;
1996
1997 if (target_read_code (pc, buf, sizeof buf))
1998 return pc;
1999
2000 /* Check caller-saved saved register. The first instruction has
2001 to be "leaq 8(%rsp), %reg". */
2002 if ((buf[0] & 0xfb) == 0x48
2003 && buf[1] == 0x8d
2004 && buf[3] == 0x24
2005 && buf[4] == 0x8)
2006 {
2007 /* MOD must be binary 10 and R/M must be binary 100. */
2008 if ((buf[2] & 0xc7) != 0x44)
2009 return pc;
2010
2011 /* REG has register number. */
2012 reg = (buf[2] >> 3) & 7;
2013
2014 /* Check the REX.R bit. */
2015 if (buf[0] == 0x4c)
2016 reg += 8;
2017
2018 offset = 5;
2019 }
2020 else
2021 {
2022 /* Check callee-saved saved register. The first instruction
2023 has to be "pushq %reg". */
2024 reg = 0;
2025 if ((buf[0] & 0xf8) == 0x50)
2026 offset = 0;
2027 else if ((buf[0] & 0xf6) == 0x40
2028 && (buf[1] & 0xf8) == 0x50)
2029 {
2030 /* Check the REX.B bit. */
2031 if ((buf[0] & 1) != 0)
2032 reg = 8;
2033
2034 offset = 1;
2035 }
2036 else
2037 return pc;
2038
2039 /* Get register. */
2040 reg += buf[offset] & 0x7;
2041
2042 offset++;
2043
2044 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2045 if ((buf[offset] & 0xfb) != 0x48
2046 || buf[offset + 1] != 0x8d
2047 || buf[offset + 3] != 0x24
2048 || buf[offset + 4] != 0x10)
2049 return pc;
2050
2051 /* MOD must be binary 10 and R/M must be binary 100. */
2052 if ((buf[offset + 2] & 0xc7) != 0x44)
2053 return pc;
2054
2055 /* REG has register number. */
2056 r = (buf[offset + 2] >> 3) & 7;
2057
2058 /* Check the REX.R bit. */
2059 if (buf[offset] == 0x4c)
2060 r += 8;
2061
2062 /* Registers in pushq and leaq have to be the same. */
2063 if (reg != r)
2064 return pc;
2065
2066 offset += 5;
2067 }
2068
2069 /* Rigister can't be %rsp nor %rbp. */
2070 if (reg == 4 || reg == 5)
2071 return pc;
2072
2073 /* The next instruction has to be "andq $-XXX, %rsp". */
2074 if (buf[offset] != 0x48
2075 || buf[offset + 2] != 0xe4
2076 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2077 return pc;
2078
2079 offset_and = offset;
2080 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2081
2082 /* The next instruction has to be "pushq -8(%reg)". */
2083 r = 0;
2084 if (buf[offset] == 0xff)
2085 offset++;
2086 else if ((buf[offset] & 0xf6) == 0x40
2087 && buf[offset + 1] == 0xff)
2088 {
2089 /* Check the REX.B bit. */
2090 if ((buf[offset] & 0x1) != 0)
2091 r = 8;
2092 offset += 2;
2093 }
2094 else
2095 return pc;
2096
2097 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2098 01. */
2099 if (buf[offset + 1] != 0xf8
2100 || (buf[offset] & 0xf8) != 0x70)
2101 return pc;
2102
2103 /* R/M has register. */
2104 r += buf[offset] & 7;
2105
2106 /* Registers in leaq and pushq have to be the same. */
2107 if (reg != r)
2108 return pc;
2109
2110 if (current_pc > pc + offset_and)
2111 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2112
2113 return std::min (pc + offset + 2, current_pc);
2114 }
2115
2116 /* Similar to amd64_analyze_stack_align for x32. */
2117
2118 static CORE_ADDR
2119 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2120 struct amd64_frame_cache *cache)
2121 {
2122 /* There are 2 code sequences to re-align stack before the frame
2123 gets set up:
2124
2125 1. Use a caller-saved saved register:
2126
2127 leaq 8(%rsp), %reg
2128 andq $-XXX, %rsp
2129 pushq -8(%reg)
2130
2131 or
2132
2133 [addr32] leal 8(%rsp), %reg
2134 andl $-XXX, %esp
2135 [addr32] pushq -8(%reg)
2136
2137 2. Use a callee-saved saved register:
2138
2139 pushq %reg
2140 leaq 16(%rsp), %reg
2141 andq $-XXX, %rsp
2142 pushq -8(%reg)
2143
2144 or
2145
2146 pushq %reg
2147 [addr32] leal 16(%rsp), %reg
2148 andl $-XXX, %esp
2149 [addr32] pushq -8(%reg)
2150
2151 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2152
2153 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2154 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2155
2156 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2157
2158 0x83 0xe4 0xf0 andl $-16, %esp
2159 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2160 */
2161
2162 gdb_byte buf[19];
2163 int reg, r;
2164 int offset, offset_and;
2165
2166 if (target_read_memory (pc, buf, sizeof buf))
2167 return pc;
2168
2169 /* Skip optional addr32 prefix. */
2170 offset = buf[0] == 0x67 ? 1 : 0;
2171
2172 /* Check caller-saved saved register. The first instruction has
2173 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2174 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2175 && buf[offset + 1] == 0x8d
2176 && buf[offset + 3] == 0x24
2177 && buf[offset + 4] == 0x8)
2178 {
2179 /* MOD must be binary 10 and R/M must be binary 100. */
2180 if ((buf[offset + 2] & 0xc7) != 0x44)
2181 return pc;
2182
2183 /* REG has register number. */
2184 reg = (buf[offset + 2] >> 3) & 7;
2185
2186 /* Check the REX.R bit. */
2187 if ((buf[offset] & 0x4) != 0)
2188 reg += 8;
2189
2190 offset += 5;
2191 }
2192 else
2193 {
2194 /* Check callee-saved saved register. The first instruction
2195 has to be "pushq %reg". */
2196 reg = 0;
2197 if ((buf[offset] & 0xf6) == 0x40
2198 && (buf[offset + 1] & 0xf8) == 0x50)
2199 {
2200 /* Check the REX.B bit. */
2201 if ((buf[offset] & 1) != 0)
2202 reg = 8;
2203
2204 offset += 1;
2205 }
2206 else if ((buf[offset] & 0xf8) != 0x50)
2207 return pc;
2208
2209 /* Get register. */
2210 reg += buf[offset] & 0x7;
2211
2212 offset++;
2213
2214 /* Skip optional addr32 prefix. */
2215 if (buf[offset] == 0x67)
2216 offset++;
2217
2218 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2219 "leal 16(%rsp), %reg". */
2220 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2221 || buf[offset + 1] != 0x8d
2222 || buf[offset + 3] != 0x24
2223 || buf[offset + 4] != 0x10)
2224 return pc;
2225
2226 /* MOD must be binary 10 and R/M must be binary 100. */
2227 if ((buf[offset + 2] & 0xc7) != 0x44)
2228 return pc;
2229
2230 /* REG has register number. */
2231 r = (buf[offset + 2] >> 3) & 7;
2232
2233 /* Check the REX.R bit. */
2234 if ((buf[offset] & 0x4) != 0)
2235 r += 8;
2236
2237 /* Registers in pushq and leaq have to be the same. */
2238 if (reg != r)
2239 return pc;
2240
2241 offset += 5;
2242 }
2243
2244 /* Rigister can't be %rsp nor %rbp. */
2245 if (reg == 4 || reg == 5)
2246 return pc;
2247
2248 /* The next instruction may be "andq $-XXX, %rsp" or
2249 "andl $-XXX, %esp". */
2250 if (buf[offset] != 0x48)
2251 offset--;
2252
2253 if (buf[offset + 2] != 0xe4
2254 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2255 return pc;
2256
2257 offset_and = offset;
2258 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2259
2260 /* Skip optional addr32 prefix. */
2261 if (buf[offset] == 0x67)
2262 offset++;
2263
2264 /* The next instruction has to be "pushq -8(%reg)". */
2265 r = 0;
2266 if (buf[offset] == 0xff)
2267 offset++;
2268 else if ((buf[offset] & 0xf6) == 0x40
2269 && buf[offset + 1] == 0xff)
2270 {
2271 /* Check the REX.B bit. */
2272 if ((buf[offset] & 0x1) != 0)
2273 r = 8;
2274 offset += 2;
2275 }
2276 else
2277 return pc;
2278
2279 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2280 01. */
2281 if (buf[offset + 1] != 0xf8
2282 || (buf[offset] & 0xf8) != 0x70)
2283 return pc;
2284
2285 /* R/M has register. */
2286 r += buf[offset] & 7;
2287
2288 /* Registers in leaq and pushq have to be the same. */
2289 if (reg != r)
2290 return pc;
2291
2292 if (current_pc > pc + offset_and)
2293 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2294
2295 return std::min (pc + offset + 2, current_pc);
2296 }
2297
2298 /* Do a limited analysis of the prologue at PC and update CACHE
2299 accordingly. Bail out early if CURRENT_PC is reached. Return the
2300 address where the analysis stopped.
2301
2302 We will handle only functions beginning with:
2303
2304 pushq %rbp 0x55
2305 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2306
2307 or (for the X32 ABI):
2308
2309 pushq %rbp 0x55
2310 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2311
2312 Any function that doesn't start with one of these sequences will be
2313 assumed to have no prologue and thus no valid frame pointer in
2314 %rbp. */
2315
2316 static CORE_ADDR
2317 amd64_analyze_prologue (struct gdbarch *gdbarch,
2318 CORE_ADDR pc, CORE_ADDR current_pc,
2319 struct amd64_frame_cache *cache)
2320 {
2321 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2322 /* There are two variations of movq %rsp, %rbp. */
2323 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2324 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2325 /* Ditto for movl %esp, %ebp. */
2326 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2327 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2328
2329 gdb_byte buf[3];
2330 gdb_byte op;
2331
2332 if (current_pc <= pc)
2333 return current_pc;
2334
2335 if (gdbarch_ptr_bit (gdbarch) == 32)
2336 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2337 else
2338 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2339
2340 op = read_code_unsigned_integer (pc, 1, byte_order);
2341
2342 if (op == 0x55) /* pushq %rbp */
2343 {
2344 /* Take into account that we've executed the `pushq %rbp' that
2345 starts this instruction sequence. */
2346 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2347 cache->sp_offset += 8;
2348
2349 /* If that's all, return now. */
2350 if (current_pc <= pc + 1)
2351 return current_pc;
2352
2353 read_code (pc + 1, buf, 3);
2354
2355 /* Check for `movq %rsp, %rbp'. */
2356 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2357 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2358 {
2359 /* OK, we actually have a frame. */
2360 cache->frameless_p = 0;
2361 return pc + 4;
2362 }
2363
2364 /* For X32, also check for `movq %esp, %ebp'. */
2365 if (gdbarch_ptr_bit (gdbarch) == 32)
2366 {
2367 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2368 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2369 {
2370 /* OK, we actually have a frame. */
2371 cache->frameless_p = 0;
2372 return pc + 3;
2373 }
2374 }
2375
2376 return pc + 1;
2377 }
2378
2379 return pc;
2380 }
2381
2382 /* Work around false termination of prologue - GCC PR debug/48827.
2383
2384 START_PC is the first instruction of a function, PC is its minimal already
2385 determined advanced address. Function returns PC if it has nothing to do.
2386
2387 84 c0 test %al,%al
2388 74 23 je after
2389 <-- here is 0 lines advance - the false prologue end marker.
2390 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2391 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2392 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2393 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2394 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2395 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2396 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2397 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2398 after: */
2399
2400 static CORE_ADDR
2401 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2402 {
2403 struct symtab_and_line start_pc_sal, next_sal;
2404 gdb_byte buf[4 + 8 * 7];
2405 int offset, xmmreg;
2406
2407 if (pc == start_pc)
2408 return pc;
2409
2410 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2411 if (start_pc_sal.symtab == NULL
2412 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2413 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2414 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2415 return pc;
2416
2417 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2418 if (next_sal.line != start_pc_sal.line)
2419 return pc;
2420
2421 /* START_PC can be from overlayed memory, ignored here. */
2422 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2423 return pc;
2424
2425 /* test %al,%al */
2426 if (buf[0] != 0x84 || buf[1] != 0xc0)
2427 return pc;
2428 /* je AFTER */
2429 if (buf[2] != 0x74)
2430 return pc;
2431
2432 offset = 4;
2433 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2434 {
2435 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2436 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2437 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2438 return pc;
2439
2440 /* 0b01?????? */
2441 if ((buf[offset + 2] & 0xc0) == 0x40)
2442 {
2443 /* 8-bit displacement. */
2444 offset += 4;
2445 }
2446 /* 0b10?????? */
2447 else if ((buf[offset + 2] & 0xc0) == 0x80)
2448 {
2449 /* 32-bit displacement. */
2450 offset += 7;
2451 }
2452 else
2453 return pc;
2454 }
2455
2456 /* je AFTER */
2457 if (offset - 4 != buf[3])
2458 return pc;
2459
2460 return next_sal.end;
2461 }
2462
2463 /* Return PC of first real instruction. */
2464
2465 static CORE_ADDR
2466 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2467 {
2468 struct amd64_frame_cache cache;
2469 CORE_ADDR pc;
2470 CORE_ADDR func_addr;
2471
2472 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2473 {
2474 CORE_ADDR post_prologue_pc
2475 = skip_prologue_using_sal (gdbarch, func_addr);
2476 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2477
2478 /* Clang always emits a line note before the prologue and another
2479 one after. We trust clang to emit usable line notes. */
2480 if (post_prologue_pc
2481 && (cust != NULL
2482 && COMPUNIT_PRODUCER (cust) != NULL
2483 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2484 return std::max (start_pc, post_prologue_pc);
2485 }
2486
2487 amd64_init_frame_cache (&cache);
2488 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2489 &cache);
2490 if (cache.frameless_p)
2491 return start_pc;
2492
2493 return amd64_skip_xmm_prologue (pc, start_pc);
2494 }
2495 \f
2496
2497 /* Normal frames. */
2498
2499 static void
2500 amd64_frame_cache_1 (struct frame_info *this_frame,
2501 struct amd64_frame_cache *cache)
2502 {
2503 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2504 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2505 gdb_byte buf[8];
2506 int i;
2507
2508 cache->pc = get_frame_func (this_frame);
2509 if (cache->pc != 0)
2510 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2511 cache);
2512
2513 if (cache->frameless_p)
2514 {
2515 /* We didn't find a valid frame. If we're at the start of a
2516 function, or somewhere half-way its prologue, the function's
2517 frame probably hasn't been fully setup yet. Try to
2518 reconstruct the base address for the stack frame by looking
2519 at the stack pointer. For truly "frameless" functions this
2520 might work too. */
2521
2522 if (cache->saved_sp_reg != -1)
2523 {
2524 /* Stack pointer has been saved. */
2525 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2526 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2527
2528 /* We're halfway aligning the stack. */
2529 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2530 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2531
2532 /* This will be added back below. */
2533 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2534 }
2535 else
2536 {
2537 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2538 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2539 + cache->sp_offset;
2540 }
2541 }
2542 else
2543 {
2544 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2545 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2546 }
2547
2548 /* Now that we have the base address for the stack frame we can
2549 calculate the value of %rsp in the calling frame. */
2550 cache->saved_sp = cache->base + 16;
2551
2552 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2553 frame we find it at the same offset from the reconstructed base
2554 address. If we're halfway aligning the stack, %rip is handled
2555 differently (see above). */
2556 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2557 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2558
2559 /* Adjust all the saved registers such that they contain addresses
2560 instead of offsets. */
2561 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2562 if (cache->saved_regs[i] != -1)
2563 cache->saved_regs[i] += cache->base;
2564
2565 cache->base_p = 1;
2566 }
2567
2568 static struct amd64_frame_cache *
2569 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2570 {
2571 struct amd64_frame_cache *cache;
2572
2573 if (*this_cache)
2574 return (struct amd64_frame_cache *) *this_cache;
2575
2576 cache = amd64_alloc_frame_cache ();
2577 *this_cache = cache;
2578
2579 TRY
2580 {
2581 amd64_frame_cache_1 (this_frame, cache);
2582 }
2583 CATCH (ex, RETURN_MASK_ERROR)
2584 {
2585 if (ex.error != NOT_AVAILABLE_ERROR)
2586 throw_exception (ex);
2587 }
2588 END_CATCH
2589
2590 return cache;
2591 }
2592
2593 static enum unwind_stop_reason
2594 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2595 void **this_cache)
2596 {
2597 struct amd64_frame_cache *cache =
2598 amd64_frame_cache (this_frame, this_cache);
2599
2600 if (!cache->base_p)
2601 return UNWIND_UNAVAILABLE;
2602
2603 /* This marks the outermost frame. */
2604 if (cache->base == 0)
2605 return UNWIND_OUTERMOST;
2606
2607 return UNWIND_NO_REASON;
2608 }
2609
2610 static void
2611 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2612 struct frame_id *this_id)
2613 {
2614 struct amd64_frame_cache *cache =
2615 amd64_frame_cache (this_frame, this_cache);
2616
2617 if (!cache->base_p)
2618 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2619 else if (cache->base == 0)
2620 {
2621 /* This marks the outermost frame. */
2622 return;
2623 }
2624 else
2625 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2626 }
2627
2628 static struct value *
2629 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2630 int regnum)
2631 {
2632 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2633 struct amd64_frame_cache *cache =
2634 amd64_frame_cache (this_frame, this_cache);
2635
2636 gdb_assert (regnum >= 0);
2637
2638 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2639 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2640
2641 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2642 return frame_unwind_got_memory (this_frame, regnum,
2643 cache->saved_regs[regnum]);
2644
2645 return frame_unwind_got_register (this_frame, regnum, regnum);
2646 }
2647
2648 static const struct frame_unwind amd64_frame_unwind =
2649 {
2650 NORMAL_FRAME,
2651 amd64_frame_unwind_stop_reason,
2652 amd64_frame_this_id,
2653 amd64_frame_prev_register,
2654 NULL,
2655 default_frame_sniffer
2656 };
2657 \f
2658 /* Generate a bytecode expression to get the value of the saved PC. */
2659
2660 static void
2661 amd64_gen_return_address (struct gdbarch *gdbarch,
2662 struct agent_expr *ax, struct axs_value *value,
2663 CORE_ADDR scope)
2664 {
2665 /* The following sequence assumes the traditional use of the base
2666 register. */
2667 ax_reg (ax, AMD64_RBP_REGNUM);
2668 ax_const_l (ax, 8);
2669 ax_simple (ax, aop_add);
2670 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2671 value->kind = axs_lvalue_memory;
2672 }
2673 \f
2674
2675 /* Signal trampolines. */
2676
2677 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2678 64-bit variants. This would require using identical frame caches
2679 on both platforms. */
2680
2681 static struct amd64_frame_cache *
2682 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2683 {
2684 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2685 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2686 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2687 struct amd64_frame_cache *cache;
2688 CORE_ADDR addr;
2689 gdb_byte buf[8];
2690 int i;
2691
2692 if (*this_cache)
2693 return (struct amd64_frame_cache *) *this_cache;
2694
2695 cache = amd64_alloc_frame_cache ();
2696
2697 TRY
2698 {
2699 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2700 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2701
2702 addr = tdep->sigcontext_addr (this_frame);
2703 gdb_assert (tdep->sc_reg_offset);
2704 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2705 for (i = 0; i < tdep->sc_num_regs; i++)
2706 if (tdep->sc_reg_offset[i] != -1)
2707 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2708
2709 cache->base_p = 1;
2710 }
2711 CATCH (ex, RETURN_MASK_ERROR)
2712 {
2713 if (ex.error != NOT_AVAILABLE_ERROR)
2714 throw_exception (ex);
2715 }
2716 END_CATCH
2717
2718 *this_cache = cache;
2719 return cache;
2720 }
2721
2722 static enum unwind_stop_reason
2723 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2724 void **this_cache)
2725 {
2726 struct amd64_frame_cache *cache =
2727 amd64_sigtramp_frame_cache (this_frame, this_cache);
2728
2729 if (!cache->base_p)
2730 return UNWIND_UNAVAILABLE;
2731
2732 return UNWIND_NO_REASON;
2733 }
2734
2735 static void
2736 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2737 void **this_cache, struct frame_id *this_id)
2738 {
2739 struct amd64_frame_cache *cache =
2740 amd64_sigtramp_frame_cache (this_frame, this_cache);
2741
2742 if (!cache->base_p)
2743 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2744 else if (cache->base == 0)
2745 {
2746 /* This marks the outermost frame. */
2747 return;
2748 }
2749 else
2750 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2751 }
2752
2753 static struct value *
2754 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2755 void **this_cache, int regnum)
2756 {
2757 /* Make sure we've initialized the cache. */
2758 amd64_sigtramp_frame_cache (this_frame, this_cache);
2759
2760 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2761 }
2762
2763 static int
2764 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2765 struct frame_info *this_frame,
2766 void **this_cache)
2767 {
2768 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2769
2770 /* We shouldn't even bother if we don't have a sigcontext_addr
2771 handler. */
2772 if (tdep->sigcontext_addr == NULL)
2773 return 0;
2774
2775 if (tdep->sigtramp_p != NULL)
2776 {
2777 if (tdep->sigtramp_p (this_frame))
2778 return 1;
2779 }
2780
2781 if (tdep->sigtramp_start != 0)
2782 {
2783 CORE_ADDR pc = get_frame_pc (this_frame);
2784
2785 gdb_assert (tdep->sigtramp_end != 0);
2786 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2787 return 1;
2788 }
2789
2790 return 0;
2791 }
2792
2793 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2794 {
2795 SIGTRAMP_FRAME,
2796 amd64_sigtramp_frame_unwind_stop_reason,
2797 amd64_sigtramp_frame_this_id,
2798 amd64_sigtramp_frame_prev_register,
2799 NULL,
2800 amd64_sigtramp_frame_sniffer
2801 };
2802 \f
2803
2804 static CORE_ADDR
2805 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2806 {
2807 struct amd64_frame_cache *cache =
2808 amd64_frame_cache (this_frame, this_cache);
2809
2810 return cache->base;
2811 }
2812
2813 static const struct frame_base amd64_frame_base =
2814 {
2815 &amd64_frame_unwind,
2816 amd64_frame_base_address,
2817 amd64_frame_base_address,
2818 amd64_frame_base_address
2819 };
2820
2821 /* Normal frames, but in a function epilogue. */
2822
2823 /* Implement the stack_frame_destroyed_p gdbarch method.
2824
2825 The epilogue is defined here as the 'ret' instruction, which will
2826 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2827 the function's stack frame. */
2828
2829 static int
2830 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2831 {
2832 gdb_byte insn;
2833 struct compunit_symtab *cust;
2834
2835 cust = find_pc_compunit_symtab (pc);
2836 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2837 return 0;
2838
2839 if (target_read_memory (pc, &insn, 1))
2840 return 0; /* Can't read memory at pc. */
2841
2842 if (insn != 0xc3) /* 'ret' instruction. */
2843 return 0;
2844
2845 return 1;
2846 }
2847
2848 static int
2849 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2850 struct frame_info *this_frame,
2851 void **this_prologue_cache)
2852 {
2853 if (frame_relative_level (this_frame) == 0)
2854 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2855 get_frame_pc (this_frame));
2856 else
2857 return 0;
2858 }
2859
2860 static struct amd64_frame_cache *
2861 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2862 {
2863 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2864 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2865 struct amd64_frame_cache *cache;
2866 gdb_byte buf[8];
2867
2868 if (*this_cache)
2869 return (struct amd64_frame_cache *) *this_cache;
2870
2871 cache = amd64_alloc_frame_cache ();
2872 *this_cache = cache;
2873
2874 TRY
2875 {
2876 /* Cache base will be %esp plus cache->sp_offset (-8). */
2877 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2878 cache->base = extract_unsigned_integer (buf, 8,
2879 byte_order) + cache->sp_offset;
2880
2881 /* Cache pc will be the frame func. */
2882 cache->pc = get_frame_pc (this_frame);
2883
2884 /* The saved %esp will be at cache->base plus 16. */
2885 cache->saved_sp = cache->base + 16;
2886
2887 /* The saved %eip will be at cache->base plus 8. */
2888 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2889
2890 cache->base_p = 1;
2891 }
2892 CATCH (ex, RETURN_MASK_ERROR)
2893 {
2894 if (ex.error != NOT_AVAILABLE_ERROR)
2895 throw_exception (ex);
2896 }
2897 END_CATCH
2898
2899 return cache;
2900 }
2901
2902 static enum unwind_stop_reason
2903 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2904 void **this_cache)
2905 {
2906 struct amd64_frame_cache *cache
2907 = amd64_epilogue_frame_cache (this_frame, this_cache);
2908
2909 if (!cache->base_p)
2910 return UNWIND_UNAVAILABLE;
2911
2912 return UNWIND_NO_REASON;
2913 }
2914
2915 static void
2916 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2917 void **this_cache,
2918 struct frame_id *this_id)
2919 {
2920 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2921 this_cache);
2922
2923 if (!cache->base_p)
2924 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2925 else
2926 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2927 }
2928
2929 static const struct frame_unwind amd64_epilogue_frame_unwind =
2930 {
2931 NORMAL_FRAME,
2932 amd64_epilogue_frame_unwind_stop_reason,
2933 amd64_epilogue_frame_this_id,
2934 amd64_frame_prev_register,
2935 NULL,
2936 amd64_epilogue_frame_sniffer
2937 };
2938
2939 static struct frame_id
2940 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2941 {
2942 CORE_ADDR fp;
2943
2944 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2945
2946 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2947 }
2948
2949 /* 16 byte align the SP per frame requirements. */
2950
2951 static CORE_ADDR
2952 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2953 {
2954 return sp & -(CORE_ADDR)16;
2955 }
2956 \f
2957
2958 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2959 in the floating-point register set REGSET to register cache
2960 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2961
2962 static void
2963 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2964 int regnum, const void *fpregs, size_t len)
2965 {
2966 struct gdbarch *gdbarch = regcache->arch ();
2967 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2968
2969 gdb_assert (len >= tdep->sizeof_fpregset);
2970 amd64_supply_fxsave (regcache, regnum, fpregs);
2971 }
2972
2973 /* Collect register REGNUM from the register cache REGCACHE and store
2974 it in the buffer specified by FPREGS and LEN as described by the
2975 floating-point register set REGSET. If REGNUM is -1, do this for
2976 all registers in REGSET. */
2977
2978 static void
2979 amd64_collect_fpregset (const struct regset *regset,
2980 const struct regcache *regcache,
2981 int regnum, void *fpregs, size_t len)
2982 {
2983 struct gdbarch *gdbarch = regcache->arch ();
2984 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2985
2986 gdb_assert (len >= tdep->sizeof_fpregset);
2987 amd64_collect_fxsave (regcache, regnum, fpregs);
2988 }
2989
2990 const struct regset amd64_fpregset =
2991 {
2992 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2993 };
2994 \f
2995
2996 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2997 %rdi. We expect its value to be a pointer to the jmp_buf structure
2998 from which we extract the address that we will land at. This
2999 address is copied into PC. This routine returns non-zero on
3000 success. */
3001
3002 static int
3003 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
3004 {
3005 gdb_byte buf[8];
3006 CORE_ADDR jb_addr;
3007 struct gdbarch *gdbarch = get_frame_arch (frame);
3008 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
3009 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
3010
3011 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3012 longjmp will land. */
3013 if (jb_pc_offset == -1)
3014 return 0;
3015
3016 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
3017 jb_addr= extract_typed_address
3018 (buf, builtin_type (gdbarch)->builtin_data_ptr);
3019 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3020 return 0;
3021
3022 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
3023
3024 return 1;
3025 }
3026
3027 static const int amd64_record_regmap[] =
3028 {
3029 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3030 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3031 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3032 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3033 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3034 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3035 };
3036
3037 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
3038
3039 static bool
3040 amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3041 {
3042 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3043 AMD64_RAX_REGNUM,
3044 AMD64_RIP_REGNUM);
3045 }
3046
3047 void
3048 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3049 const target_desc *default_tdesc)
3050 {
3051 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3052 const struct target_desc *tdesc = info.target_desc;
3053 static const char *const stap_integer_prefixes[] = { "$", NULL };
3054 static const char *const stap_register_prefixes[] = { "%", NULL };
3055 static const char *const stap_register_indirection_prefixes[] = { "(",
3056 NULL };
3057 static const char *const stap_register_indirection_suffixes[] = { ")",
3058 NULL };
3059
3060 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3061 floating-point registers. */
3062 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3063 tdep->fpregset = &amd64_fpregset;
3064
3065 if (! tdesc_has_registers (tdesc))
3066 tdesc = default_tdesc;
3067 tdep->tdesc = tdesc;
3068
3069 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3070 tdep->register_names = amd64_register_names;
3071
3072 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3073 {
3074 tdep->zmmh_register_names = amd64_zmmh_names;
3075 tdep->k_register_names = amd64_k_names;
3076 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3077 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3078
3079 tdep->num_zmm_regs = 32;
3080 tdep->num_xmm_avx512_regs = 16;
3081 tdep->num_ymm_avx512_regs = 16;
3082
3083 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3084 tdep->k0_regnum = AMD64_K0_REGNUM;
3085 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3086 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3087 }
3088
3089 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3090 {
3091 tdep->ymmh_register_names = amd64_ymmh_names;
3092 tdep->num_ymm_regs = 16;
3093 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3094 }
3095
3096 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3097 {
3098 tdep->mpx_register_names = amd64_mpx_names;
3099 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3100 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3101 }
3102
3103 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3104 {
3105 const struct tdesc_feature *feature =
3106 tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
3107 struct tdesc_arch_data *tdesc_data_segments =
3108 (struct tdesc_arch_data *) info.tdep_info;
3109
3110 tdesc_numbered_register (feature, tdesc_data_segments,
3111 AMD64_FSBASE_REGNUM, "fs_base");
3112 tdesc_numbered_register (feature, tdesc_data_segments,
3113 AMD64_GSBASE_REGNUM, "gs_base");
3114 }
3115
3116 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3117 {
3118 tdep->pkeys_register_names = amd64_pkeys_names;
3119 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3120 tdep->num_pkeys_regs = 1;
3121 }
3122
3123 tdep->num_byte_regs = 20;
3124 tdep->num_word_regs = 16;
3125 tdep->num_dword_regs = 16;
3126 /* Avoid wiring in the MMX registers for now. */
3127 tdep->num_mmx_regs = 0;
3128
3129 set_gdbarch_pseudo_register_read_value (gdbarch,
3130 amd64_pseudo_register_read_value);
3131 set_gdbarch_pseudo_register_write (gdbarch,
3132 amd64_pseudo_register_write);
3133 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3134 amd64_ax_pseudo_register_collect);
3135
3136 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3137
3138 /* AMD64 has an FPU and 16 SSE registers. */
3139 tdep->st0_regnum = AMD64_ST0_REGNUM;
3140 tdep->num_xmm_regs = 16;
3141
3142 /* This is what all the fuss is about. */
3143 set_gdbarch_long_bit (gdbarch, 64);
3144 set_gdbarch_long_long_bit (gdbarch, 64);
3145 set_gdbarch_ptr_bit (gdbarch, 64);
3146
3147 /* In contrast to the i386, on AMD64 a `long double' actually takes
3148 up 128 bits, even though it's still based on the i387 extended
3149 floating-point format which has only 80 significant bits. */
3150 set_gdbarch_long_double_bit (gdbarch, 128);
3151
3152 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3153
3154 /* Register numbers of various important registers. */
3155 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3156 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3157 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3158 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3159
3160 /* The "default" register numbering scheme for AMD64 is referred to
3161 as the "DWARF Register Number Mapping" in the System V psABI.
3162 The preferred debugging format for all known AMD64 targets is
3163 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3164 DWARF-1), but we provide the same mapping just in case. This
3165 mapping is also used for stabs, which GCC does support. */
3166 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3167 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3168
3169 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3170 be in use on any of the supported AMD64 targets. */
3171
3172 /* Call dummy code. */
3173 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3174 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3175 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3176
3177 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3178 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3179 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3180
3181 set_gdbarch_return_value (gdbarch, amd64_return_value);
3182
3183 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3184
3185 tdep->record_regmap = amd64_record_regmap;
3186
3187 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3188
3189 /* Hook the function epilogue frame unwinder. This unwinder is
3190 appended to the list first, so that it supercedes the other
3191 unwinders in function epilogues. */
3192 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3193
3194 /* Hook the prologue-based frame unwinders. */
3195 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3196 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3197 frame_base_set_default (gdbarch, &amd64_frame_base);
3198
3199 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3200
3201 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3202
3203 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3204
3205 /* SystemTap variables and functions. */
3206 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3207 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3208 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3209 stap_register_indirection_prefixes);
3210 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3211 stap_register_indirection_suffixes);
3212 set_gdbarch_stap_is_single_operand (gdbarch,
3213 i386_stap_is_single_operand);
3214 set_gdbarch_stap_parse_special_token (gdbarch,
3215 i386_stap_parse_special_token);
3216 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3217 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3218 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3219
3220 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3221 amd64_in_indirect_branch_thunk);
3222 }
3223
3224 /* Initialize ARCH for x86-64, no osabi. */
3225
3226 static void
3227 amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3228 {
3229 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK));
3230 }
3231
3232 static struct type *
3233 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3234 {
3235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3236
3237 switch (regnum - tdep->eax_regnum)
3238 {
3239 case AMD64_RBP_REGNUM: /* %ebp */
3240 case AMD64_RSP_REGNUM: /* %esp */
3241 return builtin_type (gdbarch)->builtin_data_ptr;
3242 case AMD64_RIP_REGNUM: /* %eip */
3243 return builtin_type (gdbarch)->builtin_func_ptr;
3244 }
3245
3246 return i386_pseudo_register_type (gdbarch, regnum);
3247 }
3248
3249 void
3250 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3251 const target_desc *default_tdesc)
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3254
3255 amd64_init_abi (info, gdbarch, default_tdesc);
3256
3257 tdep->num_dword_regs = 17;
3258 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3259
3260 set_gdbarch_long_bit (gdbarch, 32);
3261 set_gdbarch_ptr_bit (gdbarch, 32);
3262 }
3263
3264 /* Initialize ARCH for x64-32, no osabi. */
3265
3266 static void
3267 amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3268 {
3269 amd64_x32_init_abi (info, arch,
3270 amd64_target_description (X86_XSTATE_SSE_MASK));
3271 }
3272
3273 /* Return the target description for a specified XSAVE feature mask. */
3274
3275 const struct target_desc *
3276 amd64_target_description (uint64_t xcr0)
3277 {
3278 static target_desc *amd64_tdescs \
3279 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
3280 target_desc **tdesc;
3281
3282 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3283 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3284 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3285 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
3286
3287 if (*tdesc == NULL)
3288 *tdesc = amd64_create_target_description (xcr0, false, false);
3289
3290 return *tdesc;
3291 }
3292
3293 void
3294 _initialize_amd64_tdep (void)
3295 {
3296 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
3297 amd64_none_init_abi);
3298 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
3299 amd64_x32_none_init_abi);
3300
3301 #if GDB_SELF_TEST
3302 struct
3303 {
3304 const char *xml;
3305 uint64_t mask;
3306 } xml_masks[] = {
3307 { "i386/amd64.xml", X86_XSTATE_SSE_MASK },
3308 { "i386/amd64-avx.xml", X86_XSTATE_AVX_MASK },
3309 { "i386/amd64-mpx.xml", X86_XSTATE_MPX_MASK },
3310 { "i386/amd64-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
3311 { "i386/amd64-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
3312 { "i386/amd64-avx-mpx-avx512-pku.xml",
3313 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
3314 };
3315
3316 for (auto &a : xml_masks)
3317 {
3318 auto tdesc = amd64_target_description (a.mask);
3319
3320 selftests::record_xml_tdesc (a.xml, tdesc);
3321 }
3322 #endif /* GDB_SELF_TEST */
3323 }
3324 \f
3325
3326 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3327 sense that the instruction pointer and data pointer are simply
3328 64-bit offsets into the code segment and the data segment instead
3329 of a selector offset pair. The functions below store the upper 32
3330 bits of these pointers (instead of just the 16-bits of the segment
3331 selector). */
3332
3333 /* Fill register REGNUM in REGCACHE with the appropriate
3334 floating-point or SSE register value from *FXSAVE. If REGNUM is
3335 -1, do this for all registers. This function masks off any of the
3336 reserved bits in *FXSAVE. */
3337
3338 void
3339 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3340 const void *fxsave)
3341 {
3342 struct gdbarch *gdbarch = regcache->arch ();
3343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3344
3345 i387_supply_fxsave (regcache, regnum, fxsave);
3346
3347 if (fxsave
3348 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3349 {
3350 const gdb_byte *regs = (const gdb_byte *) fxsave;
3351
3352 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3353 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3354 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3355 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3356 }
3357 }
3358
3359 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3360
3361 void
3362 amd64_supply_xsave (struct regcache *regcache, int regnum,
3363 const void *xsave)
3364 {
3365 struct gdbarch *gdbarch = regcache->arch ();
3366 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3367
3368 i387_supply_xsave (regcache, regnum, xsave);
3369
3370 if (xsave
3371 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3372 {
3373 const gdb_byte *regs = (const gdb_byte *) xsave;
3374 static const gdb_byte zero[I386_MAX_REGISTER_SIZE] = { 0 };
3375 ULONGEST clear_bv;
3376
3377 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
3378
3379 /* If the FISEG and FOSEG registers have not been initialised yet
3380 (their CLEAR_BV bit is set) then their default values of zero will
3381 have already been setup by I387_SUPPLY_XSAVE. */
3382 if (!(clear_bv & X86_XSTATE_X87))
3383 {
3384 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3385 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3386 regs + 12);
3387 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3388 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3389 regs + 20);
3390 }
3391 }
3392 }
3393
3394 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3395 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3396 all registers. This function doesn't touch any of the reserved
3397 bits in *FXSAVE. */
3398
3399 void
3400 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3401 void *fxsave)
3402 {
3403 struct gdbarch *gdbarch = regcache->arch ();
3404 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3405 gdb_byte *regs = (gdb_byte *) fxsave;
3406
3407 i387_collect_fxsave (regcache, regnum, fxsave);
3408
3409 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3410 {
3411 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3412 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3413 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3414 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3415 }
3416 }
3417
3418 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3419
3420 void
3421 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3422 void *xsave, int gcore)
3423 {
3424 struct gdbarch *gdbarch = regcache->arch ();
3425 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3426 gdb_byte *regs = (gdb_byte *) xsave;
3427
3428 i387_collect_xsave (regcache, regnum, xsave, gcore);
3429
3430 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3431 {
3432 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3433 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3434 regs + 12);
3435 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3436 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3437 regs + 20);
3438 }
3439 }
This page took 0.100532 seconds and 5 git commands to generate.