amd64-mpx: initialize BND register before performing inferior calls.
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "x86-xstate.h"
43 #include <algorithm>
44
45 #include "features/i386/amd64.c"
46 #include "features/i386/amd64-avx.c"
47 #include "features/i386/amd64-mpx.c"
48 #include "features/i386/amd64-avx-mpx.c"
49 #include "features/i386/amd64-avx-avx512.c"
50 #include "features/i386/amd64-avx-mpx-avx512-pku.c"
51
52 #include "features/i386/x32.c"
53 #include "features/i386/x32-avx.c"
54 #include "features/i386/x32-avx-avx512.c"
55
56 #include "ax.h"
57 #include "ax-gdb.h"
58
59 /* Note that the AMD64 architecture was previously known as x86-64.
60 The latter is (forever) engraved into the canonical system name as
61 returned by config.guess, and used as the name for the AMD64 port
62 of GNU/Linux. The BSD's have renamed their ports to amd64; they
63 don't like to shout. For GDB we prefer the amd64_-prefix over the
64 x86_64_-prefix since it's so much easier to type. */
65
66 /* Register information. */
67
68 static const char *amd64_register_names[] =
69 {
70 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
71
72 /* %r8 is indeed register number 8. */
73 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
74 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
75
76 /* %st0 is register number 24. */
77 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
78 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
79
80 /* %xmm0 is register number 40. */
81 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
82 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
83 "mxcsr",
84 };
85
86 static const char *amd64_ymm_names[] =
87 {
88 "ymm0", "ymm1", "ymm2", "ymm3",
89 "ymm4", "ymm5", "ymm6", "ymm7",
90 "ymm8", "ymm9", "ymm10", "ymm11",
91 "ymm12", "ymm13", "ymm14", "ymm15"
92 };
93
94 static const char *amd64_ymm_avx512_names[] =
95 {
96 "ymm16", "ymm17", "ymm18", "ymm19",
97 "ymm20", "ymm21", "ymm22", "ymm23",
98 "ymm24", "ymm25", "ymm26", "ymm27",
99 "ymm28", "ymm29", "ymm30", "ymm31"
100 };
101
102 static const char *amd64_ymmh_names[] =
103 {
104 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
105 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
106 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
107 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
108 };
109
110 static const char *amd64_ymmh_avx512_names[] =
111 {
112 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
113 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
114 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
115 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
116 };
117
118 static const char *amd64_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 static const char *amd64_k_names[] =
124 {
125 "k0", "k1", "k2", "k3",
126 "k4", "k5", "k6", "k7"
127 };
128
129 static const char *amd64_zmmh_names[] =
130 {
131 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
132 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
133 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
134 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
135 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
136 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
137 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
138 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
139 };
140
141 static const char *amd64_zmm_names[] =
142 {
143 "zmm0", "zmm1", "zmm2", "zmm3",
144 "zmm4", "zmm5", "zmm6", "zmm7",
145 "zmm8", "zmm9", "zmm10", "zmm11",
146 "zmm12", "zmm13", "zmm14", "zmm15",
147 "zmm16", "zmm17", "zmm18", "zmm19",
148 "zmm20", "zmm21", "zmm22", "zmm23",
149 "zmm24", "zmm25", "zmm26", "zmm27",
150 "zmm28", "zmm29", "zmm30", "zmm31"
151 };
152
153 static const char *amd64_xmm_avx512_names[] = {
154 "xmm16", "xmm17", "xmm18", "xmm19",
155 "xmm20", "xmm21", "xmm22", "xmm23",
156 "xmm24", "xmm25", "xmm26", "xmm27",
157 "xmm28", "xmm29", "xmm30", "xmm31"
158 };
159
160 static const char *amd64_pkeys_names[] = {
161 "pkru"
162 };
163
164 /* DWARF Register Number Mapping as defined in the System V psABI,
165 section 3.6. */
166
167 static int amd64_dwarf_regmap[] =
168 {
169 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
170 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
171 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
172 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
173
174 /* Frame Pointer Register RBP. */
175 AMD64_RBP_REGNUM,
176
177 /* Stack Pointer Register RSP. */
178 AMD64_RSP_REGNUM,
179
180 /* Extended Integer Registers 8 - 15. */
181 AMD64_R8_REGNUM, /* %r8 */
182 AMD64_R9_REGNUM, /* %r9 */
183 AMD64_R10_REGNUM, /* %r10 */
184 AMD64_R11_REGNUM, /* %r11 */
185 AMD64_R12_REGNUM, /* %r12 */
186 AMD64_R13_REGNUM, /* %r13 */
187 AMD64_R14_REGNUM, /* %r14 */
188 AMD64_R15_REGNUM, /* %r15 */
189
190 /* Return Address RA. Mapped to RIP. */
191 AMD64_RIP_REGNUM,
192
193 /* SSE Registers 0 - 7. */
194 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
195 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
196 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
197 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
198
199 /* Extended SSE Registers 8 - 15. */
200 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
201 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
202 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
203 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
204
205 /* Floating Point Registers 0-7. */
206 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
207 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
208 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
209 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
210
211 /* MMX Registers 0 - 7.
212 We have to handle those registers specifically, as their register
213 number within GDB depends on the target (or they may even not be
214 available at all). */
215 -1, -1, -1, -1, -1, -1, -1, -1,
216
217 /* Control and Status Flags Register. */
218 AMD64_EFLAGS_REGNUM,
219
220 /* Selector Registers. */
221 AMD64_ES_REGNUM,
222 AMD64_CS_REGNUM,
223 AMD64_SS_REGNUM,
224 AMD64_DS_REGNUM,
225 AMD64_FS_REGNUM,
226 AMD64_GS_REGNUM,
227 -1,
228 -1,
229
230 /* Segment Base Address Registers. */
231 -1,
232 -1,
233 -1,
234 -1,
235
236 /* Special Selector Registers. */
237 -1,
238 -1,
239
240 /* Floating Point Control Registers. */
241 AMD64_MXCSR_REGNUM,
242 AMD64_FCTRL_REGNUM,
243 AMD64_FSTAT_REGNUM
244 };
245
246 static const int amd64_dwarf_regmap_len =
247 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
248
249 /* Convert DWARF register number REG to the appropriate register
250 number used by GDB. */
251
252 static int
253 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
254 {
255 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
256 int ymm0_regnum = tdep->ymm0_regnum;
257 int regnum = -1;
258
259 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
260 regnum = amd64_dwarf_regmap[reg];
261
262 if (ymm0_regnum >= 0
263 && i386_xmm_regnum_p (gdbarch, regnum))
264 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
265
266 return regnum;
267 }
268
269 /* Map architectural register numbers to gdb register numbers. */
270
271 static const int amd64_arch_regmap[16] =
272 {
273 AMD64_RAX_REGNUM, /* %rax */
274 AMD64_RCX_REGNUM, /* %rcx */
275 AMD64_RDX_REGNUM, /* %rdx */
276 AMD64_RBX_REGNUM, /* %rbx */
277 AMD64_RSP_REGNUM, /* %rsp */
278 AMD64_RBP_REGNUM, /* %rbp */
279 AMD64_RSI_REGNUM, /* %rsi */
280 AMD64_RDI_REGNUM, /* %rdi */
281 AMD64_R8_REGNUM, /* %r8 */
282 AMD64_R9_REGNUM, /* %r9 */
283 AMD64_R10_REGNUM, /* %r10 */
284 AMD64_R11_REGNUM, /* %r11 */
285 AMD64_R12_REGNUM, /* %r12 */
286 AMD64_R13_REGNUM, /* %r13 */
287 AMD64_R14_REGNUM, /* %r14 */
288 AMD64_R15_REGNUM /* %r15 */
289 };
290
291 static const int amd64_arch_regmap_len =
292 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
293
294 /* Convert architectural register number REG to the appropriate register
295 number used by GDB. */
296
297 static int
298 amd64_arch_reg_to_regnum (int reg)
299 {
300 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
301
302 return amd64_arch_regmap[reg];
303 }
304
305 /* Register names for byte pseudo-registers. */
306
307 static const char *amd64_byte_names[] =
308 {
309 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
310 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
311 "ah", "bh", "ch", "dh"
312 };
313
314 /* Number of lower byte registers. */
315 #define AMD64_NUM_LOWER_BYTE_REGS 16
316
317 /* Register names for word pseudo-registers. */
318
319 static const char *amd64_word_names[] =
320 {
321 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
322 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
323 };
324
325 /* Register names for dword pseudo-registers. */
326
327 static const char *amd64_dword_names[] =
328 {
329 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
330 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
331 "eip"
332 };
333
334 /* Return the name of register REGNUM. */
335
336 static const char *
337 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
338 {
339 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
340 if (i386_byte_regnum_p (gdbarch, regnum))
341 return amd64_byte_names[regnum - tdep->al_regnum];
342 else if (i386_zmm_regnum_p (gdbarch, regnum))
343 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
344 else if (i386_ymm_regnum_p (gdbarch, regnum))
345 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
346 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
347 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
348 else if (i386_word_regnum_p (gdbarch, regnum))
349 return amd64_word_names[regnum - tdep->ax_regnum];
350 else if (i386_dword_regnum_p (gdbarch, regnum))
351 return amd64_dword_names[regnum - tdep->eax_regnum];
352 else
353 return i386_pseudo_register_name (gdbarch, regnum);
354 }
355
356 static struct value *
357 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
358 struct regcache *regcache,
359 int regnum)
360 {
361 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
363 enum register_status status;
364 struct value *result_value;
365 gdb_byte *buf;
366
367 result_value = allocate_value (register_type (gdbarch, regnum));
368 VALUE_LVAL (result_value) = lval_register;
369 VALUE_REGNUM (result_value) = regnum;
370 buf = value_contents_raw (result_value);
371
372 if (i386_byte_regnum_p (gdbarch, regnum))
373 {
374 int gpnum = regnum - tdep->al_regnum;
375
376 /* Extract (always little endian). */
377 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
378 {
379 /* Special handling for AH, BH, CH, DH. */
380 status = regcache_raw_read (regcache,
381 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
382 raw_buf);
383 if (status == REG_VALID)
384 memcpy (buf, raw_buf + 1, 1);
385 else
386 mark_value_bytes_unavailable (result_value, 0,
387 TYPE_LENGTH (value_type (result_value)));
388 }
389 else
390 {
391 status = regcache_raw_read (regcache, gpnum, raw_buf);
392 if (status == REG_VALID)
393 memcpy (buf, raw_buf, 1);
394 else
395 mark_value_bytes_unavailable (result_value, 0,
396 TYPE_LENGTH (value_type (result_value)));
397 }
398 }
399 else if (i386_dword_regnum_p (gdbarch, regnum))
400 {
401 int gpnum = regnum - tdep->eax_regnum;
402 /* Extract (always little endian). */
403 status = regcache_raw_read (regcache, gpnum, raw_buf);
404 if (status == REG_VALID)
405 memcpy (buf, raw_buf, 4);
406 else
407 mark_value_bytes_unavailable (result_value, 0,
408 TYPE_LENGTH (value_type (result_value)));
409 }
410 else
411 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
412 result_value);
413
414 return result_value;
415 }
416
417 static void
418 amd64_pseudo_register_write (struct gdbarch *gdbarch,
419 struct regcache *regcache,
420 int regnum, const gdb_byte *buf)
421 {
422 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
423 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
424
425 if (i386_byte_regnum_p (gdbarch, regnum))
426 {
427 int gpnum = regnum - tdep->al_regnum;
428
429 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
430 {
431 /* Read ... AH, BH, CH, DH. */
432 regcache_raw_read (regcache,
433 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
434 /* ... Modify ... (always little endian). */
435 memcpy (raw_buf + 1, buf, 1);
436 /* ... Write. */
437 regcache_raw_write (regcache,
438 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
439 }
440 else
441 {
442 /* Read ... */
443 regcache_raw_read (regcache, gpnum, raw_buf);
444 /* ... Modify ... (always little endian). */
445 memcpy (raw_buf, buf, 1);
446 /* ... Write. */
447 regcache_raw_write (regcache, gpnum, raw_buf);
448 }
449 }
450 else if (i386_dword_regnum_p (gdbarch, regnum))
451 {
452 int gpnum = regnum - tdep->eax_regnum;
453
454 /* Read ... */
455 regcache_raw_read (regcache, gpnum, raw_buf);
456 /* ... Modify ... (always little endian). */
457 memcpy (raw_buf, buf, 4);
458 /* ... Write. */
459 regcache_raw_write (regcache, gpnum, raw_buf);
460 }
461 else
462 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
463 }
464
465 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
466
467 static int
468 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
469 struct agent_expr *ax, int regnum)
470 {
471 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
472
473 if (i386_byte_regnum_p (gdbarch, regnum))
474 {
475 int gpnum = regnum - tdep->al_regnum;
476
477 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
478 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
479 else
480 ax_reg_mask (ax, gpnum);
481 return 0;
482 }
483 else if (i386_dword_regnum_p (gdbarch, regnum))
484 {
485 int gpnum = regnum - tdep->eax_regnum;
486
487 ax_reg_mask (ax, gpnum);
488 return 0;
489 }
490 else
491 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
492 }
493
494 \f
495
496 /* Register classes as defined in the psABI. */
497
498 enum amd64_reg_class
499 {
500 AMD64_INTEGER,
501 AMD64_SSE,
502 AMD64_SSEUP,
503 AMD64_X87,
504 AMD64_X87UP,
505 AMD64_COMPLEX_X87,
506 AMD64_NO_CLASS,
507 AMD64_MEMORY
508 };
509
510 /* Return the union class of CLASS1 and CLASS2. See the psABI for
511 details. */
512
513 static enum amd64_reg_class
514 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
515 {
516 /* Rule (a): If both classes are equal, this is the resulting class. */
517 if (class1 == class2)
518 return class1;
519
520 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
521 is the other class. */
522 if (class1 == AMD64_NO_CLASS)
523 return class2;
524 if (class2 == AMD64_NO_CLASS)
525 return class1;
526
527 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
528 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
529 return AMD64_MEMORY;
530
531 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
532 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
533 return AMD64_INTEGER;
534
535 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
536 MEMORY is used as class. */
537 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
538 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
539 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
540 return AMD64_MEMORY;
541
542 /* Rule (f): Otherwise class SSE is used. */
543 return AMD64_SSE;
544 }
545
546 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
547
548 /* Return non-zero if TYPE is a non-POD structure or union type. */
549
550 static int
551 amd64_non_pod_p (struct type *type)
552 {
553 /* ??? A class with a base class certainly isn't POD, but does this
554 catch all non-POD structure types? */
555 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
556 return 1;
557
558 return 0;
559 }
560
561 /* Classify TYPE according to the rules for aggregate (structures and
562 arrays) and union types, and store the result in CLASS. */
563
564 static void
565 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
566 {
567 /* 1. If the size of an object is larger than two eightbytes, or in
568 C++, is a non-POD structure or union type, or contains
569 unaligned fields, it has class memory. */
570 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
571 {
572 theclass[0] = theclass[1] = AMD64_MEMORY;
573 return;
574 }
575
576 /* 2. Both eightbytes get initialized to class NO_CLASS. */
577 theclass[0] = theclass[1] = AMD64_NO_CLASS;
578
579 /* 3. Each field of an object is classified recursively so that
580 always two fields are considered. The resulting class is
581 calculated according to the classes of the fields in the
582 eightbyte: */
583
584 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
585 {
586 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
587
588 /* All fields in an array have the same type. */
589 amd64_classify (subtype, theclass);
590 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
591 theclass[1] = theclass[0];
592 }
593 else
594 {
595 int i;
596
597 /* Structure or union. */
598 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
599 || TYPE_CODE (type) == TYPE_CODE_UNION);
600
601 for (i = 0; i < TYPE_NFIELDS (type); i++)
602 {
603 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
604 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
605 enum amd64_reg_class subclass[2];
606 int bitsize = TYPE_FIELD_BITSIZE (type, i);
607 int endpos;
608
609 if (bitsize == 0)
610 bitsize = TYPE_LENGTH (subtype) * 8;
611 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
612
613 /* Ignore static fields. */
614 if (field_is_static (&TYPE_FIELD (type, i)))
615 continue;
616
617 gdb_assert (pos == 0 || pos == 1);
618
619 amd64_classify (subtype, subclass);
620 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
621 if (bitsize <= 64 && pos == 0 && endpos == 1)
622 /* This is a bit of an odd case: We have a field that would
623 normally fit in one of the two eightbytes, except that
624 it is placed in a way that this field straddles them.
625 This has been seen with a structure containing an array.
626
627 The ABI is a bit unclear in this case, but we assume that
628 this field's class (stored in subclass[0]) must also be merged
629 into class[1]. In other words, our field has a piece stored
630 in the second eight-byte, and thus its class applies to
631 the second eight-byte as well.
632
633 In the case where the field length exceeds 8 bytes,
634 it should not be necessary to merge the field class
635 into class[1]. As LEN > 8, subclass[1] is necessarily
636 different from AMD64_NO_CLASS. If subclass[1] is equal
637 to subclass[0], then the normal class[1]/subclass[1]
638 merging will take care of everything. For subclass[1]
639 to be different from subclass[0], I can only see the case
640 where we have a SSE/SSEUP or X87/X87UP pair, which both
641 use up all 16 bytes of the aggregate, and are already
642 handled just fine (because each portion sits on its own
643 8-byte). */
644 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
645 if (pos == 0)
646 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
647 }
648 }
649
650 /* 4. Then a post merger cleanup is done: */
651
652 /* Rule (a): If one of the classes is MEMORY, the whole argument is
653 passed in memory. */
654 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
655 theclass[0] = theclass[1] = AMD64_MEMORY;
656
657 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
658 SSE. */
659 if (theclass[0] == AMD64_SSEUP)
660 theclass[0] = AMD64_SSE;
661 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
662 theclass[1] = AMD64_SSE;
663 }
664
665 /* Classify TYPE, and store the result in CLASS. */
666
667 static void
668 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
669 {
670 enum type_code code = TYPE_CODE (type);
671 int len = TYPE_LENGTH (type);
672
673 theclass[0] = theclass[1] = AMD64_NO_CLASS;
674
675 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
676 long, long long, and pointers are in the INTEGER class. Similarly,
677 range types, used by languages such as Ada, are also in the INTEGER
678 class. */
679 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
680 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
681 || code == TYPE_CODE_CHAR
682 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
683 && (len == 1 || len == 2 || len == 4 || len == 8))
684 theclass[0] = AMD64_INTEGER;
685
686 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
687 are in class SSE. */
688 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
689 && (len == 4 || len == 8))
690 /* FIXME: __m64 . */
691 theclass[0] = AMD64_SSE;
692
693 /* Arguments of types __float128, _Decimal128 and __m128 are split into
694 two halves. The least significant ones belong to class SSE, the most
695 significant one to class SSEUP. */
696 else if (code == TYPE_CODE_DECFLOAT && len == 16)
697 /* FIXME: __float128, __m128. */
698 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
699
700 /* The 64-bit mantissa of arguments of type long double belongs to
701 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
702 class X87UP. */
703 else if (code == TYPE_CODE_FLT && len == 16)
704 /* Class X87 and X87UP. */
705 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
706
707 /* Arguments of complex T where T is one of the types float or
708 double get treated as if they are implemented as:
709
710 struct complexT {
711 T real;
712 T imag;
713 };
714
715 */
716 else if (code == TYPE_CODE_COMPLEX && len == 8)
717 theclass[0] = AMD64_SSE;
718 else if (code == TYPE_CODE_COMPLEX && len == 16)
719 theclass[0] = theclass[1] = AMD64_SSE;
720
721 /* A variable of type complex long double is classified as type
722 COMPLEX_X87. */
723 else if (code == TYPE_CODE_COMPLEX && len == 32)
724 theclass[0] = AMD64_COMPLEX_X87;
725
726 /* Aggregates. */
727 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
728 || code == TYPE_CODE_UNION)
729 amd64_classify_aggregate (type, theclass);
730 }
731
732 static enum return_value_convention
733 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
734 struct type *type, struct regcache *regcache,
735 gdb_byte *readbuf, const gdb_byte *writebuf)
736 {
737 enum amd64_reg_class theclass[2];
738 int len = TYPE_LENGTH (type);
739 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
740 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
741 int integer_reg = 0;
742 int sse_reg = 0;
743 int i;
744
745 gdb_assert (!(readbuf && writebuf));
746
747 /* 1. Classify the return type with the classification algorithm. */
748 amd64_classify (type, theclass);
749
750 /* 2. If the type has class MEMORY, then the caller provides space
751 for the return value and passes the address of this storage in
752 %rdi as if it were the first argument to the function. In effect,
753 this address becomes a hidden first argument.
754
755 On return %rax will contain the address that has been passed in
756 by the caller in %rdi. */
757 if (theclass[0] == AMD64_MEMORY)
758 {
759 /* As indicated by the comment above, the ABI guarantees that we
760 can always find the return value just after the function has
761 returned. */
762
763 if (readbuf)
764 {
765 ULONGEST addr;
766
767 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
768 read_memory (addr, readbuf, TYPE_LENGTH (type));
769 }
770
771 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
772 }
773
774 /* 8. If the class is COMPLEX_X87, the real part of the value is
775 returned in %st0 and the imaginary part in %st1. */
776 if (theclass[0] == AMD64_COMPLEX_X87)
777 {
778 if (readbuf)
779 {
780 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
781 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
782 }
783
784 if (writebuf)
785 {
786 i387_return_value (gdbarch, regcache);
787 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
788 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
789
790 /* Fix up the tag word such that both %st(0) and %st(1) are
791 marked as valid. */
792 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
793 }
794
795 return RETURN_VALUE_REGISTER_CONVENTION;
796 }
797
798 gdb_assert (theclass[1] != AMD64_MEMORY);
799 gdb_assert (len <= 16);
800
801 for (i = 0; len > 0; i++, len -= 8)
802 {
803 int regnum = -1;
804 int offset = 0;
805
806 switch (theclass[i])
807 {
808 case AMD64_INTEGER:
809 /* 3. If the class is INTEGER, the next available register
810 of the sequence %rax, %rdx is used. */
811 regnum = integer_regnum[integer_reg++];
812 break;
813
814 case AMD64_SSE:
815 /* 4. If the class is SSE, the next available SSE register
816 of the sequence %xmm0, %xmm1 is used. */
817 regnum = sse_regnum[sse_reg++];
818 break;
819
820 case AMD64_SSEUP:
821 /* 5. If the class is SSEUP, the eightbyte is passed in the
822 upper half of the last used SSE register. */
823 gdb_assert (sse_reg > 0);
824 regnum = sse_regnum[sse_reg - 1];
825 offset = 8;
826 break;
827
828 case AMD64_X87:
829 /* 6. If the class is X87, the value is returned on the X87
830 stack in %st0 as 80-bit x87 number. */
831 regnum = AMD64_ST0_REGNUM;
832 if (writebuf)
833 i387_return_value (gdbarch, regcache);
834 break;
835
836 case AMD64_X87UP:
837 /* 7. If the class is X87UP, the value is returned together
838 with the previous X87 value in %st0. */
839 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
840 regnum = AMD64_ST0_REGNUM;
841 offset = 8;
842 len = 2;
843 break;
844
845 case AMD64_NO_CLASS:
846 continue;
847
848 default:
849 gdb_assert (!"Unexpected register class.");
850 }
851
852 gdb_assert (regnum != -1);
853
854 if (readbuf)
855 regcache_raw_read_part (regcache, regnum, offset, std::min (len, 8),
856 readbuf + i * 8);
857 if (writebuf)
858 regcache_raw_write_part (regcache, regnum, offset, std::min (len, 8),
859 writebuf + i * 8);
860 }
861
862 return RETURN_VALUE_REGISTER_CONVENTION;
863 }
864 \f
865
866 static CORE_ADDR
867 amd64_push_arguments (struct regcache *regcache, int nargs,
868 struct value **args, CORE_ADDR sp, int struct_return)
869 {
870 static int integer_regnum[] =
871 {
872 AMD64_RDI_REGNUM, /* %rdi */
873 AMD64_RSI_REGNUM, /* %rsi */
874 AMD64_RDX_REGNUM, /* %rdx */
875 AMD64_RCX_REGNUM, /* %rcx */
876 AMD64_R8_REGNUM, /* %r8 */
877 AMD64_R9_REGNUM /* %r9 */
878 };
879 static int sse_regnum[] =
880 {
881 /* %xmm0 ... %xmm7 */
882 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
883 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
884 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
885 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
886 };
887 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
888 int num_stack_args = 0;
889 int num_elements = 0;
890 int element = 0;
891 int integer_reg = 0;
892 int sse_reg = 0;
893 int i;
894
895 /* Reserve a register for the "hidden" argument. */
896 if (struct_return)
897 integer_reg++;
898
899 for (i = 0; i < nargs; i++)
900 {
901 struct type *type = value_type (args[i]);
902 int len = TYPE_LENGTH (type);
903 enum amd64_reg_class theclass[2];
904 int needed_integer_regs = 0;
905 int needed_sse_regs = 0;
906 int j;
907
908 /* Classify argument. */
909 amd64_classify (type, theclass);
910
911 /* Calculate the number of integer and SSE registers needed for
912 this argument. */
913 for (j = 0; j < 2; j++)
914 {
915 if (theclass[j] == AMD64_INTEGER)
916 needed_integer_regs++;
917 else if (theclass[j] == AMD64_SSE)
918 needed_sse_regs++;
919 }
920
921 /* Check whether enough registers are available, and if the
922 argument should be passed in registers at all. */
923 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
924 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
925 || (needed_integer_regs == 0 && needed_sse_regs == 0))
926 {
927 /* The argument will be passed on the stack. */
928 num_elements += ((len + 7) / 8);
929 stack_args[num_stack_args++] = args[i];
930 }
931 else
932 {
933 /* The argument will be passed in registers. */
934 const gdb_byte *valbuf = value_contents (args[i]);
935 gdb_byte buf[8];
936
937 gdb_assert (len <= 16);
938
939 for (j = 0; len > 0; j++, len -= 8)
940 {
941 int regnum = -1;
942 int offset = 0;
943
944 switch (theclass[j])
945 {
946 case AMD64_INTEGER:
947 regnum = integer_regnum[integer_reg++];
948 break;
949
950 case AMD64_SSE:
951 regnum = sse_regnum[sse_reg++];
952 break;
953
954 case AMD64_SSEUP:
955 gdb_assert (sse_reg > 0);
956 regnum = sse_regnum[sse_reg - 1];
957 offset = 8;
958 break;
959
960 default:
961 gdb_assert (!"Unexpected register class.");
962 }
963
964 gdb_assert (regnum != -1);
965 memset (buf, 0, sizeof buf);
966 memcpy (buf, valbuf + j * 8, std::min (len, 8));
967 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
968 }
969 }
970 }
971
972 /* Allocate space for the arguments on the stack. */
973 sp -= num_elements * 8;
974
975 /* The psABI says that "The end of the input argument area shall be
976 aligned on a 16 byte boundary." */
977 sp &= ~0xf;
978
979 /* Write out the arguments to the stack. */
980 for (i = 0; i < num_stack_args; i++)
981 {
982 struct type *type = value_type (stack_args[i]);
983 const gdb_byte *valbuf = value_contents (stack_args[i]);
984 int len = TYPE_LENGTH (type);
985
986 write_memory (sp + element * 8, valbuf, len);
987 element += ((len + 7) / 8);
988 }
989
990 /* The psABI says that "For calls that may call functions that use
991 varargs or stdargs (prototype-less calls or calls to functions
992 containing ellipsis (...) in the declaration) %al is used as
993 hidden argument to specify the number of SSE registers used. */
994 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
995 return sp;
996 }
997
998 static CORE_ADDR
999 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1000 struct regcache *regcache, CORE_ADDR bp_addr,
1001 int nargs, struct value **args, CORE_ADDR sp,
1002 int struct_return, CORE_ADDR struct_addr)
1003 {
1004 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1005 gdb_byte buf[8];
1006
1007 /* BND registers can be in arbitrary values at the moment of the
1008 inferior call. This can cause boundary violations that are not
1009 due to a real bug or even desired by the user. The best to be done
1010 is set the BND registers to allow access to the whole memory, INIT
1011 state, before pushing the inferior call. */
1012 i387_reset_bnd_regs (gdbarch, regcache);
1013
1014 /* Pass arguments. */
1015 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
1016
1017 /* Pass "hidden" argument". */
1018 if (struct_return)
1019 {
1020 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1021 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
1022 }
1023
1024 /* Store return address. */
1025 sp -= 8;
1026 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1027 write_memory (sp, buf, 8);
1028
1029 /* Finally, update the stack pointer... */
1030 store_unsigned_integer (buf, 8, byte_order, sp);
1031 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
1032
1033 /* ...and fake a frame pointer. */
1034 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
1035
1036 return sp + 16;
1037 }
1038 \f
1039 /* Displaced instruction handling. */
1040
1041 /* A partially decoded instruction.
1042 This contains enough details for displaced stepping purposes. */
1043
1044 struct amd64_insn
1045 {
1046 /* The number of opcode bytes. */
1047 int opcode_len;
1048 /* The offset of the rex prefix or -1 if not present. */
1049 int rex_offset;
1050 /* The offset to the first opcode byte. */
1051 int opcode_offset;
1052 /* The offset to the modrm byte or -1 if not present. */
1053 int modrm_offset;
1054
1055 /* The raw instruction. */
1056 gdb_byte *raw_insn;
1057 };
1058
1059 struct displaced_step_closure
1060 {
1061 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1062 int tmp_used;
1063 int tmp_regno;
1064 ULONGEST tmp_save;
1065
1066 /* Details of the instruction. */
1067 struct amd64_insn insn_details;
1068
1069 /* Amount of space allocated to insn_buf. */
1070 int max_len;
1071
1072 /* The possibly modified insn.
1073 This is a variable-length field. */
1074 gdb_byte insn_buf[1];
1075 };
1076
1077 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1078 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1079 at which point delete these in favor of libopcodes' versions). */
1080
1081 static const unsigned char onebyte_has_modrm[256] = {
1082 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1083 /* ------------------------------- */
1084 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1085 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1086 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1087 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1088 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1089 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1090 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1091 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1092 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1093 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1094 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1095 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1096 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1097 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1098 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1099 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1100 /* ------------------------------- */
1101 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1102 };
1103
1104 static const unsigned char twobyte_has_modrm[256] = {
1105 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1106 /* ------------------------------- */
1107 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1108 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1109 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1110 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1111 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1112 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1113 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1114 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1115 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1116 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1117 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1118 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1119 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1120 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1121 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1122 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1123 /* ------------------------------- */
1124 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1125 };
1126
1127 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1128
1129 static int
1130 rex_prefix_p (gdb_byte pfx)
1131 {
1132 return REX_PREFIX_P (pfx);
1133 }
1134
1135 /* Skip the legacy instruction prefixes in INSN.
1136 We assume INSN is properly sentineled so we don't have to worry
1137 about falling off the end of the buffer. */
1138
1139 static gdb_byte *
1140 amd64_skip_prefixes (gdb_byte *insn)
1141 {
1142 while (1)
1143 {
1144 switch (*insn)
1145 {
1146 case DATA_PREFIX_OPCODE:
1147 case ADDR_PREFIX_OPCODE:
1148 case CS_PREFIX_OPCODE:
1149 case DS_PREFIX_OPCODE:
1150 case ES_PREFIX_OPCODE:
1151 case FS_PREFIX_OPCODE:
1152 case GS_PREFIX_OPCODE:
1153 case SS_PREFIX_OPCODE:
1154 case LOCK_PREFIX_OPCODE:
1155 case REPE_PREFIX_OPCODE:
1156 case REPNE_PREFIX_OPCODE:
1157 ++insn;
1158 continue;
1159 default:
1160 break;
1161 }
1162 break;
1163 }
1164
1165 return insn;
1166 }
1167
1168 /* Return an integer register (other than RSP) that is unused as an input
1169 operand in INSN.
1170 In order to not require adding a rex prefix if the insn doesn't already
1171 have one, the result is restricted to RAX ... RDI, sans RSP.
1172 The register numbering of the result follows architecture ordering,
1173 e.g. RDI = 7. */
1174
1175 static int
1176 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1177 {
1178 /* 1 bit for each reg */
1179 int used_regs_mask = 0;
1180
1181 /* There can be at most 3 int regs used as inputs in an insn, and we have
1182 7 to choose from (RAX ... RDI, sans RSP).
1183 This allows us to take a conservative approach and keep things simple.
1184 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1185 that implicitly specify RAX. */
1186
1187 /* Avoid RAX. */
1188 used_regs_mask |= 1 << EAX_REG_NUM;
1189 /* Similarily avoid RDX, implicit operand in divides. */
1190 used_regs_mask |= 1 << EDX_REG_NUM;
1191 /* Avoid RSP. */
1192 used_regs_mask |= 1 << ESP_REG_NUM;
1193
1194 /* If the opcode is one byte long and there's no ModRM byte,
1195 assume the opcode specifies a register. */
1196 if (details->opcode_len == 1 && details->modrm_offset == -1)
1197 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1198
1199 /* Mark used regs in the modrm/sib bytes. */
1200 if (details->modrm_offset != -1)
1201 {
1202 int modrm = details->raw_insn[details->modrm_offset];
1203 int mod = MODRM_MOD_FIELD (modrm);
1204 int reg = MODRM_REG_FIELD (modrm);
1205 int rm = MODRM_RM_FIELD (modrm);
1206 int have_sib = mod != 3 && rm == 4;
1207
1208 /* Assume the reg field of the modrm byte specifies a register. */
1209 used_regs_mask |= 1 << reg;
1210
1211 if (have_sib)
1212 {
1213 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1214 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1215 used_regs_mask |= 1 << base;
1216 used_regs_mask |= 1 << idx;
1217 }
1218 else
1219 {
1220 used_regs_mask |= 1 << rm;
1221 }
1222 }
1223
1224 gdb_assert (used_regs_mask < 256);
1225 gdb_assert (used_regs_mask != 255);
1226
1227 /* Finally, find a free reg. */
1228 {
1229 int i;
1230
1231 for (i = 0; i < 8; ++i)
1232 {
1233 if (! (used_regs_mask & (1 << i)))
1234 return i;
1235 }
1236
1237 /* We shouldn't get here. */
1238 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1239 }
1240 }
1241
1242 /* Extract the details of INSN that we need. */
1243
1244 static void
1245 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1246 {
1247 gdb_byte *start = insn;
1248 int need_modrm;
1249
1250 details->raw_insn = insn;
1251
1252 details->opcode_len = -1;
1253 details->rex_offset = -1;
1254 details->opcode_offset = -1;
1255 details->modrm_offset = -1;
1256
1257 /* Skip legacy instruction prefixes. */
1258 insn = amd64_skip_prefixes (insn);
1259
1260 /* Skip REX instruction prefix. */
1261 if (rex_prefix_p (*insn))
1262 {
1263 details->rex_offset = insn - start;
1264 ++insn;
1265 }
1266
1267 details->opcode_offset = insn - start;
1268
1269 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1270 {
1271 /* Two or three-byte opcode. */
1272 ++insn;
1273 need_modrm = twobyte_has_modrm[*insn];
1274
1275 /* Check for three-byte opcode. */
1276 switch (*insn)
1277 {
1278 case 0x24:
1279 case 0x25:
1280 case 0x38:
1281 case 0x3a:
1282 case 0x7a:
1283 case 0x7b:
1284 ++insn;
1285 details->opcode_len = 3;
1286 break;
1287 default:
1288 details->opcode_len = 2;
1289 break;
1290 }
1291 }
1292 else
1293 {
1294 /* One-byte opcode. */
1295 need_modrm = onebyte_has_modrm[*insn];
1296 details->opcode_len = 1;
1297 }
1298
1299 if (need_modrm)
1300 {
1301 ++insn;
1302 details->modrm_offset = insn - start;
1303 }
1304 }
1305
1306 /* Update %rip-relative addressing in INSN.
1307
1308 %rip-relative addressing only uses a 32-bit displacement.
1309 32 bits is not enough to be guaranteed to cover the distance between where
1310 the real instruction is and where its copy is.
1311 Convert the insn to use base+disp addressing.
1312 We set base = pc + insn_length so we can leave disp unchanged. */
1313
1314 static void
1315 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1316 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1317 {
1318 const struct amd64_insn *insn_details = &dsc->insn_details;
1319 int modrm_offset = insn_details->modrm_offset;
1320 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1321 CORE_ADDR rip_base;
1322 int insn_length;
1323 int arch_tmp_regno, tmp_regno;
1324 ULONGEST orig_value;
1325
1326 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1327 ++insn;
1328
1329 /* Compute the rip-relative address. */
1330 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1331 dsc->max_len, from);
1332 rip_base = from + insn_length;
1333
1334 /* We need a register to hold the address.
1335 Pick one not used in the insn.
1336 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1337 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1338 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1339
1340 /* REX.B should be unset as we were using rip-relative addressing,
1341 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1342 if (insn_details->rex_offset != -1)
1343 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1344
1345 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1346 dsc->tmp_regno = tmp_regno;
1347 dsc->tmp_save = orig_value;
1348 dsc->tmp_used = 1;
1349
1350 /* Convert the ModRM field to be base+disp. */
1351 dsc->insn_buf[modrm_offset] &= ~0xc7;
1352 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1353
1354 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1355
1356 if (debug_displaced)
1357 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1358 "displaced: using temp reg %d, old value %s, new value %s\n",
1359 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1360 paddress (gdbarch, rip_base));
1361 }
1362
1363 static void
1364 fixup_displaced_copy (struct gdbarch *gdbarch,
1365 struct displaced_step_closure *dsc,
1366 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1367 {
1368 const struct amd64_insn *details = &dsc->insn_details;
1369
1370 if (details->modrm_offset != -1)
1371 {
1372 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1373
1374 if ((modrm & 0xc7) == 0x05)
1375 {
1376 /* The insn uses rip-relative addressing.
1377 Deal with it. */
1378 fixup_riprel (gdbarch, dsc, from, to, regs);
1379 }
1380 }
1381 }
1382
1383 struct displaced_step_closure *
1384 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1385 CORE_ADDR from, CORE_ADDR to,
1386 struct regcache *regs)
1387 {
1388 int len = gdbarch_max_insn_length (gdbarch);
1389 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1390 continually watch for running off the end of the buffer. */
1391 int fixup_sentinel_space = len;
1392 struct displaced_step_closure *dsc
1393 = ((struct displaced_step_closure *)
1394 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space));
1395 gdb_byte *buf = &dsc->insn_buf[0];
1396 struct amd64_insn *details = &dsc->insn_details;
1397
1398 dsc->tmp_used = 0;
1399 dsc->max_len = len + fixup_sentinel_space;
1400
1401 read_memory (from, buf, len);
1402
1403 /* Set up the sentinel space so we don't have to worry about running
1404 off the end of the buffer. An excessive number of leading prefixes
1405 could otherwise cause this. */
1406 memset (buf + len, 0, fixup_sentinel_space);
1407
1408 amd64_get_insn_details (buf, details);
1409
1410 /* GDB may get control back after the insn after the syscall.
1411 Presumably this is a kernel bug.
1412 If this is a syscall, make sure there's a nop afterwards. */
1413 {
1414 int syscall_length;
1415
1416 if (amd64_syscall_p (details, &syscall_length))
1417 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1418 }
1419
1420 /* Modify the insn to cope with the address where it will be executed from.
1421 In particular, handle any rip-relative addressing. */
1422 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1423
1424 write_memory (to, buf, len);
1425
1426 if (debug_displaced)
1427 {
1428 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1429 paddress (gdbarch, from), paddress (gdbarch, to));
1430 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1431 }
1432
1433 return dsc;
1434 }
1435
1436 static int
1437 amd64_absolute_jmp_p (const struct amd64_insn *details)
1438 {
1439 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1440
1441 if (insn[0] == 0xff)
1442 {
1443 /* jump near, absolute indirect (/4) */
1444 if ((insn[1] & 0x38) == 0x20)
1445 return 1;
1446
1447 /* jump far, absolute indirect (/5) */
1448 if ((insn[1] & 0x38) == 0x28)
1449 return 1;
1450 }
1451
1452 return 0;
1453 }
1454
1455 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1456
1457 static int
1458 amd64_jmp_p (const struct amd64_insn *details)
1459 {
1460 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1461
1462 /* jump short, relative. */
1463 if (insn[0] == 0xeb)
1464 return 1;
1465
1466 /* jump near, relative. */
1467 if (insn[0] == 0xe9)
1468 return 1;
1469
1470 return amd64_absolute_jmp_p (details);
1471 }
1472
1473 static int
1474 amd64_absolute_call_p (const struct amd64_insn *details)
1475 {
1476 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1477
1478 if (insn[0] == 0xff)
1479 {
1480 /* Call near, absolute indirect (/2) */
1481 if ((insn[1] & 0x38) == 0x10)
1482 return 1;
1483
1484 /* Call far, absolute indirect (/3) */
1485 if ((insn[1] & 0x38) == 0x18)
1486 return 1;
1487 }
1488
1489 return 0;
1490 }
1491
1492 static int
1493 amd64_ret_p (const struct amd64_insn *details)
1494 {
1495 /* NOTE: gcc can emit "repz ; ret". */
1496 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1497
1498 switch (insn[0])
1499 {
1500 case 0xc2: /* ret near, pop N bytes */
1501 case 0xc3: /* ret near */
1502 case 0xca: /* ret far, pop N bytes */
1503 case 0xcb: /* ret far */
1504 case 0xcf: /* iret */
1505 return 1;
1506
1507 default:
1508 return 0;
1509 }
1510 }
1511
1512 static int
1513 amd64_call_p (const struct amd64_insn *details)
1514 {
1515 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1516
1517 if (amd64_absolute_call_p (details))
1518 return 1;
1519
1520 /* call near, relative */
1521 if (insn[0] == 0xe8)
1522 return 1;
1523
1524 return 0;
1525 }
1526
1527 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1528 length in bytes. Otherwise, return zero. */
1529
1530 static int
1531 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1532 {
1533 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1534
1535 if (insn[0] == 0x0f && insn[1] == 0x05)
1536 {
1537 *lengthp = 2;
1538 return 1;
1539 }
1540
1541 return 0;
1542 }
1543
1544 /* Classify the instruction at ADDR using PRED.
1545 Throw an error if the memory can't be read. */
1546
1547 static int
1548 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1549 int (*pred) (const struct amd64_insn *))
1550 {
1551 struct amd64_insn details;
1552 gdb_byte *buf;
1553 int len, classification;
1554
1555 len = gdbarch_max_insn_length (gdbarch);
1556 buf = (gdb_byte *) alloca (len);
1557
1558 read_code (addr, buf, len);
1559 amd64_get_insn_details (buf, &details);
1560
1561 classification = pred (&details);
1562
1563 return classification;
1564 }
1565
1566 /* The gdbarch insn_is_call method. */
1567
1568 static int
1569 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1570 {
1571 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1572 }
1573
1574 /* The gdbarch insn_is_ret method. */
1575
1576 static int
1577 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1578 {
1579 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1580 }
1581
1582 /* The gdbarch insn_is_jump method. */
1583
1584 static int
1585 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1586 {
1587 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1588 }
1589
1590 /* Fix up the state of registers and memory after having single-stepped
1591 a displaced instruction. */
1592
1593 void
1594 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1595 struct displaced_step_closure *dsc,
1596 CORE_ADDR from, CORE_ADDR to,
1597 struct regcache *regs)
1598 {
1599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1600 /* The offset we applied to the instruction's address. */
1601 ULONGEST insn_offset = to - from;
1602 gdb_byte *insn = dsc->insn_buf;
1603 const struct amd64_insn *insn_details = &dsc->insn_details;
1604
1605 if (debug_displaced)
1606 fprintf_unfiltered (gdb_stdlog,
1607 "displaced: fixup (%s, %s), "
1608 "insn = 0x%02x 0x%02x ...\n",
1609 paddress (gdbarch, from), paddress (gdbarch, to),
1610 insn[0], insn[1]);
1611
1612 /* If we used a tmp reg, restore it. */
1613
1614 if (dsc->tmp_used)
1615 {
1616 if (debug_displaced)
1617 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1618 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1619 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1620 }
1621
1622 /* The list of issues to contend with here is taken from
1623 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1624 Yay for Free Software! */
1625
1626 /* Relocate the %rip back to the program's instruction stream,
1627 if necessary. */
1628
1629 /* Except in the case of absolute or indirect jump or call
1630 instructions, or a return instruction, the new rip is relative to
1631 the displaced instruction; make it relative to the original insn.
1632 Well, signal handler returns don't need relocation either, but we use the
1633 value of %rip to recognize those; see below. */
1634 if (! amd64_absolute_jmp_p (insn_details)
1635 && ! amd64_absolute_call_p (insn_details)
1636 && ! amd64_ret_p (insn_details))
1637 {
1638 ULONGEST orig_rip;
1639 int insn_len;
1640
1641 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1642
1643 /* A signal trampoline system call changes the %rip, resuming
1644 execution of the main program after the signal handler has
1645 returned. That makes them like 'return' instructions; we
1646 shouldn't relocate %rip.
1647
1648 But most system calls don't, and we do need to relocate %rip.
1649
1650 Our heuristic for distinguishing these cases: if stepping
1651 over the system call instruction left control directly after
1652 the instruction, the we relocate --- control almost certainly
1653 doesn't belong in the displaced copy. Otherwise, we assume
1654 the instruction has put control where it belongs, and leave
1655 it unrelocated. Goodness help us if there are PC-relative
1656 system calls. */
1657 if (amd64_syscall_p (insn_details, &insn_len)
1658 && orig_rip != to + insn_len
1659 /* GDB can get control back after the insn after the syscall.
1660 Presumably this is a kernel bug.
1661 Fixup ensures its a nop, we add one to the length for it. */
1662 && orig_rip != to + insn_len + 1)
1663 {
1664 if (debug_displaced)
1665 fprintf_unfiltered (gdb_stdlog,
1666 "displaced: syscall changed %%rip; "
1667 "not relocating\n");
1668 }
1669 else
1670 {
1671 ULONGEST rip = orig_rip - insn_offset;
1672
1673 /* If we just stepped over a breakpoint insn, we don't backup
1674 the pc on purpose; this is to match behaviour without
1675 stepping. */
1676
1677 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1678
1679 if (debug_displaced)
1680 fprintf_unfiltered (gdb_stdlog,
1681 "displaced: "
1682 "relocated %%rip from %s to %s\n",
1683 paddress (gdbarch, orig_rip),
1684 paddress (gdbarch, rip));
1685 }
1686 }
1687
1688 /* If the instruction was PUSHFL, then the TF bit will be set in the
1689 pushed value, and should be cleared. We'll leave this for later,
1690 since GDB already messes up the TF flag when stepping over a
1691 pushfl. */
1692
1693 /* If the instruction was a call, the return address now atop the
1694 stack is the address following the copied instruction. We need
1695 to make it the address following the original instruction. */
1696 if (amd64_call_p (insn_details))
1697 {
1698 ULONGEST rsp;
1699 ULONGEST retaddr;
1700 const ULONGEST retaddr_len = 8;
1701
1702 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1703 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1704 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1705 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1706
1707 if (debug_displaced)
1708 fprintf_unfiltered (gdb_stdlog,
1709 "displaced: relocated return addr at %s "
1710 "to %s\n",
1711 paddress (gdbarch, rsp),
1712 paddress (gdbarch, retaddr));
1713 }
1714 }
1715
1716 /* If the instruction INSN uses RIP-relative addressing, return the
1717 offset into the raw INSN where the displacement to be adjusted is
1718 found. Returns 0 if the instruction doesn't use RIP-relative
1719 addressing. */
1720
1721 static int
1722 rip_relative_offset (struct amd64_insn *insn)
1723 {
1724 if (insn->modrm_offset != -1)
1725 {
1726 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1727
1728 if ((modrm & 0xc7) == 0x05)
1729 {
1730 /* The displacement is found right after the ModRM byte. */
1731 return insn->modrm_offset + 1;
1732 }
1733 }
1734
1735 return 0;
1736 }
1737
1738 static void
1739 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1740 {
1741 target_write_memory (*to, buf, len);
1742 *to += len;
1743 }
1744
1745 static void
1746 amd64_relocate_instruction (struct gdbarch *gdbarch,
1747 CORE_ADDR *to, CORE_ADDR oldloc)
1748 {
1749 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1750 int len = gdbarch_max_insn_length (gdbarch);
1751 /* Extra space for sentinels. */
1752 int fixup_sentinel_space = len;
1753 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1754 struct amd64_insn insn_details;
1755 int offset = 0;
1756 LONGEST rel32, newrel;
1757 gdb_byte *insn;
1758 int insn_length;
1759
1760 read_memory (oldloc, buf, len);
1761
1762 /* Set up the sentinel space so we don't have to worry about running
1763 off the end of the buffer. An excessive number of leading prefixes
1764 could otherwise cause this. */
1765 memset (buf + len, 0, fixup_sentinel_space);
1766
1767 insn = buf;
1768 amd64_get_insn_details (insn, &insn_details);
1769
1770 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1771
1772 /* Skip legacy instruction prefixes. */
1773 insn = amd64_skip_prefixes (insn);
1774
1775 /* Adjust calls with 32-bit relative addresses as push/jump, with
1776 the address pushed being the location where the original call in
1777 the user program would return to. */
1778 if (insn[0] == 0xe8)
1779 {
1780 gdb_byte push_buf[32];
1781 CORE_ADDR ret_addr;
1782 int i = 0;
1783
1784 /* Where "ret" in the original code will return to. */
1785 ret_addr = oldloc + insn_length;
1786
1787 /* If pushing an address higher than or equal to 0x80000000,
1788 avoid 'pushq', as that sign extends its 32-bit operand, which
1789 would be incorrect. */
1790 if (ret_addr <= 0x7fffffff)
1791 {
1792 push_buf[0] = 0x68; /* pushq $... */
1793 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1794 i = 5;
1795 }
1796 else
1797 {
1798 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1799 push_buf[i++] = 0x83;
1800 push_buf[i++] = 0xec;
1801 push_buf[i++] = 0x08;
1802
1803 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1804 push_buf[i++] = 0x04;
1805 push_buf[i++] = 0x24;
1806 store_unsigned_integer (&push_buf[i], 4, byte_order,
1807 ret_addr & 0xffffffff);
1808 i += 4;
1809
1810 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1811 push_buf[i++] = 0x44;
1812 push_buf[i++] = 0x24;
1813 push_buf[i++] = 0x04;
1814 store_unsigned_integer (&push_buf[i], 4, byte_order,
1815 ret_addr >> 32);
1816 i += 4;
1817 }
1818 gdb_assert (i <= sizeof (push_buf));
1819 /* Push the push. */
1820 append_insns (to, i, push_buf);
1821
1822 /* Convert the relative call to a relative jump. */
1823 insn[0] = 0xe9;
1824
1825 /* Adjust the destination offset. */
1826 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1827 newrel = (oldloc - *to) + rel32;
1828 store_signed_integer (insn + 1, 4, byte_order, newrel);
1829
1830 if (debug_displaced)
1831 fprintf_unfiltered (gdb_stdlog,
1832 "Adjusted insn rel32=%s at %s to"
1833 " rel32=%s at %s\n",
1834 hex_string (rel32), paddress (gdbarch, oldloc),
1835 hex_string (newrel), paddress (gdbarch, *to));
1836
1837 /* Write the adjusted jump into its displaced location. */
1838 append_insns (to, 5, insn);
1839 return;
1840 }
1841
1842 offset = rip_relative_offset (&insn_details);
1843 if (!offset)
1844 {
1845 /* Adjust jumps with 32-bit relative addresses. Calls are
1846 already handled above. */
1847 if (insn[0] == 0xe9)
1848 offset = 1;
1849 /* Adjust conditional jumps. */
1850 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1851 offset = 2;
1852 }
1853
1854 if (offset)
1855 {
1856 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1857 newrel = (oldloc - *to) + rel32;
1858 store_signed_integer (insn + offset, 4, byte_order, newrel);
1859 if (debug_displaced)
1860 fprintf_unfiltered (gdb_stdlog,
1861 "Adjusted insn rel32=%s at %s to"
1862 " rel32=%s at %s\n",
1863 hex_string (rel32), paddress (gdbarch, oldloc),
1864 hex_string (newrel), paddress (gdbarch, *to));
1865 }
1866
1867 /* Write the adjusted instruction into its displaced location. */
1868 append_insns (to, insn_length, buf);
1869 }
1870
1871 \f
1872 /* The maximum number of saved registers. This should include %rip. */
1873 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1874
1875 struct amd64_frame_cache
1876 {
1877 /* Base address. */
1878 CORE_ADDR base;
1879 int base_p;
1880 CORE_ADDR sp_offset;
1881 CORE_ADDR pc;
1882
1883 /* Saved registers. */
1884 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1885 CORE_ADDR saved_sp;
1886 int saved_sp_reg;
1887
1888 /* Do we have a frame? */
1889 int frameless_p;
1890 };
1891
1892 /* Initialize a frame cache. */
1893
1894 static void
1895 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1896 {
1897 int i;
1898
1899 /* Base address. */
1900 cache->base = 0;
1901 cache->base_p = 0;
1902 cache->sp_offset = -8;
1903 cache->pc = 0;
1904
1905 /* Saved registers. We initialize these to -1 since zero is a valid
1906 offset (that's where %rbp is supposed to be stored).
1907 The values start out as being offsets, and are later converted to
1908 addresses (at which point -1 is interpreted as an address, still meaning
1909 "invalid"). */
1910 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1911 cache->saved_regs[i] = -1;
1912 cache->saved_sp = 0;
1913 cache->saved_sp_reg = -1;
1914
1915 /* Frameless until proven otherwise. */
1916 cache->frameless_p = 1;
1917 }
1918
1919 /* Allocate and initialize a frame cache. */
1920
1921 static struct amd64_frame_cache *
1922 amd64_alloc_frame_cache (void)
1923 {
1924 struct amd64_frame_cache *cache;
1925
1926 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1927 amd64_init_frame_cache (cache);
1928 return cache;
1929 }
1930
1931 /* GCC 4.4 and later, can put code in the prologue to realign the
1932 stack pointer. Check whether PC points to such code, and update
1933 CACHE accordingly. Return the first instruction after the code
1934 sequence or CURRENT_PC, whichever is smaller. If we don't
1935 recognize the code, return PC. */
1936
1937 static CORE_ADDR
1938 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1939 struct amd64_frame_cache *cache)
1940 {
1941 /* There are 2 code sequences to re-align stack before the frame
1942 gets set up:
1943
1944 1. Use a caller-saved saved register:
1945
1946 leaq 8(%rsp), %reg
1947 andq $-XXX, %rsp
1948 pushq -8(%reg)
1949
1950 2. Use a callee-saved saved register:
1951
1952 pushq %reg
1953 leaq 16(%rsp), %reg
1954 andq $-XXX, %rsp
1955 pushq -8(%reg)
1956
1957 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1958
1959 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1960 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1961 */
1962
1963 gdb_byte buf[18];
1964 int reg, r;
1965 int offset, offset_and;
1966
1967 if (target_read_code (pc, buf, sizeof buf))
1968 return pc;
1969
1970 /* Check caller-saved saved register. The first instruction has
1971 to be "leaq 8(%rsp), %reg". */
1972 if ((buf[0] & 0xfb) == 0x48
1973 && buf[1] == 0x8d
1974 && buf[3] == 0x24
1975 && buf[4] == 0x8)
1976 {
1977 /* MOD must be binary 10 and R/M must be binary 100. */
1978 if ((buf[2] & 0xc7) != 0x44)
1979 return pc;
1980
1981 /* REG has register number. */
1982 reg = (buf[2] >> 3) & 7;
1983
1984 /* Check the REX.R bit. */
1985 if (buf[0] == 0x4c)
1986 reg += 8;
1987
1988 offset = 5;
1989 }
1990 else
1991 {
1992 /* Check callee-saved saved register. The first instruction
1993 has to be "pushq %reg". */
1994 reg = 0;
1995 if ((buf[0] & 0xf8) == 0x50)
1996 offset = 0;
1997 else if ((buf[0] & 0xf6) == 0x40
1998 && (buf[1] & 0xf8) == 0x50)
1999 {
2000 /* Check the REX.B bit. */
2001 if ((buf[0] & 1) != 0)
2002 reg = 8;
2003
2004 offset = 1;
2005 }
2006 else
2007 return pc;
2008
2009 /* Get register. */
2010 reg += buf[offset] & 0x7;
2011
2012 offset++;
2013
2014 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2015 if ((buf[offset] & 0xfb) != 0x48
2016 || buf[offset + 1] != 0x8d
2017 || buf[offset + 3] != 0x24
2018 || buf[offset + 4] != 0x10)
2019 return pc;
2020
2021 /* MOD must be binary 10 and R/M must be binary 100. */
2022 if ((buf[offset + 2] & 0xc7) != 0x44)
2023 return pc;
2024
2025 /* REG has register number. */
2026 r = (buf[offset + 2] >> 3) & 7;
2027
2028 /* Check the REX.R bit. */
2029 if (buf[offset] == 0x4c)
2030 r += 8;
2031
2032 /* Registers in pushq and leaq have to be the same. */
2033 if (reg != r)
2034 return pc;
2035
2036 offset += 5;
2037 }
2038
2039 /* Rigister can't be %rsp nor %rbp. */
2040 if (reg == 4 || reg == 5)
2041 return pc;
2042
2043 /* The next instruction has to be "andq $-XXX, %rsp". */
2044 if (buf[offset] != 0x48
2045 || buf[offset + 2] != 0xe4
2046 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2047 return pc;
2048
2049 offset_and = offset;
2050 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2051
2052 /* The next instruction has to be "pushq -8(%reg)". */
2053 r = 0;
2054 if (buf[offset] == 0xff)
2055 offset++;
2056 else if ((buf[offset] & 0xf6) == 0x40
2057 && buf[offset + 1] == 0xff)
2058 {
2059 /* Check the REX.B bit. */
2060 if ((buf[offset] & 0x1) != 0)
2061 r = 8;
2062 offset += 2;
2063 }
2064 else
2065 return pc;
2066
2067 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2068 01. */
2069 if (buf[offset + 1] != 0xf8
2070 || (buf[offset] & 0xf8) != 0x70)
2071 return pc;
2072
2073 /* R/M has register. */
2074 r += buf[offset] & 7;
2075
2076 /* Registers in leaq and pushq have to be the same. */
2077 if (reg != r)
2078 return pc;
2079
2080 if (current_pc > pc + offset_and)
2081 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2082
2083 return std::min (pc + offset + 2, current_pc);
2084 }
2085
2086 /* Similar to amd64_analyze_stack_align for x32. */
2087
2088 static CORE_ADDR
2089 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2090 struct amd64_frame_cache *cache)
2091 {
2092 /* There are 2 code sequences to re-align stack before the frame
2093 gets set up:
2094
2095 1. Use a caller-saved saved register:
2096
2097 leaq 8(%rsp), %reg
2098 andq $-XXX, %rsp
2099 pushq -8(%reg)
2100
2101 or
2102
2103 [addr32] leal 8(%rsp), %reg
2104 andl $-XXX, %esp
2105 [addr32] pushq -8(%reg)
2106
2107 2. Use a callee-saved saved register:
2108
2109 pushq %reg
2110 leaq 16(%rsp), %reg
2111 andq $-XXX, %rsp
2112 pushq -8(%reg)
2113
2114 or
2115
2116 pushq %reg
2117 [addr32] leal 16(%rsp), %reg
2118 andl $-XXX, %esp
2119 [addr32] pushq -8(%reg)
2120
2121 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2122
2123 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2124 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2125
2126 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2127
2128 0x83 0xe4 0xf0 andl $-16, %esp
2129 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2130 */
2131
2132 gdb_byte buf[19];
2133 int reg, r;
2134 int offset, offset_and;
2135
2136 if (target_read_memory (pc, buf, sizeof buf))
2137 return pc;
2138
2139 /* Skip optional addr32 prefix. */
2140 offset = buf[0] == 0x67 ? 1 : 0;
2141
2142 /* Check caller-saved saved register. The first instruction has
2143 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2144 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2145 && buf[offset + 1] == 0x8d
2146 && buf[offset + 3] == 0x24
2147 && buf[offset + 4] == 0x8)
2148 {
2149 /* MOD must be binary 10 and R/M must be binary 100. */
2150 if ((buf[offset + 2] & 0xc7) != 0x44)
2151 return pc;
2152
2153 /* REG has register number. */
2154 reg = (buf[offset + 2] >> 3) & 7;
2155
2156 /* Check the REX.R bit. */
2157 if ((buf[offset] & 0x4) != 0)
2158 reg += 8;
2159
2160 offset += 5;
2161 }
2162 else
2163 {
2164 /* Check callee-saved saved register. The first instruction
2165 has to be "pushq %reg". */
2166 reg = 0;
2167 if ((buf[offset] & 0xf6) == 0x40
2168 && (buf[offset + 1] & 0xf8) == 0x50)
2169 {
2170 /* Check the REX.B bit. */
2171 if ((buf[offset] & 1) != 0)
2172 reg = 8;
2173
2174 offset += 1;
2175 }
2176 else if ((buf[offset] & 0xf8) != 0x50)
2177 return pc;
2178
2179 /* Get register. */
2180 reg += buf[offset] & 0x7;
2181
2182 offset++;
2183
2184 /* Skip optional addr32 prefix. */
2185 if (buf[offset] == 0x67)
2186 offset++;
2187
2188 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2189 "leal 16(%rsp), %reg". */
2190 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2191 || buf[offset + 1] != 0x8d
2192 || buf[offset + 3] != 0x24
2193 || buf[offset + 4] != 0x10)
2194 return pc;
2195
2196 /* MOD must be binary 10 and R/M must be binary 100. */
2197 if ((buf[offset + 2] & 0xc7) != 0x44)
2198 return pc;
2199
2200 /* REG has register number. */
2201 r = (buf[offset + 2] >> 3) & 7;
2202
2203 /* Check the REX.R bit. */
2204 if ((buf[offset] & 0x4) != 0)
2205 r += 8;
2206
2207 /* Registers in pushq and leaq have to be the same. */
2208 if (reg != r)
2209 return pc;
2210
2211 offset += 5;
2212 }
2213
2214 /* Rigister can't be %rsp nor %rbp. */
2215 if (reg == 4 || reg == 5)
2216 return pc;
2217
2218 /* The next instruction may be "andq $-XXX, %rsp" or
2219 "andl $-XXX, %esp". */
2220 if (buf[offset] != 0x48)
2221 offset--;
2222
2223 if (buf[offset + 2] != 0xe4
2224 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2225 return pc;
2226
2227 offset_and = offset;
2228 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2229
2230 /* Skip optional addr32 prefix. */
2231 if (buf[offset] == 0x67)
2232 offset++;
2233
2234 /* The next instruction has to be "pushq -8(%reg)". */
2235 r = 0;
2236 if (buf[offset] == 0xff)
2237 offset++;
2238 else if ((buf[offset] & 0xf6) == 0x40
2239 && buf[offset + 1] == 0xff)
2240 {
2241 /* Check the REX.B bit. */
2242 if ((buf[offset] & 0x1) != 0)
2243 r = 8;
2244 offset += 2;
2245 }
2246 else
2247 return pc;
2248
2249 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2250 01. */
2251 if (buf[offset + 1] != 0xf8
2252 || (buf[offset] & 0xf8) != 0x70)
2253 return pc;
2254
2255 /* R/M has register. */
2256 r += buf[offset] & 7;
2257
2258 /* Registers in leaq and pushq have to be the same. */
2259 if (reg != r)
2260 return pc;
2261
2262 if (current_pc > pc + offset_and)
2263 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2264
2265 return std::min (pc + offset + 2, current_pc);
2266 }
2267
2268 /* Do a limited analysis of the prologue at PC and update CACHE
2269 accordingly. Bail out early if CURRENT_PC is reached. Return the
2270 address where the analysis stopped.
2271
2272 We will handle only functions beginning with:
2273
2274 pushq %rbp 0x55
2275 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2276
2277 or (for the X32 ABI):
2278
2279 pushq %rbp 0x55
2280 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2281
2282 Any function that doesn't start with one of these sequences will be
2283 assumed to have no prologue and thus no valid frame pointer in
2284 %rbp. */
2285
2286 static CORE_ADDR
2287 amd64_analyze_prologue (struct gdbarch *gdbarch,
2288 CORE_ADDR pc, CORE_ADDR current_pc,
2289 struct amd64_frame_cache *cache)
2290 {
2291 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2292 /* There are two variations of movq %rsp, %rbp. */
2293 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2294 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2295 /* Ditto for movl %esp, %ebp. */
2296 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2297 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2298
2299 gdb_byte buf[3];
2300 gdb_byte op;
2301
2302 if (current_pc <= pc)
2303 return current_pc;
2304
2305 if (gdbarch_ptr_bit (gdbarch) == 32)
2306 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2307 else
2308 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2309
2310 op = read_code_unsigned_integer (pc, 1, byte_order);
2311
2312 if (op == 0x55) /* pushq %rbp */
2313 {
2314 /* Take into account that we've executed the `pushq %rbp' that
2315 starts this instruction sequence. */
2316 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2317 cache->sp_offset += 8;
2318
2319 /* If that's all, return now. */
2320 if (current_pc <= pc + 1)
2321 return current_pc;
2322
2323 read_code (pc + 1, buf, 3);
2324
2325 /* Check for `movq %rsp, %rbp'. */
2326 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2327 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2328 {
2329 /* OK, we actually have a frame. */
2330 cache->frameless_p = 0;
2331 return pc + 4;
2332 }
2333
2334 /* For X32, also check for `movq %esp, %ebp'. */
2335 if (gdbarch_ptr_bit (gdbarch) == 32)
2336 {
2337 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2338 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2339 {
2340 /* OK, we actually have a frame. */
2341 cache->frameless_p = 0;
2342 return pc + 3;
2343 }
2344 }
2345
2346 return pc + 1;
2347 }
2348
2349 return pc;
2350 }
2351
2352 /* Work around false termination of prologue - GCC PR debug/48827.
2353
2354 START_PC is the first instruction of a function, PC is its minimal already
2355 determined advanced address. Function returns PC if it has nothing to do.
2356
2357 84 c0 test %al,%al
2358 74 23 je after
2359 <-- here is 0 lines advance - the false prologue end marker.
2360 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2361 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2362 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2363 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2364 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2365 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2366 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2367 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2368 after: */
2369
2370 static CORE_ADDR
2371 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2372 {
2373 struct symtab_and_line start_pc_sal, next_sal;
2374 gdb_byte buf[4 + 8 * 7];
2375 int offset, xmmreg;
2376
2377 if (pc == start_pc)
2378 return pc;
2379
2380 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2381 if (start_pc_sal.symtab == NULL
2382 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2383 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2384 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2385 return pc;
2386
2387 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2388 if (next_sal.line != start_pc_sal.line)
2389 return pc;
2390
2391 /* START_PC can be from overlayed memory, ignored here. */
2392 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2393 return pc;
2394
2395 /* test %al,%al */
2396 if (buf[0] != 0x84 || buf[1] != 0xc0)
2397 return pc;
2398 /* je AFTER */
2399 if (buf[2] != 0x74)
2400 return pc;
2401
2402 offset = 4;
2403 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2404 {
2405 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2406 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2407 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2408 return pc;
2409
2410 /* 0b01?????? */
2411 if ((buf[offset + 2] & 0xc0) == 0x40)
2412 {
2413 /* 8-bit displacement. */
2414 offset += 4;
2415 }
2416 /* 0b10?????? */
2417 else if ((buf[offset + 2] & 0xc0) == 0x80)
2418 {
2419 /* 32-bit displacement. */
2420 offset += 7;
2421 }
2422 else
2423 return pc;
2424 }
2425
2426 /* je AFTER */
2427 if (offset - 4 != buf[3])
2428 return pc;
2429
2430 return next_sal.end;
2431 }
2432
2433 /* Return PC of first real instruction. */
2434
2435 static CORE_ADDR
2436 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2437 {
2438 struct amd64_frame_cache cache;
2439 CORE_ADDR pc;
2440 CORE_ADDR func_addr;
2441
2442 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2443 {
2444 CORE_ADDR post_prologue_pc
2445 = skip_prologue_using_sal (gdbarch, func_addr);
2446 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2447
2448 /* Clang always emits a line note before the prologue and another
2449 one after. We trust clang to emit usable line notes. */
2450 if (post_prologue_pc
2451 && (cust != NULL
2452 && COMPUNIT_PRODUCER (cust) != NULL
2453 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2454 return std::max (start_pc, post_prologue_pc);
2455 }
2456
2457 amd64_init_frame_cache (&cache);
2458 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2459 &cache);
2460 if (cache.frameless_p)
2461 return start_pc;
2462
2463 return amd64_skip_xmm_prologue (pc, start_pc);
2464 }
2465 \f
2466
2467 /* Normal frames. */
2468
2469 static void
2470 amd64_frame_cache_1 (struct frame_info *this_frame,
2471 struct amd64_frame_cache *cache)
2472 {
2473 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2475 gdb_byte buf[8];
2476 int i;
2477
2478 cache->pc = get_frame_func (this_frame);
2479 if (cache->pc != 0)
2480 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2481 cache);
2482
2483 if (cache->frameless_p)
2484 {
2485 /* We didn't find a valid frame. If we're at the start of a
2486 function, or somewhere half-way its prologue, the function's
2487 frame probably hasn't been fully setup yet. Try to
2488 reconstruct the base address for the stack frame by looking
2489 at the stack pointer. For truly "frameless" functions this
2490 might work too. */
2491
2492 if (cache->saved_sp_reg != -1)
2493 {
2494 /* Stack pointer has been saved. */
2495 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2496 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2497
2498 /* We're halfway aligning the stack. */
2499 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2500 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2501
2502 /* This will be added back below. */
2503 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2504 }
2505 else
2506 {
2507 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2508 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2509 + cache->sp_offset;
2510 }
2511 }
2512 else
2513 {
2514 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2515 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2516 }
2517
2518 /* Now that we have the base address for the stack frame we can
2519 calculate the value of %rsp in the calling frame. */
2520 cache->saved_sp = cache->base + 16;
2521
2522 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2523 frame we find it at the same offset from the reconstructed base
2524 address. If we're halfway aligning the stack, %rip is handled
2525 differently (see above). */
2526 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2527 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2528
2529 /* Adjust all the saved registers such that they contain addresses
2530 instead of offsets. */
2531 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2532 if (cache->saved_regs[i] != -1)
2533 cache->saved_regs[i] += cache->base;
2534
2535 cache->base_p = 1;
2536 }
2537
2538 static struct amd64_frame_cache *
2539 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2540 {
2541 struct amd64_frame_cache *cache;
2542
2543 if (*this_cache)
2544 return (struct amd64_frame_cache *) *this_cache;
2545
2546 cache = amd64_alloc_frame_cache ();
2547 *this_cache = cache;
2548
2549 TRY
2550 {
2551 amd64_frame_cache_1 (this_frame, cache);
2552 }
2553 CATCH (ex, RETURN_MASK_ERROR)
2554 {
2555 if (ex.error != NOT_AVAILABLE_ERROR)
2556 throw_exception (ex);
2557 }
2558 END_CATCH
2559
2560 return cache;
2561 }
2562
2563 static enum unwind_stop_reason
2564 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2565 void **this_cache)
2566 {
2567 struct amd64_frame_cache *cache =
2568 amd64_frame_cache (this_frame, this_cache);
2569
2570 if (!cache->base_p)
2571 return UNWIND_UNAVAILABLE;
2572
2573 /* This marks the outermost frame. */
2574 if (cache->base == 0)
2575 return UNWIND_OUTERMOST;
2576
2577 return UNWIND_NO_REASON;
2578 }
2579
2580 static void
2581 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2582 struct frame_id *this_id)
2583 {
2584 struct amd64_frame_cache *cache =
2585 amd64_frame_cache (this_frame, this_cache);
2586
2587 if (!cache->base_p)
2588 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2589 else if (cache->base == 0)
2590 {
2591 /* This marks the outermost frame. */
2592 return;
2593 }
2594 else
2595 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2596 }
2597
2598 static struct value *
2599 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2600 int regnum)
2601 {
2602 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2603 struct amd64_frame_cache *cache =
2604 amd64_frame_cache (this_frame, this_cache);
2605
2606 gdb_assert (regnum >= 0);
2607
2608 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2609 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2610
2611 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2612 return frame_unwind_got_memory (this_frame, regnum,
2613 cache->saved_regs[regnum]);
2614
2615 return frame_unwind_got_register (this_frame, regnum, regnum);
2616 }
2617
2618 static const struct frame_unwind amd64_frame_unwind =
2619 {
2620 NORMAL_FRAME,
2621 amd64_frame_unwind_stop_reason,
2622 amd64_frame_this_id,
2623 amd64_frame_prev_register,
2624 NULL,
2625 default_frame_sniffer
2626 };
2627 \f
2628 /* Generate a bytecode expression to get the value of the saved PC. */
2629
2630 static void
2631 amd64_gen_return_address (struct gdbarch *gdbarch,
2632 struct agent_expr *ax, struct axs_value *value,
2633 CORE_ADDR scope)
2634 {
2635 /* The following sequence assumes the traditional use of the base
2636 register. */
2637 ax_reg (ax, AMD64_RBP_REGNUM);
2638 ax_const_l (ax, 8);
2639 ax_simple (ax, aop_add);
2640 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2641 value->kind = axs_lvalue_memory;
2642 }
2643 \f
2644
2645 /* Signal trampolines. */
2646
2647 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2648 64-bit variants. This would require using identical frame caches
2649 on both platforms. */
2650
2651 static struct amd64_frame_cache *
2652 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2653 {
2654 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2655 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2656 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2657 struct amd64_frame_cache *cache;
2658 CORE_ADDR addr;
2659 gdb_byte buf[8];
2660 int i;
2661
2662 if (*this_cache)
2663 return (struct amd64_frame_cache *) *this_cache;
2664
2665 cache = amd64_alloc_frame_cache ();
2666
2667 TRY
2668 {
2669 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2670 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2671
2672 addr = tdep->sigcontext_addr (this_frame);
2673 gdb_assert (tdep->sc_reg_offset);
2674 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2675 for (i = 0; i < tdep->sc_num_regs; i++)
2676 if (tdep->sc_reg_offset[i] != -1)
2677 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2678
2679 cache->base_p = 1;
2680 }
2681 CATCH (ex, RETURN_MASK_ERROR)
2682 {
2683 if (ex.error != NOT_AVAILABLE_ERROR)
2684 throw_exception (ex);
2685 }
2686 END_CATCH
2687
2688 *this_cache = cache;
2689 return cache;
2690 }
2691
2692 static enum unwind_stop_reason
2693 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2694 void **this_cache)
2695 {
2696 struct amd64_frame_cache *cache =
2697 amd64_sigtramp_frame_cache (this_frame, this_cache);
2698
2699 if (!cache->base_p)
2700 return UNWIND_UNAVAILABLE;
2701
2702 return UNWIND_NO_REASON;
2703 }
2704
2705 static void
2706 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2707 void **this_cache, struct frame_id *this_id)
2708 {
2709 struct amd64_frame_cache *cache =
2710 amd64_sigtramp_frame_cache (this_frame, this_cache);
2711
2712 if (!cache->base_p)
2713 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2714 else if (cache->base == 0)
2715 {
2716 /* This marks the outermost frame. */
2717 return;
2718 }
2719 else
2720 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2721 }
2722
2723 static struct value *
2724 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2725 void **this_cache, int regnum)
2726 {
2727 /* Make sure we've initialized the cache. */
2728 amd64_sigtramp_frame_cache (this_frame, this_cache);
2729
2730 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2731 }
2732
2733 static int
2734 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2735 struct frame_info *this_frame,
2736 void **this_cache)
2737 {
2738 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2739
2740 /* We shouldn't even bother if we don't have a sigcontext_addr
2741 handler. */
2742 if (tdep->sigcontext_addr == NULL)
2743 return 0;
2744
2745 if (tdep->sigtramp_p != NULL)
2746 {
2747 if (tdep->sigtramp_p (this_frame))
2748 return 1;
2749 }
2750
2751 if (tdep->sigtramp_start != 0)
2752 {
2753 CORE_ADDR pc = get_frame_pc (this_frame);
2754
2755 gdb_assert (tdep->sigtramp_end != 0);
2756 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2757 return 1;
2758 }
2759
2760 return 0;
2761 }
2762
2763 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2764 {
2765 SIGTRAMP_FRAME,
2766 amd64_sigtramp_frame_unwind_stop_reason,
2767 amd64_sigtramp_frame_this_id,
2768 amd64_sigtramp_frame_prev_register,
2769 NULL,
2770 amd64_sigtramp_frame_sniffer
2771 };
2772 \f
2773
2774 static CORE_ADDR
2775 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2776 {
2777 struct amd64_frame_cache *cache =
2778 amd64_frame_cache (this_frame, this_cache);
2779
2780 return cache->base;
2781 }
2782
2783 static const struct frame_base amd64_frame_base =
2784 {
2785 &amd64_frame_unwind,
2786 amd64_frame_base_address,
2787 amd64_frame_base_address,
2788 amd64_frame_base_address
2789 };
2790
2791 /* Normal frames, but in a function epilogue. */
2792
2793 /* Implement the stack_frame_destroyed_p gdbarch method.
2794
2795 The epilogue is defined here as the 'ret' instruction, which will
2796 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2797 the function's stack frame. */
2798
2799 static int
2800 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2801 {
2802 gdb_byte insn;
2803 struct compunit_symtab *cust;
2804
2805 cust = find_pc_compunit_symtab (pc);
2806 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2807 return 0;
2808
2809 if (target_read_memory (pc, &insn, 1))
2810 return 0; /* Can't read memory at pc. */
2811
2812 if (insn != 0xc3) /* 'ret' instruction. */
2813 return 0;
2814
2815 return 1;
2816 }
2817
2818 static int
2819 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2820 struct frame_info *this_frame,
2821 void **this_prologue_cache)
2822 {
2823 if (frame_relative_level (this_frame) == 0)
2824 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2825 get_frame_pc (this_frame));
2826 else
2827 return 0;
2828 }
2829
2830 static struct amd64_frame_cache *
2831 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2832 {
2833 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2834 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2835 struct amd64_frame_cache *cache;
2836 gdb_byte buf[8];
2837
2838 if (*this_cache)
2839 return (struct amd64_frame_cache *) *this_cache;
2840
2841 cache = amd64_alloc_frame_cache ();
2842 *this_cache = cache;
2843
2844 TRY
2845 {
2846 /* Cache base will be %esp plus cache->sp_offset (-8). */
2847 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2848 cache->base = extract_unsigned_integer (buf, 8,
2849 byte_order) + cache->sp_offset;
2850
2851 /* Cache pc will be the frame func. */
2852 cache->pc = get_frame_pc (this_frame);
2853
2854 /* The saved %esp will be at cache->base plus 16. */
2855 cache->saved_sp = cache->base + 16;
2856
2857 /* The saved %eip will be at cache->base plus 8. */
2858 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2859
2860 cache->base_p = 1;
2861 }
2862 CATCH (ex, RETURN_MASK_ERROR)
2863 {
2864 if (ex.error != NOT_AVAILABLE_ERROR)
2865 throw_exception (ex);
2866 }
2867 END_CATCH
2868
2869 return cache;
2870 }
2871
2872 static enum unwind_stop_reason
2873 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2874 void **this_cache)
2875 {
2876 struct amd64_frame_cache *cache
2877 = amd64_epilogue_frame_cache (this_frame, this_cache);
2878
2879 if (!cache->base_p)
2880 return UNWIND_UNAVAILABLE;
2881
2882 return UNWIND_NO_REASON;
2883 }
2884
2885 static void
2886 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2887 void **this_cache,
2888 struct frame_id *this_id)
2889 {
2890 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2891 this_cache);
2892
2893 if (!cache->base_p)
2894 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2895 else
2896 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2897 }
2898
2899 static const struct frame_unwind amd64_epilogue_frame_unwind =
2900 {
2901 NORMAL_FRAME,
2902 amd64_epilogue_frame_unwind_stop_reason,
2903 amd64_epilogue_frame_this_id,
2904 amd64_frame_prev_register,
2905 NULL,
2906 amd64_epilogue_frame_sniffer
2907 };
2908
2909 static struct frame_id
2910 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2911 {
2912 CORE_ADDR fp;
2913
2914 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2915
2916 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2917 }
2918
2919 /* 16 byte align the SP per frame requirements. */
2920
2921 static CORE_ADDR
2922 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2923 {
2924 return sp & -(CORE_ADDR)16;
2925 }
2926 \f
2927
2928 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2929 in the floating-point register set REGSET to register cache
2930 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2931
2932 static void
2933 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2934 int regnum, const void *fpregs, size_t len)
2935 {
2936 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2937 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2938
2939 gdb_assert (len >= tdep->sizeof_fpregset);
2940 amd64_supply_fxsave (regcache, regnum, fpregs);
2941 }
2942
2943 /* Collect register REGNUM from the register cache REGCACHE and store
2944 it in the buffer specified by FPREGS and LEN as described by the
2945 floating-point register set REGSET. If REGNUM is -1, do this for
2946 all registers in REGSET. */
2947
2948 static void
2949 amd64_collect_fpregset (const struct regset *regset,
2950 const struct regcache *regcache,
2951 int regnum, void *fpregs, size_t len)
2952 {
2953 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2954 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2955
2956 gdb_assert (len >= tdep->sizeof_fpregset);
2957 amd64_collect_fxsave (regcache, regnum, fpregs);
2958 }
2959
2960 const struct regset amd64_fpregset =
2961 {
2962 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2963 };
2964 \f
2965
2966 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2967 %rdi. We expect its value to be a pointer to the jmp_buf structure
2968 from which we extract the address that we will land at. This
2969 address is copied into PC. This routine returns non-zero on
2970 success. */
2971
2972 static int
2973 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2974 {
2975 gdb_byte buf[8];
2976 CORE_ADDR jb_addr;
2977 struct gdbarch *gdbarch = get_frame_arch (frame);
2978 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2979 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2980
2981 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2982 longjmp will land. */
2983 if (jb_pc_offset == -1)
2984 return 0;
2985
2986 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2987 jb_addr= extract_typed_address
2988 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2989 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2990 return 0;
2991
2992 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2993
2994 return 1;
2995 }
2996
2997 static const int amd64_record_regmap[] =
2998 {
2999 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3000 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3001 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3002 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3003 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3004 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3005 };
3006
3007 void
3008 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3009 {
3010 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3011 const struct target_desc *tdesc = info.target_desc;
3012 static const char *const stap_integer_prefixes[] = { "$", NULL };
3013 static const char *const stap_register_prefixes[] = { "%", NULL };
3014 static const char *const stap_register_indirection_prefixes[] = { "(",
3015 NULL };
3016 static const char *const stap_register_indirection_suffixes[] = { ")",
3017 NULL };
3018
3019 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3020 floating-point registers. */
3021 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3022 tdep->fpregset = &amd64_fpregset;
3023
3024 if (! tdesc_has_registers (tdesc))
3025 tdesc = tdesc_amd64;
3026 tdep->tdesc = tdesc;
3027
3028 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3029 tdep->register_names = amd64_register_names;
3030
3031 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3032 {
3033 tdep->zmmh_register_names = amd64_zmmh_names;
3034 tdep->k_register_names = amd64_k_names;
3035 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3036 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3037
3038 tdep->num_zmm_regs = 32;
3039 tdep->num_xmm_avx512_regs = 16;
3040 tdep->num_ymm_avx512_regs = 16;
3041
3042 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3043 tdep->k0_regnum = AMD64_K0_REGNUM;
3044 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3045 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3046 }
3047
3048 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3049 {
3050 tdep->ymmh_register_names = amd64_ymmh_names;
3051 tdep->num_ymm_regs = 16;
3052 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3053 }
3054
3055 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3056 {
3057 tdep->mpx_register_names = amd64_mpx_names;
3058 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3059 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3060 }
3061
3062 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3063 {
3064 const struct tdesc_feature *feature =
3065 tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
3066 struct tdesc_arch_data *tdesc_data_segments =
3067 (struct tdesc_arch_data *) info.tdep_info;
3068
3069 tdesc_numbered_register (feature, tdesc_data_segments,
3070 AMD64_FSBASE_REGNUM, "fs_base");
3071 tdesc_numbered_register (feature, tdesc_data_segments,
3072 AMD64_GSBASE_REGNUM, "gs_base");
3073 }
3074
3075 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3076 {
3077 tdep->pkeys_register_names = amd64_pkeys_names;
3078 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3079 tdep->num_pkeys_regs = 1;
3080 }
3081
3082 tdep->num_byte_regs = 20;
3083 tdep->num_word_regs = 16;
3084 tdep->num_dword_regs = 16;
3085 /* Avoid wiring in the MMX registers for now. */
3086 tdep->num_mmx_regs = 0;
3087
3088 set_gdbarch_pseudo_register_read_value (gdbarch,
3089 amd64_pseudo_register_read_value);
3090 set_gdbarch_pseudo_register_write (gdbarch,
3091 amd64_pseudo_register_write);
3092 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3093 amd64_ax_pseudo_register_collect);
3094
3095 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3096
3097 /* AMD64 has an FPU and 16 SSE registers. */
3098 tdep->st0_regnum = AMD64_ST0_REGNUM;
3099 tdep->num_xmm_regs = 16;
3100
3101 /* This is what all the fuss is about. */
3102 set_gdbarch_long_bit (gdbarch, 64);
3103 set_gdbarch_long_long_bit (gdbarch, 64);
3104 set_gdbarch_ptr_bit (gdbarch, 64);
3105
3106 /* In contrast to the i386, on AMD64 a `long double' actually takes
3107 up 128 bits, even though it's still based on the i387 extended
3108 floating-point format which has only 80 significant bits. */
3109 set_gdbarch_long_double_bit (gdbarch, 128);
3110
3111 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3112
3113 /* Register numbers of various important registers. */
3114 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3115 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3116 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3117 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3118
3119 /* The "default" register numbering scheme for AMD64 is referred to
3120 as the "DWARF Register Number Mapping" in the System V psABI.
3121 The preferred debugging format for all known AMD64 targets is
3122 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3123 DWARF-1), but we provide the same mapping just in case. This
3124 mapping is also used for stabs, which GCC does support. */
3125 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3126 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3127
3128 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3129 be in use on any of the supported AMD64 targets. */
3130
3131 /* Call dummy code. */
3132 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3133 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3134 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3135
3136 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3137 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3138 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3139
3140 set_gdbarch_return_value (gdbarch, amd64_return_value);
3141
3142 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3143
3144 tdep->record_regmap = amd64_record_regmap;
3145
3146 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3147
3148 /* Hook the function epilogue frame unwinder. This unwinder is
3149 appended to the list first, so that it supercedes the other
3150 unwinders in function epilogues. */
3151 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3152
3153 /* Hook the prologue-based frame unwinders. */
3154 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3155 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3156 frame_base_set_default (gdbarch, &amd64_frame_base);
3157
3158 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3159
3160 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3161
3162 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3163
3164 /* SystemTap variables and functions. */
3165 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3166 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3167 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3168 stap_register_indirection_prefixes);
3169 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3170 stap_register_indirection_suffixes);
3171 set_gdbarch_stap_is_single_operand (gdbarch,
3172 i386_stap_is_single_operand);
3173 set_gdbarch_stap_parse_special_token (gdbarch,
3174 i386_stap_parse_special_token);
3175 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3176 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3177 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3178 }
3179 \f
3180
3181 static struct type *
3182 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3183 {
3184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3185
3186 switch (regnum - tdep->eax_regnum)
3187 {
3188 case AMD64_RBP_REGNUM: /* %ebp */
3189 case AMD64_RSP_REGNUM: /* %esp */
3190 return builtin_type (gdbarch)->builtin_data_ptr;
3191 case AMD64_RIP_REGNUM: /* %eip */
3192 return builtin_type (gdbarch)->builtin_func_ptr;
3193 }
3194
3195 return i386_pseudo_register_type (gdbarch, regnum);
3196 }
3197
3198 void
3199 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3200 {
3201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3202 const struct target_desc *tdesc = info.target_desc;
3203
3204 amd64_init_abi (info, gdbarch);
3205
3206 if (! tdesc_has_registers (tdesc))
3207 tdesc = tdesc_x32;
3208 tdep->tdesc = tdesc;
3209
3210 tdep->num_dword_regs = 17;
3211 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3212
3213 set_gdbarch_long_bit (gdbarch, 32);
3214 set_gdbarch_ptr_bit (gdbarch, 32);
3215 }
3216
3217 /* Return the target description for a specified XSAVE feature mask. */
3218
3219 const struct target_desc *
3220 amd64_target_description (uint64_t xcr0)
3221 {
3222 switch (xcr0 & X86_XSTATE_ALL_MASK)
3223 {
3224 case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
3225 return tdesc_amd64_avx_mpx_avx512_pku;
3226 case X86_XSTATE_AVX_AVX512_MASK:
3227 return tdesc_amd64_avx_avx512;
3228 case X86_XSTATE_MPX_MASK:
3229 return tdesc_amd64_mpx;
3230 case X86_XSTATE_AVX_MPX_MASK:
3231 return tdesc_amd64_avx_mpx;
3232 case X86_XSTATE_AVX_MASK:
3233 return tdesc_amd64_avx;
3234 default:
3235 return tdesc_amd64;
3236 }
3237 }
3238
3239 /* Provide a prototype to silence -Wmissing-prototypes. */
3240 void _initialize_amd64_tdep (void);
3241
3242 void
3243 _initialize_amd64_tdep (void)
3244 {
3245 initialize_tdesc_amd64 ();
3246 initialize_tdesc_amd64_avx ();
3247 initialize_tdesc_amd64_mpx ();
3248 initialize_tdesc_amd64_avx_mpx ();
3249 initialize_tdesc_amd64_avx_avx512 ();
3250 initialize_tdesc_amd64_avx_mpx_avx512_pku ();
3251
3252 initialize_tdesc_x32 ();
3253 initialize_tdesc_x32_avx ();
3254 initialize_tdesc_x32_avx_avx512 ();
3255 }
3256 \f
3257
3258 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3259 sense that the instruction pointer and data pointer are simply
3260 64-bit offsets into the code segment and the data segment instead
3261 of a selector offset pair. The functions below store the upper 32
3262 bits of these pointers (instead of just the 16-bits of the segment
3263 selector). */
3264
3265 /* Fill register REGNUM in REGCACHE with the appropriate
3266 floating-point or SSE register value from *FXSAVE. If REGNUM is
3267 -1, do this for all registers. This function masks off any of the
3268 reserved bits in *FXSAVE. */
3269
3270 void
3271 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3272 const void *fxsave)
3273 {
3274 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3276
3277 i387_supply_fxsave (regcache, regnum, fxsave);
3278
3279 if (fxsave
3280 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3281 {
3282 const gdb_byte *regs = (const gdb_byte *) fxsave;
3283
3284 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3285 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3286 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3287 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3288 }
3289 }
3290
3291 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3292
3293 void
3294 amd64_supply_xsave (struct regcache *regcache, int regnum,
3295 const void *xsave)
3296 {
3297 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3299
3300 i387_supply_xsave (regcache, regnum, xsave);
3301
3302 if (xsave
3303 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3304 {
3305 const gdb_byte *regs = (const gdb_byte *) xsave;
3306
3307 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3308 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3309 regs + 12);
3310 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3311 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3312 regs + 20);
3313 }
3314 }
3315
3316 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3317 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3318 all registers. This function doesn't touch any of the reserved
3319 bits in *FXSAVE. */
3320
3321 void
3322 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3323 void *fxsave)
3324 {
3325 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3327 gdb_byte *regs = (gdb_byte *) fxsave;
3328
3329 i387_collect_fxsave (regcache, regnum, fxsave);
3330
3331 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3332 {
3333 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3334 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3335 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3336 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3337 }
3338 }
3339
3340 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3341
3342 void
3343 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3344 void *xsave, int gcore)
3345 {
3346 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3348 gdb_byte *regs = (gdb_byte *) xsave;
3349
3350 i387_collect_xsave (regcache, regnum, xsave, gcore);
3351
3352 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3353 {
3354 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3355 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3356 regs + 12);
3357 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3358 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3359 regs + 20);
3360 }
3361 }
This page took 0.158833 seconds and 5 git commands to generate.