Revert the header-sorting patch
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "common/x86-xstate.h"
43 #include <algorithm>
44 #include "target-descriptions.h"
45 #include "arch/amd64.h"
46 #include "producer.h"
47 #include "ax.h"
48 #include "ax-gdb.h"
49 #include "common/byte-vector.h"
50 #include "osabi.h"
51 #include "x86-tdep.h"
52
53 /* Note that the AMD64 architecture was previously known as x86-64.
54 The latter is (forever) engraved into the canonical system name as
55 returned by config.guess, and used as the name for the AMD64 port
56 of GNU/Linux. The BSD's have renamed their ports to amd64; they
57 don't like to shout. For GDB we prefer the amd64_-prefix over the
58 x86_64_-prefix since it's so much easier to type. */
59
60 /* Register information. */
61
62 static const char *amd64_register_names[] =
63 {
64 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
65
66 /* %r8 is indeed register number 8. */
67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
68 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
69
70 /* %st0 is register number 24. */
71 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
72 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
73
74 /* %xmm0 is register number 40. */
75 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
76 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
77 "mxcsr",
78 };
79
80 static const char *amd64_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 "ymm8", "ymm9", "ymm10", "ymm11",
85 "ymm12", "ymm13", "ymm14", "ymm15"
86 };
87
88 static const char *amd64_ymm_avx512_names[] =
89 {
90 "ymm16", "ymm17", "ymm18", "ymm19",
91 "ymm20", "ymm21", "ymm22", "ymm23",
92 "ymm24", "ymm25", "ymm26", "ymm27",
93 "ymm28", "ymm29", "ymm30", "ymm31"
94 };
95
96 static const char *amd64_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
101 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
102 };
103
104 static const char *amd64_ymmh_avx512_names[] =
105 {
106 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
107 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
108 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
109 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
110 };
111
112 static const char *amd64_mpx_names[] =
113 {
114 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
115 };
116
117 static const char *amd64_k_names[] =
118 {
119 "k0", "k1", "k2", "k3",
120 "k4", "k5", "k6", "k7"
121 };
122
123 static const char *amd64_zmmh_names[] =
124 {
125 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
126 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
127 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
128 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
129 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
130 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
131 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
132 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
133 };
134
135 static const char *amd64_zmm_names[] =
136 {
137 "zmm0", "zmm1", "zmm2", "zmm3",
138 "zmm4", "zmm5", "zmm6", "zmm7",
139 "zmm8", "zmm9", "zmm10", "zmm11",
140 "zmm12", "zmm13", "zmm14", "zmm15",
141 "zmm16", "zmm17", "zmm18", "zmm19",
142 "zmm20", "zmm21", "zmm22", "zmm23",
143 "zmm24", "zmm25", "zmm26", "zmm27",
144 "zmm28", "zmm29", "zmm30", "zmm31"
145 };
146
147 static const char *amd64_xmm_avx512_names[] = {
148 "xmm16", "xmm17", "xmm18", "xmm19",
149 "xmm20", "xmm21", "xmm22", "xmm23",
150 "xmm24", "xmm25", "xmm26", "xmm27",
151 "xmm28", "xmm29", "xmm30", "xmm31"
152 };
153
154 static const char *amd64_pkeys_names[] = {
155 "pkru"
156 };
157
158 /* DWARF Register Number Mapping as defined in the System V psABI,
159 section 3.6. */
160
161 static int amd64_dwarf_regmap[] =
162 {
163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
164 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
165 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
166 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
167
168 /* Frame Pointer Register RBP. */
169 AMD64_RBP_REGNUM,
170
171 /* Stack Pointer Register RSP. */
172 AMD64_RSP_REGNUM,
173
174 /* Extended Integer Registers 8 - 15. */
175 AMD64_R8_REGNUM, /* %r8 */
176 AMD64_R9_REGNUM, /* %r9 */
177 AMD64_R10_REGNUM, /* %r10 */
178 AMD64_R11_REGNUM, /* %r11 */
179 AMD64_R12_REGNUM, /* %r12 */
180 AMD64_R13_REGNUM, /* %r13 */
181 AMD64_R14_REGNUM, /* %r14 */
182 AMD64_R15_REGNUM, /* %r15 */
183
184 /* Return Address RA. Mapped to RIP. */
185 AMD64_RIP_REGNUM,
186
187 /* SSE Registers 0 - 7. */
188 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
189 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
190 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
191 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
192
193 /* Extended SSE Registers 8 - 15. */
194 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
195 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
196 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
197 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
198
199 /* Floating Point Registers 0-7. */
200 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
201 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
202 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
203 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
204
205 /* MMX Registers 0 - 7.
206 We have to handle those registers specifically, as their register
207 number within GDB depends on the target (or they may even not be
208 available at all). */
209 -1, -1, -1, -1, -1, -1, -1, -1,
210
211 /* Control and Status Flags Register. */
212 AMD64_EFLAGS_REGNUM,
213
214 /* Selector Registers. */
215 AMD64_ES_REGNUM,
216 AMD64_CS_REGNUM,
217 AMD64_SS_REGNUM,
218 AMD64_DS_REGNUM,
219 AMD64_FS_REGNUM,
220 AMD64_GS_REGNUM,
221 -1,
222 -1,
223
224 /* Segment Base Address Registers. */
225 -1,
226 -1,
227 -1,
228 -1,
229
230 /* Special Selector Registers. */
231 -1,
232 -1,
233
234 /* Floating Point Control Registers. */
235 AMD64_MXCSR_REGNUM,
236 AMD64_FCTRL_REGNUM,
237 AMD64_FSTAT_REGNUM
238 };
239
240 static const int amd64_dwarf_regmap_len =
241 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
242
243 /* Convert DWARF register number REG to the appropriate register
244 number used by GDB. */
245
246 static int
247 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int ymm0_regnum = tdep->ymm0_regnum;
251 int regnum = -1;
252
253 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
254 regnum = amd64_dwarf_regmap[reg];
255
256 if (ymm0_regnum >= 0
257 && i386_xmm_regnum_p (gdbarch, regnum))
258 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
259
260 return regnum;
261 }
262
263 /* Map architectural register numbers to gdb register numbers. */
264
265 static const int amd64_arch_regmap[16] =
266 {
267 AMD64_RAX_REGNUM, /* %rax */
268 AMD64_RCX_REGNUM, /* %rcx */
269 AMD64_RDX_REGNUM, /* %rdx */
270 AMD64_RBX_REGNUM, /* %rbx */
271 AMD64_RSP_REGNUM, /* %rsp */
272 AMD64_RBP_REGNUM, /* %rbp */
273 AMD64_RSI_REGNUM, /* %rsi */
274 AMD64_RDI_REGNUM, /* %rdi */
275 AMD64_R8_REGNUM, /* %r8 */
276 AMD64_R9_REGNUM, /* %r9 */
277 AMD64_R10_REGNUM, /* %r10 */
278 AMD64_R11_REGNUM, /* %r11 */
279 AMD64_R12_REGNUM, /* %r12 */
280 AMD64_R13_REGNUM, /* %r13 */
281 AMD64_R14_REGNUM, /* %r14 */
282 AMD64_R15_REGNUM /* %r15 */
283 };
284
285 static const int amd64_arch_regmap_len =
286 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
287
288 /* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 amd64_arch_reg_to_regnum (int reg)
293 {
294 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
295
296 return amd64_arch_regmap[reg];
297 }
298
299 /* Register names for byte pseudo-registers. */
300
301 static const char *amd64_byte_names[] =
302 {
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
306 };
307
308 /* Number of lower byte registers. */
309 #define AMD64_NUM_LOWER_BYTE_REGS 16
310
311 /* Register names for word pseudo-registers. */
312
313 static const char *amd64_word_names[] =
314 {
315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317 };
318
319 /* Register names for dword pseudo-registers. */
320
321 static const char *amd64_dword_names[] =
322 {
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
325 "eip"
326 };
327
328 /* Return the name of register REGNUM. */
329
330 static const char *
331 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 if (i386_byte_regnum_p (gdbarch, regnum))
335 return amd64_byte_names[regnum - tdep->al_regnum];
336 else if (i386_zmm_regnum_p (gdbarch, regnum))
337 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
338 else if (i386_ymm_regnum_p (gdbarch, regnum))
339 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
340 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
341 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
342 else if (i386_word_regnum_p (gdbarch, regnum))
343 return amd64_word_names[regnum - tdep->ax_regnum];
344 else if (i386_dword_regnum_p (gdbarch, regnum))
345 return amd64_dword_names[regnum - tdep->eax_regnum];
346 else
347 return i386_pseudo_register_name (gdbarch, regnum);
348 }
349
350 static struct value *
351 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
352 readable_regcache *regcache,
353 int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 value *result_value = allocate_value (register_type (gdbarch, regnum));
358 VALUE_LVAL (result_value) = lval_register;
359 VALUE_REGNUM (result_value) = regnum;
360 gdb_byte *buf = value_contents_raw (result_value);
361
362 if (i386_byte_regnum_p (gdbarch, regnum))
363 {
364 int gpnum = regnum - tdep->al_regnum;
365
366 /* Extract (always little endian). */
367 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
368 {
369 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
370 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
371
372 /* Special handling for AH, BH, CH, DH. */
373 register_status status = regcache->raw_read (gpnum, raw_buf);
374 if (status == REG_VALID)
375 memcpy (buf, raw_buf + 1, 1);
376 else
377 mark_value_bytes_unavailable (result_value, 0,
378 TYPE_LENGTH (value_type (result_value)));
379 }
380 else
381 {
382 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
383 register_status status = regcache->raw_read (gpnum, raw_buf);
384 if (status == REG_VALID)
385 memcpy (buf, raw_buf, 1);
386 else
387 mark_value_bytes_unavailable (result_value, 0,
388 TYPE_LENGTH (value_type (result_value)));
389 }
390 }
391 else if (i386_dword_regnum_p (gdbarch, regnum))
392 {
393 int gpnum = regnum - tdep->eax_regnum;
394 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
395 /* Extract (always little endian). */
396 register_status status = regcache->raw_read (gpnum, raw_buf);
397 if (status == REG_VALID)
398 memcpy (buf, raw_buf, 4);
399 else
400 mark_value_bytes_unavailable (result_value, 0,
401 TYPE_LENGTH (value_type (result_value)));
402 }
403 else
404 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
405 result_value);
406
407 return result_value;
408 }
409
410 static void
411 amd64_pseudo_register_write (struct gdbarch *gdbarch,
412 struct regcache *regcache,
413 int regnum, const gdb_byte *buf)
414 {
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416
417 if (i386_byte_regnum_p (gdbarch, regnum))
418 {
419 int gpnum = regnum - tdep->al_regnum;
420
421 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
422 {
423 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
424 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
425
426 /* Read ... AH, BH, CH, DH. */
427 regcache->raw_read (gpnum, raw_buf);
428 /* ... Modify ... (always little endian). */
429 memcpy (raw_buf + 1, buf, 1);
430 /* ... Write. */
431 regcache->raw_write (gpnum, raw_buf);
432 }
433 else
434 {
435 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
436
437 /* Read ... */
438 regcache->raw_read (gpnum, raw_buf);
439 /* ... Modify ... (always little endian). */
440 memcpy (raw_buf, buf, 1);
441 /* ... Write. */
442 regcache->raw_write (gpnum, raw_buf);
443 }
444 }
445 else if (i386_dword_regnum_p (gdbarch, regnum))
446 {
447 int gpnum = regnum - tdep->eax_regnum;
448 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
449
450 /* Read ... */
451 regcache->raw_read (gpnum, raw_buf);
452 /* ... Modify ... (always little endian). */
453 memcpy (raw_buf, buf, 4);
454 /* ... Write. */
455 regcache->raw_write (gpnum, raw_buf);
456 }
457 else
458 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
459 }
460
461 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
462
463 static int
464 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
465 struct agent_expr *ax, int regnum)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 if (i386_byte_regnum_p (gdbarch, regnum))
470 {
471 int gpnum = regnum - tdep->al_regnum;
472
473 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
474 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
475 else
476 ax_reg_mask (ax, gpnum);
477 return 0;
478 }
479 else if (i386_dword_regnum_p (gdbarch, regnum))
480 {
481 int gpnum = regnum - tdep->eax_regnum;
482
483 ax_reg_mask (ax, gpnum);
484 return 0;
485 }
486 else
487 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
488 }
489
490 \f
491
492 /* Register classes as defined in the psABI. */
493
494 enum amd64_reg_class
495 {
496 AMD64_INTEGER,
497 AMD64_SSE,
498 AMD64_SSEUP,
499 AMD64_X87,
500 AMD64_X87UP,
501 AMD64_COMPLEX_X87,
502 AMD64_NO_CLASS,
503 AMD64_MEMORY
504 };
505
506 /* Return the union class of CLASS1 and CLASS2. See the psABI for
507 details. */
508
509 static enum amd64_reg_class
510 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
511 {
512 /* Rule (a): If both classes are equal, this is the resulting class. */
513 if (class1 == class2)
514 return class1;
515
516 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
517 is the other class. */
518 if (class1 == AMD64_NO_CLASS)
519 return class2;
520 if (class2 == AMD64_NO_CLASS)
521 return class1;
522
523 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
524 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
525 return AMD64_MEMORY;
526
527 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
528 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
529 return AMD64_INTEGER;
530
531 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
532 MEMORY is used as class. */
533 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
534 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
535 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
536 return AMD64_MEMORY;
537
538 /* Rule (f): Otherwise class SSE is used. */
539 return AMD64_SSE;
540 }
541
542 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
543
544 /* Return non-zero if TYPE is a non-POD structure or union type. */
545
546 static int
547 amd64_non_pod_p (struct type *type)
548 {
549 /* ??? A class with a base class certainly isn't POD, but does this
550 catch all non-POD structure types? */
551 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
552 return 1;
553
554 return 0;
555 }
556
557 /* Classify TYPE according to the rules for aggregate (structures and
558 arrays) and union types, and store the result in CLASS. */
559
560 static void
561 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
562 {
563 /* 1. If the size of an object is larger than two eightbytes, or in
564 C++, is a non-POD structure or union type, or contains
565 unaligned fields, it has class memory. */
566 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
567 {
568 theclass[0] = theclass[1] = AMD64_MEMORY;
569 return;
570 }
571
572 /* 2. Both eightbytes get initialized to class NO_CLASS. */
573 theclass[0] = theclass[1] = AMD64_NO_CLASS;
574
575 /* 3. Each field of an object is classified recursively so that
576 always two fields are considered. The resulting class is
577 calculated according to the classes of the fields in the
578 eightbyte: */
579
580 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
581 {
582 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
583
584 /* All fields in an array have the same type. */
585 amd64_classify (subtype, theclass);
586 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
587 theclass[1] = theclass[0];
588 }
589 else
590 {
591 int i;
592
593 /* Structure or union. */
594 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
595 || TYPE_CODE (type) == TYPE_CODE_UNION);
596
597 for (i = 0; i < TYPE_NFIELDS (type); i++)
598 {
599 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
600 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
601 enum amd64_reg_class subclass[2];
602 int bitsize = TYPE_FIELD_BITSIZE (type, i);
603 int endpos;
604
605 if (bitsize == 0)
606 bitsize = TYPE_LENGTH (subtype) * 8;
607 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
608
609 /* Ignore static fields, or empty fields, for example nested
610 empty structures.*/
611 if (field_is_static (&TYPE_FIELD (type, i)) || bitsize == 0)
612 continue;
613
614 gdb_assert (pos == 0 || pos == 1);
615
616 amd64_classify (subtype, subclass);
617 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
618 if (bitsize <= 64 && pos == 0 && endpos == 1)
619 /* This is a bit of an odd case: We have a field that would
620 normally fit in one of the two eightbytes, except that
621 it is placed in a way that this field straddles them.
622 This has been seen with a structure containing an array.
623
624 The ABI is a bit unclear in this case, but we assume that
625 this field's class (stored in subclass[0]) must also be merged
626 into class[1]. In other words, our field has a piece stored
627 in the second eight-byte, and thus its class applies to
628 the second eight-byte as well.
629
630 In the case where the field length exceeds 8 bytes,
631 it should not be necessary to merge the field class
632 into class[1]. As LEN > 8, subclass[1] is necessarily
633 different from AMD64_NO_CLASS. If subclass[1] is equal
634 to subclass[0], then the normal class[1]/subclass[1]
635 merging will take care of everything. For subclass[1]
636 to be different from subclass[0], I can only see the case
637 where we have a SSE/SSEUP or X87/X87UP pair, which both
638 use up all 16 bytes of the aggregate, and are already
639 handled just fine (because each portion sits on its own
640 8-byte). */
641 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
642 if (pos == 0)
643 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
644 }
645 }
646
647 /* 4. Then a post merger cleanup is done: */
648
649 /* Rule (a): If one of the classes is MEMORY, the whole argument is
650 passed in memory. */
651 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
652 theclass[0] = theclass[1] = AMD64_MEMORY;
653
654 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
655 SSE. */
656 if (theclass[0] == AMD64_SSEUP)
657 theclass[0] = AMD64_SSE;
658 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
659 theclass[1] = AMD64_SSE;
660 }
661
662 /* Classify TYPE, and store the result in CLASS. */
663
664 static void
665 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
666 {
667 enum type_code code = TYPE_CODE (type);
668 int len = TYPE_LENGTH (type);
669
670 theclass[0] = theclass[1] = AMD64_NO_CLASS;
671
672 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
673 long, long long, and pointers are in the INTEGER class. Similarly,
674 range types, used by languages such as Ada, are also in the INTEGER
675 class. */
676 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
677 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
678 || code == TYPE_CODE_CHAR
679 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
680 && (len == 1 || len == 2 || len == 4 || len == 8))
681 theclass[0] = AMD64_INTEGER;
682
683 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
684 are in class SSE. */
685 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
686 && (len == 4 || len == 8))
687 /* FIXME: __m64 . */
688 theclass[0] = AMD64_SSE;
689
690 /* Arguments of types __float128, _Decimal128 and __m128 are split into
691 two halves. The least significant ones belong to class SSE, the most
692 significant one to class SSEUP. */
693 else if (code == TYPE_CODE_DECFLOAT && len == 16)
694 /* FIXME: __float128, __m128. */
695 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
696
697 /* The 64-bit mantissa of arguments of type long double belongs to
698 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
699 class X87UP. */
700 else if (code == TYPE_CODE_FLT && len == 16)
701 /* Class X87 and X87UP. */
702 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
703
704 /* Arguments of complex T where T is one of the types float or
705 double get treated as if they are implemented as:
706
707 struct complexT {
708 T real;
709 T imag;
710 };
711
712 */
713 else if (code == TYPE_CODE_COMPLEX && len == 8)
714 theclass[0] = AMD64_SSE;
715 else if (code == TYPE_CODE_COMPLEX && len == 16)
716 theclass[0] = theclass[1] = AMD64_SSE;
717
718 /* A variable of type complex long double is classified as type
719 COMPLEX_X87. */
720 else if (code == TYPE_CODE_COMPLEX && len == 32)
721 theclass[0] = AMD64_COMPLEX_X87;
722
723 /* Aggregates. */
724 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
725 || code == TYPE_CODE_UNION)
726 amd64_classify_aggregate (type, theclass);
727 }
728
729 static enum return_value_convention
730 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
731 struct type *type, struct regcache *regcache,
732 gdb_byte *readbuf, const gdb_byte *writebuf)
733 {
734 enum amd64_reg_class theclass[2];
735 int len = TYPE_LENGTH (type);
736 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
737 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
738 int integer_reg = 0;
739 int sse_reg = 0;
740 int i;
741
742 gdb_assert (!(readbuf && writebuf));
743
744 /* 1. Classify the return type with the classification algorithm. */
745 amd64_classify (type, theclass);
746
747 /* 2. If the type has class MEMORY, then the caller provides space
748 for the return value and passes the address of this storage in
749 %rdi as if it were the first argument to the function. In effect,
750 this address becomes a hidden first argument.
751
752 On return %rax will contain the address that has been passed in
753 by the caller in %rdi. */
754 if (theclass[0] == AMD64_MEMORY)
755 {
756 /* As indicated by the comment above, the ABI guarantees that we
757 can always find the return value just after the function has
758 returned. */
759
760 if (readbuf)
761 {
762 ULONGEST addr;
763
764 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
765 read_memory (addr, readbuf, TYPE_LENGTH (type));
766 }
767
768 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
769 }
770
771 /* 8. If the class is COMPLEX_X87, the real part of the value is
772 returned in %st0 and the imaginary part in %st1. */
773 if (theclass[0] == AMD64_COMPLEX_X87)
774 {
775 if (readbuf)
776 {
777 regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
778 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
779 }
780
781 if (writebuf)
782 {
783 i387_return_value (gdbarch, regcache);
784 regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
785 regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
786
787 /* Fix up the tag word such that both %st(0) and %st(1) are
788 marked as valid. */
789 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
790 }
791
792 return RETURN_VALUE_REGISTER_CONVENTION;
793 }
794
795 gdb_assert (theclass[1] != AMD64_MEMORY);
796 gdb_assert (len <= 16);
797
798 for (i = 0; len > 0; i++, len -= 8)
799 {
800 int regnum = -1;
801 int offset = 0;
802
803 switch (theclass[i])
804 {
805 case AMD64_INTEGER:
806 /* 3. If the class is INTEGER, the next available register
807 of the sequence %rax, %rdx is used. */
808 regnum = integer_regnum[integer_reg++];
809 break;
810
811 case AMD64_SSE:
812 /* 4. If the class is SSE, the next available SSE register
813 of the sequence %xmm0, %xmm1 is used. */
814 regnum = sse_regnum[sse_reg++];
815 break;
816
817 case AMD64_SSEUP:
818 /* 5. If the class is SSEUP, the eightbyte is passed in the
819 upper half of the last used SSE register. */
820 gdb_assert (sse_reg > 0);
821 regnum = sse_regnum[sse_reg - 1];
822 offset = 8;
823 break;
824
825 case AMD64_X87:
826 /* 6. If the class is X87, the value is returned on the X87
827 stack in %st0 as 80-bit x87 number. */
828 regnum = AMD64_ST0_REGNUM;
829 if (writebuf)
830 i387_return_value (gdbarch, regcache);
831 break;
832
833 case AMD64_X87UP:
834 /* 7. If the class is X87UP, the value is returned together
835 with the previous X87 value in %st0. */
836 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
837 regnum = AMD64_ST0_REGNUM;
838 offset = 8;
839 len = 2;
840 break;
841
842 case AMD64_NO_CLASS:
843 continue;
844
845 default:
846 gdb_assert (!"Unexpected register class.");
847 }
848
849 gdb_assert (regnum != -1);
850
851 if (readbuf)
852 regcache->raw_read_part (regnum, offset, std::min (len, 8),
853 readbuf + i * 8);
854 if (writebuf)
855 regcache->raw_write_part (regnum, offset, std::min (len, 8),
856 writebuf + i * 8);
857 }
858
859 return RETURN_VALUE_REGISTER_CONVENTION;
860 }
861 \f
862
863 static CORE_ADDR
864 amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args,
865 CORE_ADDR sp, function_call_return_method return_method)
866 {
867 static int integer_regnum[] =
868 {
869 AMD64_RDI_REGNUM, /* %rdi */
870 AMD64_RSI_REGNUM, /* %rsi */
871 AMD64_RDX_REGNUM, /* %rdx */
872 AMD64_RCX_REGNUM, /* %rcx */
873 AMD64_R8_REGNUM, /* %r8 */
874 AMD64_R9_REGNUM /* %r9 */
875 };
876 static int sse_regnum[] =
877 {
878 /* %xmm0 ... %xmm7 */
879 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
880 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
881 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
882 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
883 };
884 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
885 int num_stack_args = 0;
886 int num_elements = 0;
887 int element = 0;
888 int integer_reg = 0;
889 int sse_reg = 0;
890 int i;
891
892 /* Reserve a register for the "hidden" argument. */
893 if (return_method == return_method_struct)
894 integer_reg++;
895
896 for (i = 0; i < nargs; i++)
897 {
898 struct type *type = value_type (args[i]);
899 int len = TYPE_LENGTH (type);
900 enum amd64_reg_class theclass[2];
901 int needed_integer_regs = 0;
902 int needed_sse_regs = 0;
903 int j;
904
905 /* Classify argument. */
906 amd64_classify (type, theclass);
907
908 /* Calculate the number of integer and SSE registers needed for
909 this argument. */
910 for (j = 0; j < 2; j++)
911 {
912 if (theclass[j] == AMD64_INTEGER)
913 needed_integer_regs++;
914 else if (theclass[j] == AMD64_SSE)
915 needed_sse_regs++;
916 }
917
918 /* Check whether enough registers are available, and if the
919 argument should be passed in registers at all. */
920 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
921 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
922 || (needed_integer_regs == 0 && needed_sse_regs == 0))
923 {
924 /* The argument will be passed on the stack. */
925 num_elements += ((len + 7) / 8);
926 stack_args[num_stack_args++] = args[i];
927 }
928 else
929 {
930 /* The argument will be passed in registers. */
931 const gdb_byte *valbuf = value_contents (args[i]);
932 gdb_byte buf[8];
933
934 gdb_assert (len <= 16);
935
936 for (j = 0; len > 0; j++, len -= 8)
937 {
938 int regnum = -1;
939 int offset = 0;
940
941 switch (theclass[j])
942 {
943 case AMD64_INTEGER:
944 regnum = integer_regnum[integer_reg++];
945 break;
946
947 case AMD64_SSE:
948 regnum = sse_regnum[sse_reg++];
949 break;
950
951 case AMD64_SSEUP:
952 gdb_assert (sse_reg > 0);
953 regnum = sse_regnum[sse_reg - 1];
954 offset = 8;
955 break;
956
957 default:
958 gdb_assert (!"Unexpected register class.");
959 }
960
961 gdb_assert (regnum != -1);
962 memset (buf, 0, sizeof buf);
963 memcpy (buf, valbuf + j * 8, std::min (len, 8));
964 regcache->raw_write_part (regnum, offset, 8, buf);
965 }
966 }
967 }
968
969 /* Allocate space for the arguments on the stack. */
970 sp -= num_elements * 8;
971
972 /* The psABI says that "The end of the input argument area shall be
973 aligned on a 16 byte boundary." */
974 sp &= ~0xf;
975
976 /* Write out the arguments to the stack. */
977 for (i = 0; i < num_stack_args; i++)
978 {
979 struct type *type = value_type (stack_args[i]);
980 const gdb_byte *valbuf = value_contents (stack_args[i]);
981 int len = TYPE_LENGTH (type);
982
983 write_memory (sp + element * 8, valbuf, len);
984 element += ((len + 7) / 8);
985 }
986
987 /* The psABI says that "For calls that may call functions that use
988 varargs or stdargs (prototype-less calls or calls to functions
989 containing ellipsis (...) in the declaration) %al is used as
990 hidden argument to specify the number of SSE registers used. */
991 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
992 return sp;
993 }
994
995 static CORE_ADDR
996 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
997 struct regcache *regcache, CORE_ADDR bp_addr,
998 int nargs, struct value **args, CORE_ADDR sp,
999 function_call_return_method return_method,
1000 CORE_ADDR struct_addr)
1001 {
1002 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1003 gdb_byte buf[8];
1004
1005 /* BND registers can be in arbitrary values at the moment of the
1006 inferior call. This can cause boundary violations that are not
1007 due to a real bug or even desired by the user. The best to be done
1008 is set the BND registers to allow access to the whole memory, INIT
1009 state, before pushing the inferior call. */
1010 i387_reset_bnd_regs (gdbarch, regcache);
1011
1012 /* Pass arguments. */
1013 sp = amd64_push_arguments (regcache, nargs, args, sp, return_method);
1014
1015 /* Pass "hidden" argument". */
1016 if (return_method == return_method_struct)
1017 {
1018 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1019 regcache->cooked_write (AMD64_RDI_REGNUM, buf);
1020 }
1021
1022 /* Store return address. */
1023 sp -= 8;
1024 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1025 write_memory (sp, buf, 8);
1026
1027 /* Finally, update the stack pointer... */
1028 store_unsigned_integer (buf, 8, byte_order, sp);
1029 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
1030
1031 /* ...and fake a frame pointer. */
1032 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
1033
1034 return sp + 16;
1035 }
1036 \f
1037 /* Displaced instruction handling. */
1038
1039 /* A partially decoded instruction.
1040 This contains enough details for displaced stepping purposes. */
1041
1042 struct amd64_insn
1043 {
1044 /* The number of opcode bytes. */
1045 int opcode_len;
1046 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1047 not present. */
1048 int enc_prefix_offset;
1049 /* The offset to the first opcode byte. */
1050 int opcode_offset;
1051 /* The offset to the modrm byte or -1 if not present. */
1052 int modrm_offset;
1053
1054 /* The raw instruction. */
1055 gdb_byte *raw_insn;
1056 };
1057
1058 struct amd64_displaced_step_closure : public displaced_step_closure
1059 {
1060 amd64_displaced_step_closure (int insn_buf_len)
1061 : insn_buf (insn_buf_len, 0)
1062 {}
1063
1064 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1065 int tmp_used = 0;
1066 int tmp_regno;
1067 ULONGEST tmp_save;
1068
1069 /* Details of the instruction. */
1070 struct amd64_insn insn_details;
1071
1072 /* The possibly modified insn. */
1073 gdb::byte_vector insn_buf;
1074 };
1075
1076 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1077 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1078 at which point delete these in favor of libopcodes' versions). */
1079
1080 static const unsigned char onebyte_has_modrm[256] = {
1081 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1082 /* ------------------------------- */
1083 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1084 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1085 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1086 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1087 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1088 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1089 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1090 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1091 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1092 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1093 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1094 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1095 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1096 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1097 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1098 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1099 /* ------------------------------- */
1100 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1101 };
1102
1103 static const unsigned char twobyte_has_modrm[256] = {
1104 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1105 /* ------------------------------- */
1106 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1107 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1108 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1109 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1110 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1111 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1112 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1113 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1114 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1115 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1116 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1117 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1118 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1119 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1120 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1121 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1122 /* ------------------------------- */
1123 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1124 };
1125
1126 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1127
1128 static int
1129 rex_prefix_p (gdb_byte pfx)
1130 {
1131 return REX_PREFIX_P (pfx);
1132 }
1133
1134 /* True if PFX is the start of the 2-byte VEX prefix. */
1135
1136 static bool
1137 vex2_prefix_p (gdb_byte pfx)
1138 {
1139 return pfx == 0xc5;
1140 }
1141
1142 /* True if PFX is the start of the 3-byte VEX prefix. */
1143
1144 static bool
1145 vex3_prefix_p (gdb_byte pfx)
1146 {
1147 return pfx == 0xc4;
1148 }
1149
1150 /* Skip the legacy instruction prefixes in INSN.
1151 We assume INSN is properly sentineled so we don't have to worry
1152 about falling off the end of the buffer. */
1153
1154 static gdb_byte *
1155 amd64_skip_prefixes (gdb_byte *insn)
1156 {
1157 while (1)
1158 {
1159 switch (*insn)
1160 {
1161 case DATA_PREFIX_OPCODE:
1162 case ADDR_PREFIX_OPCODE:
1163 case CS_PREFIX_OPCODE:
1164 case DS_PREFIX_OPCODE:
1165 case ES_PREFIX_OPCODE:
1166 case FS_PREFIX_OPCODE:
1167 case GS_PREFIX_OPCODE:
1168 case SS_PREFIX_OPCODE:
1169 case LOCK_PREFIX_OPCODE:
1170 case REPE_PREFIX_OPCODE:
1171 case REPNE_PREFIX_OPCODE:
1172 ++insn;
1173 continue;
1174 default:
1175 break;
1176 }
1177 break;
1178 }
1179
1180 return insn;
1181 }
1182
1183 /* Return an integer register (other than RSP) that is unused as an input
1184 operand in INSN.
1185 In order to not require adding a rex prefix if the insn doesn't already
1186 have one, the result is restricted to RAX ... RDI, sans RSP.
1187 The register numbering of the result follows architecture ordering,
1188 e.g. RDI = 7. */
1189
1190 static int
1191 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1192 {
1193 /* 1 bit for each reg */
1194 int used_regs_mask = 0;
1195
1196 /* There can be at most 3 int regs used as inputs in an insn, and we have
1197 7 to choose from (RAX ... RDI, sans RSP).
1198 This allows us to take a conservative approach and keep things simple.
1199 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1200 that implicitly specify RAX. */
1201
1202 /* Avoid RAX. */
1203 used_regs_mask |= 1 << EAX_REG_NUM;
1204 /* Similarily avoid RDX, implicit operand in divides. */
1205 used_regs_mask |= 1 << EDX_REG_NUM;
1206 /* Avoid RSP. */
1207 used_regs_mask |= 1 << ESP_REG_NUM;
1208
1209 /* If the opcode is one byte long and there's no ModRM byte,
1210 assume the opcode specifies a register. */
1211 if (details->opcode_len == 1 && details->modrm_offset == -1)
1212 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1213
1214 /* Mark used regs in the modrm/sib bytes. */
1215 if (details->modrm_offset != -1)
1216 {
1217 int modrm = details->raw_insn[details->modrm_offset];
1218 int mod = MODRM_MOD_FIELD (modrm);
1219 int reg = MODRM_REG_FIELD (modrm);
1220 int rm = MODRM_RM_FIELD (modrm);
1221 int have_sib = mod != 3 && rm == 4;
1222
1223 /* Assume the reg field of the modrm byte specifies a register. */
1224 used_regs_mask |= 1 << reg;
1225
1226 if (have_sib)
1227 {
1228 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1229 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1230 used_regs_mask |= 1 << base;
1231 used_regs_mask |= 1 << idx;
1232 }
1233 else
1234 {
1235 used_regs_mask |= 1 << rm;
1236 }
1237 }
1238
1239 gdb_assert (used_regs_mask < 256);
1240 gdb_assert (used_regs_mask != 255);
1241
1242 /* Finally, find a free reg. */
1243 {
1244 int i;
1245
1246 for (i = 0; i < 8; ++i)
1247 {
1248 if (! (used_regs_mask & (1 << i)))
1249 return i;
1250 }
1251
1252 /* We shouldn't get here. */
1253 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1254 }
1255 }
1256
1257 /* Extract the details of INSN that we need. */
1258
1259 static void
1260 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1261 {
1262 gdb_byte *start = insn;
1263 int need_modrm;
1264
1265 details->raw_insn = insn;
1266
1267 details->opcode_len = -1;
1268 details->enc_prefix_offset = -1;
1269 details->opcode_offset = -1;
1270 details->modrm_offset = -1;
1271
1272 /* Skip legacy instruction prefixes. */
1273 insn = amd64_skip_prefixes (insn);
1274
1275 /* Skip REX/VEX instruction encoding prefixes. */
1276 if (rex_prefix_p (*insn))
1277 {
1278 details->enc_prefix_offset = insn - start;
1279 ++insn;
1280 }
1281 else if (vex2_prefix_p (*insn))
1282 {
1283 /* Don't record the offset in this case because this prefix has
1284 no REX.B equivalent. */
1285 insn += 2;
1286 }
1287 else if (vex3_prefix_p (*insn))
1288 {
1289 details->enc_prefix_offset = insn - start;
1290 insn += 3;
1291 }
1292
1293 details->opcode_offset = insn - start;
1294
1295 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1296 {
1297 /* Two or three-byte opcode. */
1298 ++insn;
1299 need_modrm = twobyte_has_modrm[*insn];
1300
1301 /* Check for three-byte opcode. */
1302 switch (*insn)
1303 {
1304 case 0x24:
1305 case 0x25:
1306 case 0x38:
1307 case 0x3a:
1308 case 0x7a:
1309 case 0x7b:
1310 ++insn;
1311 details->opcode_len = 3;
1312 break;
1313 default:
1314 details->opcode_len = 2;
1315 break;
1316 }
1317 }
1318 else
1319 {
1320 /* One-byte opcode. */
1321 need_modrm = onebyte_has_modrm[*insn];
1322 details->opcode_len = 1;
1323 }
1324
1325 if (need_modrm)
1326 {
1327 ++insn;
1328 details->modrm_offset = insn - start;
1329 }
1330 }
1331
1332 /* Update %rip-relative addressing in INSN.
1333
1334 %rip-relative addressing only uses a 32-bit displacement.
1335 32 bits is not enough to be guaranteed to cover the distance between where
1336 the real instruction is and where its copy is.
1337 Convert the insn to use base+disp addressing.
1338 We set base = pc + insn_length so we can leave disp unchanged. */
1339
1340 static void
1341 fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_closure *dsc,
1342 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1343 {
1344 const struct amd64_insn *insn_details = &dsc->insn_details;
1345 int modrm_offset = insn_details->modrm_offset;
1346 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1347 CORE_ADDR rip_base;
1348 int insn_length;
1349 int arch_tmp_regno, tmp_regno;
1350 ULONGEST orig_value;
1351
1352 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1353 ++insn;
1354
1355 /* Compute the rip-relative address. */
1356 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1357 dsc->insn_buf.size (), from);
1358 rip_base = from + insn_length;
1359
1360 /* We need a register to hold the address.
1361 Pick one not used in the insn.
1362 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1363 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1364 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1365
1366 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1367 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1368
1369 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1370 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1371 is not r8-r15. */
1372 if (insn_details->enc_prefix_offset != -1)
1373 {
1374 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1375 if (rex_prefix_p (pfx[0]))
1376 pfx[0] &= ~REX_B;
1377 else if (vex3_prefix_p (pfx[0]))
1378 pfx[1] |= VEX3_NOT_B;
1379 else
1380 gdb_assert_not_reached ("unhandled prefix");
1381 }
1382
1383 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1384 dsc->tmp_regno = tmp_regno;
1385 dsc->tmp_save = orig_value;
1386 dsc->tmp_used = 1;
1387
1388 /* Convert the ModRM field to be base+disp. */
1389 dsc->insn_buf[modrm_offset] &= ~0xc7;
1390 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1391
1392 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1393
1394 if (debug_displaced)
1395 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1396 "displaced: using temp reg %d, old value %s, new value %s\n",
1397 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1398 paddress (gdbarch, rip_base));
1399 }
1400
1401 static void
1402 fixup_displaced_copy (struct gdbarch *gdbarch,
1403 amd64_displaced_step_closure *dsc,
1404 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1405 {
1406 const struct amd64_insn *details = &dsc->insn_details;
1407
1408 if (details->modrm_offset != -1)
1409 {
1410 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1411
1412 if ((modrm & 0xc7) == 0x05)
1413 {
1414 /* The insn uses rip-relative addressing.
1415 Deal with it. */
1416 fixup_riprel (gdbarch, dsc, from, to, regs);
1417 }
1418 }
1419 }
1420
1421 struct displaced_step_closure *
1422 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1423 CORE_ADDR from, CORE_ADDR to,
1424 struct regcache *regs)
1425 {
1426 int len = gdbarch_max_insn_length (gdbarch);
1427 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1428 continually watch for running off the end of the buffer. */
1429 int fixup_sentinel_space = len;
1430 amd64_displaced_step_closure *dsc
1431 = new amd64_displaced_step_closure (len + fixup_sentinel_space);
1432 gdb_byte *buf = &dsc->insn_buf[0];
1433 struct amd64_insn *details = &dsc->insn_details;
1434
1435 read_memory (from, buf, len);
1436
1437 /* Set up the sentinel space so we don't have to worry about running
1438 off the end of the buffer. An excessive number of leading prefixes
1439 could otherwise cause this. */
1440 memset (buf + len, 0, fixup_sentinel_space);
1441
1442 amd64_get_insn_details (buf, details);
1443
1444 /* GDB may get control back after the insn after the syscall.
1445 Presumably this is a kernel bug.
1446 If this is a syscall, make sure there's a nop afterwards. */
1447 {
1448 int syscall_length;
1449
1450 if (amd64_syscall_p (details, &syscall_length))
1451 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1452 }
1453
1454 /* Modify the insn to cope with the address where it will be executed from.
1455 In particular, handle any rip-relative addressing. */
1456 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1457
1458 write_memory (to, buf, len);
1459
1460 if (debug_displaced)
1461 {
1462 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1463 paddress (gdbarch, from), paddress (gdbarch, to));
1464 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1465 }
1466
1467 return dsc;
1468 }
1469
1470 static int
1471 amd64_absolute_jmp_p (const struct amd64_insn *details)
1472 {
1473 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1474
1475 if (insn[0] == 0xff)
1476 {
1477 /* jump near, absolute indirect (/4) */
1478 if ((insn[1] & 0x38) == 0x20)
1479 return 1;
1480
1481 /* jump far, absolute indirect (/5) */
1482 if ((insn[1] & 0x38) == 0x28)
1483 return 1;
1484 }
1485
1486 return 0;
1487 }
1488
1489 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1490
1491 static int
1492 amd64_jmp_p (const struct amd64_insn *details)
1493 {
1494 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1495
1496 /* jump short, relative. */
1497 if (insn[0] == 0xeb)
1498 return 1;
1499
1500 /* jump near, relative. */
1501 if (insn[0] == 0xe9)
1502 return 1;
1503
1504 return amd64_absolute_jmp_p (details);
1505 }
1506
1507 static int
1508 amd64_absolute_call_p (const struct amd64_insn *details)
1509 {
1510 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1511
1512 if (insn[0] == 0xff)
1513 {
1514 /* Call near, absolute indirect (/2) */
1515 if ((insn[1] & 0x38) == 0x10)
1516 return 1;
1517
1518 /* Call far, absolute indirect (/3) */
1519 if ((insn[1] & 0x38) == 0x18)
1520 return 1;
1521 }
1522
1523 return 0;
1524 }
1525
1526 static int
1527 amd64_ret_p (const struct amd64_insn *details)
1528 {
1529 /* NOTE: gcc can emit "repz ; ret". */
1530 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1531
1532 switch (insn[0])
1533 {
1534 case 0xc2: /* ret near, pop N bytes */
1535 case 0xc3: /* ret near */
1536 case 0xca: /* ret far, pop N bytes */
1537 case 0xcb: /* ret far */
1538 case 0xcf: /* iret */
1539 return 1;
1540
1541 default:
1542 return 0;
1543 }
1544 }
1545
1546 static int
1547 amd64_call_p (const struct amd64_insn *details)
1548 {
1549 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1550
1551 if (amd64_absolute_call_p (details))
1552 return 1;
1553
1554 /* call near, relative */
1555 if (insn[0] == 0xe8)
1556 return 1;
1557
1558 return 0;
1559 }
1560
1561 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1562 length in bytes. Otherwise, return zero. */
1563
1564 static int
1565 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1566 {
1567 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1568
1569 if (insn[0] == 0x0f && insn[1] == 0x05)
1570 {
1571 *lengthp = 2;
1572 return 1;
1573 }
1574
1575 return 0;
1576 }
1577
1578 /* Classify the instruction at ADDR using PRED.
1579 Throw an error if the memory can't be read. */
1580
1581 static int
1582 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1583 int (*pred) (const struct amd64_insn *))
1584 {
1585 struct amd64_insn details;
1586 gdb_byte *buf;
1587 int len, classification;
1588
1589 len = gdbarch_max_insn_length (gdbarch);
1590 buf = (gdb_byte *) alloca (len);
1591
1592 read_code (addr, buf, len);
1593 amd64_get_insn_details (buf, &details);
1594
1595 classification = pred (&details);
1596
1597 return classification;
1598 }
1599
1600 /* The gdbarch insn_is_call method. */
1601
1602 static int
1603 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1604 {
1605 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1606 }
1607
1608 /* The gdbarch insn_is_ret method. */
1609
1610 static int
1611 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1612 {
1613 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1614 }
1615
1616 /* The gdbarch insn_is_jump method. */
1617
1618 static int
1619 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1620 {
1621 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1622 }
1623
1624 /* Fix up the state of registers and memory after having single-stepped
1625 a displaced instruction. */
1626
1627 void
1628 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1629 struct displaced_step_closure *dsc_,
1630 CORE_ADDR from, CORE_ADDR to,
1631 struct regcache *regs)
1632 {
1633 amd64_displaced_step_closure *dsc = (amd64_displaced_step_closure *) dsc_;
1634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1635 /* The offset we applied to the instruction's address. */
1636 ULONGEST insn_offset = to - from;
1637 gdb_byte *insn = dsc->insn_buf.data ();
1638 const struct amd64_insn *insn_details = &dsc->insn_details;
1639
1640 if (debug_displaced)
1641 fprintf_unfiltered (gdb_stdlog,
1642 "displaced: fixup (%s, %s), "
1643 "insn = 0x%02x 0x%02x ...\n",
1644 paddress (gdbarch, from), paddress (gdbarch, to),
1645 insn[0], insn[1]);
1646
1647 /* If we used a tmp reg, restore it. */
1648
1649 if (dsc->tmp_used)
1650 {
1651 if (debug_displaced)
1652 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1653 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1654 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1655 }
1656
1657 /* The list of issues to contend with here is taken from
1658 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1659 Yay for Free Software! */
1660
1661 /* Relocate the %rip back to the program's instruction stream,
1662 if necessary. */
1663
1664 /* Except in the case of absolute or indirect jump or call
1665 instructions, or a return instruction, the new rip is relative to
1666 the displaced instruction; make it relative to the original insn.
1667 Well, signal handler returns don't need relocation either, but we use the
1668 value of %rip to recognize those; see below. */
1669 if (! amd64_absolute_jmp_p (insn_details)
1670 && ! amd64_absolute_call_p (insn_details)
1671 && ! amd64_ret_p (insn_details))
1672 {
1673 ULONGEST orig_rip;
1674 int insn_len;
1675
1676 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1677
1678 /* A signal trampoline system call changes the %rip, resuming
1679 execution of the main program after the signal handler has
1680 returned. That makes them like 'return' instructions; we
1681 shouldn't relocate %rip.
1682
1683 But most system calls don't, and we do need to relocate %rip.
1684
1685 Our heuristic for distinguishing these cases: if stepping
1686 over the system call instruction left control directly after
1687 the instruction, the we relocate --- control almost certainly
1688 doesn't belong in the displaced copy. Otherwise, we assume
1689 the instruction has put control where it belongs, and leave
1690 it unrelocated. Goodness help us if there are PC-relative
1691 system calls. */
1692 if (amd64_syscall_p (insn_details, &insn_len)
1693 && orig_rip != to + insn_len
1694 /* GDB can get control back after the insn after the syscall.
1695 Presumably this is a kernel bug.
1696 Fixup ensures its a nop, we add one to the length for it. */
1697 && orig_rip != to + insn_len + 1)
1698 {
1699 if (debug_displaced)
1700 fprintf_unfiltered (gdb_stdlog,
1701 "displaced: syscall changed %%rip; "
1702 "not relocating\n");
1703 }
1704 else
1705 {
1706 ULONGEST rip = orig_rip - insn_offset;
1707
1708 /* If we just stepped over a breakpoint insn, we don't backup
1709 the pc on purpose; this is to match behaviour without
1710 stepping. */
1711
1712 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1713
1714 if (debug_displaced)
1715 fprintf_unfiltered (gdb_stdlog,
1716 "displaced: "
1717 "relocated %%rip from %s to %s\n",
1718 paddress (gdbarch, orig_rip),
1719 paddress (gdbarch, rip));
1720 }
1721 }
1722
1723 /* If the instruction was PUSHFL, then the TF bit will be set in the
1724 pushed value, and should be cleared. We'll leave this for later,
1725 since GDB already messes up the TF flag when stepping over a
1726 pushfl. */
1727
1728 /* If the instruction was a call, the return address now atop the
1729 stack is the address following the copied instruction. We need
1730 to make it the address following the original instruction. */
1731 if (amd64_call_p (insn_details))
1732 {
1733 ULONGEST rsp;
1734 ULONGEST retaddr;
1735 const ULONGEST retaddr_len = 8;
1736
1737 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1738 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1739 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1740 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1741
1742 if (debug_displaced)
1743 fprintf_unfiltered (gdb_stdlog,
1744 "displaced: relocated return addr at %s "
1745 "to %s\n",
1746 paddress (gdbarch, rsp),
1747 paddress (gdbarch, retaddr));
1748 }
1749 }
1750
1751 /* If the instruction INSN uses RIP-relative addressing, return the
1752 offset into the raw INSN where the displacement to be adjusted is
1753 found. Returns 0 if the instruction doesn't use RIP-relative
1754 addressing. */
1755
1756 static int
1757 rip_relative_offset (struct amd64_insn *insn)
1758 {
1759 if (insn->modrm_offset != -1)
1760 {
1761 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1762
1763 if ((modrm & 0xc7) == 0x05)
1764 {
1765 /* The displacement is found right after the ModRM byte. */
1766 return insn->modrm_offset + 1;
1767 }
1768 }
1769
1770 return 0;
1771 }
1772
1773 static void
1774 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1775 {
1776 target_write_memory (*to, buf, len);
1777 *to += len;
1778 }
1779
1780 static void
1781 amd64_relocate_instruction (struct gdbarch *gdbarch,
1782 CORE_ADDR *to, CORE_ADDR oldloc)
1783 {
1784 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1785 int len = gdbarch_max_insn_length (gdbarch);
1786 /* Extra space for sentinels. */
1787 int fixup_sentinel_space = len;
1788 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1789 struct amd64_insn insn_details;
1790 int offset = 0;
1791 LONGEST rel32, newrel;
1792 gdb_byte *insn;
1793 int insn_length;
1794
1795 read_memory (oldloc, buf, len);
1796
1797 /* Set up the sentinel space so we don't have to worry about running
1798 off the end of the buffer. An excessive number of leading prefixes
1799 could otherwise cause this. */
1800 memset (buf + len, 0, fixup_sentinel_space);
1801
1802 insn = buf;
1803 amd64_get_insn_details (insn, &insn_details);
1804
1805 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1806
1807 /* Skip legacy instruction prefixes. */
1808 insn = amd64_skip_prefixes (insn);
1809
1810 /* Adjust calls with 32-bit relative addresses as push/jump, with
1811 the address pushed being the location where the original call in
1812 the user program would return to. */
1813 if (insn[0] == 0xe8)
1814 {
1815 gdb_byte push_buf[32];
1816 CORE_ADDR ret_addr;
1817 int i = 0;
1818
1819 /* Where "ret" in the original code will return to. */
1820 ret_addr = oldloc + insn_length;
1821
1822 /* If pushing an address higher than or equal to 0x80000000,
1823 avoid 'pushq', as that sign extends its 32-bit operand, which
1824 would be incorrect. */
1825 if (ret_addr <= 0x7fffffff)
1826 {
1827 push_buf[0] = 0x68; /* pushq $... */
1828 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1829 i = 5;
1830 }
1831 else
1832 {
1833 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1834 push_buf[i++] = 0x83;
1835 push_buf[i++] = 0xec;
1836 push_buf[i++] = 0x08;
1837
1838 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1839 push_buf[i++] = 0x04;
1840 push_buf[i++] = 0x24;
1841 store_unsigned_integer (&push_buf[i], 4, byte_order,
1842 ret_addr & 0xffffffff);
1843 i += 4;
1844
1845 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1846 push_buf[i++] = 0x44;
1847 push_buf[i++] = 0x24;
1848 push_buf[i++] = 0x04;
1849 store_unsigned_integer (&push_buf[i], 4, byte_order,
1850 ret_addr >> 32);
1851 i += 4;
1852 }
1853 gdb_assert (i <= sizeof (push_buf));
1854 /* Push the push. */
1855 append_insns (to, i, push_buf);
1856
1857 /* Convert the relative call to a relative jump. */
1858 insn[0] = 0xe9;
1859
1860 /* Adjust the destination offset. */
1861 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1862 newrel = (oldloc - *to) + rel32;
1863 store_signed_integer (insn + 1, 4, byte_order, newrel);
1864
1865 if (debug_displaced)
1866 fprintf_unfiltered (gdb_stdlog,
1867 "Adjusted insn rel32=%s at %s to"
1868 " rel32=%s at %s\n",
1869 hex_string (rel32), paddress (gdbarch, oldloc),
1870 hex_string (newrel), paddress (gdbarch, *to));
1871
1872 /* Write the adjusted jump into its displaced location. */
1873 append_insns (to, 5, insn);
1874 return;
1875 }
1876
1877 offset = rip_relative_offset (&insn_details);
1878 if (!offset)
1879 {
1880 /* Adjust jumps with 32-bit relative addresses. Calls are
1881 already handled above. */
1882 if (insn[0] == 0xe9)
1883 offset = 1;
1884 /* Adjust conditional jumps. */
1885 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1886 offset = 2;
1887 }
1888
1889 if (offset)
1890 {
1891 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1892 newrel = (oldloc - *to) + rel32;
1893 store_signed_integer (insn + offset, 4, byte_order, newrel);
1894 if (debug_displaced)
1895 fprintf_unfiltered (gdb_stdlog,
1896 "Adjusted insn rel32=%s at %s to"
1897 " rel32=%s at %s\n",
1898 hex_string (rel32), paddress (gdbarch, oldloc),
1899 hex_string (newrel), paddress (gdbarch, *to));
1900 }
1901
1902 /* Write the adjusted instruction into its displaced location. */
1903 append_insns (to, insn_length, buf);
1904 }
1905
1906 \f
1907 /* The maximum number of saved registers. This should include %rip. */
1908 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1909
1910 struct amd64_frame_cache
1911 {
1912 /* Base address. */
1913 CORE_ADDR base;
1914 int base_p;
1915 CORE_ADDR sp_offset;
1916 CORE_ADDR pc;
1917
1918 /* Saved registers. */
1919 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1920 CORE_ADDR saved_sp;
1921 int saved_sp_reg;
1922
1923 /* Do we have a frame? */
1924 int frameless_p;
1925 };
1926
1927 /* Initialize a frame cache. */
1928
1929 static void
1930 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1931 {
1932 int i;
1933
1934 /* Base address. */
1935 cache->base = 0;
1936 cache->base_p = 0;
1937 cache->sp_offset = -8;
1938 cache->pc = 0;
1939
1940 /* Saved registers. We initialize these to -1 since zero is a valid
1941 offset (that's where %rbp is supposed to be stored).
1942 The values start out as being offsets, and are later converted to
1943 addresses (at which point -1 is interpreted as an address, still meaning
1944 "invalid"). */
1945 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1946 cache->saved_regs[i] = -1;
1947 cache->saved_sp = 0;
1948 cache->saved_sp_reg = -1;
1949
1950 /* Frameless until proven otherwise. */
1951 cache->frameless_p = 1;
1952 }
1953
1954 /* Allocate and initialize a frame cache. */
1955
1956 static struct amd64_frame_cache *
1957 amd64_alloc_frame_cache (void)
1958 {
1959 struct amd64_frame_cache *cache;
1960
1961 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1962 amd64_init_frame_cache (cache);
1963 return cache;
1964 }
1965
1966 /* GCC 4.4 and later, can put code in the prologue to realign the
1967 stack pointer. Check whether PC points to such code, and update
1968 CACHE accordingly. Return the first instruction after the code
1969 sequence or CURRENT_PC, whichever is smaller. If we don't
1970 recognize the code, return PC. */
1971
1972 static CORE_ADDR
1973 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1974 struct amd64_frame_cache *cache)
1975 {
1976 /* There are 2 code sequences to re-align stack before the frame
1977 gets set up:
1978
1979 1. Use a caller-saved saved register:
1980
1981 leaq 8(%rsp), %reg
1982 andq $-XXX, %rsp
1983 pushq -8(%reg)
1984
1985 2. Use a callee-saved saved register:
1986
1987 pushq %reg
1988 leaq 16(%rsp), %reg
1989 andq $-XXX, %rsp
1990 pushq -8(%reg)
1991
1992 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1993
1994 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1995 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1996 */
1997
1998 gdb_byte buf[18];
1999 int reg, r;
2000 int offset, offset_and;
2001
2002 if (target_read_code (pc, buf, sizeof buf))
2003 return pc;
2004
2005 /* Check caller-saved saved register. The first instruction has
2006 to be "leaq 8(%rsp), %reg". */
2007 if ((buf[0] & 0xfb) == 0x48
2008 && buf[1] == 0x8d
2009 && buf[3] == 0x24
2010 && buf[4] == 0x8)
2011 {
2012 /* MOD must be binary 10 and R/M must be binary 100. */
2013 if ((buf[2] & 0xc7) != 0x44)
2014 return pc;
2015
2016 /* REG has register number. */
2017 reg = (buf[2] >> 3) & 7;
2018
2019 /* Check the REX.R bit. */
2020 if (buf[0] == 0x4c)
2021 reg += 8;
2022
2023 offset = 5;
2024 }
2025 else
2026 {
2027 /* Check callee-saved saved register. The first instruction
2028 has to be "pushq %reg". */
2029 reg = 0;
2030 if ((buf[0] & 0xf8) == 0x50)
2031 offset = 0;
2032 else if ((buf[0] & 0xf6) == 0x40
2033 && (buf[1] & 0xf8) == 0x50)
2034 {
2035 /* Check the REX.B bit. */
2036 if ((buf[0] & 1) != 0)
2037 reg = 8;
2038
2039 offset = 1;
2040 }
2041 else
2042 return pc;
2043
2044 /* Get register. */
2045 reg += buf[offset] & 0x7;
2046
2047 offset++;
2048
2049 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2050 if ((buf[offset] & 0xfb) != 0x48
2051 || buf[offset + 1] != 0x8d
2052 || buf[offset + 3] != 0x24
2053 || buf[offset + 4] != 0x10)
2054 return pc;
2055
2056 /* MOD must be binary 10 and R/M must be binary 100. */
2057 if ((buf[offset + 2] & 0xc7) != 0x44)
2058 return pc;
2059
2060 /* REG has register number. */
2061 r = (buf[offset + 2] >> 3) & 7;
2062
2063 /* Check the REX.R bit. */
2064 if (buf[offset] == 0x4c)
2065 r += 8;
2066
2067 /* Registers in pushq and leaq have to be the same. */
2068 if (reg != r)
2069 return pc;
2070
2071 offset += 5;
2072 }
2073
2074 /* Rigister can't be %rsp nor %rbp. */
2075 if (reg == 4 || reg == 5)
2076 return pc;
2077
2078 /* The next instruction has to be "andq $-XXX, %rsp". */
2079 if (buf[offset] != 0x48
2080 || buf[offset + 2] != 0xe4
2081 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2082 return pc;
2083
2084 offset_and = offset;
2085 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2086
2087 /* The next instruction has to be "pushq -8(%reg)". */
2088 r = 0;
2089 if (buf[offset] == 0xff)
2090 offset++;
2091 else if ((buf[offset] & 0xf6) == 0x40
2092 && buf[offset + 1] == 0xff)
2093 {
2094 /* Check the REX.B bit. */
2095 if ((buf[offset] & 0x1) != 0)
2096 r = 8;
2097 offset += 2;
2098 }
2099 else
2100 return pc;
2101
2102 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2103 01. */
2104 if (buf[offset + 1] != 0xf8
2105 || (buf[offset] & 0xf8) != 0x70)
2106 return pc;
2107
2108 /* R/M has register. */
2109 r += buf[offset] & 7;
2110
2111 /* Registers in leaq and pushq have to be the same. */
2112 if (reg != r)
2113 return pc;
2114
2115 if (current_pc > pc + offset_and)
2116 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2117
2118 return std::min (pc + offset + 2, current_pc);
2119 }
2120
2121 /* Similar to amd64_analyze_stack_align for x32. */
2122
2123 static CORE_ADDR
2124 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2125 struct amd64_frame_cache *cache)
2126 {
2127 /* There are 2 code sequences to re-align stack before the frame
2128 gets set up:
2129
2130 1. Use a caller-saved saved register:
2131
2132 leaq 8(%rsp), %reg
2133 andq $-XXX, %rsp
2134 pushq -8(%reg)
2135
2136 or
2137
2138 [addr32] leal 8(%rsp), %reg
2139 andl $-XXX, %esp
2140 [addr32] pushq -8(%reg)
2141
2142 2. Use a callee-saved saved register:
2143
2144 pushq %reg
2145 leaq 16(%rsp), %reg
2146 andq $-XXX, %rsp
2147 pushq -8(%reg)
2148
2149 or
2150
2151 pushq %reg
2152 [addr32] leal 16(%rsp), %reg
2153 andl $-XXX, %esp
2154 [addr32] pushq -8(%reg)
2155
2156 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2157
2158 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2159 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2160
2161 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2162
2163 0x83 0xe4 0xf0 andl $-16, %esp
2164 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2165 */
2166
2167 gdb_byte buf[19];
2168 int reg, r;
2169 int offset, offset_and;
2170
2171 if (target_read_memory (pc, buf, sizeof buf))
2172 return pc;
2173
2174 /* Skip optional addr32 prefix. */
2175 offset = buf[0] == 0x67 ? 1 : 0;
2176
2177 /* Check caller-saved saved register. The first instruction has
2178 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2179 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2180 && buf[offset + 1] == 0x8d
2181 && buf[offset + 3] == 0x24
2182 && buf[offset + 4] == 0x8)
2183 {
2184 /* MOD must be binary 10 and R/M must be binary 100. */
2185 if ((buf[offset + 2] & 0xc7) != 0x44)
2186 return pc;
2187
2188 /* REG has register number. */
2189 reg = (buf[offset + 2] >> 3) & 7;
2190
2191 /* Check the REX.R bit. */
2192 if ((buf[offset] & 0x4) != 0)
2193 reg += 8;
2194
2195 offset += 5;
2196 }
2197 else
2198 {
2199 /* Check callee-saved saved register. The first instruction
2200 has to be "pushq %reg". */
2201 reg = 0;
2202 if ((buf[offset] & 0xf6) == 0x40
2203 && (buf[offset + 1] & 0xf8) == 0x50)
2204 {
2205 /* Check the REX.B bit. */
2206 if ((buf[offset] & 1) != 0)
2207 reg = 8;
2208
2209 offset += 1;
2210 }
2211 else if ((buf[offset] & 0xf8) != 0x50)
2212 return pc;
2213
2214 /* Get register. */
2215 reg += buf[offset] & 0x7;
2216
2217 offset++;
2218
2219 /* Skip optional addr32 prefix. */
2220 if (buf[offset] == 0x67)
2221 offset++;
2222
2223 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2224 "leal 16(%rsp), %reg". */
2225 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2226 || buf[offset + 1] != 0x8d
2227 || buf[offset + 3] != 0x24
2228 || buf[offset + 4] != 0x10)
2229 return pc;
2230
2231 /* MOD must be binary 10 and R/M must be binary 100. */
2232 if ((buf[offset + 2] & 0xc7) != 0x44)
2233 return pc;
2234
2235 /* REG has register number. */
2236 r = (buf[offset + 2] >> 3) & 7;
2237
2238 /* Check the REX.R bit. */
2239 if ((buf[offset] & 0x4) != 0)
2240 r += 8;
2241
2242 /* Registers in pushq and leaq have to be the same. */
2243 if (reg != r)
2244 return pc;
2245
2246 offset += 5;
2247 }
2248
2249 /* Rigister can't be %rsp nor %rbp. */
2250 if (reg == 4 || reg == 5)
2251 return pc;
2252
2253 /* The next instruction may be "andq $-XXX, %rsp" or
2254 "andl $-XXX, %esp". */
2255 if (buf[offset] != 0x48)
2256 offset--;
2257
2258 if (buf[offset + 2] != 0xe4
2259 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2260 return pc;
2261
2262 offset_and = offset;
2263 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2264
2265 /* Skip optional addr32 prefix. */
2266 if (buf[offset] == 0x67)
2267 offset++;
2268
2269 /* The next instruction has to be "pushq -8(%reg)". */
2270 r = 0;
2271 if (buf[offset] == 0xff)
2272 offset++;
2273 else if ((buf[offset] & 0xf6) == 0x40
2274 && buf[offset + 1] == 0xff)
2275 {
2276 /* Check the REX.B bit. */
2277 if ((buf[offset] & 0x1) != 0)
2278 r = 8;
2279 offset += 2;
2280 }
2281 else
2282 return pc;
2283
2284 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2285 01. */
2286 if (buf[offset + 1] != 0xf8
2287 || (buf[offset] & 0xf8) != 0x70)
2288 return pc;
2289
2290 /* R/M has register. */
2291 r += buf[offset] & 7;
2292
2293 /* Registers in leaq and pushq have to be the same. */
2294 if (reg != r)
2295 return pc;
2296
2297 if (current_pc > pc + offset_and)
2298 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2299
2300 return std::min (pc + offset + 2, current_pc);
2301 }
2302
2303 /* Do a limited analysis of the prologue at PC and update CACHE
2304 accordingly. Bail out early if CURRENT_PC is reached. Return the
2305 address where the analysis stopped.
2306
2307 We will handle only functions beginning with:
2308
2309 pushq %rbp 0x55
2310 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2311
2312 or (for the X32 ABI):
2313
2314 pushq %rbp 0x55
2315 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2316
2317 Any function that doesn't start with one of these sequences will be
2318 assumed to have no prologue and thus no valid frame pointer in
2319 %rbp. */
2320
2321 static CORE_ADDR
2322 amd64_analyze_prologue (struct gdbarch *gdbarch,
2323 CORE_ADDR pc, CORE_ADDR current_pc,
2324 struct amd64_frame_cache *cache)
2325 {
2326 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2327 /* There are two variations of movq %rsp, %rbp. */
2328 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2329 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2330 /* Ditto for movl %esp, %ebp. */
2331 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2332 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2333
2334 gdb_byte buf[3];
2335 gdb_byte op;
2336
2337 if (current_pc <= pc)
2338 return current_pc;
2339
2340 if (gdbarch_ptr_bit (gdbarch) == 32)
2341 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2342 else
2343 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2344
2345 op = read_code_unsigned_integer (pc, 1, byte_order);
2346
2347 if (op == 0x55) /* pushq %rbp */
2348 {
2349 /* Take into account that we've executed the `pushq %rbp' that
2350 starts this instruction sequence. */
2351 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2352 cache->sp_offset += 8;
2353
2354 /* If that's all, return now. */
2355 if (current_pc <= pc + 1)
2356 return current_pc;
2357
2358 read_code (pc + 1, buf, 3);
2359
2360 /* Check for `movq %rsp, %rbp'. */
2361 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2362 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2363 {
2364 /* OK, we actually have a frame. */
2365 cache->frameless_p = 0;
2366 return pc + 4;
2367 }
2368
2369 /* For X32, also check for `movq %esp, %ebp'. */
2370 if (gdbarch_ptr_bit (gdbarch) == 32)
2371 {
2372 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2373 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2374 {
2375 /* OK, we actually have a frame. */
2376 cache->frameless_p = 0;
2377 return pc + 3;
2378 }
2379 }
2380
2381 return pc + 1;
2382 }
2383
2384 return pc;
2385 }
2386
2387 /* Work around false termination of prologue - GCC PR debug/48827.
2388
2389 START_PC is the first instruction of a function, PC is its minimal already
2390 determined advanced address. Function returns PC if it has nothing to do.
2391
2392 84 c0 test %al,%al
2393 74 23 je after
2394 <-- here is 0 lines advance - the false prologue end marker.
2395 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2396 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2397 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2398 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2399 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2400 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2401 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2402 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2403 after: */
2404
2405 static CORE_ADDR
2406 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2407 {
2408 struct symtab_and_line start_pc_sal, next_sal;
2409 gdb_byte buf[4 + 8 * 7];
2410 int offset, xmmreg;
2411
2412 if (pc == start_pc)
2413 return pc;
2414
2415 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2416 if (start_pc_sal.symtab == NULL
2417 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2418 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2419 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2420 return pc;
2421
2422 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2423 if (next_sal.line != start_pc_sal.line)
2424 return pc;
2425
2426 /* START_PC can be from overlayed memory, ignored here. */
2427 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2428 return pc;
2429
2430 /* test %al,%al */
2431 if (buf[0] != 0x84 || buf[1] != 0xc0)
2432 return pc;
2433 /* je AFTER */
2434 if (buf[2] != 0x74)
2435 return pc;
2436
2437 offset = 4;
2438 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2439 {
2440 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2441 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2442 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2443 return pc;
2444
2445 /* 0b01?????? */
2446 if ((buf[offset + 2] & 0xc0) == 0x40)
2447 {
2448 /* 8-bit displacement. */
2449 offset += 4;
2450 }
2451 /* 0b10?????? */
2452 else if ((buf[offset + 2] & 0xc0) == 0x80)
2453 {
2454 /* 32-bit displacement. */
2455 offset += 7;
2456 }
2457 else
2458 return pc;
2459 }
2460
2461 /* je AFTER */
2462 if (offset - 4 != buf[3])
2463 return pc;
2464
2465 return next_sal.end;
2466 }
2467
2468 /* Return PC of first real instruction. */
2469
2470 static CORE_ADDR
2471 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2472 {
2473 struct amd64_frame_cache cache;
2474 CORE_ADDR pc;
2475 CORE_ADDR func_addr;
2476
2477 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2478 {
2479 CORE_ADDR post_prologue_pc
2480 = skip_prologue_using_sal (gdbarch, func_addr);
2481 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2482
2483 /* Clang always emits a line note before the prologue and another
2484 one after. We trust clang to emit usable line notes. */
2485 if (post_prologue_pc
2486 && (cust != NULL
2487 && COMPUNIT_PRODUCER (cust) != NULL
2488 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2489 return std::max (start_pc, post_prologue_pc);
2490 }
2491
2492 amd64_init_frame_cache (&cache);
2493 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2494 &cache);
2495 if (cache.frameless_p)
2496 return start_pc;
2497
2498 return amd64_skip_xmm_prologue (pc, start_pc);
2499 }
2500 \f
2501
2502 /* Normal frames. */
2503
2504 static void
2505 amd64_frame_cache_1 (struct frame_info *this_frame,
2506 struct amd64_frame_cache *cache)
2507 {
2508 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2509 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2510 gdb_byte buf[8];
2511 int i;
2512
2513 cache->pc = get_frame_func (this_frame);
2514 if (cache->pc != 0)
2515 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2516 cache);
2517
2518 if (cache->frameless_p)
2519 {
2520 /* We didn't find a valid frame. If we're at the start of a
2521 function, or somewhere half-way its prologue, the function's
2522 frame probably hasn't been fully setup yet. Try to
2523 reconstruct the base address for the stack frame by looking
2524 at the stack pointer. For truly "frameless" functions this
2525 might work too. */
2526
2527 if (cache->saved_sp_reg != -1)
2528 {
2529 /* Stack pointer has been saved. */
2530 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2531 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2532
2533 /* We're halfway aligning the stack. */
2534 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2535 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2536
2537 /* This will be added back below. */
2538 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2539 }
2540 else
2541 {
2542 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2543 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2544 + cache->sp_offset;
2545 }
2546 }
2547 else
2548 {
2549 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2550 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2551 }
2552
2553 /* Now that we have the base address for the stack frame we can
2554 calculate the value of %rsp in the calling frame. */
2555 cache->saved_sp = cache->base + 16;
2556
2557 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2558 frame we find it at the same offset from the reconstructed base
2559 address. If we're halfway aligning the stack, %rip is handled
2560 differently (see above). */
2561 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2562 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2563
2564 /* Adjust all the saved registers such that they contain addresses
2565 instead of offsets. */
2566 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2567 if (cache->saved_regs[i] != -1)
2568 cache->saved_regs[i] += cache->base;
2569
2570 cache->base_p = 1;
2571 }
2572
2573 static struct amd64_frame_cache *
2574 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2575 {
2576 struct amd64_frame_cache *cache;
2577
2578 if (*this_cache)
2579 return (struct amd64_frame_cache *) *this_cache;
2580
2581 cache = amd64_alloc_frame_cache ();
2582 *this_cache = cache;
2583
2584 TRY
2585 {
2586 amd64_frame_cache_1 (this_frame, cache);
2587 }
2588 CATCH (ex, RETURN_MASK_ERROR)
2589 {
2590 if (ex.error != NOT_AVAILABLE_ERROR)
2591 throw_exception (ex);
2592 }
2593 END_CATCH
2594
2595 return cache;
2596 }
2597
2598 static enum unwind_stop_reason
2599 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2600 void **this_cache)
2601 {
2602 struct amd64_frame_cache *cache =
2603 amd64_frame_cache (this_frame, this_cache);
2604
2605 if (!cache->base_p)
2606 return UNWIND_UNAVAILABLE;
2607
2608 /* This marks the outermost frame. */
2609 if (cache->base == 0)
2610 return UNWIND_OUTERMOST;
2611
2612 return UNWIND_NO_REASON;
2613 }
2614
2615 static void
2616 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2617 struct frame_id *this_id)
2618 {
2619 struct amd64_frame_cache *cache =
2620 amd64_frame_cache (this_frame, this_cache);
2621
2622 if (!cache->base_p)
2623 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2624 else if (cache->base == 0)
2625 {
2626 /* This marks the outermost frame. */
2627 return;
2628 }
2629 else
2630 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2631 }
2632
2633 static struct value *
2634 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2635 int regnum)
2636 {
2637 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2638 struct amd64_frame_cache *cache =
2639 amd64_frame_cache (this_frame, this_cache);
2640
2641 gdb_assert (regnum >= 0);
2642
2643 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2644 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2645
2646 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2647 return frame_unwind_got_memory (this_frame, regnum,
2648 cache->saved_regs[regnum]);
2649
2650 return frame_unwind_got_register (this_frame, regnum, regnum);
2651 }
2652
2653 static const struct frame_unwind amd64_frame_unwind =
2654 {
2655 NORMAL_FRAME,
2656 amd64_frame_unwind_stop_reason,
2657 amd64_frame_this_id,
2658 amd64_frame_prev_register,
2659 NULL,
2660 default_frame_sniffer
2661 };
2662 \f
2663 /* Generate a bytecode expression to get the value of the saved PC. */
2664
2665 static void
2666 amd64_gen_return_address (struct gdbarch *gdbarch,
2667 struct agent_expr *ax, struct axs_value *value,
2668 CORE_ADDR scope)
2669 {
2670 /* The following sequence assumes the traditional use of the base
2671 register. */
2672 ax_reg (ax, AMD64_RBP_REGNUM);
2673 ax_const_l (ax, 8);
2674 ax_simple (ax, aop_add);
2675 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2676 value->kind = axs_lvalue_memory;
2677 }
2678 \f
2679
2680 /* Signal trampolines. */
2681
2682 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2683 64-bit variants. This would require using identical frame caches
2684 on both platforms. */
2685
2686 static struct amd64_frame_cache *
2687 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2688 {
2689 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2690 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2691 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2692 struct amd64_frame_cache *cache;
2693 CORE_ADDR addr;
2694 gdb_byte buf[8];
2695 int i;
2696
2697 if (*this_cache)
2698 return (struct amd64_frame_cache *) *this_cache;
2699
2700 cache = amd64_alloc_frame_cache ();
2701
2702 TRY
2703 {
2704 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2705 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2706
2707 addr = tdep->sigcontext_addr (this_frame);
2708 gdb_assert (tdep->sc_reg_offset);
2709 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2710 for (i = 0; i < tdep->sc_num_regs; i++)
2711 if (tdep->sc_reg_offset[i] != -1)
2712 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2713
2714 cache->base_p = 1;
2715 }
2716 CATCH (ex, RETURN_MASK_ERROR)
2717 {
2718 if (ex.error != NOT_AVAILABLE_ERROR)
2719 throw_exception (ex);
2720 }
2721 END_CATCH
2722
2723 *this_cache = cache;
2724 return cache;
2725 }
2726
2727 static enum unwind_stop_reason
2728 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2729 void **this_cache)
2730 {
2731 struct amd64_frame_cache *cache =
2732 amd64_sigtramp_frame_cache (this_frame, this_cache);
2733
2734 if (!cache->base_p)
2735 return UNWIND_UNAVAILABLE;
2736
2737 return UNWIND_NO_REASON;
2738 }
2739
2740 static void
2741 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2742 void **this_cache, struct frame_id *this_id)
2743 {
2744 struct amd64_frame_cache *cache =
2745 amd64_sigtramp_frame_cache (this_frame, this_cache);
2746
2747 if (!cache->base_p)
2748 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2749 else if (cache->base == 0)
2750 {
2751 /* This marks the outermost frame. */
2752 return;
2753 }
2754 else
2755 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2756 }
2757
2758 static struct value *
2759 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2760 void **this_cache, int regnum)
2761 {
2762 /* Make sure we've initialized the cache. */
2763 amd64_sigtramp_frame_cache (this_frame, this_cache);
2764
2765 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2766 }
2767
2768 static int
2769 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2770 struct frame_info *this_frame,
2771 void **this_cache)
2772 {
2773 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2774
2775 /* We shouldn't even bother if we don't have a sigcontext_addr
2776 handler. */
2777 if (tdep->sigcontext_addr == NULL)
2778 return 0;
2779
2780 if (tdep->sigtramp_p != NULL)
2781 {
2782 if (tdep->sigtramp_p (this_frame))
2783 return 1;
2784 }
2785
2786 if (tdep->sigtramp_start != 0)
2787 {
2788 CORE_ADDR pc = get_frame_pc (this_frame);
2789
2790 gdb_assert (tdep->sigtramp_end != 0);
2791 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2792 return 1;
2793 }
2794
2795 return 0;
2796 }
2797
2798 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2799 {
2800 SIGTRAMP_FRAME,
2801 amd64_sigtramp_frame_unwind_stop_reason,
2802 amd64_sigtramp_frame_this_id,
2803 amd64_sigtramp_frame_prev_register,
2804 NULL,
2805 amd64_sigtramp_frame_sniffer
2806 };
2807 \f
2808
2809 static CORE_ADDR
2810 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2811 {
2812 struct amd64_frame_cache *cache =
2813 amd64_frame_cache (this_frame, this_cache);
2814
2815 return cache->base;
2816 }
2817
2818 static const struct frame_base amd64_frame_base =
2819 {
2820 &amd64_frame_unwind,
2821 amd64_frame_base_address,
2822 amd64_frame_base_address,
2823 amd64_frame_base_address
2824 };
2825
2826 /* Normal frames, but in a function epilogue. */
2827
2828 /* Implement the stack_frame_destroyed_p gdbarch method.
2829
2830 The epilogue is defined here as the 'ret' instruction, which will
2831 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2832 the function's stack frame. */
2833
2834 static int
2835 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2836 {
2837 gdb_byte insn;
2838 struct compunit_symtab *cust;
2839
2840 cust = find_pc_compunit_symtab (pc);
2841 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2842 return 0;
2843
2844 if (target_read_memory (pc, &insn, 1))
2845 return 0; /* Can't read memory at pc. */
2846
2847 if (insn != 0xc3) /* 'ret' instruction. */
2848 return 0;
2849
2850 return 1;
2851 }
2852
2853 static int
2854 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2855 struct frame_info *this_frame,
2856 void **this_prologue_cache)
2857 {
2858 if (frame_relative_level (this_frame) == 0)
2859 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2860 get_frame_pc (this_frame));
2861 else
2862 return 0;
2863 }
2864
2865 static struct amd64_frame_cache *
2866 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2867 {
2868 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2869 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2870 struct amd64_frame_cache *cache;
2871 gdb_byte buf[8];
2872
2873 if (*this_cache)
2874 return (struct amd64_frame_cache *) *this_cache;
2875
2876 cache = amd64_alloc_frame_cache ();
2877 *this_cache = cache;
2878
2879 TRY
2880 {
2881 /* Cache base will be %esp plus cache->sp_offset (-8). */
2882 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2883 cache->base = extract_unsigned_integer (buf, 8,
2884 byte_order) + cache->sp_offset;
2885
2886 /* Cache pc will be the frame func. */
2887 cache->pc = get_frame_pc (this_frame);
2888
2889 /* The saved %esp will be at cache->base plus 16. */
2890 cache->saved_sp = cache->base + 16;
2891
2892 /* The saved %eip will be at cache->base plus 8. */
2893 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2894
2895 cache->base_p = 1;
2896 }
2897 CATCH (ex, RETURN_MASK_ERROR)
2898 {
2899 if (ex.error != NOT_AVAILABLE_ERROR)
2900 throw_exception (ex);
2901 }
2902 END_CATCH
2903
2904 return cache;
2905 }
2906
2907 static enum unwind_stop_reason
2908 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2909 void **this_cache)
2910 {
2911 struct amd64_frame_cache *cache
2912 = amd64_epilogue_frame_cache (this_frame, this_cache);
2913
2914 if (!cache->base_p)
2915 return UNWIND_UNAVAILABLE;
2916
2917 return UNWIND_NO_REASON;
2918 }
2919
2920 static void
2921 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2922 void **this_cache,
2923 struct frame_id *this_id)
2924 {
2925 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2926 this_cache);
2927
2928 if (!cache->base_p)
2929 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2930 else
2931 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2932 }
2933
2934 static const struct frame_unwind amd64_epilogue_frame_unwind =
2935 {
2936 NORMAL_FRAME,
2937 amd64_epilogue_frame_unwind_stop_reason,
2938 amd64_epilogue_frame_this_id,
2939 amd64_frame_prev_register,
2940 NULL,
2941 amd64_epilogue_frame_sniffer
2942 };
2943
2944 static struct frame_id
2945 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2946 {
2947 CORE_ADDR fp;
2948
2949 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2950
2951 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2952 }
2953
2954 /* 16 byte align the SP per frame requirements. */
2955
2956 static CORE_ADDR
2957 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2958 {
2959 return sp & -(CORE_ADDR)16;
2960 }
2961 \f
2962
2963 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2964 in the floating-point register set REGSET to register cache
2965 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2966
2967 static void
2968 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2969 int regnum, const void *fpregs, size_t len)
2970 {
2971 struct gdbarch *gdbarch = regcache->arch ();
2972 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2973
2974 gdb_assert (len >= tdep->sizeof_fpregset);
2975 amd64_supply_fxsave (regcache, regnum, fpregs);
2976 }
2977
2978 /* Collect register REGNUM from the register cache REGCACHE and store
2979 it in the buffer specified by FPREGS and LEN as described by the
2980 floating-point register set REGSET. If REGNUM is -1, do this for
2981 all registers in REGSET. */
2982
2983 static void
2984 amd64_collect_fpregset (const struct regset *regset,
2985 const struct regcache *regcache,
2986 int regnum, void *fpregs, size_t len)
2987 {
2988 struct gdbarch *gdbarch = regcache->arch ();
2989 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2990
2991 gdb_assert (len >= tdep->sizeof_fpregset);
2992 amd64_collect_fxsave (regcache, regnum, fpregs);
2993 }
2994
2995 const struct regset amd64_fpregset =
2996 {
2997 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2998 };
2999 \f
3000
3001 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
3002 %rdi. We expect its value to be a pointer to the jmp_buf structure
3003 from which we extract the address that we will land at. This
3004 address is copied into PC. This routine returns non-zero on
3005 success. */
3006
3007 static int
3008 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
3009 {
3010 gdb_byte buf[8];
3011 CORE_ADDR jb_addr;
3012 struct gdbarch *gdbarch = get_frame_arch (frame);
3013 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
3014 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
3015
3016 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3017 longjmp will land. */
3018 if (jb_pc_offset == -1)
3019 return 0;
3020
3021 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
3022 jb_addr= extract_typed_address
3023 (buf, builtin_type (gdbarch)->builtin_data_ptr);
3024 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3025 return 0;
3026
3027 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
3028
3029 return 1;
3030 }
3031
3032 static const int amd64_record_regmap[] =
3033 {
3034 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3035 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3036 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3037 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3038 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3039 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3040 };
3041
3042 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
3043
3044 static bool
3045 amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3046 {
3047 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3048 AMD64_RAX_REGNUM,
3049 AMD64_RIP_REGNUM);
3050 }
3051
3052 void
3053 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3054 const target_desc *default_tdesc)
3055 {
3056 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3057 const struct target_desc *tdesc = info.target_desc;
3058 static const char *const stap_integer_prefixes[] = { "$", NULL };
3059 static const char *const stap_register_prefixes[] = { "%", NULL };
3060 static const char *const stap_register_indirection_prefixes[] = { "(",
3061 NULL };
3062 static const char *const stap_register_indirection_suffixes[] = { ")",
3063 NULL };
3064
3065 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3066 floating-point registers. */
3067 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3068 tdep->fpregset = &amd64_fpregset;
3069
3070 if (! tdesc_has_registers (tdesc))
3071 tdesc = default_tdesc;
3072 tdep->tdesc = tdesc;
3073
3074 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3075 tdep->register_names = amd64_register_names;
3076
3077 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3078 {
3079 tdep->zmmh_register_names = amd64_zmmh_names;
3080 tdep->k_register_names = amd64_k_names;
3081 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3082 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3083
3084 tdep->num_zmm_regs = 32;
3085 tdep->num_xmm_avx512_regs = 16;
3086 tdep->num_ymm_avx512_regs = 16;
3087
3088 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3089 tdep->k0_regnum = AMD64_K0_REGNUM;
3090 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3091 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3092 }
3093
3094 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3095 {
3096 tdep->ymmh_register_names = amd64_ymmh_names;
3097 tdep->num_ymm_regs = 16;
3098 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3099 }
3100
3101 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3102 {
3103 tdep->mpx_register_names = amd64_mpx_names;
3104 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3105 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3106 }
3107
3108 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3109 {
3110 tdep->fsbase_regnum = AMD64_FSBASE_REGNUM;
3111 }
3112
3113 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3114 {
3115 tdep->pkeys_register_names = amd64_pkeys_names;
3116 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3117 tdep->num_pkeys_regs = 1;
3118 }
3119
3120 tdep->num_byte_regs = 20;
3121 tdep->num_word_regs = 16;
3122 tdep->num_dword_regs = 16;
3123 /* Avoid wiring in the MMX registers for now. */
3124 tdep->num_mmx_regs = 0;
3125
3126 set_gdbarch_pseudo_register_read_value (gdbarch,
3127 amd64_pseudo_register_read_value);
3128 set_gdbarch_pseudo_register_write (gdbarch,
3129 amd64_pseudo_register_write);
3130 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3131 amd64_ax_pseudo_register_collect);
3132
3133 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3134
3135 /* AMD64 has an FPU and 16 SSE registers. */
3136 tdep->st0_regnum = AMD64_ST0_REGNUM;
3137 tdep->num_xmm_regs = 16;
3138
3139 /* This is what all the fuss is about. */
3140 set_gdbarch_long_bit (gdbarch, 64);
3141 set_gdbarch_long_long_bit (gdbarch, 64);
3142 set_gdbarch_ptr_bit (gdbarch, 64);
3143
3144 /* In contrast to the i386, on AMD64 a `long double' actually takes
3145 up 128 bits, even though it's still based on the i387 extended
3146 floating-point format which has only 80 significant bits. */
3147 set_gdbarch_long_double_bit (gdbarch, 128);
3148
3149 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3150
3151 /* Register numbers of various important registers. */
3152 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3153 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3154 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3155 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3156
3157 /* The "default" register numbering scheme for AMD64 is referred to
3158 as the "DWARF Register Number Mapping" in the System V psABI.
3159 The preferred debugging format for all known AMD64 targets is
3160 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3161 DWARF-1), but we provide the same mapping just in case. This
3162 mapping is also used for stabs, which GCC does support. */
3163 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3164 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3165
3166 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3167 be in use on any of the supported AMD64 targets. */
3168
3169 /* Call dummy code. */
3170 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3171 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3172 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3173
3174 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3175 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3176 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3177
3178 set_gdbarch_return_value (gdbarch, amd64_return_value);
3179
3180 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3181
3182 tdep->record_regmap = amd64_record_regmap;
3183
3184 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3185
3186 /* Hook the function epilogue frame unwinder. This unwinder is
3187 appended to the list first, so that it supercedes the other
3188 unwinders in function epilogues. */
3189 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3190
3191 /* Hook the prologue-based frame unwinders. */
3192 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3193 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3194 frame_base_set_default (gdbarch, &amd64_frame_base);
3195
3196 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3197
3198 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3199
3200 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3201
3202 /* SystemTap variables and functions. */
3203 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3204 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3205 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3206 stap_register_indirection_prefixes);
3207 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3208 stap_register_indirection_suffixes);
3209 set_gdbarch_stap_is_single_operand (gdbarch,
3210 i386_stap_is_single_operand);
3211 set_gdbarch_stap_parse_special_token (gdbarch,
3212 i386_stap_parse_special_token);
3213 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3214 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3215 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3216
3217 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3218 amd64_in_indirect_branch_thunk);
3219 }
3220
3221 /* Initialize ARCH for x86-64, no osabi. */
3222
3223 static void
3224 amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3225 {
3226 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
3227 true));
3228 }
3229
3230 static struct type *
3231 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3232 {
3233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3234
3235 switch (regnum - tdep->eax_regnum)
3236 {
3237 case AMD64_RBP_REGNUM: /* %ebp */
3238 case AMD64_RSP_REGNUM: /* %esp */
3239 return builtin_type (gdbarch)->builtin_data_ptr;
3240 case AMD64_RIP_REGNUM: /* %eip */
3241 return builtin_type (gdbarch)->builtin_func_ptr;
3242 }
3243
3244 return i386_pseudo_register_type (gdbarch, regnum);
3245 }
3246
3247 void
3248 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3249 const target_desc *default_tdesc)
3250 {
3251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3252
3253 amd64_init_abi (info, gdbarch, default_tdesc);
3254
3255 tdep->num_dword_regs = 17;
3256 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3257
3258 set_gdbarch_long_bit (gdbarch, 32);
3259 set_gdbarch_ptr_bit (gdbarch, 32);
3260 }
3261
3262 /* Initialize ARCH for x64-32, no osabi. */
3263
3264 static void
3265 amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3266 {
3267 amd64_x32_init_abi (info, arch,
3268 amd64_target_description (X86_XSTATE_SSE_MASK, true));
3269 }
3270
3271 /* Return the target description for a specified XSAVE feature mask. */
3272
3273 const struct target_desc *
3274 amd64_target_description (uint64_t xcr0, bool segments)
3275 {
3276 static target_desc *amd64_tdescs \
3277 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
3278 target_desc **tdesc;
3279
3280 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3281 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3282 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3283 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
3284 [segments ? 1 : 0];
3285
3286 if (*tdesc == NULL)
3287 *tdesc = amd64_create_target_description (xcr0, false, false,
3288 segments);
3289
3290 return *tdesc;
3291 }
3292
3293 void
3294 _initialize_amd64_tdep (void)
3295 {
3296 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
3297 amd64_none_init_abi);
3298 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
3299 amd64_x32_none_init_abi);
3300
3301 #if GDB_SELF_TEST
3302 struct
3303 {
3304 const char *xml;
3305 uint64_t mask;
3306 } xml_masks[] = {
3307 { "i386/amd64.xml", X86_XSTATE_SSE_MASK },
3308 { "i386/amd64-avx.xml", X86_XSTATE_AVX_MASK },
3309 { "i386/amd64-mpx.xml", X86_XSTATE_MPX_MASK },
3310 { "i386/amd64-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
3311 { "i386/amd64-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
3312 { "i386/amd64-avx-mpx-avx512-pku.xml",
3313 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
3314 };
3315
3316 for (auto &a : xml_masks)
3317 {
3318 auto tdesc = amd64_target_description (a.mask, true);
3319
3320 selftests::record_xml_tdesc (a.xml, tdesc);
3321 }
3322 #endif /* GDB_SELF_TEST */
3323 }
3324 \f
3325
3326 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3327 sense that the instruction pointer and data pointer are simply
3328 64-bit offsets into the code segment and the data segment instead
3329 of a selector offset pair. The functions below store the upper 32
3330 bits of these pointers (instead of just the 16-bits of the segment
3331 selector). */
3332
3333 /* Fill register REGNUM in REGCACHE with the appropriate
3334 floating-point or SSE register value from *FXSAVE. If REGNUM is
3335 -1, do this for all registers. This function masks off any of the
3336 reserved bits in *FXSAVE. */
3337
3338 void
3339 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3340 const void *fxsave)
3341 {
3342 struct gdbarch *gdbarch = regcache->arch ();
3343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3344
3345 i387_supply_fxsave (regcache, regnum, fxsave);
3346
3347 if (fxsave
3348 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3349 {
3350 const gdb_byte *regs = (const gdb_byte *) fxsave;
3351
3352 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3353 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3354 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3355 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3356 }
3357 }
3358
3359 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3360
3361 void
3362 amd64_supply_xsave (struct regcache *regcache, int regnum,
3363 const void *xsave)
3364 {
3365 struct gdbarch *gdbarch = regcache->arch ();
3366 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3367
3368 i387_supply_xsave (regcache, regnum, xsave);
3369
3370 if (xsave
3371 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3372 {
3373 const gdb_byte *regs = (const gdb_byte *) xsave;
3374 ULONGEST clear_bv;
3375
3376 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
3377
3378 /* If the FISEG and FOSEG registers have not been initialised yet
3379 (their CLEAR_BV bit is set) then their default values of zero will
3380 have already been setup by I387_SUPPLY_XSAVE. */
3381 if (!(clear_bv & X86_XSTATE_X87))
3382 {
3383 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3384 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3385 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3386 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3387 }
3388 }
3389 }
3390
3391 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3392 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3393 all registers. This function doesn't touch any of the reserved
3394 bits in *FXSAVE. */
3395
3396 void
3397 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3398 void *fxsave)
3399 {
3400 struct gdbarch *gdbarch = regcache->arch ();
3401 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3402 gdb_byte *regs = (gdb_byte *) fxsave;
3403
3404 i387_collect_fxsave (regcache, regnum, fxsave);
3405
3406 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3407 {
3408 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3409 regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
3410 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3411 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
3412 }
3413 }
3414
3415 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3416
3417 void
3418 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3419 void *xsave, int gcore)
3420 {
3421 struct gdbarch *gdbarch = regcache->arch ();
3422 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3423 gdb_byte *regs = (gdb_byte *) xsave;
3424
3425 i387_collect_xsave (regcache, regnum, xsave, gcore);
3426
3427 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3428 {
3429 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3430 regcache->raw_collect (I387_FISEG_REGNUM (tdep),
3431 regs + 12);
3432 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3433 regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
3434 regs + 20);
3435 }
3436 }
This page took 0.194568 seconds and 5 git commands to generate.