GDB copyright headers update after running GDB's copyright.py script.
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2016 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "x86-xstate.h"
43
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46 #include "features/i386/amd64-mpx.c"
47 #include "features/i386/amd64-avx512.c"
48
49 #include "features/i386/x32.c"
50 #include "features/i386/x32-avx.c"
51 #include "features/i386/x32-avx512.c"
52
53 #include "ax.h"
54 #include "ax-gdb.h"
55
56 /* Note that the AMD64 architecture was previously known as x86-64.
57 The latter is (forever) engraved into the canonical system name as
58 returned by config.guess, and used as the name for the AMD64 port
59 of GNU/Linux. The BSD's have renamed their ports to amd64; they
60 don't like to shout. For GDB we prefer the amd64_-prefix over the
61 x86_64_-prefix since it's so much easier to type. */
62
63 /* Register information. */
64
65 static const char *amd64_register_names[] =
66 {
67 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
68
69 /* %r8 is indeed register number 8. */
70 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
71 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
72
73 /* %st0 is register number 24. */
74 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
75 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
76
77 /* %xmm0 is register number 40. */
78 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
79 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
80 "mxcsr",
81 };
82
83 static const char *amd64_ymm_names[] =
84 {
85 "ymm0", "ymm1", "ymm2", "ymm3",
86 "ymm4", "ymm5", "ymm6", "ymm7",
87 "ymm8", "ymm9", "ymm10", "ymm11",
88 "ymm12", "ymm13", "ymm14", "ymm15"
89 };
90
91 static const char *amd64_ymm_avx512_names[] =
92 {
93 "ymm16", "ymm17", "ymm18", "ymm19",
94 "ymm20", "ymm21", "ymm22", "ymm23",
95 "ymm24", "ymm25", "ymm26", "ymm27",
96 "ymm28", "ymm29", "ymm30", "ymm31"
97 };
98
99 static const char *amd64_ymmh_names[] =
100 {
101 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
102 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
103 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
104 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
105 };
106
107 static const char *amd64_ymmh_avx512_names[] =
108 {
109 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
110 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
111 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
112 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
113 };
114
115 static const char *amd64_mpx_names[] =
116 {
117 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
118 };
119
120 static const char *amd64_k_names[] =
121 {
122 "k0", "k1", "k2", "k3",
123 "k4", "k5", "k6", "k7"
124 };
125
126 static const char *amd64_zmmh_names[] =
127 {
128 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
129 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
130 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
131 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
132 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
133 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
134 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
135 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
136 };
137
138 static const char *amd64_zmm_names[] =
139 {
140 "zmm0", "zmm1", "zmm2", "zmm3",
141 "zmm4", "zmm5", "zmm6", "zmm7",
142 "zmm8", "zmm9", "zmm10", "zmm11",
143 "zmm12", "zmm13", "zmm14", "zmm15",
144 "zmm16", "zmm17", "zmm18", "zmm19",
145 "zmm20", "zmm21", "zmm22", "zmm23",
146 "zmm24", "zmm25", "zmm26", "zmm27",
147 "zmm28", "zmm29", "zmm30", "zmm31"
148 };
149
150 static const char *amd64_xmm_avx512_names[] = {
151 "xmm16", "xmm17", "xmm18", "xmm19",
152 "xmm20", "xmm21", "xmm22", "xmm23",
153 "xmm24", "xmm25", "xmm26", "xmm27",
154 "xmm28", "xmm29", "xmm30", "xmm31"
155 };
156
157 /* DWARF Register Number Mapping as defined in the System V psABI,
158 section 3.6. */
159
160 static int amd64_dwarf_regmap[] =
161 {
162 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
163 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
164 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
165 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
166
167 /* Frame Pointer Register RBP. */
168 AMD64_RBP_REGNUM,
169
170 /* Stack Pointer Register RSP. */
171 AMD64_RSP_REGNUM,
172
173 /* Extended Integer Registers 8 - 15. */
174 AMD64_R8_REGNUM, /* %r8 */
175 AMD64_R9_REGNUM, /* %r9 */
176 AMD64_R10_REGNUM, /* %r10 */
177 AMD64_R11_REGNUM, /* %r11 */
178 AMD64_R12_REGNUM, /* %r12 */
179 AMD64_R13_REGNUM, /* %r13 */
180 AMD64_R14_REGNUM, /* %r14 */
181 AMD64_R15_REGNUM, /* %r15 */
182
183 /* Return Address RA. Mapped to RIP. */
184 AMD64_RIP_REGNUM,
185
186 /* SSE Registers 0 - 7. */
187 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
188 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
189 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
190 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
191
192 /* Extended SSE Registers 8 - 15. */
193 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
194 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
195 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
196 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
197
198 /* Floating Point Registers 0-7. */
199 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
200 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
201 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
202 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
203
204 /* MMX Registers 0 - 7.
205 We have to handle those registers specifically, as their register
206 number within GDB depends on the target (or they may even not be
207 available at all). */
208 -1, -1, -1, -1, -1, -1, -1, -1,
209
210 /* Control and Status Flags Register. */
211 AMD64_EFLAGS_REGNUM,
212
213 /* Selector Registers. */
214 AMD64_ES_REGNUM,
215 AMD64_CS_REGNUM,
216 AMD64_SS_REGNUM,
217 AMD64_DS_REGNUM,
218 AMD64_FS_REGNUM,
219 AMD64_GS_REGNUM,
220 -1,
221 -1,
222
223 /* Segment Base Address Registers. */
224 -1,
225 -1,
226 -1,
227 -1,
228
229 /* Special Selector Registers. */
230 -1,
231 -1,
232
233 /* Floating Point Control Registers. */
234 AMD64_MXCSR_REGNUM,
235 AMD64_FCTRL_REGNUM,
236 AMD64_FSTAT_REGNUM
237 };
238
239 static const int amd64_dwarf_regmap_len =
240 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
241
242 /* Convert DWARF register number REG to the appropriate register
243 number used by GDB. */
244
245 static int
246 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
247 {
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249 int ymm0_regnum = tdep->ymm0_regnum;
250 int regnum = -1;
251
252 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
253 regnum = amd64_dwarf_regmap[reg];
254
255 if (ymm0_regnum >= 0
256 && i386_xmm_regnum_p (gdbarch, regnum))
257 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
258
259 return regnum;
260 }
261
262 /* Map architectural register numbers to gdb register numbers. */
263
264 static const int amd64_arch_regmap[16] =
265 {
266 AMD64_RAX_REGNUM, /* %rax */
267 AMD64_RCX_REGNUM, /* %rcx */
268 AMD64_RDX_REGNUM, /* %rdx */
269 AMD64_RBX_REGNUM, /* %rbx */
270 AMD64_RSP_REGNUM, /* %rsp */
271 AMD64_RBP_REGNUM, /* %rbp */
272 AMD64_RSI_REGNUM, /* %rsi */
273 AMD64_RDI_REGNUM, /* %rdi */
274 AMD64_R8_REGNUM, /* %r8 */
275 AMD64_R9_REGNUM, /* %r9 */
276 AMD64_R10_REGNUM, /* %r10 */
277 AMD64_R11_REGNUM, /* %r11 */
278 AMD64_R12_REGNUM, /* %r12 */
279 AMD64_R13_REGNUM, /* %r13 */
280 AMD64_R14_REGNUM, /* %r14 */
281 AMD64_R15_REGNUM /* %r15 */
282 };
283
284 static const int amd64_arch_regmap_len =
285 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
286
287 /* Convert architectural register number REG to the appropriate register
288 number used by GDB. */
289
290 static int
291 amd64_arch_reg_to_regnum (int reg)
292 {
293 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
294
295 return amd64_arch_regmap[reg];
296 }
297
298 /* Register names for byte pseudo-registers. */
299
300 static const char *amd64_byte_names[] =
301 {
302 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
303 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
304 "ah", "bh", "ch", "dh"
305 };
306
307 /* Number of lower byte registers. */
308 #define AMD64_NUM_LOWER_BYTE_REGS 16
309
310 /* Register names for word pseudo-registers. */
311
312 static const char *amd64_word_names[] =
313 {
314 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
315 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
316 };
317
318 /* Register names for dword pseudo-registers. */
319
320 static const char *amd64_dword_names[] =
321 {
322 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
323 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
324 "eip"
325 };
326
327 /* Return the name of register REGNUM. */
328
329 static const char *
330 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333 if (i386_byte_regnum_p (gdbarch, regnum))
334 return amd64_byte_names[regnum - tdep->al_regnum];
335 else if (i386_zmm_regnum_p (gdbarch, regnum))
336 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
337 else if (i386_ymm_regnum_p (gdbarch, regnum))
338 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
339 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
340 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
341 else if (i386_word_regnum_p (gdbarch, regnum))
342 return amd64_word_names[regnum - tdep->ax_regnum];
343 else if (i386_dword_regnum_p (gdbarch, regnum))
344 return amd64_dword_names[regnum - tdep->eax_regnum];
345 else
346 return i386_pseudo_register_name (gdbarch, regnum);
347 }
348
349 static struct value *
350 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
351 struct regcache *regcache,
352 int regnum)
353 {
354 gdb_byte raw_buf[MAX_REGISTER_SIZE];
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356 enum register_status status;
357 struct value *result_value;
358 gdb_byte *buf;
359
360 result_value = allocate_value (register_type (gdbarch, regnum));
361 VALUE_LVAL (result_value) = lval_register;
362 VALUE_REGNUM (result_value) = regnum;
363 buf = value_contents_raw (result_value);
364
365 if (i386_byte_regnum_p (gdbarch, regnum))
366 {
367 int gpnum = regnum - tdep->al_regnum;
368
369 /* Extract (always little endian). */
370 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
371 {
372 /* Special handling for AH, BH, CH, DH. */
373 status = regcache_raw_read (regcache,
374 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
375 raw_buf);
376 if (status == REG_VALID)
377 memcpy (buf, raw_buf + 1, 1);
378 else
379 mark_value_bytes_unavailable (result_value, 0,
380 TYPE_LENGTH (value_type (result_value)));
381 }
382 else
383 {
384 status = regcache_raw_read (regcache, gpnum, raw_buf);
385 if (status == REG_VALID)
386 memcpy (buf, raw_buf, 1);
387 else
388 mark_value_bytes_unavailable (result_value, 0,
389 TYPE_LENGTH (value_type (result_value)));
390 }
391 }
392 else if (i386_dword_regnum_p (gdbarch, regnum))
393 {
394 int gpnum = regnum - tdep->eax_regnum;
395 /* Extract (always little endian). */
396 status = regcache_raw_read (regcache, gpnum, raw_buf);
397 if (status == REG_VALID)
398 memcpy (buf, raw_buf, 4);
399 else
400 mark_value_bytes_unavailable (result_value, 0,
401 TYPE_LENGTH (value_type (result_value)));
402 }
403 else
404 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
405 result_value);
406
407 return result_value;
408 }
409
410 static void
411 amd64_pseudo_register_write (struct gdbarch *gdbarch,
412 struct regcache *regcache,
413 int regnum, const gdb_byte *buf)
414 {
415 gdb_byte raw_buf[MAX_REGISTER_SIZE];
416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
417
418 if (i386_byte_regnum_p (gdbarch, regnum))
419 {
420 int gpnum = regnum - tdep->al_regnum;
421
422 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
423 {
424 /* Read ... AH, BH, CH, DH. */
425 regcache_raw_read (regcache,
426 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
427 /* ... Modify ... (always little endian). */
428 memcpy (raw_buf + 1, buf, 1);
429 /* ... Write. */
430 regcache_raw_write (regcache,
431 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
432 }
433 else
434 {
435 /* Read ... */
436 regcache_raw_read (regcache, gpnum, raw_buf);
437 /* ... Modify ... (always little endian). */
438 memcpy (raw_buf, buf, 1);
439 /* ... Write. */
440 regcache_raw_write (regcache, gpnum, raw_buf);
441 }
442 }
443 else if (i386_dword_regnum_p (gdbarch, regnum))
444 {
445 int gpnum = regnum - tdep->eax_regnum;
446
447 /* Read ... */
448 regcache_raw_read (regcache, gpnum, raw_buf);
449 /* ... Modify ... (always little endian). */
450 memcpy (raw_buf, buf, 4);
451 /* ... Write. */
452 regcache_raw_write (regcache, gpnum, raw_buf);
453 }
454 else
455 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
456 }
457
458 \f
459
460 /* Register classes as defined in the psABI. */
461
462 enum amd64_reg_class
463 {
464 AMD64_INTEGER,
465 AMD64_SSE,
466 AMD64_SSEUP,
467 AMD64_X87,
468 AMD64_X87UP,
469 AMD64_COMPLEX_X87,
470 AMD64_NO_CLASS,
471 AMD64_MEMORY
472 };
473
474 /* Return the union class of CLASS1 and CLASS2. See the psABI for
475 details. */
476
477 static enum amd64_reg_class
478 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
479 {
480 /* Rule (a): If both classes are equal, this is the resulting class. */
481 if (class1 == class2)
482 return class1;
483
484 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
485 is the other class. */
486 if (class1 == AMD64_NO_CLASS)
487 return class2;
488 if (class2 == AMD64_NO_CLASS)
489 return class1;
490
491 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
492 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
493 return AMD64_MEMORY;
494
495 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
496 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
497 return AMD64_INTEGER;
498
499 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
500 MEMORY is used as class. */
501 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
502 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
503 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
504 return AMD64_MEMORY;
505
506 /* Rule (f): Otherwise class SSE is used. */
507 return AMD64_SSE;
508 }
509
510 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
511
512 /* Return non-zero if TYPE is a non-POD structure or union type. */
513
514 static int
515 amd64_non_pod_p (struct type *type)
516 {
517 /* ??? A class with a base class certainly isn't POD, but does this
518 catch all non-POD structure types? */
519 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
520 return 1;
521
522 return 0;
523 }
524
525 /* Classify TYPE according to the rules for aggregate (structures and
526 arrays) and union types, and store the result in CLASS. */
527
528 static void
529 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
530 {
531 /* 1. If the size of an object is larger than two eightbytes, or in
532 C++, is a non-POD structure or union type, or contains
533 unaligned fields, it has class memory. */
534 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
535 {
536 theclass[0] = theclass[1] = AMD64_MEMORY;
537 return;
538 }
539
540 /* 2. Both eightbytes get initialized to class NO_CLASS. */
541 theclass[0] = theclass[1] = AMD64_NO_CLASS;
542
543 /* 3. Each field of an object is classified recursively so that
544 always two fields are considered. The resulting class is
545 calculated according to the classes of the fields in the
546 eightbyte: */
547
548 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
549 {
550 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
551
552 /* All fields in an array have the same type. */
553 amd64_classify (subtype, theclass);
554 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
555 theclass[1] = theclass[0];
556 }
557 else
558 {
559 int i;
560
561 /* Structure or union. */
562 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
563 || TYPE_CODE (type) == TYPE_CODE_UNION);
564
565 for (i = 0; i < TYPE_NFIELDS (type); i++)
566 {
567 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
568 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
569 enum amd64_reg_class subclass[2];
570 int bitsize = TYPE_FIELD_BITSIZE (type, i);
571 int endpos;
572
573 if (bitsize == 0)
574 bitsize = TYPE_LENGTH (subtype) * 8;
575 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
576
577 /* Ignore static fields. */
578 if (field_is_static (&TYPE_FIELD (type, i)))
579 continue;
580
581 gdb_assert (pos == 0 || pos == 1);
582
583 amd64_classify (subtype, subclass);
584 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
585 if (bitsize <= 64 && pos == 0 && endpos == 1)
586 /* This is a bit of an odd case: We have a field that would
587 normally fit in one of the two eightbytes, except that
588 it is placed in a way that this field straddles them.
589 This has been seen with a structure containing an array.
590
591 The ABI is a bit unclear in this case, but we assume that
592 this field's class (stored in subclass[0]) must also be merged
593 into class[1]. In other words, our field has a piece stored
594 in the second eight-byte, and thus its class applies to
595 the second eight-byte as well.
596
597 In the case where the field length exceeds 8 bytes,
598 it should not be necessary to merge the field class
599 into class[1]. As LEN > 8, subclass[1] is necessarily
600 different from AMD64_NO_CLASS. If subclass[1] is equal
601 to subclass[0], then the normal class[1]/subclass[1]
602 merging will take care of everything. For subclass[1]
603 to be different from subclass[0], I can only see the case
604 where we have a SSE/SSEUP or X87/X87UP pair, which both
605 use up all 16 bytes of the aggregate, and are already
606 handled just fine (because each portion sits on its own
607 8-byte). */
608 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
609 if (pos == 0)
610 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
611 }
612 }
613
614 /* 4. Then a post merger cleanup is done: */
615
616 /* Rule (a): If one of the classes is MEMORY, the whole argument is
617 passed in memory. */
618 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
619 theclass[0] = theclass[1] = AMD64_MEMORY;
620
621 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
622 SSE. */
623 if (theclass[0] == AMD64_SSEUP)
624 theclass[0] = AMD64_SSE;
625 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
626 theclass[1] = AMD64_SSE;
627 }
628
629 /* Classify TYPE, and store the result in CLASS. */
630
631 static void
632 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
633 {
634 enum type_code code = TYPE_CODE (type);
635 int len = TYPE_LENGTH (type);
636
637 theclass[0] = theclass[1] = AMD64_NO_CLASS;
638
639 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
640 long, long long, and pointers are in the INTEGER class. Similarly,
641 range types, used by languages such as Ada, are also in the INTEGER
642 class. */
643 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
644 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
645 || code == TYPE_CODE_CHAR
646 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
647 && (len == 1 || len == 2 || len == 4 || len == 8))
648 theclass[0] = AMD64_INTEGER;
649
650 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
651 are in class SSE. */
652 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
653 && (len == 4 || len == 8))
654 /* FIXME: __m64 . */
655 theclass[0] = AMD64_SSE;
656
657 /* Arguments of types __float128, _Decimal128 and __m128 are split into
658 two halves. The least significant ones belong to class SSE, the most
659 significant one to class SSEUP. */
660 else if (code == TYPE_CODE_DECFLOAT && len == 16)
661 /* FIXME: __float128, __m128. */
662 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
663
664 /* The 64-bit mantissa of arguments of type long double belongs to
665 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
666 class X87UP. */
667 else if (code == TYPE_CODE_FLT && len == 16)
668 /* Class X87 and X87UP. */
669 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
670
671 /* Arguments of complex T where T is one of the types float or
672 double get treated as if they are implemented as:
673
674 struct complexT {
675 T real;
676 T imag;
677 };
678
679 */
680 else if (code == TYPE_CODE_COMPLEX && len == 8)
681 theclass[0] = AMD64_SSE;
682 else if (code == TYPE_CODE_COMPLEX && len == 16)
683 theclass[0] = theclass[1] = AMD64_SSE;
684
685 /* A variable of type complex long double is classified as type
686 COMPLEX_X87. */
687 else if (code == TYPE_CODE_COMPLEX && len == 32)
688 theclass[0] = AMD64_COMPLEX_X87;
689
690 /* Aggregates. */
691 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
692 || code == TYPE_CODE_UNION)
693 amd64_classify_aggregate (type, theclass);
694 }
695
696 static enum return_value_convention
697 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
698 struct type *type, struct regcache *regcache,
699 gdb_byte *readbuf, const gdb_byte *writebuf)
700 {
701 enum amd64_reg_class theclass[2];
702 int len = TYPE_LENGTH (type);
703 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
704 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
705 int integer_reg = 0;
706 int sse_reg = 0;
707 int i;
708
709 gdb_assert (!(readbuf && writebuf));
710
711 /* 1. Classify the return type with the classification algorithm. */
712 amd64_classify (type, theclass);
713
714 /* 2. If the type has class MEMORY, then the caller provides space
715 for the return value and passes the address of this storage in
716 %rdi as if it were the first argument to the function. In effect,
717 this address becomes a hidden first argument.
718
719 On return %rax will contain the address that has been passed in
720 by the caller in %rdi. */
721 if (theclass[0] == AMD64_MEMORY)
722 {
723 /* As indicated by the comment above, the ABI guarantees that we
724 can always find the return value just after the function has
725 returned. */
726
727 if (readbuf)
728 {
729 ULONGEST addr;
730
731 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
732 read_memory (addr, readbuf, TYPE_LENGTH (type));
733 }
734
735 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
736 }
737
738 /* 8. If the class is COMPLEX_X87, the real part of the value is
739 returned in %st0 and the imaginary part in %st1. */
740 if (theclass[0] == AMD64_COMPLEX_X87)
741 {
742 if (readbuf)
743 {
744 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
745 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
746 }
747
748 if (writebuf)
749 {
750 i387_return_value (gdbarch, regcache);
751 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
752 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
753
754 /* Fix up the tag word such that both %st(0) and %st(1) are
755 marked as valid. */
756 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
757 }
758
759 return RETURN_VALUE_REGISTER_CONVENTION;
760 }
761
762 gdb_assert (theclass[1] != AMD64_MEMORY);
763 gdb_assert (len <= 16);
764
765 for (i = 0; len > 0; i++, len -= 8)
766 {
767 int regnum = -1;
768 int offset = 0;
769
770 switch (theclass[i])
771 {
772 case AMD64_INTEGER:
773 /* 3. If the class is INTEGER, the next available register
774 of the sequence %rax, %rdx is used. */
775 regnum = integer_regnum[integer_reg++];
776 break;
777
778 case AMD64_SSE:
779 /* 4. If the class is SSE, the next available SSE register
780 of the sequence %xmm0, %xmm1 is used. */
781 regnum = sse_regnum[sse_reg++];
782 break;
783
784 case AMD64_SSEUP:
785 /* 5. If the class is SSEUP, the eightbyte is passed in the
786 upper half of the last used SSE register. */
787 gdb_assert (sse_reg > 0);
788 regnum = sse_regnum[sse_reg - 1];
789 offset = 8;
790 break;
791
792 case AMD64_X87:
793 /* 6. If the class is X87, the value is returned on the X87
794 stack in %st0 as 80-bit x87 number. */
795 regnum = AMD64_ST0_REGNUM;
796 if (writebuf)
797 i387_return_value (gdbarch, regcache);
798 break;
799
800 case AMD64_X87UP:
801 /* 7. If the class is X87UP, the value is returned together
802 with the previous X87 value in %st0. */
803 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
804 regnum = AMD64_ST0_REGNUM;
805 offset = 8;
806 len = 2;
807 break;
808
809 case AMD64_NO_CLASS:
810 continue;
811
812 default:
813 gdb_assert (!"Unexpected register class.");
814 }
815
816 gdb_assert (regnum != -1);
817
818 if (readbuf)
819 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
820 readbuf + i * 8);
821 if (writebuf)
822 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
823 writebuf + i * 8);
824 }
825
826 return RETURN_VALUE_REGISTER_CONVENTION;
827 }
828 \f
829
830 static CORE_ADDR
831 amd64_push_arguments (struct regcache *regcache, int nargs,
832 struct value **args, CORE_ADDR sp, int struct_return)
833 {
834 static int integer_regnum[] =
835 {
836 AMD64_RDI_REGNUM, /* %rdi */
837 AMD64_RSI_REGNUM, /* %rsi */
838 AMD64_RDX_REGNUM, /* %rdx */
839 AMD64_RCX_REGNUM, /* %rcx */
840 AMD64_R8_REGNUM, /* %r8 */
841 AMD64_R9_REGNUM /* %r9 */
842 };
843 static int sse_regnum[] =
844 {
845 /* %xmm0 ... %xmm7 */
846 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
847 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
848 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
849 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
850 };
851 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
852 int num_stack_args = 0;
853 int num_elements = 0;
854 int element = 0;
855 int integer_reg = 0;
856 int sse_reg = 0;
857 int i;
858
859 /* Reserve a register for the "hidden" argument. */
860 if (struct_return)
861 integer_reg++;
862
863 for (i = 0; i < nargs; i++)
864 {
865 struct type *type = value_type (args[i]);
866 int len = TYPE_LENGTH (type);
867 enum amd64_reg_class theclass[2];
868 int needed_integer_regs = 0;
869 int needed_sse_regs = 0;
870 int j;
871
872 /* Classify argument. */
873 amd64_classify (type, theclass);
874
875 /* Calculate the number of integer and SSE registers needed for
876 this argument. */
877 for (j = 0; j < 2; j++)
878 {
879 if (theclass[j] == AMD64_INTEGER)
880 needed_integer_regs++;
881 else if (theclass[j] == AMD64_SSE)
882 needed_sse_regs++;
883 }
884
885 /* Check whether enough registers are available, and if the
886 argument should be passed in registers at all. */
887 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
888 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
889 || (needed_integer_regs == 0 && needed_sse_regs == 0))
890 {
891 /* The argument will be passed on the stack. */
892 num_elements += ((len + 7) / 8);
893 stack_args[num_stack_args++] = args[i];
894 }
895 else
896 {
897 /* The argument will be passed in registers. */
898 const gdb_byte *valbuf = value_contents (args[i]);
899 gdb_byte buf[8];
900
901 gdb_assert (len <= 16);
902
903 for (j = 0; len > 0; j++, len -= 8)
904 {
905 int regnum = -1;
906 int offset = 0;
907
908 switch (theclass[j])
909 {
910 case AMD64_INTEGER:
911 regnum = integer_regnum[integer_reg++];
912 break;
913
914 case AMD64_SSE:
915 regnum = sse_regnum[sse_reg++];
916 break;
917
918 case AMD64_SSEUP:
919 gdb_assert (sse_reg > 0);
920 regnum = sse_regnum[sse_reg - 1];
921 offset = 8;
922 break;
923
924 default:
925 gdb_assert (!"Unexpected register class.");
926 }
927
928 gdb_assert (regnum != -1);
929 memset (buf, 0, sizeof buf);
930 memcpy (buf, valbuf + j * 8, min (len, 8));
931 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
932 }
933 }
934 }
935
936 /* Allocate space for the arguments on the stack. */
937 sp -= num_elements * 8;
938
939 /* The psABI says that "The end of the input argument area shall be
940 aligned on a 16 byte boundary." */
941 sp &= ~0xf;
942
943 /* Write out the arguments to the stack. */
944 for (i = 0; i < num_stack_args; i++)
945 {
946 struct type *type = value_type (stack_args[i]);
947 const gdb_byte *valbuf = value_contents (stack_args[i]);
948 int len = TYPE_LENGTH (type);
949
950 write_memory (sp + element * 8, valbuf, len);
951 element += ((len + 7) / 8);
952 }
953
954 /* The psABI says that "For calls that may call functions that use
955 varargs or stdargs (prototype-less calls or calls to functions
956 containing ellipsis (...) in the declaration) %al is used as
957 hidden argument to specify the number of SSE registers used. */
958 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
959 return sp;
960 }
961
962 static CORE_ADDR
963 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
964 struct regcache *regcache, CORE_ADDR bp_addr,
965 int nargs, struct value **args, CORE_ADDR sp,
966 int struct_return, CORE_ADDR struct_addr)
967 {
968 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
969 gdb_byte buf[8];
970
971 /* Pass arguments. */
972 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
973
974 /* Pass "hidden" argument". */
975 if (struct_return)
976 {
977 store_unsigned_integer (buf, 8, byte_order, struct_addr);
978 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
979 }
980
981 /* Store return address. */
982 sp -= 8;
983 store_unsigned_integer (buf, 8, byte_order, bp_addr);
984 write_memory (sp, buf, 8);
985
986 /* Finally, update the stack pointer... */
987 store_unsigned_integer (buf, 8, byte_order, sp);
988 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
989
990 /* ...and fake a frame pointer. */
991 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
992
993 return sp + 16;
994 }
995 \f
996 /* Displaced instruction handling. */
997
998 /* A partially decoded instruction.
999 This contains enough details for displaced stepping purposes. */
1000
1001 struct amd64_insn
1002 {
1003 /* The number of opcode bytes. */
1004 int opcode_len;
1005 /* The offset of the rex prefix or -1 if not present. */
1006 int rex_offset;
1007 /* The offset to the first opcode byte. */
1008 int opcode_offset;
1009 /* The offset to the modrm byte or -1 if not present. */
1010 int modrm_offset;
1011
1012 /* The raw instruction. */
1013 gdb_byte *raw_insn;
1014 };
1015
1016 struct displaced_step_closure
1017 {
1018 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1019 int tmp_used;
1020 int tmp_regno;
1021 ULONGEST tmp_save;
1022
1023 /* Details of the instruction. */
1024 struct amd64_insn insn_details;
1025
1026 /* Amount of space allocated to insn_buf. */
1027 int max_len;
1028
1029 /* The possibly modified insn.
1030 This is a variable-length field. */
1031 gdb_byte insn_buf[1];
1032 };
1033
1034 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1035 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1036 at which point delete these in favor of libopcodes' versions). */
1037
1038 static const unsigned char onebyte_has_modrm[256] = {
1039 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1040 /* ------------------------------- */
1041 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1042 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1043 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1044 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1045 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1046 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1047 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1048 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1049 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1050 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1051 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1052 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1053 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1054 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1055 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1056 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1057 /* ------------------------------- */
1058 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1059 };
1060
1061 static const unsigned char twobyte_has_modrm[256] = {
1062 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1063 /* ------------------------------- */
1064 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1065 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1066 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1067 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1068 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1069 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1070 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1071 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1072 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1073 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1074 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1075 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1076 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1077 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1078 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1079 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1080 /* ------------------------------- */
1081 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1082 };
1083
1084 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1085
1086 static int
1087 rex_prefix_p (gdb_byte pfx)
1088 {
1089 return REX_PREFIX_P (pfx);
1090 }
1091
1092 /* Skip the legacy instruction prefixes in INSN.
1093 We assume INSN is properly sentineled so we don't have to worry
1094 about falling off the end of the buffer. */
1095
1096 static gdb_byte *
1097 amd64_skip_prefixes (gdb_byte *insn)
1098 {
1099 while (1)
1100 {
1101 switch (*insn)
1102 {
1103 case DATA_PREFIX_OPCODE:
1104 case ADDR_PREFIX_OPCODE:
1105 case CS_PREFIX_OPCODE:
1106 case DS_PREFIX_OPCODE:
1107 case ES_PREFIX_OPCODE:
1108 case FS_PREFIX_OPCODE:
1109 case GS_PREFIX_OPCODE:
1110 case SS_PREFIX_OPCODE:
1111 case LOCK_PREFIX_OPCODE:
1112 case REPE_PREFIX_OPCODE:
1113 case REPNE_PREFIX_OPCODE:
1114 ++insn;
1115 continue;
1116 default:
1117 break;
1118 }
1119 break;
1120 }
1121
1122 return insn;
1123 }
1124
1125 /* Return an integer register (other than RSP) that is unused as an input
1126 operand in INSN.
1127 In order to not require adding a rex prefix if the insn doesn't already
1128 have one, the result is restricted to RAX ... RDI, sans RSP.
1129 The register numbering of the result follows architecture ordering,
1130 e.g. RDI = 7. */
1131
1132 static int
1133 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1134 {
1135 /* 1 bit for each reg */
1136 int used_regs_mask = 0;
1137
1138 /* There can be at most 3 int regs used as inputs in an insn, and we have
1139 7 to choose from (RAX ... RDI, sans RSP).
1140 This allows us to take a conservative approach and keep things simple.
1141 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1142 that implicitly specify RAX. */
1143
1144 /* Avoid RAX. */
1145 used_regs_mask |= 1 << EAX_REG_NUM;
1146 /* Similarily avoid RDX, implicit operand in divides. */
1147 used_regs_mask |= 1 << EDX_REG_NUM;
1148 /* Avoid RSP. */
1149 used_regs_mask |= 1 << ESP_REG_NUM;
1150
1151 /* If the opcode is one byte long and there's no ModRM byte,
1152 assume the opcode specifies a register. */
1153 if (details->opcode_len == 1 && details->modrm_offset == -1)
1154 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1155
1156 /* Mark used regs in the modrm/sib bytes. */
1157 if (details->modrm_offset != -1)
1158 {
1159 int modrm = details->raw_insn[details->modrm_offset];
1160 int mod = MODRM_MOD_FIELD (modrm);
1161 int reg = MODRM_REG_FIELD (modrm);
1162 int rm = MODRM_RM_FIELD (modrm);
1163 int have_sib = mod != 3 && rm == 4;
1164
1165 /* Assume the reg field of the modrm byte specifies a register. */
1166 used_regs_mask |= 1 << reg;
1167
1168 if (have_sib)
1169 {
1170 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1171 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1172 used_regs_mask |= 1 << base;
1173 used_regs_mask |= 1 << idx;
1174 }
1175 else
1176 {
1177 used_regs_mask |= 1 << rm;
1178 }
1179 }
1180
1181 gdb_assert (used_regs_mask < 256);
1182 gdb_assert (used_regs_mask != 255);
1183
1184 /* Finally, find a free reg. */
1185 {
1186 int i;
1187
1188 for (i = 0; i < 8; ++i)
1189 {
1190 if (! (used_regs_mask & (1 << i)))
1191 return i;
1192 }
1193
1194 /* We shouldn't get here. */
1195 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1196 }
1197 }
1198
1199 /* Extract the details of INSN that we need. */
1200
1201 static void
1202 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1203 {
1204 gdb_byte *start = insn;
1205 int need_modrm;
1206
1207 details->raw_insn = insn;
1208
1209 details->opcode_len = -1;
1210 details->rex_offset = -1;
1211 details->opcode_offset = -1;
1212 details->modrm_offset = -1;
1213
1214 /* Skip legacy instruction prefixes. */
1215 insn = amd64_skip_prefixes (insn);
1216
1217 /* Skip REX instruction prefix. */
1218 if (rex_prefix_p (*insn))
1219 {
1220 details->rex_offset = insn - start;
1221 ++insn;
1222 }
1223
1224 details->opcode_offset = insn - start;
1225
1226 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1227 {
1228 /* Two or three-byte opcode. */
1229 ++insn;
1230 need_modrm = twobyte_has_modrm[*insn];
1231
1232 /* Check for three-byte opcode. */
1233 switch (*insn)
1234 {
1235 case 0x24:
1236 case 0x25:
1237 case 0x38:
1238 case 0x3a:
1239 case 0x7a:
1240 case 0x7b:
1241 ++insn;
1242 details->opcode_len = 3;
1243 break;
1244 default:
1245 details->opcode_len = 2;
1246 break;
1247 }
1248 }
1249 else
1250 {
1251 /* One-byte opcode. */
1252 need_modrm = onebyte_has_modrm[*insn];
1253 details->opcode_len = 1;
1254 }
1255
1256 if (need_modrm)
1257 {
1258 ++insn;
1259 details->modrm_offset = insn - start;
1260 }
1261 }
1262
1263 /* Update %rip-relative addressing in INSN.
1264
1265 %rip-relative addressing only uses a 32-bit displacement.
1266 32 bits is not enough to be guaranteed to cover the distance between where
1267 the real instruction is and where its copy is.
1268 Convert the insn to use base+disp addressing.
1269 We set base = pc + insn_length so we can leave disp unchanged. */
1270
1271 static void
1272 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1273 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1274 {
1275 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1276 const struct amd64_insn *insn_details = &dsc->insn_details;
1277 int modrm_offset = insn_details->modrm_offset;
1278 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1279 CORE_ADDR rip_base;
1280 int32_t disp;
1281 int insn_length;
1282 int arch_tmp_regno, tmp_regno;
1283 ULONGEST orig_value;
1284
1285 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1286 ++insn;
1287
1288 /* Compute the rip-relative address. */
1289 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1290 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1291 dsc->max_len, from);
1292 rip_base = from + insn_length;
1293
1294 /* We need a register to hold the address.
1295 Pick one not used in the insn.
1296 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1297 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1298 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1299
1300 /* REX.B should be unset as we were using rip-relative addressing,
1301 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1302 if (insn_details->rex_offset != -1)
1303 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1304
1305 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1306 dsc->tmp_regno = tmp_regno;
1307 dsc->tmp_save = orig_value;
1308 dsc->tmp_used = 1;
1309
1310 /* Convert the ModRM field to be base+disp. */
1311 dsc->insn_buf[modrm_offset] &= ~0xc7;
1312 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1313
1314 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1315
1316 if (debug_displaced)
1317 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1318 "displaced: using temp reg %d, old value %s, new value %s\n",
1319 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1320 paddress (gdbarch, rip_base));
1321 }
1322
1323 static void
1324 fixup_displaced_copy (struct gdbarch *gdbarch,
1325 struct displaced_step_closure *dsc,
1326 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1327 {
1328 const struct amd64_insn *details = &dsc->insn_details;
1329
1330 if (details->modrm_offset != -1)
1331 {
1332 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1333
1334 if ((modrm & 0xc7) == 0x05)
1335 {
1336 /* The insn uses rip-relative addressing.
1337 Deal with it. */
1338 fixup_riprel (gdbarch, dsc, from, to, regs);
1339 }
1340 }
1341 }
1342
1343 struct displaced_step_closure *
1344 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1345 CORE_ADDR from, CORE_ADDR to,
1346 struct regcache *regs)
1347 {
1348 int len = gdbarch_max_insn_length (gdbarch);
1349 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1350 continually watch for running off the end of the buffer. */
1351 int fixup_sentinel_space = len;
1352 struct displaced_step_closure *dsc
1353 = ((struct displaced_step_closure *)
1354 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space));
1355 gdb_byte *buf = &dsc->insn_buf[0];
1356 struct amd64_insn *details = &dsc->insn_details;
1357
1358 dsc->tmp_used = 0;
1359 dsc->max_len = len + fixup_sentinel_space;
1360
1361 read_memory (from, buf, len);
1362
1363 /* Set up the sentinel space so we don't have to worry about running
1364 off the end of the buffer. An excessive number of leading prefixes
1365 could otherwise cause this. */
1366 memset (buf + len, 0, fixup_sentinel_space);
1367
1368 amd64_get_insn_details (buf, details);
1369
1370 /* GDB may get control back after the insn after the syscall.
1371 Presumably this is a kernel bug.
1372 If this is a syscall, make sure there's a nop afterwards. */
1373 {
1374 int syscall_length;
1375
1376 if (amd64_syscall_p (details, &syscall_length))
1377 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1378 }
1379
1380 /* Modify the insn to cope with the address where it will be executed from.
1381 In particular, handle any rip-relative addressing. */
1382 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1383
1384 write_memory (to, buf, len);
1385
1386 if (debug_displaced)
1387 {
1388 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1389 paddress (gdbarch, from), paddress (gdbarch, to));
1390 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1391 }
1392
1393 return dsc;
1394 }
1395
1396 static int
1397 amd64_absolute_jmp_p (const struct amd64_insn *details)
1398 {
1399 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1400
1401 if (insn[0] == 0xff)
1402 {
1403 /* jump near, absolute indirect (/4) */
1404 if ((insn[1] & 0x38) == 0x20)
1405 return 1;
1406
1407 /* jump far, absolute indirect (/5) */
1408 if ((insn[1] & 0x38) == 0x28)
1409 return 1;
1410 }
1411
1412 return 0;
1413 }
1414
1415 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1416
1417 static int
1418 amd64_jmp_p (const struct amd64_insn *details)
1419 {
1420 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1421
1422 /* jump short, relative. */
1423 if (insn[0] == 0xeb)
1424 return 1;
1425
1426 /* jump near, relative. */
1427 if (insn[0] == 0xe9)
1428 return 1;
1429
1430 return amd64_absolute_jmp_p (details);
1431 }
1432
1433 static int
1434 amd64_absolute_call_p (const struct amd64_insn *details)
1435 {
1436 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1437
1438 if (insn[0] == 0xff)
1439 {
1440 /* Call near, absolute indirect (/2) */
1441 if ((insn[1] & 0x38) == 0x10)
1442 return 1;
1443
1444 /* Call far, absolute indirect (/3) */
1445 if ((insn[1] & 0x38) == 0x18)
1446 return 1;
1447 }
1448
1449 return 0;
1450 }
1451
1452 static int
1453 amd64_ret_p (const struct amd64_insn *details)
1454 {
1455 /* NOTE: gcc can emit "repz ; ret". */
1456 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1457
1458 switch (insn[0])
1459 {
1460 case 0xc2: /* ret near, pop N bytes */
1461 case 0xc3: /* ret near */
1462 case 0xca: /* ret far, pop N bytes */
1463 case 0xcb: /* ret far */
1464 case 0xcf: /* iret */
1465 return 1;
1466
1467 default:
1468 return 0;
1469 }
1470 }
1471
1472 static int
1473 amd64_call_p (const struct amd64_insn *details)
1474 {
1475 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1476
1477 if (amd64_absolute_call_p (details))
1478 return 1;
1479
1480 /* call near, relative */
1481 if (insn[0] == 0xe8)
1482 return 1;
1483
1484 return 0;
1485 }
1486
1487 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1488 length in bytes. Otherwise, return zero. */
1489
1490 static int
1491 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1492 {
1493 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1494
1495 if (insn[0] == 0x0f && insn[1] == 0x05)
1496 {
1497 *lengthp = 2;
1498 return 1;
1499 }
1500
1501 return 0;
1502 }
1503
1504 /* Classify the instruction at ADDR using PRED.
1505 Throw an error if the memory can't be read. */
1506
1507 static int
1508 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1509 int (*pred) (const struct amd64_insn *))
1510 {
1511 struct amd64_insn details;
1512 gdb_byte *buf;
1513 int len, classification;
1514
1515 len = gdbarch_max_insn_length (gdbarch);
1516 buf = (gdb_byte *) alloca (len);
1517
1518 read_code (addr, buf, len);
1519 amd64_get_insn_details (buf, &details);
1520
1521 classification = pred (&details);
1522
1523 return classification;
1524 }
1525
1526 /* The gdbarch insn_is_call method. */
1527
1528 static int
1529 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1530 {
1531 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1532 }
1533
1534 /* The gdbarch insn_is_ret method. */
1535
1536 static int
1537 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1538 {
1539 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1540 }
1541
1542 /* The gdbarch insn_is_jump method. */
1543
1544 static int
1545 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1546 {
1547 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1548 }
1549
1550 /* Fix up the state of registers and memory after having single-stepped
1551 a displaced instruction. */
1552
1553 void
1554 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1555 struct displaced_step_closure *dsc,
1556 CORE_ADDR from, CORE_ADDR to,
1557 struct regcache *regs)
1558 {
1559 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1560 /* The offset we applied to the instruction's address. */
1561 ULONGEST insn_offset = to - from;
1562 gdb_byte *insn = dsc->insn_buf;
1563 const struct amd64_insn *insn_details = &dsc->insn_details;
1564
1565 if (debug_displaced)
1566 fprintf_unfiltered (gdb_stdlog,
1567 "displaced: fixup (%s, %s), "
1568 "insn = 0x%02x 0x%02x ...\n",
1569 paddress (gdbarch, from), paddress (gdbarch, to),
1570 insn[0], insn[1]);
1571
1572 /* If we used a tmp reg, restore it. */
1573
1574 if (dsc->tmp_used)
1575 {
1576 if (debug_displaced)
1577 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1578 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1579 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1580 }
1581
1582 /* The list of issues to contend with here is taken from
1583 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1584 Yay for Free Software! */
1585
1586 /* Relocate the %rip back to the program's instruction stream,
1587 if necessary. */
1588
1589 /* Except in the case of absolute or indirect jump or call
1590 instructions, or a return instruction, the new rip is relative to
1591 the displaced instruction; make it relative to the original insn.
1592 Well, signal handler returns don't need relocation either, but we use the
1593 value of %rip to recognize those; see below. */
1594 if (! amd64_absolute_jmp_p (insn_details)
1595 && ! amd64_absolute_call_p (insn_details)
1596 && ! amd64_ret_p (insn_details))
1597 {
1598 ULONGEST orig_rip;
1599 int insn_len;
1600
1601 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1602
1603 /* A signal trampoline system call changes the %rip, resuming
1604 execution of the main program after the signal handler has
1605 returned. That makes them like 'return' instructions; we
1606 shouldn't relocate %rip.
1607
1608 But most system calls don't, and we do need to relocate %rip.
1609
1610 Our heuristic for distinguishing these cases: if stepping
1611 over the system call instruction left control directly after
1612 the instruction, the we relocate --- control almost certainly
1613 doesn't belong in the displaced copy. Otherwise, we assume
1614 the instruction has put control where it belongs, and leave
1615 it unrelocated. Goodness help us if there are PC-relative
1616 system calls. */
1617 if (amd64_syscall_p (insn_details, &insn_len)
1618 && orig_rip != to + insn_len
1619 /* GDB can get control back after the insn after the syscall.
1620 Presumably this is a kernel bug.
1621 Fixup ensures its a nop, we add one to the length for it. */
1622 && orig_rip != to + insn_len + 1)
1623 {
1624 if (debug_displaced)
1625 fprintf_unfiltered (gdb_stdlog,
1626 "displaced: syscall changed %%rip; "
1627 "not relocating\n");
1628 }
1629 else
1630 {
1631 ULONGEST rip = orig_rip - insn_offset;
1632
1633 /* If we just stepped over a breakpoint insn, we don't backup
1634 the pc on purpose; this is to match behaviour without
1635 stepping. */
1636
1637 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1638
1639 if (debug_displaced)
1640 fprintf_unfiltered (gdb_stdlog,
1641 "displaced: "
1642 "relocated %%rip from %s to %s\n",
1643 paddress (gdbarch, orig_rip),
1644 paddress (gdbarch, rip));
1645 }
1646 }
1647
1648 /* If the instruction was PUSHFL, then the TF bit will be set in the
1649 pushed value, and should be cleared. We'll leave this for later,
1650 since GDB already messes up the TF flag when stepping over a
1651 pushfl. */
1652
1653 /* If the instruction was a call, the return address now atop the
1654 stack is the address following the copied instruction. We need
1655 to make it the address following the original instruction. */
1656 if (amd64_call_p (insn_details))
1657 {
1658 ULONGEST rsp;
1659 ULONGEST retaddr;
1660 const ULONGEST retaddr_len = 8;
1661
1662 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1663 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1664 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1665 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1666
1667 if (debug_displaced)
1668 fprintf_unfiltered (gdb_stdlog,
1669 "displaced: relocated return addr at %s "
1670 "to %s\n",
1671 paddress (gdbarch, rsp),
1672 paddress (gdbarch, retaddr));
1673 }
1674 }
1675
1676 /* If the instruction INSN uses RIP-relative addressing, return the
1677 offset into the raw INSN where the displacement to be adjusted is
1678 found. Returns 0 if the instruction doesn't use RIP-relative
1679 addressing. */
1680
1681 static int
1682 rip_relative_offset (struct amd64_insn *insn)
1683 {
1684 if (insn->modrm_offset != -1)
1685 {
1686 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1687
1688 if ((modrm & 0xc7) == 0x05)
1689 {
1690 /* The displacement is found right after the ModRM byte. */
1691 return insn->modrm_offset + 1;
1692 }
1693 }
1694
1695 return 0;
1696 }
1697
1698 static void
1699 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1700 {
1701 target_write_memory (*to, buf, len);
1702 *to += len;
1703 }
1704
1705 static void
1706 amd64_relocate_instruction (struct gdbarch *gdbarch,
1707 CORE_ADDR *to, CORE_ADDR oldloc)
1708 {
1709 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1710 int len = gdbarch_max_insn_length (gdbarch);
1711 /* Extra space for sentinels. */
1712 int fixup_sentinel_space = len;
1713 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1714 struct amd64_insn insn_details;
1715 int offset = 0;
1716 LONGEST rel32, newrel;
1717 gdb_byte *insn;
1718 int insn_length;
1719
1720 read_memory (oldloc, buf, len);
1721
1722 /* Set up the sentinel space so we don't have to worry about running
1723 off the end of the buffer. An excessive number of leading prefixes
1724 could otherwise cause this. */
1725 memset (buf + len, 0, fixup_sentinel_space);
1726
1727 insn = buf;
1728 amd64_get_insn_details (insn, &insn_details);
1729
1730 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1731
1732 /* Skip legacy instruction prefixes. */
1733 insn = amd64_skip_prefixes (insn);
1734
1735 /* Adjust calls with 32-bit relative addresses as push/jump, with
1736 the address pushed being the location where the original call in
1737 the user program would return to. */
1738 if (insn[0] == 0xe8)
1739 {
1740 gdb_byte push_buf[16];
1741 unsigned int ret_addr;
1742
1743 /* Where "ret" in the original code will return to. */
1744 ret_addr = oldloc + insn_length;
1745 push_buf[0] = 0x68; /* pushq $... */
1746 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1747 /* Push the push. */
1748 append_insns (to, 5, push_buf);
1749
1750 /* Convert the relative call to a relative jump. */
1751 insn[0] = 0xe9;
1752
1753 /* Adjust the destination offset. */
1754 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1755 newrel = (oldloc - *to) + rel32;
1756 store_signed_integer (insn + 1, 4, byte_order, newrel);
1757
1758 if (debug_displaced)
1759 fprintf_unfiltered (gdb_stdlog,
1760 "Adjusted insn rel32=%s at %s to"
1761 " rel32=%s at %s\n",
1762 hex_string (rel32), paddress (gdbarch, oldloc),
1763 hex_string (newrel), paddress (gdbarch, *to));
1764
1765 /* Write the adjusted jump into its displaced location. */
1766 append_insns (to, 5, insn);
1767 return;
1768 }
1769
1770 offset = rip_relative_offset (&insn_details);
1771 if (!offset)
1772 {
1773 /* Adjust jumps with 32-bit relative addresses. Calls are
1774 already handled above. */
1775 if (insn[0] == 0xe9)
1776 offset = 1;
1777 /* Adjust conditional jumps. */
1778 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1779 offset = 2;
1780 }
1781
1782 if (offset)
1783 {
1784 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1785 newrel = (oldloc - *to) + rel32;
1786 store_signed_integer (insn + offset, 4, byte_order, newrel);
1787 if (debug_displaced)
1788 fprintf_unfiltered (gdb_stdlog,
1789 "Adjusted insn rel32=%s at %s to"
1790 " rel32=%s at %s\n",
1791 hex_string (rel32), paddress (gdbarch, oldloc),
1792 hex_string (newrel), paddress (gdbarch, *to));
1793 }
1794
1795 /* Write the adjusted instruction into its displaced location. */
1796 append_insns (to, insn_length, buf);
1797 }
1798
1799 \f
1800 /* The maximum number of saved registers. This should include %rip. */
1801 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1802
1803 struct amd64_frame_cache
1804 {
1805 /* Base address. */
1806 CORE_ADDR base;
1807 int base_p;
1808 CORE_ADDR sp_offset;
1809 CORE_ADDR pc;
1810
1811 /* Saved registers. */
1812 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1813 CORE_ADDR saved_sp;
1814 int saved_sp_reg;
1815
1816 /* Do we have a frame? */
1817 int frameless_p;
1818 };
1819
1820 /* Initialize a frame cache. */
1821
1822 static void
1823 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1824 {
1825 int i;
1826
1827 /* Base address. */
1828 cache->base = 0;
1829 cache->base_p = 0;
1830 cache->sp_offset = -8;
1831 cache->pc = 0;
1832
1833 /* Saved registers. We initialize these to -1 since zero is a valid
1834 offset (that's where %rbp is supposed to be stored).
1835 The values start out as being offsets, and are later converted to
1836 addresses (at which point -1 is interpreted as an address, still meaning
1837 "invalid"). */
1838 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1839 cache->saved_regs[i] = -1;
1840 cache->saved_sp = 0;
1841 cache->saved_sp_reg = -1;
1842
1843 /* Frameless until proven otherwise. */
1844 cache->frameless_p = 1;
1845 }
1846
1847 /* Allocate and initialize a frame cache. */
1848
1849 static struct amd64_frame_cache *
1850 amd64_alloc_frame_cache (void)
1851 {
1852 struct amd64_frame_cache *cache;
1853
1854 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1855 amd64_init_frame_cache (cache);
1856 return cache;
1857 }
1858
1859 /* GCC 4.4 and later, can put code in the prologue to realign the
1860 stack pointer. Check whether PC points to such code, and update
1861 CACHE accordingly. Return the first instruction after the code
1862 sequence or CURRENT_PC, whichever is smaller. If we don't
1863 recognize the code, return PC. */
1864
1865 static CORE_ADDR
1866 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1867 struct amd64_frame_cache *cache)
1868 {
1869 /* There are 2 code sequences to re-align stack before the frame
1870 gets set up:
1871
1872 1. Use a caller-saved saved register:
1873
1874 leaq 8(%rsp), %reg
1875 andq $-XXX, %rsp
1876 pushq -8(%reg)
1877
1878 2. Use a callee-saved saved register:
1879
1880 pushq %reg
1881 leaq 16(%rsp), %reg
1882 andq $-XXX, %rsp
1883 pushq -8(%reg)
1884
1885 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1886
1887 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1888 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1889 */
1890
1891 gdb_byte buf[18];
1892 int reg, r;
1893 int offset, offset_and;
1894
1895 if (target_read_code (pc, buf, sizeof buf))
1896 return pc;
1897
1898 /* Check caller-saved saved register. The first instruction has
1899 to be "leaq 8(%rsp), %reg". */
1900 if ((buf[0] & 0xfb) == 0x48
1901 && buf[1] == 0x8d
1902 && buf[3] == 0x24
1903 && buf[4] == 0x8)
1904 {
1905 /* MOD must be binary 10 and R/M must be binary 100. */
1906 if ((buf[2] & 0xc7) != 0x44)
1907 return pc;
1908
1909 /* REG has register number. */
1910 reg = (buf[2] >> 3) & 7;
1911
1912 /* Check the REX.R bit. */
1913 if (buf[0] == 0x4c)
1914 reg += 8;
1915
1916 offset = 5;
1917 }
1918 else
1919 {
1920 /* Check callee-saved saved register. The first instruction
1921 has to be "pushq %reg". */
1922 reg = 0;
1923 if ((buf[0] & 0xf8) == 0x50)
1924 offset = 0;
1925 else if ((buf[0] & 0xf6) == 0x40
1926 && (buf[1] & 0xf8) == 0x50)
1927 {
1928 /* Check the REX.B bit. */
1929 if ((buf[0] & 1) != 0)
1930 reg = 8;
1931
1932 offset = 1;
1933 }
1934 else
1935 return pc;
1936
1937 /* Get register. */
1938 reg += buf[offset] & 0x7;
1939
1940 offset++;
1941
1942 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1943 if ((buf[offset] & 0xfb) != 0x48
1944 || buf[offset + 1] != 0x8d
1945 || buf[offset + 3] != 0x24
1946 || buf[offset + 4] != 0x10)
1947 return pc;
1948
1949 /* MOD must be binary 10 and R/M must be binary 100. */
1950 if ((buf[offset + 2] & 0xc7) != 0x44)
1951 return pc;
1952
1953 /* REG has register number. */
1954 r = (buf[offset + 2] >> 3) & 7;
1955
1956 /* Check the REX.R bit. */
1957 if (buf[offset] == 0x4c)
1958 r += 8;
1959
1960 /* Registers in pushq and leaq have to be the same. */
1961 if (reg != r)
1962 return pc;
1963
1964 offset += 5;
1965 }
1966
1967 /* Rigister can't be %rsp nor %rbp. */
1968 if (reg == 4 || reg == 5)
1969 return pc;
1970
1971 /* The next instruction has to be "andq $-XXX, %rsp". */
1972 if (buf[offset] != 0x48
1973 || buf[offset + 2] != 0xe4
1974 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1975 return pc;
1976
1977 offset_and = offset;
1978 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1979
1980 /* The next instruction has to be "pushq -8(%reg)". */
1981 r = 0;
1982 if (buf[offset] == 0xff)
1983 offset++;
1984 else if ((buf[offset] & 0xf6) == 0x40
1985 && buf[offset + 1] == 0xff)
1986 {
1987 /* Check the REX.B bit. */
1988 if ((buf[offset] & 0x1) != 0)
1989 r = 8;
1990 offset += 2;
1991 }
1992 else
1993 return pc;
1994
1995 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1996 01. */
1997 if (buf[offset + 1] != 0xf8
1998 || (buf[offset] & 0xf8) != 0x70)
1999 return pc;
2000
2001 /* R/M has register. */
2002 r += buf[offset] & 7;
2003
2004 /* Registers in leaq and pushq have to be the same. */
2005 if (reg != r)
2006 return pc;
2007
2008 if (current_pc > pc + offset_and)
2009 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2010
2011 return min (pc + offset + 2, current_pc);
2012 }
2013
2014 /* Similar to amd64_analyze_stack_align for x32. */
2015
2016 static CORE_ADDR
2017 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2018 struct amd64_frame_cache *cache)
2019 {
2020 /* There are 2 code sequences to re-align stack before the frame
2021 gets set up:
2022
2023 1. Use a caller-saved saved register:
2024
2025 leaq 8(%rsp), %reg
2026 andq $-XXX, %rsp
2027 pushq -8(%reg)
2028
2029 or
2030
2031 [addr32] leal 8(%rsp), %reg
2032 andl $-XXX, %esp
2033 [addr32] pushq -8(%reg)
2034
2035 2. Use a callee-saved saved register:
2036
2037 pushq %reg
2038 leaq 16(%rsp), %reg
2039 andq $-XXX, %rsp
2040 pushq -8(%reg)
2041
2042 or
2043
2044 pushq %reg
2045 [addr32] leal 16(%rsp), %reg
2046 andl $-XXX, %esp
2047 [addr32] pushq -8(%reg)
2048
2049 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2050
2051 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2052 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2053
2054 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2055
2056 0x83 0xe4 0xf0 andl $-16, %esp
2057 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2058 */
2059
2060 gdb_byte buf[19];
2061 int reg, r;
2062 int offset, offset_and;
2063
2064 if (target_read_memory (pc, buf, sizeof buf))
2065 return pc;
2066
2067 /* Skip optional addr32 prefix. */
2068 offset = buf[0] == 0x67 ? 1 : 0;
2069
2070 /* Check caller-saved saved register. The first instruction has
2071 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2072 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2073 && buf[offset + 1] == 0x8d
2074 && buf[offset + 3] == 0x24
2075 && buf[offset + 4] == 0x8)
2076 {
2077 /* MOD must be binary 10 and R/M must be binary 100. */
2078 if ((buf[offset + 2] & 0xc7) != 0x44)
2079 return pc;
2080
2081 /* REG has register number. */
2082 reg = (buf[offset + 2] >> 3) & 7;
2083
2084 /* Check the REX.R bit. */
2085 if ((buf[offset] & 0x4) != 0)
2086 reg += 8;
2087
2088 offset += 5;
2089 }
2090 else
2091 {
2092 /* Check callee-saved saved register. The first instruction
2093 has to be "pushq %reg". */
2094 reg = 0;
2095 if ((buf[offset] & 0xf6) == 0x40
2096 && (buf[offset + 1] & 0xf8) == 0x50)
2097 {
2098 /* Check the REX.B bit. */
2099 if ((buf[offset] & 1) != 0)
2100 reg = 8;
2101
2102 offset += 1;
2103 }
2104 else if ((buf[offset] & 0xf8) != 0x50)
2105 return pc;
2106
2107 /* Get register. */
2108 reg += buf[offset] & 0x7;
2109
2110 offset++;
2111
2112 /* Skip optional addr32 prefix. */
2113 if (buf[offset] == 0x67)
2114 offset++;
2115
2116 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2117 "leal 16(%rsp), %reg". */
2118 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2119 || buf[offset + 1] != 0x8d
2120 || buf[offset + 3] != 0x24
2121 || buf[offset + 4] != 0x10)
2122 return pc;
2123
2124 /* MOD must be binary 10 and R/M must be binary 100. */
2125 if ((buf[offset + 2] & 0xc7) != 0x44)
2126 return pc;
2127
2128 /* REG has register number. */
2129 r = (buf[offset + 2] >> 3) & 7;
2130
2131 /* Check the REX.R bit. */
2132 if ((buf[offset] & 0x4) != 0)
2133 r += 8;
2134
2135 /* Registers in pushq and leaq have to be the same. */
2136 if (reg != r)
2137 return pc;
2138
2139 offset += 5;
2140 }
2141
2142 /* Rigister can't be %rsp nor %rbp. */
2143 if (reg == 4 || reg == 5)
2144 return pc;
2145
2146 /* The next instruction may be "andq $-XXX, %rsp" or
2147 "andl $-XXX, %esp". */
2148 if (buf[offset] != 0x48)
2149 offset--;
2150
2151 if (buf[offset + 2] != 0xe4
2152 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2153 return pc;
2154
2155 offset_and = offset;
2156 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2157
2158 /* Skip optional addr32 prefix. */
2159 if (buf[offset] == 0x67)
2160 offset++;
2161
2162 /* The next instruction has to be "pushq -8(%reg)". */
2163 r = 0;
2164 if (buf[offset] == 0xff)
2165 offset++;
2166 else if ((buf[offset] & 0xf6) == 0x40
2167 && buf[offset + 1] == 0xff)
2168 {
2169 /* Check the REX.B bit. */
2170 if ((buf[offset] & 0x1) != 0)
2171 r = 8;
2172 offset += 2;
2173 }
2174 else
2175 return pc;
2176
2177 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2178 01. */
2179 if (buf[offset + 1] != 0xf8
2180 || (buf[offset] & 0xf8) != 0x70)
2181 return pc;
2182
2183 /* R/M has register. */
2184 r += buf[offset] & 7;
2185
2186 /* Registers in leaq and pushq have to be the same. */
2187 if (reg != r)
2188 return pc;
2189
2190 if (current_pc > pc + offset_and)
2191 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2192
2193 return min (pc + offset + 2, current_pc);
2194 }
2195
2196 /* Do a limited analysis of the prologue at PC and update CACHE
2197 accordingly. Bail out early if CURRENT_PC is reached. Return the
2198 address where the analysis stopped.
2199
2200 We will handle only functions beginning with:
2201
2202 pushq %rbp 0x55
2203 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2204
2205 or (for the X32 ABI):
2206
2207 pushq %rbp 0x55
2208 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2209
2210 Any function that doesn't start with one of these sequences will be
2211 assumed to have no prologue and thus no valid frame pointer in
2212 %rbp. */
2213
2214 static CORE_ADDR
2215 amd64_analyze_prologue (struct gdbarch *gdbarch,
2216 CORE_ADDR pc, CORE_ADDR current_pc,
2217 struct amd64_frame_cache *cache)
2218 {
2219 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2220 /* There are two variations of movq %rsp, %rbp. */
2221 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2222 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2223 /* Ditto for movl %esp, %ebp. */
2224 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2225 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2226
2227 gdb_byte buf[3];
2228 gdb_byte op;
2229
2230 if (current_pc <= pc)
2231 return current_pc;
2232
2233 if (gdbarch_ptr_bit (gdbarch) == 32)
2234 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2235 else
2236 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2237
2238 op = read_code_unsigned_integer (pc, 1, byte_order);
2239
2240 if (op == 0x55) /* pushq %rbp */
2241 {
2242 /* Take into account that we've executed the `pushq %rbp' that
2243 starts this instruction sequence. */
2244 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2245 cache->sp_offset += 8;
2246
2247 /* If that's all, return now. */
2248 if (current_pc <= pc + 1)
2249 return current_pc;
2250
2251 read_code (pc + 1, buf, 3);
2252
2253 /* Check for `movq %rsp, %rbp'. */
2254 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2255 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2256 {
2257 /* OK, we actually have a frame. */
2258 cache->frameless_p = 0;
2259 return pc + 4;
2260 }
2261
2262 /* For X32, also check for `movq %esp, %ebp'. */
2263 if (gdbarch_ptr_bit (gdbarch) == 32)
2264 {
2265 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2266 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2267 {
2268 /* OK, we actually have a frame. */
2269 cache->frameless_p = 0;
2270 return pc + 3;
2271 }
2272 }
2273
2274 return pc + 1;
2275 }
2276
2277 return pc;
2278 }
2279
2280 /* Work around false termination of prologue - GCC PR debug/48827.
2281
2282 START_PC is the first instruction of a function, PC is its minimal already
2283 determined advanced address. Function returns PC if it has nothing to do.
2284
2285 84 c0 test %al,%al
2286 74 23 je after
2287 <-- here is 0 lines advance - the false prologue end marker.
2288 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2289 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2290 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2291 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2292 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2293 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2294 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2295 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2296 after: */
2297
2298 static CORE_ADDR
2299 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2300 {
2301 struct symtab_and_line start_pc_sal, next_sal;
2302 gdb_byte buf[4 + 8 * 7];
2303 int offset, xmmreg;
2304
2305 if (pc == start_pc)
2306 return pc;
2307
2308 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2309 if (start_pc_sal.symtab == NULL
2310 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2311 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2312 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2313 return pc;
2314
2315 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2316 if (next_sal.line != start_pc_sal.line)
2317 return pc;
2318
2319 /* START_PC can be from overlayed memory, ignored here. */
2320 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2321 return pc;
2322
2323 /* test %al,%al */
2324 if (buf[0] != 0x84 || buf[1] != 0xc0)
2325 return pc;
2326 /* je AFTER */
2327 if (buf[2] != 0x74)
2328 return pc;
2329
2330 offset = 4;
2331 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2332 {
2333 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2334 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2335 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2336 return pc;
2337
2338 /* 0b01?????? */
2339 if ((buf[offset + 2] & 0xc0) == 0x40)
2340 {
2341 /* 8-bit displacement. */
2342 offset += 4;
2343 }
2344 /* 0b10?????? */
2345 else if ((buf[offset + 2] & 0xc0) == 0x80)
2346 {
2347 /* 32-bit displacement. */
2348 offset += 7;
2349 }
2350 else
2351 return pc;
2352 }
2353
2354 /* je AFTER */
2355 if (offset - 4 != buf[3])
2356 return pc;
2357
2358 return next_sal.end;
2359 }
2360
2361 /* Return PC of first real instruction. */
2362
2363 static CORE_ADDR
2364 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2365 {
2366 struct amd64_frame_cache cache;
2367 CORE_ADDR pc;
2368 CORE_ADDR func_addr;
2369
2370 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2371 {
2372 CORE_ADDR post_prologue_pc
2373 = skip_prologue_using_sal (gdbarch, func_addr);
2374 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2375
2376 /* Clang always emits a line note before the prologue and another
2377 one after. We trust clang to emit usable line notes. */
2378 if (post_prologue_pc
2379 && (cust != NULL
2380 && COMPUNIT_PRODUCER (cust) != NULL
2381 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2382 return max (start_pc, post_prologue_pc);
2383 }
2384
2385 amd64_init_frame_cache (&cache);
2386 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2387 &cache);
2388 if (cache.frameless_p)
2389 return start_pc;
2390
2391 return amd64_skip_xmm_prologue (pc, start_pc);
2392 }
2393 \f
2394
2395 /* Normal frames. */
2396
2397 static void
2398 amd64_frame_cache_1 (struct frame_info *this_frame,
2399 struct amd64_frame_cache *cache)
2400 {
2401 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2402 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2403 gdb_byte buf[8];
2404 int i;
2405
2406 cache->pc = get_frame_func (this_frame);
2407 if (cache->pc != 0)
2408 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2409 cache);
2410
2411 if (cache->frameless_p)
2412 {
2413 /* We didn't find a valid frame. If we're at the start of a
2414 function, or somewhere half-way its prologue, the function's
2415 frame probably hasn't been fully setup yet. Try to
2416 reconstruct the base address for the stack frame by looking
2417 at the stack pointer. For truly "frameless" functions this
2418 might work too. */
2419
2420 if (cache->saved_sp_reg != -1)
2421 {
2422 /* Stack pointer has been saved. */
2423 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2424 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2425
2426 /* We're halfway aligning the stack. */
2427 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2428 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2429
2430 /* This will be added back below. */
2431 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2432 }
2433 else
2434 {
2435 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2436 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2437 + cache->sp_offset;
2438 }
2439 }
2440 else
2441 {
2442 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2443 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2444 }
2445
2446 /* Now that we have the base address for the stack frame we can
2447 calculate the value of %rsp in the calling frame. */
2448 cache->saved_sp = cache->base + 16;
2449
2450 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2451 frame we find it at the same offset from the reconstructed base
2452 address. If we're halfway aligning the stack, %rip is handled
2453 differently (see above). */
2454 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2455 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2456
2457 /* Adjust all the saved registers such that they contain addresses
2458 instead of offsets. */
2459 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2460 if (cache->saved_regs[i] != -1)
2461 cache->saved_regs[i] += cache->base;
2462
2463 cache->base_p = 1;
2464 }
2465
2466 static struct amd64_frame_cache *
2467 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2468 {
2469 struct amd64_frame_cache *cache;
2470
2471 if (*this_cache)
2472 return (struct amd64_frame_cache *) *this_cache;
2473
2474 cache = amd64_alloc_frame_cache ();
2475 *this_cache = cache;
2476
2477 TRY
2478 {
2479 amd64_frame_cache_1 (this_frame, cache);
2480 }
2481 CATCH (ex, RETURN_MASK_ERROR)
2482 {
2483 if (ex.error != NOT_AVAILABLE_ERROR)
2484 throw_exception (ex);
2485 }
2486 END_CATCH
2487
2488 return cache;
2489 }
2490
2491 static enum unwind_stop_reason
2492 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2493 void **this_cache)
2494 {
2495 struct amd64_frame_cache *cache =
2496 amd64_frame_cache (this_frame, this_cache);
2497
2498 if (!cache->base_p)
2499 return UNWIND_UNAVAILABLE;
2500
2501 /* This marks the outermost frame. */
2502 if (cache->base == 0)
2503 return UNWIND_OUTERMOST;
2504
2505 return UNWIND_NO_REASON;
2506 }
2507
2508 static void
2509 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2510 struct frame_id *this_id)
2511 {
2512 struct amd64_frame_cache *cache =
2513 amd64_frame_cache (this_frame, this_cache);
2514
2515 if (!cache->base_p)
2516 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2517 else if (cache->base == 0)
2518 {
2519 /* This marks the outermost frame. */
2520 return;
2521 }
2522 else
2523 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2524 }
2525
2526 static struct value *
2527 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2528 int regnum)
2529 {
2530 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2531 struct amd64_frame_cache *cache =
2532 amd64_frame_cache (this_frame, this_cache);
2533
2534 gdb_assert (regnum >= 0);
2535
2536 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2537 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2538
2539 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2540 return frame_unwind_got_memory (this_frame, regnum,
2541 cache->saved_regs[regnum]);
2542
2543 return frame_unwind_got_register (this_frame, regnum, regnum);
2544 }
2545
2546 static const struct frame_unwind amd64_frame_unwind =
2547 {
2548 NORMAL_FRAME,
2549 amd64_frame_unwind_stop_reason,
2550 amd64_frame_this_id,
2551 amd64_frame_prev_register,
2552 NULL,
2553 default_frame_sniffer
2554 };
2555 \f
2556 /* Generate a bytecode expression to get the value of the saved PC. */
2557
2558 static void
2559 amd64_gen_return_address (struct gdbarch *gdbarch,
2560 struct agent_expr *ax, struct axs_value *value,
2561 CORE_ADDR scope)
2562 {
2563 /* The following sequence assumes the traditional use of the base
2564 register. */
2565 ax_reg (ax, AMD64_RBP_REGNUM);
2566 ax_const_l (ax, 8);
2567 ax_simple (ax, aop_add);
2568 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2569 value->kind = axs_lvalue_memory;
2570 }
2571 \f
2572
2573 /* Signal trampolines. */
2574
2575 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2576 64-bit variants. This would require using identical frame caches
2577 on both platforms. */
2578
2579 static struct amd64_frame_cache *
2580 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2581 {
2582 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2583 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2584 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2585 struct amd64_frame_cache *cache;
2586 CORE_ADDR addr;
2587 gdb_byte buf[8];
2588 int i;
2589
2590 if (*this_cache)
2591 return (struct amd64_frame_cache *) *this_cache;
2592
2593 cache = amd64_alloc_frame_cache ();
2594
2595 TRY
2596 {
2597 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2598 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2599
2600 addr = tdep->sigcontext_addr (this_frame);
2601 gdb_assert (tdep->sc_reg_offset);
2602 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2603 for (i = 0; i < tdep->sc_num_regs; i++)
2604 if (tdep->sc_reg_offset[i] != -1)
2605 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2606
2607 cache->base_p = 1;
2608 }
2609 CATCH (ex, RETURN_MASK_ERROR)
2610 {
2611 if (ex.error != NOT_AVAILABLE_ERROR)
2612 throw_exception (ex);
2613 }
2614 END_CATCH
2615
2616 *this_cache = cache;
2617 return cache;
2618 }
2619
2620 static enum unwind_stop_reason
2621 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2622 void **this_cache)
2623 {
2624 struct amd64_frame_cache *cache =
2625 amd64_sigtramp_frame_cache (this_frame, this_cache);
2626
2627 if (!cache->base_p)
2628 return UNWIND_UNAVAILABLE;
2629
2630 return UNWIND_NO_REASON;
2631 }
2632
2633 static void
2634 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2635 void **this_cache, struct frame_id *this_id)
2636 {
2637 struct amd64_frame_cache *cache =
2638 amd64_sigtramp_frame_cache (this_frame, this_cache);
2639
2640 if (!cache->base_p)
2641 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2642 else if (cache->base == 0)
2643 {
2644 /* This marks the outermost frame. */
2645 return;
2646 }
2647 else
2648 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2649 }
2650
2651 static struct value *
2652 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2653 void **this_cache, int regnum)
2654 {
2655 /* Make sure we've initialized the cache. */
2656 amd64_sigtramp_frame_cache (this_frame, this_cache);
2657
2658 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2659 }
2660
2661 static int
2662 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2663 struct frame_info *this_frame,
2664 void **this_cache)
2665 {
2666 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2667
2668 /* We shouldn't even bother if we don't have a sigcontext_addr
2669 handler. */
2670 if (tdep->sigcontext_addr == NULL)
2671 return 0;
2672
2673 if (tdep->sigtramp_p != NULL)
2674 {
2675 if (tdep->sigtramp_p (this_frame))
2676 return 1;
2677 }
2678
2679 if (tdep->sigtramp_start != 0)
2680 {
2681 CORE_ADDR pc = get_frame_pc (this_frame);
2682
2683 gdb_assert (tdep->sigtramp_end != 0);
2684 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2685 return 1;
2686 }
2687
2688 return 0;
2689 }
2690
2691 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2692 {
2693 SIGTRAMP_FRAME,
2694 amd64_sigtramp_frame_unwind_stop_reason,
2695 amd64_sigtramp_frame_this_id,
2696 amd64_sigtramp_frame_prev_register,
2697 NULL,
2698 amd64_sigtramp_frame_sniffer
2699 };
2700 \f
2701
2702 static CORE_ADDR
2703 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2704 {
2705 struct amd64_frame_cache *cache =
2706 amd64_frame_cache (this_frame, this_cache);
2707
2708 return cache->base;
2709 }
2710
2711 static const struct frame_base amd64_frame_base =
2712 {
2713 &amd64_frame_unwind,
2714 amd64_frame_base_address,
2715 amd64_frame_base_address,
2716 amd64_frame_base_address
2717 };
2718
2719 /* Normal frames, but in a function epilogue. */
2720
2721 /* Implement the stack_frame_destroyed_p gdbarch method.
2722
2723 The epilogue is defined here as the 'ret' instruction, which will
2724 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2725 the function's stack frame. */
2726
2727 static int
2728 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2729 {
2730 gdb_byte insn;
2731 struct compunit_symtab *cust;
2732
2733 cust = find_pc_compunit_symtab (pc);
2734 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2735 return 0;
2736
2737 if (target_read_memory (pc, &insn, 1))
2738 return 0; /* Can't read memory at pc. */
2739
2740 if (insn != 0xc3) /* 'ret' instruction. */
2741 return 0;
2742
2743 return 1;
2744 }
2745
2746 static int
2747 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2748 struct frame_info *this_frame,
2749 void **this_prologue_cache)
2750 {
2751 if (frame_relative_level (this_frame) == 0)
2752 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2753 get_frame_pc (this_frame));
2754 else
2755 return 0;
2756 }
2757
2758 static struct amd64_frame_cache *
2759 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2760 {
2761 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2762 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2763 struct amd64_frame_cache *cache;
2764 gdb_byte buf[8];
2765
2766 if (*this_cache)
2767 return (struct amd64_frame_cache *) *this_cache;
2768
2769 cache = amd64_alloc_frame_cache ();
2770 *this_cache = cache;
2771
2772 TRY
2773 {
2774 /* Cache base will be %esp plus cache->sp_offset (-8). */
2775 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2776 cache->base = extract_unsigned_integer (buf, 8,
2777 byte_order) + cache->sp_offset;
2778
2779 /* Cache pc will be the frame func. */
2780 cache->pc = get_frame_pc (this_frame);
2781
2782 /* The saved %esp will be at cache->base plus 16. */
2783 cache->saved_sp = cache->base + 16;
2784
2785 /* The saved %eip will be at cache->base plus 8. */
2786 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2787
2788 cache->base_p = 1;
2789 }
2790 CATCH (ex, RETURN_MASK_ERROR)
2791 {
2792 if (ex.error != NOT_AVAILABLE_ERROR)
2793 throw_exception (ex);
2794 }
2795 END_CATCH
2796
2797 return cache;
2798 }
2799
2800 static enum unwind_stop_reason
2801 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2802 void **this_cache)
2803 {
2804 struct amd64_frame_cache *cache
2805 = amd64_epilogue_frame_cache (this_frame, this_cache);
2806
2807 if (!cache->base_p)
2808 return UNWIND_UNAVAILABLE;
2809
2810 return UNWIND_NO_REASON;
2811 }
2812
2813 static void
2814 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2815 void **this_cache,
2816 struct frame_id *this_id)
2817 {
2818 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2819 this_cache);
2820
2821 if (!cache->base_p)
2822 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2823 else
2824 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2825 }
2826
2827 static const struct frame_unwind amd64_epilogue_frame_unwind =
2828 {
2829 NORMAL_FRAME,
2830 amd64_epilogue_frame_unwind_stop_reason,
2831 amd64_epilogue_frame_this_id,
2832 amd64_frame_prev_register,
2833 NULL,
2834 amd64_epilogue_frame_sniffer
2835 };
2836
2837 static struct frame_id
2838 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2839 {
2840 CORE_ADDR fp;
2841
2842 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2843
2844 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2845 }
2846
2847 /* 16 byte align the SP per frame requirements. */
2848
2849 static CORE_ADDR
2850 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2851 {
2852 return sp & -(CORE_ADDR)16;
2853 }
2854 \f
2855
2856 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2857 in the floating-point register set REGSET to register cache
2858 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2859
2860 static void
2861 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2862 int regnum, const void *fpregs, size_t len)
2863 {
2864 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2865 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2866
2867 gdb_assert (len >= tdep->sizeof_fpregset);
2868 amd64_supply_fxsave (regcache, regnum, fpregs);
2869 }
2870
2871 /* Collect register REGNUM from the register cache REGCACHE and store
2872 it in the buffer specified by FPREGS and LEN as described by the
2873 floating-point register set REGSET. If REGNUM is -1, do this for
2874 all registers in REGSET. */
2875
2876 static void
2877 amd64_collect_fpregset (const struct regset *regset,
2878 const struct regcache *regcache,
2879 int regnum, void *fpregs, size_t len)
2880 {
2881 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2882 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2883
2884 gdb_assert (len >= tdep->sizeof_fpregset);
2885 amd64_collect_fxsave (regcache, regnum, fpregs);
2886 }
2887
2888 const struct regset amd64_fpregset =
2889 {
2890 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2891 };
2892 \f
2893
2894 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2895 %rdi. We expect its value to be a pointer to the jmp_buf structure
2896 from which we extract the address that we will land at. This
2897 address is copied into PC. This routine returns non-zero on
2898 success. */
2899
2900 static int
2901 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2902 {
2903 gdb_byte buf[8];
2904 CORE_ADDR jb_addr;
2905 struct gdbarch *gdbarch = get_frame_arch (frame);
2906 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2907 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2908
2909 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2910 longjmp will land. */
2911 if (jb_pc_offset == -1)
2912 return 0;
2913
2914 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2915 jb_addr= extract_typed_address
2916 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2917 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2918 return 0;
2919
2920 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2921
2922 return 1;
2923 }
2924
2925 static const int amd64_record_regmap[] =
2926 {
2927 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2928 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2929 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2930 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2931 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2932 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2933 };
2934
2935 void
2936 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2937 {
2938 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2939 const struct target_desc *tdesc = info.target_desc;
2940 static const char *const stap_integer_prefixes[] = { "$", NULL };
2941 static const char *const stap_register_prefixes[] = { "%", NULL };
2942 static const char *const stap_register_indirection_prefixes[] = { "(",
2943 NULL };
2944 static const char *const stap_register_indirection_suffixes[] = { ")",
2945 NULL };
2946
2947 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2948 floating-point registers. */
2949 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2950 tdep->fpregset = &amd64_fpregset;
2951
2952 if (! tdesc_has_registers (tdesc))
2953 tdesc = tdesc_amd64;
2954 tdep->tdesc = tdesc;
2955
2956 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2957 tdep->register_names = amd64_register_names;
2958
2959 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
2960 {
2961 tdep->zmmh_register_names = amd64_zmmh_names;
2962 tdep->k_register_names = amd64_k_names;
2963 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
2964 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
2965
2966 tdep->num_zmm_regs = 32;
2967 tdep->num_xmm_avx512_regs = 16;
2968 tdep->num_ymm_avx512_regs = 16;
2969
2970 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
2971 tdep->k0_regnum = AMD64_K0_REGNUM;
2972 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
2973 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
2974 }
2975
2976 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2977 {
2978 tdep->ymmh_register_names = amd64_ymmh_names;
2979 tdep->num_ymm_regs = 16;
2980 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2981 }
2982
2983 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
2984 {
2985 tdep->mpx_register_names = amd64_mpx_names;
2986 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
2987 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
2988 }
2989
2990 tdep->num_byte_regs = 20;
2991 tdep->num_word_regs = 16;
2992 tdep->num_dword_regs = 16;
2993 /* Avoid wiring in the MMX registers for now. */
2994 tdep->num_mmx_regs = 0;
2995
2996 set_gdbarch_pseudo_register_read_value (gdbarch,
2997 amd64_pseudo_register_read_value);
2998 set_gdbarch_pseudo_register_write (gdbarch,
2999 amd64_pseudo_register_write);
3000
3001 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3002
3003 /* AMD64 has an FPU and 16 SSE registers. */
3004 tdep->st0_regnum = AMD64_ST0_REGNUM;
3005 tdep->num_xmm_regs = 16;
3006
3007 /* This is what all the fuss is about. */
3008 set_gdbarch_long_bit (gdbarch, 64);
3009 set_gdbarch_long_long_bit (gdbarch, 64);
3010 set_gdbarch_ptr_bit (gdbarch, 64);
3011
3012 /* In contrast to the i386, on AMD64 a `long double' actually takes
3013 up 128 bits, even though it's still based on the i387 extended
3014 floating-point format which has only 80 significant bits. */
3015 set_gdbarch_long_double_bit (gdbarch, 128);
3016
3017 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3018
3019 /* Register numbers of various important registers. */
3020 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3021 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3022 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3023 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3024
3025 /* The "default" register numbering scheme for AMD64 is referred to
3026 as the "DWARF Register Number Mapping" in the System V psABI.
3027 The preferred debugging format for all known AMD64 targets is
3028 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3029 DWARF-1), but we provide the same mapping just in case. This
3030 mapping is also used for stabs, which GCC does support. */
3031 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3032 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3033
3034 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3035 be in use on any of the supported AMD64 targets. */
3036
3037 /* Call dummy code. */
3038 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3039 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3040 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3041
3042 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3043 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3044 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3045
3046 set_gdbarch_return_value (gdbarch, amd64_return_value);
3047
3048 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3049
3050 tdep->record_regmap = amd64_record_regmap;
3051
3052 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3053
3054 /* Hook the function epilogue frame unwinder. This unwinder is
3055 appended to the list first, so that it supercedes the other
3056 unwinders in function epilogues. */
3057 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3058
3059 /* Hook the prologue-based frame unwinders. */
3060 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3061 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3062 frame_base_set_default (gdbarch, &amd64_frame_base);
3063
3064 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3065
3066 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3067
3068 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3069
3070 /* SystemTap variables and functions. */
3071 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3072 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3073 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3074 stap_register_indirection_prefixes);
3075 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3076 stap_register_indirection_suffixes);
3077 set_gdbarch_stap_is_single_operand (gdbarch,
3078 i386_stap_is_single_operand);
3079 set_gdbarch_stap_parse_special_token (gdbarch,
3080 i386_stap_parse_special_token);
3081 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3082 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3083 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3084 }
3085 \f
3086
3087 static struct type *
3088 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3089 {
3090 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3091
3092 switch (regnum - tdep->eax_regnum)
3093 {
3094 case AMD64_RBP_REGNUM: /* %ebp */
3095 case AMD64_RSP_REGNUM: /* %esp */
3096 return builtin_type (gdbarch)->builtin_data_ptr;
3097 case AMD64_RIP_REGNUM: /* %eip */
3098 return builtin_type (gdbarch)->builtin_func_ptr;
3099 }
3100
3101 return i386_pseudo_register_type (gdbarch, regnum);
3102 }
3103
3104 void
3105 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3106 {
3107 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3108 const struct target_desc *tdesc = info.target_desc;
3109
3110 amd64_init_abi (info, gdbarch);
3111
3112 if (! tdesc_has_registers (tdesc))
3113 tdesc = tdesc_x32;
3114 tdep->tdesc = tdesc;
3115
3116 tdep->num_dword_regs = 17;
3117 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3118
3119 set_gdbarch_long_bit (gdbarch, 32);
3120 set_gdbarch_ptr_bit (gdbarch, 32);
3121 }
3122
3123 /* Return the target description for a specified XSAVE feature mask. */
3124
3125 const struct target_desc *
3126 amd64_target_description (uint64_t xcr0)
3127 {
3128 switch (xcr0 & X86_XSTATE_ALL_MASK)
3129 {
3130 case X86_XSTATE_MPX_AVX512_MASK:
3131 case X86_XSTATE_AVX512_MASK:
3132 return tdesc_amd64_avx512;
3133 case X86_XSTATE_MPX_MASK:
3134 return tdesc_amd64_mpx;
3135 case X86_XSTATE_AVX_MASK:
3136 return tdesc_amd64_avx;
3137 default:
3138 return tdesc_amd64;
3139 }
3140 }
3141
3142 /* Provide a prototype to silence -Wmissing-prototypes. */
3143 void _initialize_amd64_tdep (void);
3144
3145 void
3146 _initialize_amd64_tdep (void)
3147 {
3148 initialize_tdesc_amd64 ();
3149 initialize_tdesc_amd64_avx ();
3150 initialize_tdesc_amd64_mpx ();
3151 initialize_tdesc_amd64_avx512 ();
3152
3153 initialize_tdesc_x32 ();
3154 initialize_tdesc_x32_avx ();
3155 initialize_tdesc_x32_avx512 ();
3156 }
3157 \f
3158
3159 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3160 sense that the instruction pointer and data pointer are simply
3161 64-bit offsets into the code segment and the data segment instead
3162 of a selector offset pair. The functions below store the upper 32
3163 bits of these pointers (instead of just the 16-bits of the segment
3164 selector). */
3165
3166 /* Fill register REGNUM in REGCACHE with the appropriate
3167 floating-point or SSE register value from *FXSAVE. If REGNUM is
3168 -1, do this for all registers. This function masks off any of the
3169 reserved bits in *FXSAVE. */
3170
3171 void
3172 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3173 const void *fxsave)
3174 {
3175 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3177
3178 i387_supply_fxsave (regcache, regnum, fxsave);
3179
3180 if (fxsave
3181 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3182 {
3183 const gdb_byte *regs = (const gdb_byte *) fxsave;
3184
3185 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3186 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3187 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3188 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3189 }
3190 }
3191
3192 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3193
3194 void
3195 amd64_supply_xsave (struct regcache *regcache, int regnum,
3196 const void *xsave)
3197 {
3198 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3200
3201 i387_supply_xsave (regcache, regnum, xsave);
3202
3203 if (xsave
3204 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3205 {
3206 const gdb_byte *regs = (const gdb_byte *) xsave;
3207
3208 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3209 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3210 regs + 12);
3211 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3212 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3213 regs + 20);
3214 }
3215 }
3216
3217 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3218 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3219 all registers. This function doesn't touch any of the reserved
3220 bits in *FXSAVE. */
3221
3222 void
3223 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3224 void *fxsave)
3225 {
3226 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3228 gdb_byte *regs = (gdb_byte *) fxsave;
3229
3230 i387_collect_fxsave (regcache, regnum, fxsave);
3231
3232 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3233 {
3234 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3235 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3236 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3237 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3238 }
3239 }
3240
3241 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3242
3243 void
3244 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3245 void *xsave, int gcore)
3246 {
3247 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3249 gdb_byte *regs = (gdb_byte *) xsave;
3250
3251 i387_collect_xsave (regcache, regnum, xsave, gcore);
3252
3253 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3254 {
3255 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3256 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3257 regs + 12);
3258 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3259 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3260 regs + 20);
3261 }
3262 }
This page took 0.146788 seconds and 5 git commands to generate.