Add target description for avx-avx512.
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "x86-xstate.h"
43 #include <algorithm>
44
45 #include "features/i386/amd64.c"
46 #include "features/i386/amd64-avx.c"
47 #include "features/i386/amd64-mpx.c"
48 #include "features/i386/amd64-avx-mpx.c"
49 #include "features/i386/amd64-avx-avx512.c"
50 #include "features/i386/amd64-avx-mpx-avx512.c"
51
52 #include "features/i386/x32.c"
53 #include "features/i386/x32-avx.c"
54 #include "features/i386/x32-avx-avx512.c"
55
56 #include "ax.h"
57 #include "ax-gdb.h"
58
59 /* Note that the AMD64 architecture was previously known as x86-64.
60 The latter is (forever) engraved into the canonical system name as
61 returned by config.guess, and used as the name for the AMD64 port
62 of GNU/Linux. The BSD's have renamed their ports to amd64; they
63 don't like to shout. For GDB we prefer the amd64_-prefix over the
64 x86_64_-prefix since it's so much easier to type. */
65
66 /* Register information. */
67
68 static const char *amd64_register_names[] =
69 {
70 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
71
72 /* %r8 is indeed register number 8. */
73 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
74 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
75
76 /* %st0 is register number 24. */
77 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
78 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
79
80 /* %xmm0 is register number 40. */
81 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
82 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
83 "mxcsr",
84 };
85
86 static const char *amd64_ymm_names[] =
87 {
88 "ymm0", "ymm1", "ymm2", "ymm3",
89 "ymm4", "ymm5", "ymm6", "ymm7",
90 "ymm8", "ymm9", "ymm10", "ymm11",
91 "ymm12", "ymm13", "ymm14", "ymm15"
92 };
93
94 static const char *amd64_ymm_avx512_names[] =
95 {
96 "ymm16", "ymm17", "ymm18", "ymm19",
97 "ymm20", "ymm21", "ymm22", "ymm23",
98 "ymm24", "ymm25", "ymm26", "ymm27",
99 "ymm28", "ymm29", "ymm30", "ymm31"
100 };
101
102 static const char *amd64_ymmh_names[] =
103 {
104 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
105 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
106 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
107 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
108 };
109
110 static const char *amd64_ymmh_avx512_names[] =
111 {
112 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
113 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
114 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
115 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
116 };
117
118 static const char *amd64_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 static const char *amd64_k_names[] =
124 {
125 "k0", "k1", "k2", "k3",
126 "k4", "k5", "k6", "k7"
127 };
128
129 static const char *amd64_zmmh_names[] =
130 {
131 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
132 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
133 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
134 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
135 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
136 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
137 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
138 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
139 };
140
141 static const char *amd64_zmm_names[] =
142 {
143 "zmm0", "zmm1", "zmm2", "zmm3",
144 "zmm4", "zmm5", "zmm6", "zmm7",
145 "zmm8", "zmm9", "zmm10", "zmm11",
146 "zmm12", "zmm13", "zmm14", "zmm15",
147 "zmm16", "zmm17", "zmm18", "zmm19",
148 "zmm20", "zmm21", "zmm22", "zmm23",
149 "zmm24", "zmm25", "zmm26", "zmm27",
150 "zmm28", "zmm29", "zmm30", "zmm31"
151 };
152
153 static const char *amd64_xmm_avx512_names[] = {
154 "xmm16", "xmm17", "xmm18", "xmm19",
155 "xmm20", "xmm21", "xmm22", "xmm23",
156 "xmm24", "xmm25", "xmm26", "xmm27",
157 "xmm28", "xmm29", "xmm30", "xmm31"
158 };
159
160 /* DWARF Register Number Mapping as defined in the System V psABI,
161 section 3.6. */
162
163 static int amd64_dwarf_regmap[] =
164 {
165 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
166 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
167 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
168 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
169
170 /* Frame Pointer Register RBP. */
171 AMD64_RBP_REGNUM,
172
173 /* Stack Pointer Register RSP. */
174 AMD64_RSP_REGNUM,
175
176 /* Extended Integer Registers 8 - 15. */
177 AMD64_R8_REGNUM, /* %r8 */
178 AMD64_R9_REGNUM, /* %r9 */
179 AMD64_R10_REGNUM, /* %r10 */
180 AMD64_R11_REGNUM, /* %r11 */
181 AMD64_R12_REGNUM, /* %r12 */
182 AMD64_R13_REGNUM, /* %r13 */
183 AMD64_R14_REGNUM, /* %r14 */
184 AMD64_R15_REGNUM, /* %r15 */
185
186 /* Return Address RA. Mapped to RIP. */
187 AMD64_RIP_REGNUM,
188
189 /* SSE Registers 0 - 7. */
190 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
191 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
192 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
193 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
194
195 /* Extended SSE Registers 8 - 15. */
196 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
197 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
198 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
199 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
200
201 /* Floating Point Registers 0-7. */
202 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
203 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
204 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
205 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
206
207 /* MMX Registers 0 - 7.
208 We have to handle those registers specifically, as their register
209 number within GDB depends on the target (or they may even not be
210 available at all). */
211 -1, -1, -1, -1, -1, -1, -1, -1,
212
213 /* Control and Status Flags Register. */
214 AMD64_EFLAGS_REGNUM,
215
216 /* Selector Registers. */
217 AMD64_ES_REGNUM,
218 AMD64_CS_REGNUM,
219 AMD64_SS_REGNUM,
220 AMD64_DS_REGNUM,
221 AMD64_FS_REGNUM,
222 AMD64_GS_REGNUM,
223 -1,
224 -1,
225
226 /* Segment Base Address Registers. */
227 -1,
228 -1,
229 -1,
230 -1,
231
232 /* Special Selector Registers. */
233 -1,
234 -1,
235
236 /* Floating Point Control Registers. */
237 AMD64_MXCSR_REGNUM,
238 AMD64_FCTRL_REGNUM,
239 AMD64_FSTAT_REGNUM
240 };
241
242 static const int amd64_dwarf_regmap_len =
243 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
244
245 /* Convert DWARF register number REG to the appropriate register
246 number used by GDB. */
247
248 static int
249 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
250 {
251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
252 int ymm0_regnum = tdep->ymm0_regnum;
253 int regnum = -1;
254
255 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
256 regnum = amd64_dwarf_regmap[reg];
257
258 if (ymm0_regnum >= 0
259 && i386_xmm_regnum_p (gdbarch, regnum))
260 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
261
262 return regnum;
263 }
264
265 /* Map architectural register numbers to gdb register numbers. */
266
267 static const int amd64_arch_regmap[16] =
268 {
269 AMD64_RAX_REGNUM, /* %rax */
270 AMD64_RCX_REGNUM, /* %rcx */
271 AMD64_RDX_REGNUM, /* %rdx */
272 AMD64_RBX_REGNUM, /* %rbx */
273 AMD64_RSP_REGNUM, /* %rsp */
274 AMD64_RBP_REGNUM, /* %rbp */
275 AMD64_RSI_REGNUM, /* %rsi */
276 AMD64_RDI_REGNUM, /* %rdi */
277 AMD64_R8_REGNUM, /* %r8 */
278 AMD64_R9_REGNUM, /* %r9 */
279 AMD64_R10_REGNUM, /* %r10 */
280 AMD64_R11_REGNUM, /* %r11 */
281 AMD64_R12_REGNUM, /* %r12 */
282 AMD64_R13_REGNUM, /* %r13 */
283 AMD64_R14_REGNUM, /* %r14 */
284 AMD64_R15_REGNUM /* %r15 */
285 };
286
287 static const int amd64_arch_regmap_len =
288 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
289
290 /* Convert architectural register number REG to the appropriate register
291 number used by GDB. */
292
293 static int
294 amd64_arch_reg_to_regnum (int reg)
295 {
296 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
297
298 return amd64_arch_regmap[reg];
299 }
300
301 /* Register names for byte pseudo-registers. */
302
303 static const char *amd64_byte_names[] =
304 {
305 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
306 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
307 "ah", "bh", "ch", "dh"
308 };
309
310 /* Number of lower byte registers. */
311 #define AMD64_NUM_LOWER_BYTE_REGS 16
312
313 /* Register names for word pseudo-registers. */
314
315 static const char *amd64_word_names[] =
316 {
317 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
318 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
319 };
320
321 /* Register names for dword pseudo-registers. */
322
323 static const char *amd64_dword_names[] =
324 {
325 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
326 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
327 "eip"
328 };
329
330 /* Return the name of register REGNUM. */
331
332 static const char *
333 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
334 {
335 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
336 if (i386_byte_regnum_p (gdbarch, regnum))
337 return amd64_byte_names[regnum - tdep->al_regnum];
338 else if (i386_zmm_regnum_p (gdbarch, regnum))
339 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
340 else if (i386_ymm_regnum_p (gdbarch, regnum))
341 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
342 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
343 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
344 else if (i386_word_regnum_p (gdbarch, regnum))
345 return amd64_word_names[regnum - tdep->ax_regnum];
346 else if (i386_dword_regnum_p (gdbarch, regnum))
347 return amd64_dword_names[regnum - tdep->eax_regnum];
348 else
349 return i386_pseudo_register_name (gdbarch, regnum);
350 }
351
352 static struct value *
353 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
354 struct regcache *regcache,
355 int regnum)
356 {
357 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359 enum register_status status;
360 struct value *result_value;
361 gdb_byte *buf;
362
363 result_value = allocate_value (register_type (gdbarch, regnum));
364 VALUE_LVAL (result_value) = lval_register;
365 VALUE_REGNUM (result_value) = regnum;
366 buf = value_contents_raw (result_value);
367
368 if (i386_byte_regnum_p (gdbarch, regnum))
369 {
370 int gpnum = regnum - tdep->al_regnum;
371
372 /* Extract (always little endian). */
373 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
374 {
375 /* Special handling for AH, BH, CH, DH. */
376 status = regcache_raw_read (regcache,
377 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
378 raw_buf);
379 if (status == REG_VALID)
380 memcpy (buf, raw_buf + 1, 1);
381 else
382 mark_value_bytes_unavailable (result_value, 0,
383 TYPE_LENGTH (value_type (result_value)));
384 }
385 else
386 {
387 status = regcache_raw_read (regcache, gpnum, raw_buf);
388 if (status == REG_VALID)
389 memcpy (buf, raw_buf, 1);
390 else
391 mark_value_bytes_unavailable (result_value, 0,
392 TYPE_LENGTH (value_type (result_value)));
393 }
394 }
395 else if (i386_dword_regnum_p (gdbarch, regnum))
396 {
397 int gpnum = regnum - tdep->eax_regnum;
398 /* Extract (always little endian). */
399 status = regcache_raw_read (regcache, gpnum, raw_buf);
400 if (status == REG_VALID)
401 memcpy (buf, raw_buf, 4);
402 else
403 mark_value_bytes_unavailable (result_value, 0,
404 TYPE_LENGTH (value_type (result_value)));
405 }
406 else
407 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
408 result_value);
409
410 return result_value;
411 }
412
413 static void
414 amd64_pseudo_register_write (struct gdbarch *gdbarch,
415 struct regcache *regcache,
416 int regnum, const gdb_byte *buf)
417 {
418 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
419 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
420
421 if (i386_byte_regnum_p (gdbarch, regnum))
422 {
423 int gpnum = regnum - tdep->al_regnum;
424
425 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
426 {
427 /* Read ... AH, BH, CH, DH. */
428 regcache_raw_read (regcache,
429 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
430 /* ... Modify ... (always little endian). */
431 memcpy (raw_buf + 1, buf, 1);
432 /* ... Write. */
433 regcache_raw_write (regcache,
434 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
435 }
436 else
437 {
438 /* Read ... */
439 regcache_raw_read (regcache, gpnum, raw_buf);
440 /* ... Modify ... (always little endian). */
441 memcpy (raw_buf, buf, 1);
442 /* ... Write. */
443 regcache_raw_write (regcache, gpnum, raw_buf);
444 }
445 }
446 else if (i386_dword_regnum_p (gdbarch, regnum))
447 {
448 int gpnum = regnum - tdep->eax_regnum;
449
450 /* Read ... */
451 regcache_raw_read (regcache, gpnum, raw_buf);
452 /* ... Modify ... (always little endian). */
453 memcpy (raw_buf, buf, 4);
454 /* ... Write. */
455 regcache_raw_write (regcache, gpnum, raw_buf);
456 }
457 else
458 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
459 }
460
461 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
462
463 static int
464 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
465 struct agent_expr *ax, int regnum)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 if (i386_byte_regnum_p (gdbarch, regnum))
470 {
471 int gpnum = regnum - tdep->al_regnum;
472
473 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
474 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
475 else
476 ax_reg_mask (ax, gpnum);
477 return 0;
478 }
479 else if (i386_dword_regnum_p (gdbarch, regnum))
480 {
481 int gpnum = regnum - tdep->eax_regnum;
482
483 ax_reg_mask (ax, gpnum);
484 return 0;
485 }
486 else
487 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
488 }
489
490 \f
491
492 /* Register classes as defined in the psABI. */
493
494 enum amd64_reg_class
495 {
496 AMD64_INTEGER,
497 AMD64_SSE,
498 AMD64_SSEUP,
499 AMD64_X87,
500 AMD64_X87UP,
501 AMD64_COMPLEX_X87,
502 AMD64_NO_CLASS,
503 AMD64_MEMORY
504 };
505
506 /* Return the union class of CLASS1 and CLASS2. See the psABI for
507 details. */
508
509 static enum amd64_reg_class
510 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
511 {
512 /* Rule (a): If both classes are equal, this is the resulting class. */
513 if (class1 == class2)
514 return class1;
515
516 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
517 is the other class. */
518 if (class1 == AMD64_NO_CLASS)
519 return class2;
520 if (class2 == AMD64_NO_CLASS)
521 return class1;
522
523 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
524 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
525 return AMD64_MEMORY;
526
527 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
528 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
529 return AMD64_INTEGER;
530
531 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
532 MEMORY is used as class. */
533 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
534 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
535 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
536 return AMD64_MEMORY;
537
538 /* Rule (f): Otherwise class SSE is used. */
539 return AMD64_SSE;
540 }
541
542 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
543
544 /* Return non-zero if TYPE is a non-POD structure or union type. */
545
546 static int
547 amd64_non_pod_p (struct type *type)
548 {
549 /* ??? A class with a base class certainly isn't POD, but does this
550 catch all non-POD structure types? */
551 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
552 return 1;
553
554 return 0;
555 }
556
557 /* Classify TYPE according to the rules for aggregate (structures and
558 arrays) and union types, and store the result in CLASS. */
559
560 static void
561 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
562 {
563 /* 1. If the size of an object is larger than two eightbytes, or in
564 C++, is a non-POD structure or union type, or contains
565 unaligned fields, it has class memory. */
566 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
567 {
568 theclass[0] = theclass[1] = AMD64_MEMORY;
569 return;
570 }
571
572 /* 2. Both eightbytes get initialized to class NO_CLASS. */
573 theclass[0] = theclass[1] = AMD64_NO_CLASS;
574
575 /* 3. Each field of an object is classified recursively so that
576 always two fields are considered. The resulting class is
577 calculated according to the classes of the fields in the
578 eightbyte: */
579
580 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
581 {
582 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
583
584 /* All fields in an array have the same type. */
585 amd64_classify (subtype, theclass);
586 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
587 theclass[1] = theclass[0];
588 }
589 else
590 {
591 int i;
592
593 /* Structure or union. */
594 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
595 || TYPE_CODE (type) == TYPE_CODE_UNION);
596
597 for (i = 0; i < TYPE_NFIELDS (type); i++)
598 {
599 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
600 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
601 enum amd64_reg_class subclass[2];
602 int bitsize = TYPE_FIELD_BITSIZE (type, i);
603 int endpos;
604
605 if (bitsize == 0)
606 bitsize = TYPE_LENGTH (subtype) * 8;
607 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
608
609 /* Ignore static fields. */
610 if (field_is_static (&TYPE_FIELD (type, i)))
611 continue;
612
613 gdb_assert (pos == 0 || pos == 1);
614
615 amd64_classify (subtype, subclass);
616 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
617 if (bitsize <= 64 && pos == 0 && endpos == 1)
618 /* This is a bit of an odd case: We have a field that would
619 normally fit in one of the two eightbytes, except that
620 it is placed in a way that this field straddles them.
621 This has been seen with a structure containing an array.
622
623 The ABI is a bit unclear in this case, but we assume that
624 this field's class (stored in subclass[0]) must also be merged
625 into class[1]. In other words, our field has a piece stored
626 in the second eight-byte, and thus its class applies to
627 the second eight-byte as well.
628
629 In the case where the field length exceeds 8 bytes,
630 it should not be necessary to merge the field class
631 into class[1]. As LEN > 8, subclass[1] is necessarily
632 different from AMD64_NO_CLASS. If subclass[1] is equal
633 to subclass[0], then the normal class[1]/subclass[1]
634 merging will take care of everything. For subclass[1]
635 to be different from subclass[0], I can only see the case
636 where we have a SSE/SSEUP or X87/X87UP pair, which both
637 use up all 16 bytes of the aggregate, and are already
638 handled just fine (because each portion sits on its own
639 8-byte). */
640 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
641 if (pos == 0)
642 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
643 }
644 }
645
646 /* 4. Then a post merger cleanup is done: */
647
648 /* Rule (a): If one of the classes is MEMORY, the whole argument is
649 passed in memory. */
650 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
651 theclass[0] = theclass[1] = AMD64_MEMORY;
652
653 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
654 SSE. */
655 if (theclass[0] == AMD64_SSEUP)
656 theclass[0] = AMD64_SSE;
657 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
658 theclass[1] = AMD64_SSE;
659 }
660
661 /* Classify TYPE, and store the result in CLASS. */
662
663 static void
664 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
665 {
666 enum type_code code = TYPE_CODE (type);
667 int len = TYPE_LENGTH (type);
668
669 theclass[0] = theclass[1] = AMD64_NO_CLASS;
670
671 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
672 long, long long, and pointers are in the INTEGER class. Similarly,
673 range types, used by languages such as Ada, are also in the INTEGER
674 class. */
675 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
676 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
677 || code == TYPE_CODE_CHAR
678 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
679 && (len == 1 || len == 2 || len == 4 || len == 8))
680 theclass[0] = AMD64_INTEGER;
681
682 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
683 are in class SSE. */
684 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
685 && (len == 4 || len == 8))
686 /* FIXME: __m64 . */
687 theclass[0] = AMD64_SSE;
688
689 /* Arguments of types __float128, _Decimal128 and __m128 are split into
690 two halves. The least significant ones belong to class SSE, the most
691 significant one to class SSEUP. */
692 else if (code == TYPE_CODE_DECFLOAT && len == 16)
693 /* FIXME: __float128, __m128. */
694 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
695
696 /* The 64-bit mantissa of arguments of type long double belongs to
697 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
698 class X87UP. */
699 else if (code == TYPE_CODE_FLT && len == 16)
700 /* Class X87 and X87UP. */
701 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
702
703 /* Arguments of complex T where T is one of the types float or
704 double get treated as if they are implemented as:
705
706 struct complexT {
707 T real;
708 T imag;
709 };
710
711 */
712 else if (code == TYPE_CODE_COMPLEX && len == 8)
713 theclass[0] = AMD64_SSE;
714 else if (code == TYPE_CODE_COMPLEX && len == 16)
715 theclass[0] = theclass[1] = AMD64_SSE;
716
717 /* A variable of type complex long double is classified as type
718 COMPLEX_X87. */
719 else if (code == TYPE_CODE_COMPLEX && len == 32)
720 theclass[0] = AMD64_COMPLEX_X87;
721
722 /* Aggregates. */
723 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
724 || code == TYPE_CODE_UNION)
725 amd64_classify_aggregate (type, theclass);
726 }
727
728 static enum return_value_convention
729 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
730 struct type *type, struct regcache *regcache,
731 gdb_byte *readbuf, const gdb_byte *writebuf)
732 {
733 enum amd64_reg_class theclass[2];
734 int len = TYPE_LENGTH (type);
735 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
736 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
737 int integer_reg = 0;
738 int sse_reg = 0;
739 int i;
740
741 gdb_assert (!(readbuf && writebuf));
742
743 /* 1. Classify the return type with the classification algorithm. */
744 amd64_classify (type, theclass);
745
746 /* 2. If the type has class MEMORY, then the caller provides space
747 for the return value and passes the address of this storage in
748 %rdi as if it were the first argument to the function. In effect,
749 this address becomes a hidden first argument.
750
751 On return %rax will contain the address that has been passed in
752 by the caller in %rdi. */
753 if (theclass[0] == AMD64_MEMORY)
754 {
755 /* As indicated by the comment above, the ABI guarantees that we
756 can always find the return value just after the function has
757 returned. */
758
759 if (readbuf)
760 {
761 ULONGEST addr;
762
763 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
764 read_memory (addr, readbuf, TYPE_LENGTH (type));
765 }
766
767 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
768 }
769
770 /* 8. If the class is COMPLEX_X87, the real part of the value is
771 returned in %st0 and the imaginary part in %st1. */
772 if (theclass[0] == AMD64_COMPLEX_X87)
773 {
774 if (readbuf)
775 {
776 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
777 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
778 }
779
780 if (writebuf)
781 {
782 i387_return_value (gdbarch, regcache);
783 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
784 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
785
786 /* Fix up the tag word such that both %st(0) and %st(1) are
787 marked as valid. */
788 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
789 }
790
791 return RETURN_VALUE_REGISTER_CONVENTION;
792 }
793
794 gdb_assert (theclass[1] != AMD64_MEMORY);
795 gdb_assert (len <= 16);
796
797 for (i = 0; len > 0; i++, len -= 8)
798 {
799 int regnum = -1;
800 int offset = 0;
801
802 switch (theclass[i])
803 {
804 case AMD64_INTEGER:
805 /* 3. If the class is INTEGER, the next available register
806 of the sequence %rax, %rdx is used. */
807 regnum = integer_regnum[integer_reg++];
808 break;
809
810 case AMD64_SSE:
811 /* 4. If the class is SSE, the next available SSE register
812 of the sequence %xmm0, %xmm1 is used. */
813 regnum = sse_regnum[sse_reg++];
814 break;
815
816 case AMD64_SSEUP:
817 /* 5. If the class is SSEUP, the eightbyte is passed in the
818 upper half of the last used SSE register. */
819 gdb_assert (sse_reg > 0);
820 regnum = sse_regnum[sse_reg - 1];
821 offset = 8;
822 break;
823
824 case AMD64_X87:
825 /* 6. If the class is X87, the value is returned on the X87
826 stack in %st0 as 80-bit x87 number. */
827 regnum = AMD64_ST0_REGNUM;
828 if (writebuf)
829 i387_return_value (gdbarch, regcache);
830 break;
831
832 case AMD64_X87UP:
833 /* 7. If the class is X87UP, the value is returned together
834 with the previous X87 value in %st0. */
835 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
836 regnum = AMD64_ST0_REGNUM;
837 offset = 8;
838 len = 2;
839 break;
840
841 case AMD64_NO_CLASS:
842 continue;
843
844 default:
845 gdb_assert (!"Unexpected register class.");
846 }
847
848 gdb_assert (regnum != -1);
849
850 if (readbuf)
851 regcache_raw_read_part (regcache, regnum, offset, std::min (len, 8),
852 readbuf + i * 8);
853 if (writebuf)
854 regcache_raw_write_part (regcache, regnum, offset, std::min (len, 8),
855 writebuf + i * 8);
856 }
857
858 return RETURN_VALUE_REGISTER_CONVENTION;
859 }
860 \f
861
862 static CORE_ADDR
863 amd64_push_arguments (struct regcache *regcache, int nargs,
864 struct value **args, CORE_ADDR sp, int struct_return)
865 {
866 static int integer_regnum[] =
867 {
868 AMD64_RDI_REGNUM, /* %rdi */
869 AMD64_RSI_REGNUM, /* %rsi */
870 AMD64_RDX_REGNUM, /* %rdx */
871 AMD64_RCX_REGNUM, /* %rcx */
872 AMD64_R8_REGNUM, /* %r8 */
873 AMD64_R9_REGNUM /* %r9 */
874 };
875 static int sse_regnum[] =
876 {
877 /* %xmm0 ... %xmm7 */
878 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
879 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
880 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
881 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
882 };
883 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
884 int num_stack_args = 0;
885 int num_elements = 0;
886 int element = 0;
887 int integer_reg = 0;
888 int sse_reg = 0;
889 int i;
890
891 /* Reserve a register for the "hidden" argument. */
892 if (struct_return)
893 integer_reg++;
894
895 for (i = 0; i < nargs; i++)
896 {
897 struct type *type = value_type (args[i]);
898 int len = TYPE_LENGTH (type);
899 enum amd64_reg_class theclass[2];
900 int needed_integer_regs = 0;
901 int needed_sse_regs = 0;
902 int j;
903
904 /* Classify argument. */
905 amd64_classify (type, theclass);
906
907 /* Calculate the number of integer and SSE registers needed for
908 this argument. */
909 for (j = 0; j < 2; j++)
910 {
911 if (theclass[j] == AMD64_INTEGER)
912 needed_integer_regs++;
913 else if (theclass[j] == AMD64_SSE)
914 needed_sse_regs++;
915 }
916
917 /* Check whether enough registers are available, and if the
918 argument should be passed in registers at all. */
919 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
920 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
921 || (needed_integer_regs == 0 && needed_sse_regs == 0))
922 {
923 /* The argument will be passed on the stack. */
924 num_elements += ((len + 7) / 8);
925 stack_args[num_stack_args++] = args[i];
926 }
927 else
928 {
929 /* The argument will be passed in registers. */
930 const gdb_byte *valbuf = value_contents (args[i]);
931 gdb_byte buf[8];
932
933 gdb_assert (len <= 16);
934
935 for (j = 0; len > 0; j++, len -= 8)
936 {
937 int regnum = -1;
938 int offset = 0;
939
940 switch (theclass[j])
941 {
942 case AMD64_INTEGER:
943 regnum = integer_regnum[integer_reg++];
944 break;
945
946 case AMD64_SSE:
947 regnum = sse_regnum[sse_reg++];
948 break;
949
950 case AMD64_SSEUP:
951 gdb_assert (sse_reg > 0);
952 regnum = sse_regnum[sse_reg - 1];
953 offset = 8;
954 break;
955
956 default:
957 gdb_assert (!"Unexpected register class.");
958 }
959
960 gdb_assert (regnum != -1);
961 memset (buf, 0, sizeof buf);
962 memcpy (buf, valbuf + j * 8, std::min (len, 8));
963 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
964 }
965 }
966 }
967
968 /* Allocate space for the arguments on the stack. */
969 sp -= num_elements * 8;
970
971 /* The psABI says that "The end of the input argument area shall be
972 aligned on a 16 byte boundary." */
973 sp &= ~0xf;
974
975 /* Write out the arguments to the stack. */
976 for (i = 0; i < num_stack_args; i++)
977 {
978 struct type *type = value_type (stack_args[i]);
979 const gdb_byte *valbuf = value_contents (stack_args[i]);
980 int len = TYPE_LENGTH (type);
981
982 write_memory (sp + element * 8, valbuf, len);
983 element += ((len + 7) / 8);
984 }
985
986 /* The psABI says that "For calls that may call functions that use
987 varargs or stdargs (prototype-less calls or calls to functions
988 containing ellipsis (...) in the declaration) %al is used as
989 hidden argument to specify the number of SSE registers used. */
990 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
991 return sp;
992 }
993
994 static CORE_ADDR
995 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
996 struct regcache *regcache, CORE_ADDR bp_addr,
997 int nargs, struct value **args, CORE_ADDR sp,
998 int struct_return, CORE_ADDR struct_addr)
999 {
1000 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1001 gdb_byte buf[8];
1002
1003 /* Pass arguments. */
1004 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
1005
1006 /* Pass "hidden" argument". */
1007 if (struct_return)
1008 {
1009 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1010 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
1011 }
1012
1013 /* Store return address. */
1014 sp -= 8;
1015 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1016 write_memory (sp, buf, 8);
1017
1018 /* Finally, update the stack pointer... */
1019 store_unsigned_integer (buf, 8, byte_order, sp);
1020 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
1021
1022 /* ...and fake a frame pointer. */
1023 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
1024
1025 return sp + 16;
1026 }
1027 \f
1028 /* Displaced instruction handling. */
1029
1030 /* A partially decoded instruction.
1031 This contains enough details for displaced stepping purposes. */
1032
1033 struct amd64_insn
1034 {
1035 /* The number of opcode bytes. */
1036 int opcode_len;
1037 /* The offset of the rex prefix or -1 if not present. */
1038 int rex_offset;
1039 /* The offset to the first opcode byte. */
1040 int opcode_offset;
1041 /* The offset to the modrm byte or -1 if not present. */
1042 int modrm_offset;
1043
1044 /* The raw instruction. */
1045 gdb_byte *raw_insn;
1046 };
1047
1048 struct displaced_step_closure
1049 {
1050 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1051 int tmp_used;
1052 int tmp_regno;
1053 ULONGEST tmp_save;
1054
1055 /* Details of the instruction. */
1056 struct amd64_insn insn_details;
1057
1058 /* Amount of space allocated to insn_buf. */
1059 int max_len;
1060
1061 /* The possibly modified insn.
1062 This is a variable-length field. */
1063 gdb_byte insn_buf[1];
1064 };
1065
1066 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1067 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1068 at which point delete these in favor of libopcodes' versions). */
1069
1070 static const unsigned char onebyte_has_modrm[256] = {
1071 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1072 /* ------------------------------- */
1073 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1074 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1075 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1076 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1077 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1078 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1079 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1080 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1081 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1082 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1083 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1084 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1085 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1086 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1087 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1088 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1089 /* ------------------------------- */
1090 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1091 };
1092
1093 static const unsigned char twobyte_has_modrm[256] = {
1094 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1095 /* ------------------------------- */
1096 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1097 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1098 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1099 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1100 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1101 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1102 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1103 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1104 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1105 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1106 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1107 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1108 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1109 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1110 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1111 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1112 /* ------------------------------- */
1113 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1114 };
1115
1116 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1117
1118 static int
1119 rex_prefix_p (gdb_byte pfx)
1120 {
1121 return REX_PREFIX_P (pfx);
1122 }
1123
1124 /* Skip the legacy instruction prefixes in INSN.
1125 We assume INSN is properly sentineled so we don't have to worry
1126 about falling off the end of the buffer. */
1127
1128 static gdb_byte *
1129 amd64_skip_prefixes (gdb_byte *insn)
1130 {
1131 while (1)
1132 {
1133 switch (*insn)
1134 {
1135 case DATA_PREFIX_OPCODE:
1136 case ADDR_PREFIX_OPCODE:
1137 case CS_PREFIX_OPCODE:
1138 case DS_PREFIX_OPCODE:
1139 case ES_PREFIX_OPCODE:
1140 case FS_PREFIX_OPCODE:
1141 case GS_PREFIX_OPCODE:
1142 case SS_PREFIX_OPCODE:
1143 case LOCK_PREFIX_OPCODE:
1144 case REPE_PREFIX_OPCODE:
1145 case REPNE_PREFIX_OPCODE:
1146 ++insn;
1147 continue;
1148 default:
1149 break;
1150 }
1151 break;
1152 }
1153
1154 return insn;
1155 }
1156
1157 /* Return an integer register (other than RSP) that is unused as an input
1158 operand in INSN.
1159 In order to not require adding a rex prefix if the insn doesn't already
1160 have one, the result is restricted to RAX ... RDI, sans RSP.
1161 The register numbering of the result follows architecture ordering,
1162 e.g. RDI = 7. */
1163
1164 static int
1165 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1166 {
1167 /* 1 bit for each reg */
1168 int used_regs_mask = 0;
1169
1170 /* There can be at most 3 int regs used as inputs in an insn, and we have
1171 7 to choose from (RAX ... RDI, sans RSP).
1172 This allows us to take a conservative approach and keep things simple.
1173 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1174 that implicitly specify RAX. */
1175
1176 /* Avoid RAX. */
1177 used_regs_mask |= 1 << EAX_REG_NUM;
1178 /* Similarily avoid RDX, implicit operand in divides. */
1179 used_regs_mask |= 1 << EDX_REG_NUM;
1180 /* Avoid RSP. */
1181 used_regs_mask |= 1 << ESP_REG_NUM;
1182
1183 /* If the opcode is one byte long and there's no ModRM byte,
1184 assume the opcode specifies a register. */
1185 if (details->opcode_len == 1 && details->modrm_offset == -1)
1186 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1187
1188 /* Mark used regs in the modrm/sib bytes. */
1189 if (details->modrm_offset != -1)
1190 {
1191 int modrm = details->raw_insn[details->modrm_offset];
1192 int mod = MODRM_MOD_FIELD (modrm);
1193 int reg = MODRM_REG_FIELD (modrm);
1194 int rm = MODRM_RM_FIELD (modrm);
1195 int have_sib = mod != 3 && rm == 4;
1196
1197 /* Assume the reg field of the modrm byte specifies a register. */
1198 used_regs_mask |= 1 << reg;
1199
1200 if (have_sib)
1201 {
1202 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1203 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1204 used_regs_mask |= 1 << base;
1205 used_regs_mask |= 1 << idx;
1206 }
1207 else
1208 {
1209 used_regs_mask |= 1 << rm;
1210 }
1211 }
1212
1213 gdb_assert (used_regs_mask < 256);
1214 gdb_assert (used_regs_mask != 255);
1215
1216 /* Finally, find a free reg. */
1217 {
1218 int i;
1219
1220 for (i = 0; i < 8; ++i)
1221 {
1222 if (! (used_regs_mask & (1 << i)))
1223 return i;
1224 }
1225
1226 /* We shouldn't get here. */
1227 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1228 }
1229 }
1230
1231 /* Extract the details of INSN that we need. */
1232
1233 static void
1234 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1235 {
1236 gdb_byte *start = insn;
1237 int need_modrm;
1238
1239 details->raw_insn = insn;
1240
1241 details->opcode_len = -1;
1242 details->rex_offset = -1;
1243 details->opcode_offset = -1;
1244 details->modrm_offset = -1;
1245
1246 /* Skip legacy instruction prefixes. */
1247 insn = amd64_skip_prefixes (insn);
1248
1249 /* Skip REX instruction prefix. */
1250 if (rex_prefix_p (*insn))
1251 {
1252 details->rex_offset = insn - start;
1253 ++insn;
1254 }
1255
1256 details->opcode_offset = insn - start;
1257
1258 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1259 {
1260 /* Two or three-byte opcode. */
1261 ++insn;
1262 need_modrm = twobyte_has_modrm[*insn];
1263
1264 /* Check for three-byte opcode. */
1265 switch (*insn)
1266 {
1267 case 0x24:
1268 case 0x25:
1269 case 0x38:
1270 case 0x3a:
1271 case 0x7a:
1272 case 0x7b:
1273 ++insn;
1274 details->opcode_len = 3;
1275 break;
1276 default:
1277 details->opcode_len = 2;
1278 break;
1279 }
1280 }
1281 else
1282 {
1283 /* One-byte opcode. */
1284 need_modrm = onebyte_has_modrm[*insn];
1285 details->opcode_len = 1;
1286 }
1287
1288 if (need_modrm)
1289 {
1290 ++insn;
1291 details->modrm_offset = insn - start;
1292 }
1293 }
1294
1295 /* Update %rip-relative addressing in INSN.
1296
1297 %rip-relative addressing only uses a 32-bit displacement.
1298 32 bits is not enough to be guaranteed to cover the distance between where
1299 the real instruction is and where its copy is.
1300 Convert the insn to use base+disp addressing.
1301 We set base = pc + insn_length so we can leave disp unchanged. */
1302
1303 static void
1304 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1305 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1306 {
1307 const struct amd64_insn *insn_details = &dsc->insn_details;
1308 int modrm_offset = insn_details->modrm_offset;
1309 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1310 CORE_ADDR rip_base;
1311 int insn_length;
1312 int arch_tmp_regno, tmp_regno;
1313 ULONGEST orig_value;
1314
1315 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1316 ++insn;
1317
1318 /* Compute the rip-relative address. */
1319 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1320 dsc->max_len, from);
1321 rip_base = from + insn_length;
1322
1323 /* We need a register to hold the address.
1324 Pick one not used in the insn.
1325 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1326 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1327 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1328
1329 /* REX.B should be unset as we were using rip-relative addressing,
1330 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1331 if (insn_details->rex_offset != -1)
1332 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1333
1334 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1335 dsc->tmp_regno = tmp_regno;
1336 dsc->tmp_save = orig_value;
1337 dsc->tmp_used = 1;
1338
1339 /* Convert the ModRM field to be base+disp. */
1340 dsc->insn_buf[modrm_offset] &= ~0xc7;
1341 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1342
1343 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1344
1345 if (debug_displaced)
1346 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1347 "displaced: using temp reg %d, old value %s, new value %s\n",
1348 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1349 paddress (gdbarch, rip_base));
1350 }
1351
1352 static void
1353 fixup_displaced_copy (struct gdbarch *gdbarch,
1354 struct displaced_step_closure *dsc,
1355 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1356 {
1357 const struct amd64_insn *details = &dsc->insn_details;
1358
1359 if (details->modrm_offset != -1)
1360 {
1361 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1362
1363 if ((modrm & 0xc7) == 0x05)
1364 {
1365 /* The insn uses rip-relative addressing.
1366 Deal with it. */
1367 fixup_riprel (gdbarch, dsc, from, to, regs);
1368 }
1369 }
1370 }
1371
1372 struct displaced_step_closure *
1373 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1374 CORE_ADDR from, CORE_ADDR to,
1375 struct regcache *regs)
1376 {
1377 int len = gdbarch_max_insn_length (gdbarch);
1378 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1379 continually watch for running off the end of the buffer. */
1380 int fixup_sentinel_space = len;
1381 struct displaced_step_closure *dsc
1382 = ((struct displaced_step_closure *)
1383 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space));
1384 gdb_byte *buf = &dsc->insn_buf[0];
1385 struct amd64_insn *details = &dsc->insn_details;
1386
1387 dsc->tmp_used = 0;
1388 dsc->max_len = len + fixup_sentinel_space;
1389
1390 read_memory (from, buf, len);
1391
1392 /* Set up the sentinel space so we don't have to worry about running
1393 off the end of the buffer. An excessive number of leading prefixes
1394 could otherwise cause this. */
1395 memset (buf + len, 0, fixup_sentinel_space);
1396
1397 amd64_get_insn_details (buf, details);
1398
1399 /* GDB may get control back after the insn after the syscall.
1400 Presumably this is a kernel bug.
1401 If this is a syscall, make sure there's a nop afterwards. */
1402 {
1403 int syscall_length;
1404
1405 if (amd64_syscall_p (details, &syscall_length))
1406 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1407 }
1408
1409 /* Modify the insn to cope with the address where it will be executed from.
1410 In particular, handle any rip-relative addressing. */
1411 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1412
1413 write_memory (to, buf, len);
1414
1415 if (debug_displaced)
1416 {
1417 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1418 paddress (gdbarch, from), paddress (gdbarch, to));
1419 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1420 }
1421
1422 return dsc;
1423 }
1424
1425 static int
1426 amd64_absolute_jmp_p (const struct amd64_insn *details)
1427 {
1428 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1429
1430 if (insn[0] == 0xff)
1431 {
1432 /* jump near, absolute indirect (/4) */
1433 if ((insn[1] & 0x38) == 0x20)
1434 return 1;
1435
1436 /* jump far, absolute indirect (/5) */
1437 if ((insn[1] & 0x38) == 0x28)
1438 return 1;
1439 }
1440
1441 return 0;
1442 }
1443
1444 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1445
1446 static int
1447 amd64_jmp_p (const struct amd64_insn *details)
1448 {
1449 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1450
1451 /* jump short, relative. */
1452 if (insn[0] == 0xeb)
1453 return 1;
1454
1455 /* jump near, relative. */
1456 if (insn[0] == 0xe9)
1457 return 1;
1458
1459 return amd64_absolute_jmp_p (details);
1460 }
1461
1462 static int
1463 amd64_absolute_call_p (const struct amd64_insn *details)
1464 {
1465 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1466
1467 if (insn[0] == 0xff)
1468 {
1469 /* Call near, absolute indirect (/2) */
1470 if ((insn[1] & 0x38) == 0x10)
1471 return 1;
1472
1473 /* Call far, absolute indirect (/3) */
1474 if ((insn[1] & 0x38) == 0x18)
1475 return 1;
1476 }
1477
1478 return 0;
1479 }
1480
1481 static int
1482 amd64_ret_p (const struct amd64_insn *details)
1483 {
1484 /* NOTE: gcc can emit "repz ; ret". */
1485 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1486
1487 switch (insn[0])
1488 {
1489 case 0xc2: /* ret near, pop N bytes */
1490 case 0xc3: /* ret near */
1491 case 0xca: /* ret far, pop N bytes */
1492 case 0xcb: /* ret far */
1493 case 0xcf: /* iret */
1494 return 1;
1495
1496 default:
1497 return 0;
1498 }
1499 }
1500
1501 static int
1502 amd64_call_p (const struct amd64_insn *details)
1503 {
1504 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1505
1506 if (amd64_absolute_call_p (details))
1507 return 1;
1508
1509 /* call near, relative */
1510 if (insn[0] == 0xe8)
1511 return 1;
1512
1513 return 0;
1514 }
1515
1516 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1517 length in bytes. Otherwise, return zero. */
1518
1519 static int
1520 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1521 {
1522 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1523
1524 if (insn[0] == 0x0f && insn[1] == 0x05)
1525 {
1526 *lengthp = 2;
1527 return 1;
1528 }
1529
1530 return 0;
1531 }
1532
1533 /* Classify the instruction at ADDR using PRED.
1534 Throw an error if the memory can't be read. */
1535
1536 static int
1537 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1538 int (*pred) (const struct amd64_insn *))
1539 {
1540 struct amd64_insn details;
1541 gdb_byte *buf;
1542 int len, classification;
1543
1544 len = gdbarch_max_insn_length (gdbarch);
1545 buf = (gdb_byte *) alloca (len);
1546
1547 read_code (addr, buf, len);
1548 amd64_get_insn_details (buf, &details);
1549
1550 classification = pred (&details);
1551
1552 return classification;
1553 }
1554
1555 /* The gdbarch insn_is_call method. */
1556
1557 static int
1558 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1559 {
1560 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1561 }
1562
1563 /* The gdbarch insn_is_ret method. */
1564
1565 static int
1566 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1567 {
1568 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1569 }
1570
1571 /* The gdbarch insn_is_jump method. */
1572
1573 static int
1574 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1575 {
1576 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1577 }
1578
1579 /* Fix up the state of registers and memory after having single-stepped
1580 a displaced instruction. */
1581
1582 void
1583 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1584 struct displaced_step_closure *dsc,
1585 CORE_ADDR from, CORE_ADDR to,
1586 struct regcache *regs)
1587 {
1588 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1589 /* The offset we applied to the instruction's address. */
1590 ULONGEST insn_offset = to - from;
1591 gdb_byte *insn = dsc->insn_buf;
1592 const struct amd64_insn *insn_details = &dsc->insn_details;
1593
1594 if (debug_displaced)
1595 fprintf_unfiltered (gdb_stdlog,
1596 "displaced: fixup (%s, %s), "
1597 "insn = 0x%02x 0x%02x ...\n",
1598 paddress (gdbarch, from), paddress (gdbarch, to),
1599 insn[0], insn[1]);
1600
1601 /* If we used a tmp reg, restore it. */
1602
1603 if (dsc->tmp_used)
1604 {
1605 if (debug_displaced)
1606 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1607 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1608 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1609 }
1610
1611 /* The list of issues to contend with here is taken from
1612 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1613 Yay for Free Software! */
1614
1615 /* Relocate the %rip back to the program's instruction stream,
1616 if necessary. */
1617
1618 /* Except in the case of absolute or indirect jump or call
1619 instructions, or a return instruction, the new rip is relative to
1620 the displaced instruction; make it relative to the original insn.
1621 Well, signal handler returns don't need relocation either, but we use the
1622 value of %rip to recognize those; see below. */
1623 if (! amd64_absolute_jmp_p (insn_details)
1624 && ! amd64_absolute_call_p (insn_details)
1625 && ! amd64_ret_p (insn_details))
1626 {
1627 ULONGEST orig_rip;
1628 int insn_len;
1629
1630 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1631
1632 /* A signal trampoline system call changes the %rip, resuming
1633 execution of the main program after the signal handler has
1634 returned. That makes them like 'return' instructions; we
1635 shouldn't relocate %rip.
1636
1637 But most system calls don't, and we do need to relocate %rip.
1638
1639 Our heuristic for distinguishing these cases: if stepping
1640 over the system call instruction left control directly after
1641 the instruction, the we relocate --- control almost certainly
1642 doesn't belong in the displaced copy. Otherwise, we assume
1643 the instruction has put control where it belongs, and leave
1644 it unrelocated. Goodness help us if there are PC-relative
1645 system calls. */
1646 if (amd64_syscall_p (insn_details, &insn_len)
1647 && orig_rip != to + insn_len
1648 /* GDB can get control back after the insn after the syscall.
1649 Presumably this is a kernel bug.
1650 Fixup ensures its a nop, we add one to the length for it. */
1651 && orig_rip != to + insn_len + 1)
1652 {
1653 if (debug_displaced)
1654 fprintf_unfiltered (gdb_stdlog,
1655 "displaced: syscall changed %%rip; "
1656 "not relocating\n");
1657 }
1658 else
1659 {
1660 ULONGEST rip = orig_rip - insn_offset;
1661
1662 /* If we just stepped over a breakpoint insn, we don't backup
1663 the pc on purpose; this is to match behaviour without
1664 stepping. */
1665
1666 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1667
1668 if (debug_displaced)
1669 fprintf_unfiltered (gdb_stdlog,
1670 "displaced: "
1671 "relocated %%rip from %s to %s\n",
1672 paddress (gdbarch, orig_rip),
1673 paddress (gdbarch, rip));
1674 }
1675 }
1676
1677 /* If the instruction was PUSHFL, then the TF bit will be set in the
1678 pushed value, and should be cleared. We'll leave this for later,
1679 since GDB already messes up the TF flag when stepping over a
1680 pushfl. */
1681
1682 /* If the instruction was a call, the return address now atop the
1683 stack is the address following the copied instruction. We need
1684 to make it the address following the original instruction. */
1685 if (amd64_call_p (insn_details))
1686 {
1687 ULONGEST rsp;
1688 ULONGEST retaddr;
1689 const ULONGEST retaddr_len = 8;
1690
1691 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1692 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1693 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1694 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1695
1696 if (debug_displaced)
1697 fprintf_unfiltered (gdb_stdlog,
1698 "displaced: relocated return addr at %s "
1699 "to %s\n",
1700 paddress (gdbarch, rsp),
1701 paddress (gdbarch, retaddr));
1702 }
1703 }
1704
1705 /* If the instruction INSN uses RIP-relative addressing, return the
1706 offset into the raw INSN where the displacement to be adjusted is
1707 found. Returns 0 if the instruction doesn't use RIP-relative
1708 addressing. */
1709
1710 static int
1711 rip_relative_offset (struct amd64_insn *insn)
1712 {
1713 if (insn->modrm_offset != -1)
1714 {
1715 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1716
1717 if ((modrm & 0xc7) == 0x05)
1718 {
1719 /* The displacement is found right after the ModRM byte. */
1720 return insn->modrm_offset + 1;
1721 }
1722 }
1723
1724 return 0;
1725 }
1726
1727 static void
1728 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1729 {
1730 target_write_memory (*to, buf, len);
1731 *to += len;
1732 }
1733
1734 static void
1735 amd64_relocate_instruction (struct gdbarch *gdbarch,
1736 CORE_ADDR *to, CORE_ADDR oldloc)
1737 {
1738 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1739 int len = gdbarch_max_insn_length (gdbarch);
1740 /* Extra space for sentinels. */
1741 int fixup_sentinel_space = len;
1742 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1743 struct amd64_insn insn_details;
1744 int offset = 0;
1745 LONGEST rel32, newrel;
1746 gdb_byte *insn;
1747 int insn_length;
1748
1749 read_memory (oldloc, buf, len);
1750
1751 /* Set up the sentinel space so we don't have to worry about running
1752 off the end of the buffer. An excessive number of leading prefixes
1753 could otherwise cause this. */
1754 memset (buf + len, 0, fixup_sentinel_space);
1755
1756 insn = buf;
1757 amd64_get_insn_details (insn, &insn_details);
1758
1759 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1760
1761 /* Skip legacy instruction prefixes. */
1762 insn = amd64_skip_prefixes (insn);
1763
1764 /* Adjust calls with 32-bit relative addresses as push/jump, with
1765 the address pushed being the location where the original call in
1766 the user program would return to. */
1767 if (insn[0] == 0xe8)
1768 {
1769 gdb_byte push_buf[32];
1770 CORE_ADDR ret_addr;
1771 int i = 0;
1772
1773 /* Where "ret" in the original code will return to. */
1774 ret_addr = oldloc + insn_length;
1775
1776 /* If pushing an address higher than or equal to 0x80000000,
1777 avoid 'pushq', as that sign extends its 32-bit operand, which
1778 would be incorrect. */
1779 if (ret_addr <= 0x7fffffff)
1780 {
1781 push_buf[0] = 0x68; /* pushq $... */
1782 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1783 i = 5;
1784 }
1785 else
1786 {
1787 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1788 push_buf[i++] = 0x83;
1789 push_buf[i++] = 0xec;
1790 push_buf[i++] = 0x08;
1791
1792 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1793 push_buf[i++] = 0x04;
1794 push_buf[i++] = 0x24;
1795 store_unsigned_integer (&push_buf[i], 4, byte_order,
1796 ret_addr & 0xffffffff);
1797 i += 4;
1798
1799 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1800 push_buf[i++] = 0x44;
1801 push_buf[i++] = 0x24;
1802 push_buf[i++] = 0x04;
1803 store_unsigned_integer (&push_buf[i], 4, byte_order,
1804 ret_addr >> 32);
1805 i += 4;
1806 }
1807 gdb_assert (i <= sizeof (push_buf));
1808 /* Push the push. */
1809 append_insns (to, i, push_buf);
1810
1811 /* Convert the relative call to a relative jump. */
1812 insn[0] = 0xe9;
1813
1814 /* Adjust the destination offset. */
1815 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1816 newrel = (oldloc - *to) + rel32;
1817 store_signed_integer (insn + 1, 4, byte_order, newrel);
1818
1819 if (debug_displaced)
1820 fprintf_unfiltered (gdb_stdlog,
1821 "Adjusted insn rel32=%s at %s to"
1822 " rel32=%s at %s\n",
1823 hex_string (rel32), paddress (gdbarch, oldloc),
1824 hex_string (newrel), paddress (gdbarch, *to));
1825
1826 /* Write the adjusted jump into its displaced location. */
1827 append_insns (to, 5, insn);
1828 return;
1829 }
1830
1831 offset = rip_relative_offset (&insn_details);
1832 if (!offset)
1833 {
1834 /* Adjust jumps with 32-bit relative addresses. Calls are
1835 already handled above. */
1836 if (insn[0] == 0xe9)
1837 offset = 1;
1838 /* Adjust conditional jumps. */
1839 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1840 offset = 2;
1841 }
1842
1843 if (offset)
1844 {
1845 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1846 newrel = (oldloc - *to) + rel32;
1847 store_signed_integer (insn + offset, 4, byte_order, newrel);
1848 if (debug_displaced)
1849 fprintf_unfiltered (gdb_stdlog,
1850 "Adjusted insn rel32=%s at %s to"
1851 " rel32=%s at %s\n",
1852 hex_string (rel32), paddress (gdbarch, oldloc),
1853 hex_string (newrel), paddress (gdbarch, *to));
1854 }
1855
1856 /* Write the adjusted instruction into its displaced location. */
1857 append_insns (to, insn_length, buf);
1858 }
1859
1860 \f
1861 /* The maximum number of saved registers. This should include %rip. */
1862 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1863
1864 struct amd64_frame_cache
1865 {
1866 /* Base address. */
1867 CORE_ADDR base;
1868 int base_p;
1869 CORE_ADDR sp_offset;
1870 CORE_ADDR pc;
1871
1872 /* Saved registers. */
1873 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1874 CORE_ADDR saved_sp;
1875 int saved_sp_reg;
1876
1877 /* Do we have a frame? */
1878 int frameless_p;
1879 };
1880
1881 /* Initialize a frame cache. */
1882
1883 static void
1884 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1885 {
1886 int i;
1887
1888 /* Base address. */
1889 cache->base = 0;
1890 cache->base_p = 0;
1891 cache->sp_offset = -8;
1892 cache->pc = 0;
1893
1894 /* Saved registers. We initialize these to -1 since zero is a valid
1895 offset (that's where %rbp is supposed to be stored).
1896 The values start out as being offsets, and are later converted to
1897 addresses (at which point -1 is interpreted as an address, still meaning
1898 "invalid"). */
1899 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1900 cache->saved_regs[i] = -1;
1901 cache->saved_sp = 0;
1902 cache->saved_sp_reg = -1;
1903
1904 /* Frameless until proven otherwise. */
1905 cache->frameless_p = 1;
1906 }
1907
1908 /* Allocate and initialize a frame cache. */
1909
1910 static struct amd64_frame_cache *
1911 amd64_alloc_frame_cache (void)
1912 {
1913 struct amd64_frame_cache *cache;
1914
1915 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1916 amd64_init_frame_cache (cache);
1917 return cache;
1918 }
1919
1920 /* GCC 4.4 and later, can put code in the prologue to realign the
1921 stack pointer. Check whether PC points to such code, and update
1922 CACHE accordingly. Return the first instruction after the code
1923 sequence or CURRENT_PC, whichever is smaller. If we don't
1924 recognize the code, return PC. */
1925
1926 static CORE_ADDR
1927 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1928 struct amd64_frame_cache *cache)
1929 {
1930 /* There are 2 code sequences to re-align stack before the frame
1931 gets set up:
1932
1933 1. Use a caller-saved saved register:
1934
1935 leaq 8(%rsp), %reg
1936 andq $-XXX, %rsp
1937 pushq -8(%reg)
1938
1939 2. Use a callee-saved saved register:
1940
1941 pushq %reg
1942 leaq 16(%rsp), %reg
1943 andq $-XXX, %rsp
1944 pushq -8(%reg)
1945
1946 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1947
1948 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1949 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1950 */
1951
1952 gdb_byte buf[18];
1953 int reg, r;
1954 int offset, offset_and;
1955
1956 if (target_read_code (pc, buf, sizeof buf))
1957 return pc;
1958
1959 /* Check caller-saved saved register. The first instruction has
1960 to be "leaq 8(%rsp), %reg". */
1961 if ((buf[0] & 0xfb) == 0x48
1962 && buf[1] == 0x8d
1963 && buf[3] == 0x24
1964 && buf[4] == 0x8)
1965 {
1966 /* MOD must be binary 10 and R/M must be binary 100. */
1967 if ((buf[2] & 0xc7) != 0x44)
1968 return pc;
1969
1970 /* REG has register number. */
1971 reg = (buf[2] >> 3) & 7;
1972
1973 /* Check the REX.R bit. */
1974 if (buf[0] == 0x4c)
1975 reg += 8;
1976
1977 offset = 5;
1978 }
1979 else
1980 {
1981 /* Check callee-saved saved register. The first instruction
1982 has to be "pushq %reg". */
1983 reg = 0;
1984 if ((buf[0] & 0xf8) == 0x50)
1985 offset = 0;
1986 else if ((buf[0] & 0xf6) == 0x40
1987 && (buf[1] & 0xf8) == 0x50)
1988 {
1989 /* Check the REX.B bit. */
1990 if ((buf[0] & 1) != 0)
1991 reg = 8;
1992
1993 offset = 1;
1994 }
1995 else
1996 return pc;
1997
1998 /* Get register. */
1999 reg += buf[offset] & 0x7;
2000
2001 offset++;
2002
2003 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2004 if ((buf[offset] & 0xfb) != 0x48
2005 || buf[offset + 1] != 0x8d
2006 || buf[offset + 3] != 0x24
2007 || buf[offset + 4] != 0x10)
2008 return pc;
2009
2010 /* MOD must be binary 10 and R/M must be binary 100. */
2011 if ((buf[offset + 2] & 0xc7) != 0x44)
2012 return pc;
2013
2014 /* REG has register number. */
2015 r = (buf[offset + 2] >> 3) & 7;
2016
2017 /* Check the REX.R bit. */
2018 if (buf[offset] == 0x4c)
2019 r += 8;
2020
2021 /* Registers in pushq and leaq have to be the same. */
2022 if (reg != r)
2023 return pc;
2024
2025 offset += 5;
2026 }
2027
2028 /* Rigister can't be %rsp nor %rbp. */
2029 if (reg == 4 || reg == 5)
2030 return pc;
2031
2032 /* The next instruction has to be "andq $-XXX, %rsp". */
2033 if (buf[offset] != 0x48
2034 || buf[offset + 2] != 0xe4
2035 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2036 return pc;
2037
2038 offset_and = offset;
2039 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2040
2041 /* The next instruction has to be "pushq -8(%reg)". */
2042 r = 0;
2043 if (buf[offset] == 0xff)
2044 offset++;
2045 else if ((buf[offset] & 0xf6) == 0x40
2046 && buf[offset + 1] == 0xff)
2047 {
2048 /* Check the REX.B bit. */
2049 if ((buf[offset] & 0x1) != 0)
2050 r = 8;
2051 offset += 2;
2052 }
2053 else
2054 return pc;
2055
2056 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2057 01. */
2058 if (buf[offset + 1] != 0xf8
2059 || (buf[offset] & 0xf8) != 0x70)
2060 return pc;
2061
2062 /* R/M has register. */
2063 r += buf[offset] & 7;
2064
2065 /* Registers in leaq and pushq have to be the same. */
2066 if (reg != r)
2067 return pc;
2068
2069 if (current_pc > pc + offset_and)
2070 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2071
2072 return std::min (pc + offset + 2, current_pc);
2073 }
2074
2075 /* Similar to amd64_analyze_stack_align for x32. */
2076
2077 static CORE_ADDR
2078 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2079 struct amd64_frame_cache *cache)
2080 {
2081 /* There are 2 code sequences to re-align stack before the frame
2082 gets set up:
2083
2084 1. Use a caller-saved saved register:
2085
2086 leaq 8(%rsp), %reg
2087 andq $-XXX, %rsp
2088 pushq -8(%reg)
2089
2090 or
2091
2092 [addr32] leal 8(%rsp), %reg
2093 andl $-XXX, %esp
2094 [addr32] pushq -8(%reg)
2095
2096 2. Use a callee-saved saved register:
2097
2098 pushq %reg
2099 leaq 16(%rsp), %reg
2100 andq $-XXX, %rsp
2101 pushq -8(%reg)
2102
2103 or
2104
2105 pushq %reg
2106 [addr32] leal 16(%rsp), %reg
2107 andl $-XXX, %esp
2108 [addr32] pushq -8(%reg)
2109
2110 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2111
2112 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2113 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2114
2115 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2116
2117 0x83 0xe4 0xf0 andl $-16, %esp
2118 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2119 */
2120
2121 gdb_byte buf[19];
2122 int reg, r;
2123 int offset, offset_and;
2124
2125 if (target_read_memory (pc, buf, sizeof buf))
2126 return pc;
2127
2128 /* Skip optional addr32 prefix. */
2129 offset = buf[0] == 0x67 ? 1 : 0;
2130
2131 /* Check caller-saved saved register. The first instruction has
2132 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2133 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2134 && buf[offset + 1] == 0x8d
2135 && buf[offset + 3] == 0x24
2136 && buf[offset + 4] == 0x8)
2137 {
2138 /* MOD must be binary 10 and R/M must be binary 100. */
2139 if ((buf[offset + 2] & 0xc7) != 0x44)
2140 return pc;
2141
2142 /* REG has register number. */
2143 reg = (buf[offset + 2] >> 3) & 7;
2144
2145 /* Check the REX.R bit. */
2146 if ((buf[offset] & 0x4) != 0)
2147 reg += 8;
2148
2149 offset += 5;
2150 }
2151 else
2152 {
2153 /* Check callee-saved saved register. The first instruction
2154 has to be "pushq %reg". */
2155 reg = 0;
2156 if ((buf[offset] & 0xf6) == 0x40
2157 && (buf[offset + 1] & 0xf8) == 0x50)
2158 {
2159 /* Check the REX.B bit. */
2160 if ((buf[offset] & 1) != 0)
2161 reg = 8;
2162
2163 offset += 1;
2164 }
2165 else if ((buf[offset] & 0xf8) != 0x50)
2166 return pc;
2167
2168 /* Get register. */
2169 reg += buf[offset] & 0x7;
2170
2171 offset++;
2172
2173 /* Skip optional addr32 prefix. */
2174 if (buf[offset] == 0x67)
2175 offset++;
2176
2177 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2178 "leal 16(%rsp), %reg". */
2179 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2180 || buf[offset + 1] != 0x8d
2181 || buf[offset + 3] != 0x24
2182 || buf[offset + 4] != 0x10)
2183 return pc;
2184
2185 /* MOD must be binary 10 and R/M must be binary 100. */
2186 if ((buf[offset + 2] & 0xc7) != 0x44)
2187 return pc;
2188
2189 /* REG has register number. */
2190 r = (buf[offset + 2] >> 3) & 7;
2191
2192 /* Check the REX.R bit. */
2193 if ((buf[offset] & 0x4) != 0)
2194 r += 8;
2195
2196 /* Registers in pushq and leaq have to be the same. */
2197 if (reg != r)
2198 return pc;
2199
2200 offset += 5;
2201 }
2202
2203 /* Rigister can't be %rsp nor %rbp. */
2204 if (reg == 4 || reg == 5)
2205 return pc;
2206
2207 /* The next instruction may be "andq $-XXX, %rsp" or
2208 "andl $-XXX, %esp". */
2209 if (buf[offset] != 0x48)
2210 offset--;
2211
2212 if (buf[offset + 2] != 0xe4
2213 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2214 return pc;
2215
2216 offset_and = offset;
2217 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2218
2219 /* Skip optional addr32 prefix. */
2220 if (buf[offset] == 0x67)
2221 offset++;
2222
2223 /* The next instruction has to be "pushq -8(%reg)". */
2224 r = 0;
2225 if (buf[offset] == 0xff)
2226 offset++;
2227 else if ((buf[offset] & 0xf6) == 0x40
2228 && buf[offset + 1] == 0xff)
2229 {
2230 /* Check the REX.B bit. */
2231 if ((buf[offset] & 0x1) != 0)
2232 r = 8;
2233 offset += 2;
2234 }
2235 else
2236 return pc;
2237
2238 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2239 01. */
2240 if (buf[offset + 1] != 0xf8
2241 || (buf[offset] & 0xf8) != 0x70)
2242 return pc;
2243
2244 /* R/M has register. */
2245 r += buf[offset] & 7;
2246
2247 /* Registers in leaq and pushq have to be the same. */
2248 if (reg != r)
2249 return pc;
2250
2251 if (current_pc > pc + offset_and)
2252 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2253
2254 return std::min (pc + offset + 2, current_pc);
2255 }
2256
2257 /* Do a limited analysis of the prologue at PC and update CACHE
2258 accordingly. Bail out early if CURRENT_PC is reached. Return the
2259 address where the analysis stopped.
2260
2261 We will handle only functions beginning with:
2262
2263 pushq %rbp 0x55
2264 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2265
2266 or (for the X32 ABI):
2267
2268 pushq %rbp 0x55
2269 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2270
2271 Any function that doesn't start with one of these sequences will be
2272 assumed to have no prologue and thus no valid frame pointer in
2273 %rbp. */
2274
2275 static CORE_ADDR
2276 amd64_analyze_prologue (struct gdbarch *gdbarch,
2277 CORE_ADDR pc, CORE_ADDR current_pc,
2278 struct amd64_frame_cache *cache)
2279 {
2280 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2281 /* There are two variations of movq %rsp, %rbp. */
2282 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2283 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2284 /* Ditto for movl %esp, %ebp. */
2285 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2286 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2287
2288 gdb_byte buf[3];
2289 gdb_byte op;
2290
2291 if (current_pc <= pc)
2292 return current_pc;
2293
2294 if (gdbarch_ptr_bit (gdbarch) == 32)
2295 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2296 else
2297 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2298
2299 op = read_code_unsigned_integer (pc, 1, byte_order);
2300
2301 if (op == 0x55) /* pushq %rbp */
2302 {
2303 /* Take into account that we've executed the `pushq %rbp' that
2304 starts this instruction sequence. */
2305 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2306 cache->sp_offset += 8;
2307
2308 /* If that's all, return now. */
2309 if (current_pc <= pc + 1)
2310 return current_pc;
2311
2312 read_code (pc + 1, buf, 3);
2313
2314 /* Check for `movq %rsp, %rbp'. */
2315 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2316 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2317 {
2318 /* OK, we actually have a frame. */
2319 cache->frameless_p = 0;
2320 return pc + 4;
2321 }
2322
2323 /* For X32, also check for `movq %esp, %ebp'. */
2324 if (gdbarch_ptr_bit (gdbarch) == 32)
2325 {
2326 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2327 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2328 {
2329 /* OK, we actually have a frame. */
2330 cache->frameless_p = 0;
2331 return pc + 3;
2332 }
2333 }
2334
2335 return pc + 1;
2336 }
2337
2338 return pc;
2339 }
2340
2341 /* Work around false termination of prologue - GCC PR debug/48827.
2342
2343 START_PC is the first instruction of a function, PC is its minimal already
2344 determined advanced address. Function returns PC if it has nothing to do.
2345
2346 84 c0 test %al,%al
2347 74 23 je after
2348 <-- here is 0 lines advance - the false prologue end marker.
2349 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2350 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2351 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2352 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2353 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2354 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2355 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2356 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2357 after: */
2358
2359 static CORE_ADDR
2360 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2361 {
2362 struct symtab_and_line start_pc_sal, next_sal;
2363 gdb_byte buf[4 + 8 * 7];
2364 int offset, xmmreg;
2365
2366 if (pc == start_pc)
2367 return pc;
2368
2369 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2370 if (start_pc_sal.symtab == NULL
2371 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2372 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2373 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2374 return pc;
2375
2376 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2377 if (next_sal.line != start_pc_sal.line)
2378 return pc;
2379
2380 /* START_PC can be from overlayed memory, ignored here. */
2381 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2382 return pc;
2383
2384 /* test %al,%al */
2385 if (buf[0] != 0x84 || buf[1] != 0xc0)
2386 return pc;
2387 /* je AFTER */
2388 if (buf[2] != 0x74)
2389 return pc;
2390
2391 offset = 4;
2392 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2393 {
2394 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2395 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2396 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2397 return pc;
2398
2399 /* 0b01?????? */
2400 if ((buf[offset + 2] & 0xc0) == 0x40)
2401 {
2402 /* 8-bit displacement. */
2403 offset += 4;
2404 }
2405 /* 0b10?????? */
2406 else if ((buf[offset + 2] & 0xc0) == 0x80)
2407 {
2408 /* 32-bit displacement. */
2409 offset += 7;
2410 }
2411 else
2412 return pc;
2413 }
2414
2415 /* je AFTER */
2416 if (offset - 4 != buf[3])
2417 return pc;
2418
2419 return next_sal.end;
2420 }
2421
2422 /* Return PC of first real instruction. */
2423
2424 static CORE_ADDR
2425 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2426 {
2427 struct amd64_frame_cache cache;
2428 CORE_ADDR pc;
2429 CORE_ADDR func_addr;
2430
2431 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2432 {
2433 CORE_ADDR post_prologue_pc
2434 = skip_prologue_using_sal (gdbarch, func_addr);
2435 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2436
2437 /* Clang always emits a line note before the prologue and another
2438 one after. We trust clang to emit usable line notes. */
2439 if (post_prologue_pc
2440 && (cust != NULL
2441 && COMPUNIT_PRODUCER (cust) != NULL
2442 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2443 return std::max (start_pc, post_prologue_pc);
2444 }
2445
2446 amd64_init_frame_cache (&cache);
2447 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2448 &cache);
2449 if (cache.frameless_p)
2450 return start_pc;
2451
2452 return amd64_skip_xmm_prologue (pc, start_pc);
2453 }
2454 \f
2455
2456 /* Normal frames. */
2457
2458 static void
2459 amd64_frame_cache_1 (struct frame_info *this_frame,
2460 struct amd64_frame_cache *cache)
2461 {
2462 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2463 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2464 gdb_byte buf[8];
2465 int i;
2466
2467 cache->pc = get_frame_func (this_frame);
2468 if (cache->pc != 0)
2469 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2470 cache);
2471
2472 if (cache->frameless_p)
2473 {
2474 /* We didn't find a valid frame. If we're at the start of a
2475 function, or somewhere half-way its prologue, the function's
2476 frame probably hasn't been fully setup yet. Try to
2477 reconstruct the base address for the stack frame by looking
2478 at the stack pointer. For truly "frameless" functions this
2479 might work too. */
2480
2481 if (cache->saved_sp_reg != -1)
2482 {
2483 /* Stack pointer has been saved. */
2484 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2485 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2486
2487 /* We're halfway aligning the stack. */
2488 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2489 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2490
2491 /* This will be added back below. */
2492 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2493 }
2494 else
2495 {
2496 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2497 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2498 + cache->sp_offset;
2499 }
2500 }
2501 else
2502 {
2503 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2504 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2505 }
2506
2507 /* Now that we have the base address for the stack frame we can
2508 calculate the value of %rsp in the calling frame. */
2509 cache->saved_sp = cache->base + 16;
2510
2511 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2512 frame we find it at the same offset from the reconstructed base
2513 address. If we're halfway aligning the stack, %rip is handled
2514 differently (see above). */
2515 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2516 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2517
2518 /* Adjust all the saved registers such that they contain addresses
2519 instead of offsets. */
2520 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2521 if (cache->saved_regs[i] != -1)
2522 cache->saved_regs[i] += cache->base;
2523
2524 cache->base_p = 1;
2525 }
2526
2527 static struct amd64_frame_cache *
2528 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2529 {
2530 struct amd64_frame_cache *cache;
2531
2532 if (*this_cache)
2533 return (struct amd64_frame_cache *) *this_cache;
2534
2535 cache = amd64_alloc_frame_cache ();
2536 *this_cache = cache;
2537
2538 TRY
2539 {
2540 amd64_frame_cache_1 (this_frame, cache);
2541 }
2542 CATCH (ex, RETURN_MASK_ERROR)
2543 {
2544 if (ex.error != NOT_AVAILABLE_ERROR)
2545 throw_exception (ex);
2546 }
2547 END_CATCH
2548
2549 return cache;
2550 }
2551
2552 static enum unwind_stop_reason
2553 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2554 void **this_cache)
2555 {
2556 struct amd64_frame_cache *cache =
2557 amd64_frame_cache (this_frame, this_cache);
2558
2559 if (!cache->base_p)
2560 return UNWIND_UNAVAILABLE;
2561
2562 /* This marks the outermost frame. */
2563 if (cache->base == 0)
2564 return UNWIND_OUTERMOST;
2565
2566 return UNWIND_NO_REASON;
2567 }
2568
2569 static void
2570 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2571 struct frame_id *this_id)
2572 {
2573 struct amd64_frame_cache *cache =
2574 amd64_frame_cache (this_frame, this_cache);
2575
2576 if (!cache->base_p)
2577 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2578 else if (cache->base == 0)
2579 {
2580 /* This marks the outermost frame. */
2581 return;
2582 }
2583 else
2584 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2585 }
2586
2587 static struct value *
2588 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2589 int regnum)
2590 {
2591 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2592 struct amd64_frame_cache *cache =
2593 amd64_frame_cache (this_frame, this_cache);
2594
2595 gdb_assert (regnum >= 0);
2596
2597 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2598 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2599
2600 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2601 return frame_unwind_got_memory (this_frame, regnum,
2602 cache->saved_regs[regnum]);
2603
2604 return frame_unwind_got_register (this_frame, regnum, regnum);
2605 }
2606
2607 static const struct frame_unwind amd64_frame_unwind =
2608 {
2609 NORMAL_FRAME,
2610 amd64_frame_unwind_stop_reason,
2611 amd64_frame_this_id,
2612 amd64_frame_prev_register,
2613 NULL,
2614 default_frame_sniffer
2615 };
2616 \f
2617 /* Generate a bytecode expression to get the value of the saved PC. */
2618
2619 static void
2620 amd64_gen_return_address (struct gdbarch *gdbarch,
2621 struct agent_expr *ax, struct axs_value *value,
2622 CORE_ADDR scope)
2623 {
2624 /* The following sequence assumes the traditional use of the base
2625 register. */
2626 ax_reg (ax, AMD64_RBP_REGNUM);
2627 ax_const_l (ax, 8);
2628 ax_simple (ax, aop_add);
2629 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2630 value->kind = axs_lvalue_memory;
2631 }
2632 \f
2633
2634 /* Signal trampolines. */
2635
2636 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2637 64-bit variants. This would require using identical frame caches
2638 on both platforms. */
2639
2640 static struct amd64_frame_cache *
2641 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2642 {
2643 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2644 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2645 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2646 struct amd64_frame_cache *cache;
2647 CORE_ADDR addr;
2648 gdb_byte buf[8];
2649 int i;
2650
2651 if (*this_cache)
2652 return (struct amd64_frame_cache *) *this_cache;
2653
2654 cache = amd64_alloc_frame_cache ();
2655
2656 TRY
2657 {
2658 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2659 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2660
2661 addr = tdep->sigcontext_addr (this_frame);
2662 gdb_assert (tdep->sc_reg_offset);
2663 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2664 for (i = 0; i < tdep->sc_num_regs; i++)
2665 if (tdep->sc_reg_offset[i] != -1)
2666 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2667
2668 cache->base_p = 1;
2669 }
2670 CATCH (ex, RETURN_MASK_ERROR)
2671 {
2672 if (ex.error != NOT_AVAILABLE_ERROR)
2673 throw_exception (ex);
2674 }
2675 END_CATCH
2676
2677 *this_cache = cache;
2678 return cache;
2679 }
2680
2681 static enum unwind_stop_reason
2682 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2683 void **this_cache)
2684 {
2685 struct amd64_frame_cache *cache =
2686 amd64_sigtramp_frame_cache (this_frame, this_cache);
2687
2688 if (!cache->base_p)
2689 return UNWIND_UNAVAILABLE;
2690
2691 return UNWIND_NO_REASON;
2692 }
2693
2694 static void
2695 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2696 void **this_cache, struct frame_id *this_id)
2697 {
2698 struct amd64_frame_cache *cache =
2699 amd64_sigtramp_frame_cache (this_frame, this_cache);
2700
2701 if (!cache->base_p)
2702 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2703 else if (cache->base == 0)
2704 {
2705 /* This marks the outermost frame. */
2706 return;
2707 }
2708 else
2709 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2710 }
2711
2712 static struct value *
2713 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2714 void **this_cache, int regnum)
2715 {
2716 /* Make sure we've initialized the cache. */
2717 amd64_sigtramp_frame_cache (this_frame, this_cache);
2718
2719 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2720 }
2721
2722 static int
2723 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2724 struct frame_info *this_frame,
2725 void **this_cache)
2726 {
2727 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2728
2729 /* We shouldn't even bother if we don't have a sigcontext_addr
2730 handler. */
2731 if (tdep->sigcontext_addr == NULL)
2732 return 0;
2733
2734 if (tdep->sigtramp_p != NULL)
2735 {
2736 if (tdep->sigtramp_p (this_frame))
2737 return 1;
2738 }
2739
2740 if (tdep->sigtramp_start != 0)
2741 {
2742 CORE_ADDR pc = get_frame_pc (this_frame);
2743
2744 gdb_assert (tdep->sigtramp_end != 0);
2745 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2746 return 1;
2747 }
2748
2749 return 0;
2750 }
2751
2752 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2753 {
2754 SIGTRAMP_FRAME,
2755 amd64_sigtramp_frame_unwind_stop_reason,
2756 amd64_sigtramp_frame_this_id,
2757 amd64_sigtramp_frame_prev_register,
2758 NULL,
2759 amd64_sigtramp_frame_sniffer
2760 };
2761 \f
2762
2763 static CORE_ADDR
2764 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2765 {
2766 struct amd64_frame_cache *cache =
2767 amd64_frame_cache (this_frame, this_cache);
2768
2769 return cache->base;
2770 }
2771
2772 static const struct frame_base amd64_frame_base =
2773 {
2774 &amd64_frame_unwind,
2775 amd64_frame_base_address,
2776 amd64_frame_base_address,
2777 amd64_frame_base_address
2778 };
2779
2780 /* Normal frames, but in a function epilogue. */
2781
2782 /* Implement the stack_frame_destroyed_p gdbarch method.
2783
2784 The epilogue is defined here as the 'ret' instruction, which will
2785 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2786 the function's stack frame. */
2787
2788 static int
2789 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2790 {
2791 gdb_byte insn;
2792 struct compunit_symtab *cust;
2793
2794 cust = find_pc_compunit_symtab (pc);
2795 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2796 return 0;
2797
2798 if (target_read_memory (pc, &insn, 1))
2799 return 0; /* Can't read memory at pc. */
2800
2801 if (insn != 0xc3) /* 'ret' instruction. */
2802 return 0;
2803
2804 return 1;
2805 }
2806
2807 static int
2808 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2809 struct frame_info *this_frame,
2810 void **this_prologue_cache)
2811 {
2812 if (frame_relative_level (this_frame) == 0)
2813 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2814 get_frame_pc (this_frame));
2815 else
2816 return 0;
2817 }
2818
2819 static struct amd64_frame_cache *
2820 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2821 {
2822 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2823 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2824 struct amd64_frame_cache *cache;
2825 gdb_byte buf[8];
2826
2827 if (*this_cache)
2828 return (struct amd64_frame_cache *) *this_cache;
2829
2830 cache = amd64_alloc_frame_cache ();
2831 *this_cache = cache;
2832
2833 TRY
2834 {
2835 /* Cache base will be %esp plus cache->sp_offset (-8). */
2836 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2837 cache->base = extract_unsigned_integer (buf, 8,
2838 byte_order) + cache->sp_offset;
2839
2840 /* Cache pc will be the frame func. */
2841 cache->pc = get_frame_pc (this_frame);
2842
2843 /* The saved %esp will be at cache->base plus 16. */
2844 cache->saved_sp = cache->base + 16;
2845
2846 /* The saved %eip will be at cache->base plus 8. */
2847 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2848
2849 cache->base_p = 1;
2850 }
2851 CATCH (ex, RETURN_MASK_ERROR)
2852 {
2853 if (ex.error != NOT_AVAILABLE_ERROR)
2854 throw_exception (ex);
2855 }
2856 END_CATCH
2857
2858 return cache;
2859 }
2860
2861 static enum unwind_stop_reason
2862 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2863 void **this_cache)
2864 {
2865 struct amd64_frame_cache *cache
2866 = amd64_epilogue_frame_cache (this_frame, this_cache);
2867
2868 if (!cache->base_p)
2869 return UNWIND_UNAVAILABLE;
2870
2871 return UNWIND_NO_REASON;
2872 }
2873
2874 static void
2875 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2876 void **this_cache,
2877 struct frame_id *this_id)
2878 {
2879 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2880 this_cache);
2881
2882 if (!cache->base_p)
2883 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2884 else
2885 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2886 }
2887
2888 static const struct frame_unwind amd64_epilogue_frame_unwind =
2889 {
2890 NORMAL_FRAME,
2891 amd64_epilogue_frame_unwind_stop_reason,
2892 amd64_epilogue_frame_this_id,
2893 amd64_frame_prev_register,
2894 NULL,
2895 amd64_epilogue_frame_sniffer
2896 };
2897
2898 static struct frame_id
2899 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2900 {
2901 CORE_ADDR fp;
2902
2903 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2904
2905 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2906 }
2907
2908 /* 16 byte align the SP per frame requirements. */
2909
2910 static CORE_ADDR
2911 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2912 {
2913 return sp & -(CORE_ADDR)16;
2914 }
2915 \f
2916
2917 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2918 in the floating-point register set REGSET to register cache
2919 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2920
2921 static void
2922 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2923 int regnum, const void *fpregs, size_t len)
2924 {
2925 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2926 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2927
2928 gdb_assert (len >= tdep->sizeof_fpregset);
2929 amd64_supply_fxsave (regcache, regnum, fpregs);
2930 }
2931
2932 /* Collect register REGNUM from the register cache REGCACHE and store
2933 it in the buffer specified by FPREGS and LEN as described by the
2934 floating-point register set REGSET. If REGNUM is -1, do this for
2935 all registers in REGSET. */
2936
2937 static void
2938 amd64_collect_fpregset (const struct regset *regset,
2939 const struct regcache *regcache,
2940 int regnum, void *fpregs, size_t len)
2941 {
2942 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2943 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2944
2945 gdb_assert (len >= tdep->sizeof_fpregset);
2946 amd64_collect_fxsave (regcache, regnum, fpregs);
2947 }
2948
2949 const struct regset amd64_fpregset =
2950 {
2951 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2952 };
2953 \f
2954
2955 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2956 %rdi. We expect its value to be a pointer to the jmp_buf structure
2957 from which we extract the address that we will land at. This
2958 address is copied into PC. This routine returns non-zero on
2959 success. */
2960
2961 static int
2962 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2963 {
2964 gdb_byte buf[8];
2965 CORE_ADDR jb_addr;
2966 struct gdbarch *gdbarch = get_frame_arch (frame);
2967 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2968 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2969
2970 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2971 longjmp will land. */
2972 if (jb_pc_offset == -1)
2973 return 0;
2974
2975 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2976 jb_addr= extract_typed_address
2977 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2978 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2979 return 0;
2980
2981 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2982
2983 return 1;
2984 }
2985
2986 static const int amd64_record_regmap[] =
2987 {
2988 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2989 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2990 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2991 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2992 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2993 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2994 };
2995
2996 void
2997 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2998 {
2999 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3000 const struct target_desc *tdesc = info.target_desc;
3001 static const char *const stap_integer_prefixes[] = { "$", NULL };
3002 static const char *const stap_register_prefixes[] = { "%", NULL };
3003 static const char *const stap_register_indirection_prefixes[] = { "(",
3004 NULL };
3005 static const char *const stap_register_indirection_suffixes[] = { ")",
3006 NULL };
3007
3008 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3009 floating-point registers. */
3010 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3011 tdep->fpregset = &amd64_fpregset;
3012
3013 if (! tdesc_has_registers (tdesc))
3014 tdesc = tdesc_amd64;
3015 tdep->tdesc = tdesc;
3016
3017 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3018 tdep->register_names = amd64_register_names;
3019
3020 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3021 {
3022 tdep->zmmh_register_names = amd64_zmmh_names;
3023 tdep->k_register_names = amd64_k_names;
3024 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3025 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3026
3027 tdep->num_zmm_regs = 32;
3028 tdep->num_xmm_avx512_regs = 16;
3029 tdep->num_ymm_avx512_regs = 16;
3030
3031 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3032 tdep->k0_regnum = AMD64_K0_REGNUM;
3033 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3034 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3035 }
3036
3037 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3038 {
3039 tdep->ymmh_register_names = amd64_ymmh_names;
3040 tdep->num_ymm_regs = 16;
3041 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3042 }
3043
3044 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3045 {
3046 tdep->mpx_register_names = amd64_mpx_names;
3047 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3048 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3049 }
3050
3051 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3052 {
3053 const struct tdesc_feature *feature =
3054 tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
3055 struct tdesc_arch_data *tdesc_data_segments =
3056 (struct tdesc_arch_data *) info.tdep_info;
3057
3058 tdesc_numbered_register (feature, tdesc_data_segments,
3059 AMD64_FSBASE_REGNUM, "fs_base");
3060 tdesc_numbered_register (feature, tdesc_data_segments,
3061 AMD64_GSBASE_REGNUM, "gs_base");
3062 }
3063
3064 tdep->num_byte_regs = 20;
3065 tdep->num_word_regs = 16;
3066 tdep->num_dword_regs = 16;
3067 /* Avoid wiring in the MMX registers for now. */
3068 tdep->num_mmx_regs = 0;
3069
3070 set_gdbarch_pseudo_register_read_value (gdbarch,
3071 amd64_pseudo_register_read_value);
3072 set_gdbarch_pseudo_register_write (gdbarch,
3073 amd64_pseudo_register_write);
3074 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3075 amd64_ax_pseudo_register_collect);
3076
3077 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3078
3079 /* AMD64 has an FPU and 16 SSE registers. */
3080 tdep->st0_regnum = AMD64_ST0_REGNUM;
3081 tdep->num_xmm_regs = 16;
3082
3083 /* This is what all the fuss is about. */
3084 set_gdbarch_long_bit (gdbarch, 64);
3085 set_gdbarch_long_long_bit (gdbarch, 64);
3086 set_gdbarch_ptr_bit (gdbarch, 64);
3087
3088 /* In contrast to the i386, on AMD64 a `long double' actually takes
3089 up 128 bits, even though it's still based on the i387 extended
3090 floating-point format which has only 80 significant bits. */
3091 set_gdbarch_long_double_bit (gdbarch, 128);
3092
3093 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3094
3095 /* Register numbers of various important registers. */
3096 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3097 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3098 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3099 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3100
3101 /* The "default" register numbering scheme for AMD64 is referred to
3102 as the "DWARF Register Number Mapping" in the System V psABI.
3103 The preferred debugging format for all known AMD64 targets is
3104 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3105 DWARF-1), but we provide the same mapping just in case. This
3106 mapping is also used for stabs, which GCC does support. */
3107 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3108 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3109
3110 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3111 be in use on any of the supported AMD64 targets. */
3112
3113 /* Call dummy code. */
3114 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3115 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3116 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3117
3118 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3119 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3120 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3121
3122 set_gdbarch_return_value (gdbarch, amd64_return_value);
3123
3124 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3125
3126 tdep->record_regmap = amd64_record_regmap;
3127
3128 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3129
3130 /* Hook the function epilogue frame unwinder. This unwinder is
3131 appended to the list first, so that it supercedes the other
3132 unwinders in function epilogues. */
3133 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3134
3135 /* Hook the prologue-based frame unwinders. */
3136 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3137 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3138 frame_base_set_default (gdbarch, &amd64_frame_base);
3139
3140 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3141
3142 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3143
3144 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3145
3146 /* SystemTap variables and functions. */
3147 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3148 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3149 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3150 stap_register_indirection_prefixes);
3151 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3152 stap_register_indirection_suffixes);
3153 set_gdbarch_stap_is_single_operand (gdbarch,
3154 i386_stap_is_single_operand);
3155 set_gdbarch_stap_parse_special_token (gdbarch,
3156 i386_stap_parse_special_token);
3157 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3158 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3159 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3160 }
3161 \f
3162
3163 static struct type *
3164 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3165 {
3166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3167
3168 switch (regnum - tdep->eax_regnum)
3169 {
3170 case AMD64_RBP_REGNUM: /* %ebp */
3171 case AMD64_RSP_REGNUM: /* %esp */
3172 return builtin_type (gdbarch)->builtin_data_ptr;
3173 case AMD64_RIP_REGNUM: /* %eip */
3174 return builtin_type (gdbarch)->builtin_func_ptr;
3175 }
3176
3177 return i386_pseudo_register_type (gdbarch, regnum);
3178 }
3179
3180 void
3181 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3182 {
3183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3184 const struct target_desc *tdesc = info.target_desc;
3185
3186 amd64_init_abi (info, gdbarch);
3187
3188 if (! tdesc_has_registers (tdesc))
3189 tdesc = tdesc_x32;
3190 tdep->tdesc = tdesc;
3191
3192 tdep->num_dword_regs = 17;
3193 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3194
3195 set_gdbarch_long_bit (gdbarch, 32);
3196 set_gdbarch_ptr_bit (gdbarch, 32);
3197 }
3198
3199 /* Return the target description for a specified XSAVE feature mask. */
3200
3201 const struct target_desc *
3202 amd64_target_description (uint64_t xcr0)
3203 {
3204 switch (xcr0 & X86_XSTATE_ALL_MASK)
3205 {
3206 case X86_XSTATE_AVX_MPX_AVX512_MASK:
3207 return tdesc_amd64_avx_mpx_avx512;
3208 case X86_XSTATE_AVX_AVX512_MASK:
3209 return tdesc_amd64_avx_avx512;
3210 case X86_XSTATE_MPX_MASK:
3211 return tdesc_amd64_mpx;
3212 case X86_XSTATE_AVX_MPX_MASK:
3213 return tdesc_amd64_avx_mpx;
3214 case X86_XSTATE_AVX_MASK:
3215 return tdesc_amd64_avx;
3216 default:
3217 return tdesc_amd64;
3218 }
3219 }
3220
3221 /* Provide a prototype to silence -Wmissing-prototypes. */
3222 void _initialize_amd64_tdep (void);
3223
3224 void
3225 _initialize_amd64_tdep (void)
3226 {
3227 initialize_tdesc_amd64 ();
3228 initialize_tdesc_amd64_avx ();
3229 initialize_tdesc_amd64_mpx ();
3230 initialize_tdesc_amd64_avx_mpx ();
3231 initialize_tdesc_amd64_avx_avx512 ();
3232 initialize_tdesc_amd64_avx_mpx_avx512 ();
3233
3234 initialize_tdesc_x32 ();
3235 initialize_tdesc_x32_avx ();
3236 initialize_tdesc_x32_avx_avx512 ();
3237 }
3238 \f
3239
3240 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3241 sense that the instruction pointer and data pointer are simply
3242 64-bit offsets into the code segment and the data segment instead
3243 of a selector offset pair. The functions below store the upper 32
3244 bits of these pointers (instead of just the 16-bits of the segment
3245 selector). */
3246
3247 /* Fill register REGNUM in REGCACHE with the appropriate
3248 floating-point or SSE register value from *FXSAVE. If REGNUM is
3249 -1, do this for all registers. This function masks off any of the
3250 reserved bits in *FXSAVE. */
3251
3252 void
3253 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3254 const void *fxsave)
3255 {
3256 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3257 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3258
3259 i387_supply_fxsave (regcache, regnum, fxsave);
3260
3261 if (fxsave
3262 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3263 {
3264 const gdb_byte *regs = (const gdb_byte *) fxsave;
3265
3266 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3267 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3268 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3269 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3270 }
3271 }
3272
3273 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3274
3275 void
3276 amd64_supply_xsave (struct regcache *regcache, int regnum,
3277 const void *xsave)
3278 {
3279 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3281
3282 i387_supply_xsave (regcache, regnum, xsave);
3283
3284 if (xsave
3285 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3286 {
3287 const gdb_byte *regs = (const gdb_byte *) xsave;
3288
3289 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3290 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3291 regs + 12);
3292 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3293 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3294 regs + 20);
3295 }
3296 }
3297
3298 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3299 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3300 all registers. This function doesn't touch any of the reserved
3301 bits in *FXSAVE. */
3302
3303 void
3304 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3305 void *fxsave)
3306 {
3307 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3308 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3309 gdb_byte *regs = (gdb_byte *) fxsave;
3310
3311 i387_collect_fxsave (regcache, regnum, fxsave);
3312
3313 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3314 {
3315 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3316 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3317 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3318 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3319 }
3320 }
3321
3322 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3323
3324 void
3325 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3326 void *xsave, int gcore)
3327 {
3328 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3330 gdb_byte *regs = (gdb_byte *) xsave;
3331
3332 i387_collect_xsave (regcache, regnum, xsave, gcore);
3333
3334 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3335 {
3336 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3337 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3338 regs + 12);
3339 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3340 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3341 regs + 20);
3342 }
3343 }
This page took 0.100053 seconds and 5 git commands to generate.