Create a displaced_step_closure class hierarchy
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "x86-xstate.h"
43 #include <algorithm>
44 #include "target-descriptions.h"
45 #include "arch/amd64.h"
46 #include "producer.h"
47 #include "ax.h"
48 #include "ax-gdb.h"
49 #include "common/byte-vector.h"
50
51 /* Note that the AMD64 architecture was previously known as x86-64.
52 The latter is (forever) engraved into the canonical system name as
53 returned by config.guess, and used as the name for the AMD64 port
54 of GNU/Linux. The BSD's have renamed their ports to amd64; they
55 don't like to shout. For GDB we prefer the amd64_-prefix over the
56 x86_64_-prefix since it's so much easier to type. */
57
58 /* Register information. */
59
60 static const char *amd64_register_names[] =
61 {
62 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
63
64 /* %r8 is indeed register number 8. */
65 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
66 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
67
68 /* %st0 is register number 24. */
69 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
70 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
71
72 /* %xmm0 is register number 40. */
73 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
74 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
75 "mxcsr",
76 };
77
78 static const char *amd64_ymm_names[] =
79 {
80 "ymm0", "ymm1", "ymm2", "ymm3",
81 "ymm4", "ymm5", "ymm6", "ymm7",
82 "ymm8", "ymm9", "ymm10", "ymm11",
83 "ymm12", "ymm13", "ymm14", "ymm15"
84 };
85
86 static const char *amd64_ymm_avx512_names[] =
87 {
88 "ymm16", "ymm17", "ymm18", "ymm19",
89 "ymm20", "ymm21", "ymm22", "ymm23",
90 "ymm24", "ymm25", "ymm26", "ymm27",
91 "ymm28", "ymm29", "ymm30", "ymm31"
92 };
93
94 static const char *amd64_ymmh_names[] =
95 {
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
99 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
100 };
101
102 static const char *amd64_ymmh_avx512_names[] =
103 {
104 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
105 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
106 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
107 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
108 };
109
110 static const char *amd64_mpx_names[] =
111 {
112 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
113 };
114
115 static const char *amd64_k_names[] =
116 {
117 "k0", "k1", "k2", "k3",
118 "k4", "k5", "k6", "k7"
119 };
120
121 static const char *amd64_zmmh_names[] =
122 {
123 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
124 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
125 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
126 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
127 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
128 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
129 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
130 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
131 };
132
133 static const char *amd64_zmm_names[] =
134 {
135 "zmm0", "zmm1", "zmm2", "zmm3",
136 "zmm4", "zmm5", "zmm6", "zmm7",
137 "zmm8", "zmm9", "zmm10", "zmm11",
138 "zmm12", "zmm13", "zmm14", "zmm15",
139 "zmm16", "zmm17", "zmm18", "zmm19",
140 "zmm20", "zmm21", "zmm22", "zmm23",
141 "zmm24", "zmm25", "zmm26", "zmm27",
142 "zmm28", "zmm29", "zmm30", "zmm31"
143 };
144
145 static const char *amd64_xmm_avx512_names[] = {
146 "xmm16", "xmm17", "xmm18", "xmm19",
147 "xmm20", "xmm21", "xmm22", "xmm23",
148 "xmm24", "xmm25", "xmm26", "xmm27",
149 "xmm28", "xmm29", "xmm30", "xmm31"
150 };
151
152 static const char *amd64_pkeys_names[] = {
153 "pkru"
154 };
155
156 /* DWARF Register Number Mapping as defined in the System V psABI,
157 section 3.6. */
158
159 static int amd64_dwarf_regmap[] =
160 {
161 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
162 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
163 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
164 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
165
166 /* Frame Pointer Register RBP. */
167 AMD64_RBP_REGNUM,
168
169 /* Stack Pointer Register RSP. */
170 AMD64_RSP_REGNUM,
171
172 /* Extended Integer Registers 8 - 15. */
173 AMD64_R8_REGNUM, /* %r8 */
174 AMD64_R9_REGNUM, /* %r9 */
175 AMD64_R10_REGNUM, /* %r10 */
176 AMD64_R11_REGNUM, /* %r11 */
177 AMD64_R12_REGNUM, /* %r12 */
178 AMD64_R13_REGNUM, /* %r13 */
179 AMD64_R14_REGNUM, /* %r14 */
180 AMD64_R15_REGNUM, /* %r15 */
181
182 /* Return Address RA. Mapped to RIP. */
183 AMD64_RIP_REGNUM,
184
185 /* SSE Registers 0 - 7. */
186 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
187 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
188 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
189 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
190
191 /* Extended SSE Registers 8 - 15. */
192 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
193 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
194 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
195 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
196
197 /* Floating Point Registers 0-7. */
198 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
199 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
200 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
201 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
202
203 /* MMX Registers 0 - 7.
204 We have to handle those registers specifically, as their register
205 number within GDB depends on the target (or they may even not be
206 available at all). */
207 -1, -1, -1, -1, -1, -1, -1, -1,
208
209 /* Control and Status Flags Register. */
210 AMD64_EFLAGS_REGNUM,
211
212 /* Selector Registers. */
213 AMD64_ES_REGNUM,
214 AMD64_CS_REGNUM,
215 AMD64_SS_REGNUM,
216 AMD64_DS_REGNUM,
217 AMD64_FS_REGNUM,
218 AMD64_GS_REGNUM,
219 -1,
220 -1,
221
222 /* Segment Base Address Registers. */
223 -1,
224 -1,
225 -1,
226 -1,
227
228 /* Special Selector Registers. */
229 -1,
230 -1,
231
232 /* Floating Point Control Registers. */
233 AMD64_MXCSR_REGNUM,
234 AMD64_FCTRL_REGNUM,
235 AMD64_FSTAT_REGNUM
236 };
237
238 static const int amd64_dwarf_regmap_len =
239 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
240
241 /* Convert DWARF register number REG to the appropriate register
242 number used by GDB. */
243
244 static int
245 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248 int ymm0_regnum = tdep->ymm0_regnum;
249 int regnum = -1;
250
251 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
252 regnum = amd64_dwarf_regmap[reg];
253
254 if (ymm0_regnum >= 0
255 && i386_xmm_regnum_p (gdbarch, regnum))
256 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
257
258 return regnum;
259 }
260
261 /* Map architectural register numbers to gdb register numbers. */
262
263 static const int amd64_arch_regmap[16] =
264 {
265 AMD64_RAX_REGNUM, /* %rax */
266 AMD64_RCX_REGNUM, /* %rcx */
267 AMD64_RDX_REGNUM, /* %rdx */
268 AMD64_RBX_REGNUM, /* %rbx */
269 AMD64_RSP_REGNUM, /* %rsp */
270 AMD64_RBP_REGNUM, /* %rbp */
271 AMD64_RSI_REGNUM, /* %rsi */
272 AMD64_RDI_REGNUM, /* %rdi */
273 AMD64_R8_REGNUM, /* %r8 */
274 AMD64_R9_REGNUM, /* %r9 */
275 AMD64_R10_REGNUM, /* %r10 */
276 AMD64_R11_REGNUM, /* %r11 */
277 AMD64_R12_REGNUM, /* %r12 */
278 AMD64_R13_REGNUM, /* %r13 */
279 AMD64_R14_REGNUM, /* %r14 */
280 AMD64_R15_REGNUM /* %r15 */
281 };
282
283 static const int amd64_arch_regmap_len =
284 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
285
286 /* Convert architectural register number REG to the appropriate register
287 number used by GDB. */
288
289 static int
290 amd64_arch_reg_to_regnum (int reg)
291 {
292 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
293
294 return amd64_arch_regmap[reg];
295 }
296
297 /* Register names for byte pseudo-registers. */
298
299 static const char *amd64_byte_names[] =
300 {
301 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
302 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
303 "ah", "bh", "ch", "dh"
304 };
305
306 /* Number of lower byte registers. */
307 #define AMD64_NUM_LOWER_BYTE_REGS 16
308
309 /* Register names for word pseudo-registers. */
310
311 static const char *amd64_word_names[] =
312 {
313 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
314 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
315 };
316
317 /* Register names for dword pseudo-registers. */
318
319 static const char *amd64_dword_names[] =
320 {
321 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
322 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
323 "eip"
324 };
325
326 /* Return the name of register REGNUM. */
327
328 static const char *
329 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 if (i386_byte_regnum_p (gdbarch, regnum))
333 return amd64_byte_names[regnum - tdep->al_regnum];
334 else if (i386_zmm_regnum_p (gdbarch, regnum))
335 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
336 else if (i386_ymm_regnum_p (gdbarch, regnum))
337 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
338 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
339 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
340 else if (i386_word_regnum_p (gdbarch, regnum))
341 return amd64_word_names[regnum - tdep->ax_regnum];
342 else if (i386_dword_regnum_p (gdbarch, regnum))
343 return amd64_dword_names[regnum - tdep->eax_regnum];
344 else
345 return i386_pseudo_register_name (gdbarch, regnum);
346 }
347
348 static struct value *
349 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
350 struct regcache *regcache,
351 int regnum)
352 {
353 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
354 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
355 enum register_status status;
356 struct value *result_value;
357 gdb_byte *buf;
358
359 result_value = allocate_value (register_type (gdbarch, regnum));
360 VALUE_LVAL (result_value) = lval_register;
361 VALUE_REGNUM (result_value) = regnum;
362 buf = value_contents_raw (result_value);
363
364 if (i386_byte_regnum_p (gdbarch, regnum))
365 {
366 int gpnum = regnum - tdep->al_regnum;
367
368 /* Extract (always little endian). */
369 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
370 {
371 /* Special handling for AH, BH, CH, DH. */
372 status = regcache_raw_read (regcache,
373 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
374 raw_buf);
375 if (status == REG_VALID)
376 memcpy (buf, raw_buf + 1, 1);
377 else
378 mark_value_bytes_unavailable (result_value, 0,
379 TYPE_LENGTH (value_type (result_value)));
380 }
381 else
382 {
383 status = regcache_raw_read (regcache, gpnum, raw_buf);
384 if (status == REG_VALID)
385 memcpy (buf, raw_buf, 1);
386 else
387 mark_value_bytes_unavailable (result_value, 0,
388 TYPE_LENGTH (value_type (result_value)));
389 }
390 }
391 else if (i386_dword_regnum_p (gdbarch, regnum))
392 {
393 int gpnum = regnum - tdep->eax_regnum;
394 /* Extract (always little endian). */
395 status = regcache_raw_read (regcache, gpnum, raw_buf);
396 if (status == REG_VALID)
397 memcpy (buf, raw_buf, 4);
398 else
399 mark_value_bytes_unavailable (result_value, 0,
400 TYPE_LENGTH (value_type (result_value)));
401 }
402 else
403 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
404 result_value);
405
406 return result_value;
407 }
408
409 static void
410 amd64_pseudo_register_write (struct gdbarch *gdbarch,
411 struct regcache *regcache,
412 int regnum, const gdb_byte *buf)
413 {
414 gdb_byte *raw_buf = (gdb_byte *) alloca (register_size (gdbarch, regnum));
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416
417 if (i386_byte_regnum_p (gdbarch, regnum))
418 {
419 int gpnum = regnum - tdep->al_regnum;
420
421 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
422 {
423 /* Read ... AH, BH, CH, DH. */
424 regcache_raw_read (regcache,
425 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
426 /* ... Modify ... (always little endian). */
427 memcpy (raw_buf + 1, buf, 1);
428 /* ... Write. */
429 regcache_raw_write (regcache,
430 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
431 }
432 else
433 {
434 /* Read ... */
435 regcache_raw_read (regcache, gpnum, raw_buf);
436 /* ... Modify ... (always little endian). */
437 memcpy (raw_buf, buf, 1);
438 /* ... Write. */
439 regcache_raw_write (regcache, gpnum, raw_buf);
440 }
441 }
442 else if (i386_dword_regnum_p (gdbarch, regnum))
443 {
444 int gpnum = regnum - tdep->eax_regnum;
445
446 /* Read ... */
447 regcache_raw_read (regcache, gpnum, raw_buf);
448 /* ... Modify ... (always little endian). */
449 memcpy (raw_buf, buf, 4);
450 /* ... Write. */
451 regcache_raw_write (regcache, gpnum, raw_buf);
452 }
453 else
454 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
455 }
456
457 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
458
459 static int
460 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
461 struct agent_expr *ax, int regnum)
462 {
463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
464
465 if (i386_byte_regnum_p (gdbarch, regnum))
466 {
467 int gpnum = regnum - tdep->al_regnum;
468
469 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
470 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
471 else
472 ax_reg_mask (ax, gpnum);
473 return 0;
474 }
475 else if (i386_dword_regnum_p (gdbarch, regnum))
476 {
477 int gpnum = regnum - tdep->eax_regnum;
478
479 ax_reg_mask (ax, gpnum);
480 return 0;
481 }
482 else
483 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
484 }
485
486 \f
487
488 /* Register classes as defined in the psABI. */
489
490 enum amd64_reg_class
491 {
492 AMD64_INTEGER,
493 AMD64_SSE,
494 AMD64_SSEUP,
495 AMD64_X87,
496 AMD64_X87UP,
497 AMD64_COMPLEX_X87,
498 AMD64_NO_CLASS,
499 AMD64_MEMORY
500 };
501
502 /* Return the union class of CLASS1 and CLASS2. See the psABI for
503 details. */
504
505 static enum amd64_reg_class
506 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
507 {
508 /* Rule (a): If both classes are equal, this is the resulting class. */
509 if (class1 == class2)
510 return class1;
511
512 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
513 is the other class. */
514 if (class1 == AMD64_NO_CLASS)
515 return class2;
516 if (class2 == AMD64_NO_CLASS)
517 return class1;
518
519 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
520 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
521 return AMD64_MEMORY;
522
523 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
524 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
525 return AMD64_INTEGER;
526
527 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
528 MEMORY is used as class. */
529 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
530 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
531 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
532 return AMD64_MEMORY;
533
534 /* Rule (f): Otherwise class SSE is used. */
535 return AMD64_SSE;
536 }
537
538 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
539
540 /* Return non-zero if TYPE is a non-POD structure or union type. */
541
542 static int
543 amd64_non_pod_p (struct type *type)
544 {
545 /* ??? A class with a base class certainly isn't POD, but does this
546 catch all non-POD structure types? */
547 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
548 return 1;
549
550 return 0;
551 }
552
553 /* Classify TYPE according to the rules for aggregate (structures and
554 arrays) and union types, and store the result in CLASS. */
555
556 static void
557 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
558 {
559 /* 1. If the size of an object is larger than two eightbytes, or in
560 C++, is a non-POD structure or union type, or contains
561 unaligned fields, it has class memory. */
562 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
563 {
564 theclass[0] = theclass[1] = AMD64_MEMORY;
565 return;
566 }
567
568 /* 2. Both eightbytes get initialized to class NO_CLASS. */
569 theclass[0] = theclass[1] = AMD64_NO_CLASS;
570
571 /* 3. Each field of an object is classified recursively so that
572 always two fields are considered. The resulting class is
573 calculated according to the classes of the fields in the
574 eightbyte: */
575
576 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
577 {
578 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
579
580 /* All fields in an array have the same type. */
581 amd64_classify (subtype, theclass);
582 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
583 theclass[1] = theclass[0];
584 }
585 else
586 {
587 int i;
588
589 /* Structure or union. */
590 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
591 || TYPE_CODE (type) == TYPE_CODE_UNION);
592
593 for (i = 0; i < TYPE_NFIELDS (type); i++)
594 {
595 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
596 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
597 enum amd64_reg_class subclass[2];
598 int bitsize = TYPE_FIELD_BITSIZE (type, i);
599 int endpos;
600
601 if (bitsize == 0)
602 bitsize = TYPE_LENGTH (subtype) * 8;
603 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
604
605 /* Ignore static fields. */
606 if (field_is_static (&TYPE_FIELD (type, i)))
607 continue;
608
609 gdb_assert (pos == 0 || pos == 1);
610
611 amd64_classify (subtype, subclass);
612 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
613 if (bitsize <= 64 && pos == 0 && endpos == 1)
614 /* This is a bit of an odd case: We have a field that would
615 normally fit in one of the two eightbytes, except that
616 it is placed in a way that this field straddles them.
617 This has been seen with a structure containing an array.
618
619 The ABI is a bit unclear in this case, but we assume that
620 this field's class (stored in subclass[0]) must also be merged
621 into class[1]. In other words, our field has a piece stored
622 in the second eight-byte, and thus its class applies to
623 the second eight-byte as well.
624
625 In the case where the field length exceeds 8 bytes,
626 it should not be necessary to merge the field class
627 into class[1]. As LEN > 8, subclass[1] is necessarily
628 different from AMD64_NO_CLASS. If subclass[1] is equal
629 to subclass[0], then the normal class[1]/subclass[1]
630 merging will take care of everything. For subclass[1]
631 to be different from subclass[0], I can only see the case
632 where we have a SSE/SSEUP or X87/X87UP pair, which both
633 use up all 16 bytes of the aggregate, and are already
634 handled just fine (because each portion sits on its own
635 8-byte). */
636 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
637 if (pos == 0)
638 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
639 }
640 }
641
642 /* 4. Then a post merger cleanup is done: */
643
644 /* Rule (a): If one of the classes is MEMORY, the whole argument is
645 passed in memory. */
646 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
647 theclass[0] = theclass[1] = AMD64_MEMORY;
648
649 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
650 SSE. */
651 if (theclass[0] == AMD64_SSEUP)
652 theclass[0] = AMD64_SSE;
653 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
654 theclass[1] = AMD64_SSE;
655 }
656
657 /* Classify TYPE, and store the result in CLASS. */
658
659 static void
660 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
661 {
662 enum type_code code = TYPE_CODE (type);
663 int len = TYPE_LENGTH (type);
664
665 theclass[0] = theclass[1] = AMD64_NO_CLASS;
666
667 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
668 long, long long, and pointers are in the INTEGER class. Similarly,
669 range types, used by languages such as Ada, are also in the INTEGER
670 class. */
671 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
672 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
673 || code == TYPE_CODE_CHAR
674 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
675 && (len == 1 || len == 2 || len == 4 || len == 8))
676 theclass[0] = AMD64_INTEGER;
677
678 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
679 are in class SSE. */
680 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
681 && (len == 4 || len == 8))
682 /* FIXME: __m64 . */
683 theclass[0] = AMD64_SSE;
684
685 /* Arguments of types __float128, _Decimal128 and __m128 are split into
686 two halves. The least significant ones belong to class SSE, the most
687 significant one to class SSEUP. */
688 else if (code == TYPE_CODE_DECFLOAT && len == 16)
689 /* FIXME: __float128, __m128. */
690 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
691
692 /* The 64-bit mantissa of arguments of type long double belongs to
693 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
694 class X87UP. */
695 else if (code == TYPE_CODE_FLT && len == 16)
696 /* Class X87 and X87UP. */
697 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
698
699 /* Arguments of complex T where T is one of the types float or
700 double get treated as if they are implemented as:
701
702 struct complexT {
703 T real;
704 T imag;
705 };
706
707 */
708 else if (code == TYPE_CODE_COMPLEX && len == 8)
709 theclass[0] = AMD64_SSE;
710 else if (code == TYPE_CODE_COMPLEX && len == 16)
711 theclass[0] = theclass[1] = AMD64_SSE;
712
713 /* A variable of type complex long double is classified as type
714 COMPLEX_X87. */
715 else if (code == TYPE_CODE_COMPLEX && len == 32)
716 theclass[0] = AMD64_COMPLEX_X87;
717
718 /* Aggregates. */
719 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
720 || code == TYPE_CODE_UNION)
721 amd64_classify_aggregate (type, theclass);
722 }
723
724 static enum return_value_convention
725 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
726 struct type *type, struct regcache *regcache,
727 gdb_byte *readbuf, const gdb_byte *writebuf)
728 {
729 enum amd64_reg_class theclass[2];
730 int len = TYPE_LENGTH (type);
731 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
732 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
733 int integer_reg = 0;
734 int sse_reg = 0;
735 int i;
736
737 gdb_assert (!(readbuf && writebuf));
738
739 /* 1. Classify the return type with the classification algorithm. */
740 amd64_classify (type, theclass);
741
742 /* 2. If the type has class MEMORY, then the caller provides space
743 for the return value and passes the address of this storage in
744 %rdi as if it were the first argument to the function. In effect,
745 this address becomes a hidden first argument.
746
747 On return %rax will contain the address that has been passed in
748 by the caller in %rdi. */
749 if (theclass[0] == AMD64_MEMORY)
750 {
751 /* As indicated by the comment above, the ABI guarantees that we
752 can always find the return value just after the function has
753 returned. */
754
755 if (readbuf)
756 {
757 ULONGEST addr;
758
759 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
760 read_memory (addr, readbuf, TYPE_LENGTH (type));
761 }
762
763 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
764 }
765
766 /* 8. If the class is COMPLEX_X87, the real part of the value is
767 returned in %st0 and the imaginary part in %st1. */
768 if (theclass[0] == AMD64_COMPLEX_X87)
769 {
770 if (readbuf)
771 {
772 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
773 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
774 }
775
776 if (writebuf)
777 {
778 i387_return_value (gdbarch, regcache);
779 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
780 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
781
782 /* Fix up the tag word such that both %st(0) and %st(1) are
783 marked as valid. */
784 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
785 }
786
787 return RETURN_VALUE_REGISTER_CONVENTION;
788 }
789
790 gdb_assert (theclass[1] != AMD64_MEMORY);
791 gdb_assert (len <= 16);
792
793 for (i = 0; len > 0; i++, len -= 8)
794 {
795 int regnum = -1;
796 int offset = 0;
797
798 switch (theclass[i])
799 {
800 case AMD64_INTEGER:
801 /* 3. If the class is INTEGER, the next available register
802 of the sequence %rax, %rdx is used. */
803 regnum = integer_regnum[integer_reg++];
804 break;
805
806 case AMD64_SSE:
807 /* 4. If the class is SSE, the next available SSE register
808 of the sequence %xmm0, %xmm1 is used. */
809 regnum = sse_regnum[sse_reg++];
810 break;
811
812 case AMD64_SSEUP:
813 /* 5. If the class is SSEUP, the eightbyte is passed in the
814 upper half of the last used SSE register. */
815 gdb_assert (sse_reg > 0);
816 regnum = sse_regnum[sse_reg - 1];
817 offset = 8;
818 break;
819
820 case AMD64_X87:
821 /* 6. If the class is X87, the value is returned on the X87
822 stack in %st0 as 80-bit x87 number. */
823 regnum = AMD64_ST0_REGNUM;
824 if (writebuf)
825 i387_return_value (gdbarch, regcache);
826 break;
827
828 case AMD64_X87UP:
829 /* 7. If the class is X87UP, the value is returned together
830 with the previous X87 value in %st0. */
831 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
832 regnum = AMD64_ST0_REGNUM;
833 offset = 8;
834 len = 2;
835 break;
836
837 case AMD64_NO_CLASS:
838 continue;
839
840 default:
841 gdb_assert (!"Unexpected register class.");
842 }
843
844 gdb_assert (regnum != -1);
845
846 if (readbuf)
847 regcache_raw_read_part (regcache, regnum, offset, std::min (len, 8),
848 readbuf + i * 8);
849 if (writebuf)
850 regcache_raw_write_part (regcache, regnum, offset, std::min (len, 8),
851 writebuf + i * 8);
852 }
853
854 return RETURN_VALUE_REGISTER_CONVENTION;
855 }
856 \f
857
858 static CORE_ADDR
859 amd64_push_arguments (struct regcache *regcache, int nargs,
860 struct value **args, CORE_ADDR sp, int struct_return)
861 {
862 static int integer_regnum[] =
863 {
864 AMD64_RDI_REGNUM, /* %rdi */
865 AMD64_RSI_REGNUM, /* %rsi */
866 AMD64_RDX_REGNUM, /* %rdx */
867 AMD64_RCX_REGNUM, /* %rcx */
868 AMD64_R8_REGNUM, /* %r8 */
869 AMD64_R9_REGNUM /* %r9 */
870 };
871 static int sse_regnum[] =
872 {
873 /* %xmm0 ... %xmm7 */
874 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
875 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
876 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
877 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
878 };
879 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
880 int num_stack_args = 0;
881 int num_elements = 0;
882 int element = 0;
883 int integer_reg = 0;
884 int sse_reg = 0;
885 int i;
886
887 /* Reserve a register for the "hidden" argument. */
888 if (struct_return)
889 integer_reg++;
890
891 for (i = 0; i < nargs; i++)
892 {
893 struct type *type = value_type (args[i]);
894 int len = TYPE_LENGTH (type);
895 enum amd64_reg_class theclass[2];
896 int needed_integer_regs = 0;
897 int needed_sse_regs = 0;
898 int j;
899
900 /* Classify argument. */
901 amd64_classify (type, theclass);
902
903 /* Calculate the number of integer and SSE registers needed for
904 this argument. */
905 for (j = 0; j < 2; j++)
906 {
907 if (theclass[j] == AMD64_INTEGER)
908 needed_integer_regs++;
909 else if (theclass[j] == AMD64_SSE)
910 needed_sse_regs++;
911 }
912
913 /* Check whether enough registers are available, and if the
914 argument should be passed in registers at all. */
915 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
916 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
917 || (needed_integer_regs == 0 && needed_sse_regs == 0))
918 {
919 /* The argument will be passed on the stack. */
920 num_elements += ((len + 7) / 8);
921 stack_args[num_stack_args++] = args[i];
922 }
923 else
924 {
925 /* The argument will be passed in registers. */
926 const gdb_byte *valbuf = value_contents (args[i]);
927 gdb_byte buf[8];
928
929 gdb_assert (len <= 16);
930
931 for (j = 0; len > 0; j++, len -= 8)
932 {
933 int regnum = -1;
934 int offset = 0;
935
936 switch (theclass[j])
937 {
938 case AMD64_INTEGER:
939 regnum = integer_regnum[integer_reg++];
940 break;
941
942 case AMD64_SSE:
943 regnum = sse_regnum[sse_reg++];
944 break;
945
946 case AMD64_SSEUP:
947 gdb_assert (sse_reg > 0);
948 regnum = sse_regnum[sse_reg - 1];
949 offset = 8;
950 break;
951
952 default:
953 gdb_assert (!"Unexpected register class.");
954 }
955
956 gdb_assert (regnum != -1);
957 memset (buf, 0, sizeof buf);
958 memcpy (buf, valbuf + j * 8, std::min (len, 8));
959 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
960 }
961 }
962 }
963
964 /* Allocate space for the arguments on the stack. */
965 sp -= num_elements * 8;
966
967 /* The psABI says that "The end of the input argument area shall be
968 aligned on a 16 byte boundary." */
969 sp &= ~0xf;
970
971 /* Write out the arguments to the stack. */
972 for (i = 0; i < num_stack_args; i++)
973 {
974 struct type *type = value_type (stack_args[i]);
975 const gdb_byte *valbuf = value_contents (stack_args[i]);
976 int len = TYPE_LENGTH (type);
977
978 write_memory (sp + element * 8, valbuf, len);
979 element += ((len + 7) / 8);
980 }
981
982 /* The psABI says that "For calls that may call functions that use
983 varargs or stdargs (prototype-less calls or calls to functions
984 containing ellipsis (...) in the declaration) %al is used as
985 hidden argument to specify the number of SSE registers used. */
986 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
987 return sp;
988 }
989
990 static CORE_ADDR
991 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
992 struct regcache *regcache, CORE_ADDR bp_addr,
993 int nargs, struct value **args, CORE_ADDR sp,
994 int struct_return, CORE_ADDR struct_addr)
995 {
996 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
997 gdb_byte buf[8];
998
999 /* BND registers can be in arbitrary values at the moment of the
1000 inferior call. This can cause boundary violations that are not
1001 due to a real bug or even desired by the user. The best to be done
1002 is set the BND registers to allow access to the whole memory, INIT
1003 state, before pushing the inferior call. */
1004 i387_reset_bnd_regs (gdbarch, regcache);
1005
1006 /* Pass arguments. */
1007 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
1008
1009 /* Pass "hidden" argument". */
1010 if (struct_return)
1011 {
1012 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1013 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
1014 }
1015
1016 /* Store return address. */
1017 sp -= 8;
1018 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1019 write_memory (sp, buf, 8);
1020
1021 /* Finally, update the stack pointer... */
1022 store_unsigned_integer (buf, 8, byte_order, sp);
1023 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
1024
1025 /* ...and fake a frame pointer. */
1026 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
1027
1028 return sp + 16;
1029 }
1030 \f
1031 /* Displaced instruction handling. */
1032
1033 /* A partially decoded instruction.
1034 This contains enough details for displaced stepping purposes. */
1035
1036 struct amd64_insn
1037 {
1038 /* The number of opcode bytes. */
1039 int opcode_len;
1040 /* The offset of the rex prefix or -1 if not present. */
1041 int rex_offset;
1042 /* The offset to the first opcode byte. */
1043 int opcode_offset;
1044 /* The offset to the modrm byte or -1 if not present. */
1045 int modrm_offset;
1046
1047 /* The raw instruction. */
1048 gdb_byte *raw_insn;
1049 };
1050
1051 struct amd64_displaced_step_closure : public displaced_step_closure
1052 {
1053 amd64_displaced_step_closure (int insn_buf_len)
1054 : insn_buf (insn_buf_len, 0)
1055 {}
1056
1057 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1058 int tmp_used = 0;
1059 int tmp_regno;
1060 ULONGEST tmp_save;
1061
1062 /* Details of the instruction. */
1063 struct amd64_insn insn_details;
1064
1065 /* The possibly modified insn. */
1066 gdb::byte_vector insn_buf;
1067 };
1068
1069 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1070 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1071 at which point delete these in favor of libopcodes' versions). */
1072
1073 static const unsigned char onebyte_has_modrm[256] = {
1074 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1075 /* ------------------------------- */
1076 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1077 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1078 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1079 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1080 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1081 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1082 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1083 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1084 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1085 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1086 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1087 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1088 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1089 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1090 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1091 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1092 /* ------------------------------- */
1093 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1094 };
1095
1096 static const unsigned char twobyte_has_modrm[256] = {
1097 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1098 /* ------------------------------- */
1099 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1100 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1101 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1102 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1103 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1104 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1105 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1106 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1107 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1108 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1109 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1110 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1111 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1112 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1113 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1114 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1115 /* ------------------------------- */
1116 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1117 };
1118
1119 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1120
1121 static int
1122 rex_prefix_p (gdb_byte pfx)
1123 {
1124 return REX_PREFIX_P (pfx);
1125 }
1126
1127 /* Skip the legacy instruction prefixes in INSN.
1128 We assume INSN is properly sentineled so we don't have to worry
1129 about falling off the end of the buffer. */
1130
1131 static gdb_byte *
1132 amd64_skip_prefixes (gdb_byte *insn)
1133 {
1134 while (1)
1135 {
1136 switch (*insn)
1137 {
1138 case DATA_PREFIX_OPCODE:
1139 case ADDR_PREFIX_OPCODE:
1140 case CS_PREFIX_OPCODE:
1141 case DS_PREFIX_OPCODE:
1142 case ES_PREFIX_OPCODE:
1143 case FS_PREFIX_OPCODE:
1144 case GS_PREFIX_OPCODE:
1145 case SS_PREFIX_OPCODE:
1146 case LOCK_PREFIX_OPCODE:
1147 case REPE_PREFIX_OPCODE:
1148 case REPNE_PREFIX_OPCODE:
1149 ++insn;
1150 continue;
1151 default:
1152 break;
1153 }
1154 break;
1155 }
1156
1157 return insn;
1158 }
1159
1160 /* Return an integer register (other than RSP) that is unused as an input
1161 operand in INSN.
1162 In order to not require adding a rex prefix if the insn doesn't already
1163 have one, the result is restricted to RAX ... RDI, sans RSP.
1164 The register numbering of the result follows architecture ordering,
1165 e.g. RDI = 7. */
1166
1167 static int
1168 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1169 {
1170 /* 1 bit for each reg */
1171 int used_regs_mask = 0;
1172
1173 /* There can be at most 3 int regs used as inputs in an insn, and we have
1174 7 to choose from (RAX ... RDI, sans RSP).
1175 This allows us to take a conservative approach and keep things simple.
1176 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1177 that implicitly specify RAX. */
1178
1179 /* Avoid RAX. */
1180 used_regs_mask |= 1 << EAX_REG_NUM;
1181 /* Similarily avoid RDX, implicit operand in divides. */
1182 used_regs_mask |= 1 << EDX_REG_NUM;
1183 /* Avoid RSP. */
1184 used_regs_mask |= 1 << ESP_REG_NUM;
1185
1186 /* If the opcode is one byte long and there's no ModRM byte,
1187 assume the opcode specifies a register. */
1188 if (details->opcode_len == 1 && details->modrm_offset == -1)
1189 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1190
1191 /* Mark used regs in the modrm/sib bytes. */
1192 if (details->modrm_offset != -1)
1193 {
1194 int modrm = details->raw_insn[details->modrm_offset];
1195 int mod = MODRM_MOD_FIELD (modrm);
1196 int reg = MODRM_REG_FIELD (modrm);
1197 int rm = MODRM_RM_FIELD (modrm);
1198 int have_sib = mod != 3 && rm == 4;
1199
1200 /* Assume the reg field of the modrm byte specifies a register. */
1201 used_regs_mask |= 1 << reg;
1202
1203 if (have_sib)
1204 {
1205 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1206 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1207 used_regs_mask |= 1 << base;
1208 used_regs_mask |= 1 << idx;
1209 }
1210 else
1211 {
1212 used_regs_mask |= 1 << rm;
1213 }
1214 }
1215
1216 gdb_assert (used_regs_mask < 256);
1217 gdb_assert (used_regs_mask != 255);
1218
1219 /* Finally, find a free reg. */
1220 {
1221 int i;
1222
1223 for (i = 0; i < 8; ++i)
1224 {
1225 if (! (used_regs_mask & (1 << i)))
1226 return i;
1227 }
1228
1229 /* We shouldn't get here. */
1230 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1231 }
1232 }
1233
1234 /* Extract the details of INSN that we need. */
1235
1236 static void
1237 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1238 {
1239 gdb_byte *start = insn;
1240 int need_modrm;
1241
1242 details->raw_insn = insn;
1243
1244 details->opcode_len = -1;
1245 details->rex_offset = -1;
1246 details->opcode_offset = -1;
1247 details->modrm_offset = -1;
1248
1249 /* Skip legacy instruction prefixes. */
1250 insn = amd64_skip_prefixes (insn);
1251
1252 /* Skip REX instruction prefix. */
1253 if (rex_prefix_p (*insn))
1254 {
1255 details->rex_offset = insn - start;
1256 ++insn;
1257 }
1258
1259 details->opcode_offset = insn - start;
1260
1261 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1262 {
1263 /* Two or three-byte opcode. */
1264 ++insn;
1265 need_modrm = twobyte_has_modrm[*insn];
1266
1267 /* Check for three-byte opcode. */
1268 switch (*insn)
1269 {
1270 case 0x24:
1271 case 0x25:
1272 case 0x38:
1273 case 0x3a:
1274 case 0x7a:
1275 case 0x7b:
1276 ++insn;
1277 details->opcode_len = 3;
1278 break;
1279 default:
1280 details->opcode_len = 2;
1281 break;
1282 }
1283 }
1284 else
1285 {
1286 /* One-byte opcode. */
1287 need_modrm = onebyte_has_modrm[*insn];
1288 details->opcode_len = 1;
1289 }
1290
1291 if (need_modrm)
1292 {
1293 ++insn;
1294 details->modrm_offset = insn - start;
1295 }
1296 }
1297
1298 /* Update %rip-relative addressing in INSN.
1299
1300 %rip-relative addressing only uses a 32-bit displacement.
1301 32 bits is not enough to be guaranteed to cover the distance between where
1302 the real instruction is and where its copy is.
1303 Convert the insn to use base+disp addressing.
1304 We set base = pc + insn_length so we can leave disp unchanged. */
1305
1306 static void
1307 fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_closure *dsc,
1308 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1309 {
1310 const struct amd64_insn *insn_details = &dsc->insn_details;
1311 int modrm_offset = insn_details->modrm_offset;
1312 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1313 CORE_ADDR rip_base;
1314 int insn_length;
1315 int arch_tmp_regno, tmp_regno;
1316 ULONGEST orig_value;
1317
1318 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1319 ++insn;
1320
1321 /* Compute the rip-relative address. */
1322 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1323 dsc->insn_buf.size (), from);
1324 rip_base = from + insn_length;
1325
1326 /* We need a register to hold the address.
1327 Pick one not used in the insn.
1328 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1329 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1330 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1331
1332 /* REX.B should be unset as we were using rip-relative addressing,
1333 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1334 if (insn_details->rex_offset != -1)
1335 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1336
1337 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1338 dsc->tmp_regno = tmp_regno;
1339 dsc->tmp_save = orig_value;
1340 dsc->tmp_used = 1;
1341
1342 /* Convert the ModRM field to be base+disp. */
1343 dsc->insn_buf[modrm_offset] &= ~0xc7;
1344 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1345
1346 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1347
1348 if (debug_displaced)
1349 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1350 "displaced: using temp reg %d, old value %s, new value %s\n",
1351 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1352 paddress (gdbarch, rip_base));
1353 }
1354
1355 static void
1356 fixup_displaced_copy (struct gdbarch *gdbarch,
1357 amd64_displaced_step_closure *dsc,
1358 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1359 {
1360 const struct amd64_insn *details = &dsc->insn_details;
1361
1362 if (details->modrm_offset != -1)
1363 {
1364 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1365
1366 if ((modrm & 0xc7) == 0x05)
1367 {
1368 /* The insn uses rip-relative addressing.
1369 Deal with it. */
1370 fixup_riprel (gdbarch, dsc, from, to, regs);
1371 }
1372 }
1373 }
1374
1375 struct displaced_step_closure *
1376 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1377 CORE_ADDR from, CORE_ADDR to,
1378 struct regcache *regs)
1379 {
1380 int len = gdbarch_max_insn_length (gdbarch);
1381 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1382 continually watch for running off the end of the buffer. */
1383 int fixup_sentinel_space = len;
1384 amd64_displaced_step_closure *dsc
1385 = new amd64_displaced_step_closure (len + fixup_sentinel_space);
1386 gdb_byte *buf = &dsc->insn_buf[0];
1387 struct amd64_insn *details = &dsc->insn_details;
1388
1389 read_memory (from, buf, len);
1390
1391 /* Set up the sentinel space so we don't have to worry about running
1392 off the end of the buffer. An excessive number of leading prefixes
1393 could otherwise cause this. */
1394 memset (buf + len, 0, fixup_sentinel_space);
1395
1396 amd64_get_insn_details (buf, details);
1397
1398 /* GDB may get control back after the insn after the syscall.
1399 Presumably this is a kernel bug.
1400 If this is a syscall, make sure there's a nop afterwards. */
1401 {
1402 int syscall_length;
1403
1404 if (amd64_syscall_p (details, &syscall_length))
1405 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1406 }
1407
1408 /* Modify the insn to cope with the address where it will be executed from.
1409 In particular, handle any rip-relative addressing. */
1410 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1411
1412 write_memory (to, buf, len);
1413
1414 if (debug_displaced)
1415 {
1416 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1417 paddress (gdbarch, from), paddress (gdbarch, to));
1418 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1419 }
1420
1421 return dsc;
1422 }
1423
1424 static int
1425 amd64_absolute_jmp_p (const struct amd64_insn *details)
1426 {
1427 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1428
1429 if (insn[0] == 0xff)
1430 {
1431 /* jump near, absolute indirect (/4) */
1432 if ((insn[1] & 0x38) == 0x20)
1433 return 1;
1434
1435 /* jump far, absolute indirect (/5) */
1436 if ((insn[1] & 0x38) == 0x28)
1437 return 1;
1438 }
1439
1440 return 0;
1441 }
1442
1443 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1444
1445 static int
1446 amd64_jmp_p (const struct amd64_insn *details)
1447 {
1448 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1449
1450 /* jump short, relative. */
1451 if (insn[0] == 0xeb)
1452 return 1;
1453
1454 /* jump near, relative. */
1455 if (insn[0] == 0xe9)
1456 return 1;
1457
1458 return amd64_absolute_jmp_p (details);
1459 }
1460
1461 static int
1462 amd64_absolute_call_p (const struct amd64_insn *details)
1463 {
1464 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1465
1466 if (insn[0] == 0xff)
1467 {
1468 /* Call near, absolute indirect (/2) */
1469 if ((insn[1] & 0x38) == 0x10)
1470 return 1;
1471
1472 /* Call far, absolute indirect (/3) */
1473 if ((insn[1] & 0x38) == 0x18)
1474 return 1;
1475 }
1476
1477 return 0;
1478 }
1479
1480 static int
1481 amd64_ret_p (const struct amd64_insn *details)
1482 {
1483 /* NOTE: gcc can emit "repz ; ret". */
1484 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1485
1486 switch (insn[0])
1487 {
1488 case 0xc2: /* ret near, pop N bytes */
1489 case 0xc3: /* ret near */
1490 case 0xca: /* ret far, pop N bytes */
1491 case 0xcb: /* ret far */
1492 case 0xcf: /* iret */
1493 return 1;
1494
1495 default:
1496 return 0;
1497 }
1498 }
1499
1500 static int
1501 amd64_call_p (const struct amd64_insn *details)
1502 {
1503 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1504
1505 if (amd64_absolute_call_p (details))
1506 return 1;
1507
1508 /* call near, relative */
1509 if (insn[0] == 0xe8)
1510 return 1;
1511
1512 return 0;
1513 }
1514
1515 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1516 length in bytes. Otherwise, return zero. */
1517
1518 static int
1519 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1520 {
1521 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1522
1523 if (insn[0] == 0x0f && insn[1] == 0x05)
1524 {
1525 *lengthp = 2;
1526 return 1;
1527 }
1528
1529 return 0;
1530 }
1531
1532 /* Classify the instruction at ADDR using PRED.
1533 Throw an error if the memory can't be read. */
1534
1535 static int
1536 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1537 int (*pred) (const struct amd64_insn *))
1538 {
1539 struct amd64_insn details;
1540 gdb_byte *buf;
1541 int len, classification;
1542
1543 len = gdbarch_max_insn_length (gdbarch);
1544 buf = (gdb_byte *) alloca (len);
1545
1546 read_code (addr, buf, len);
1547 amd64_get_insn_details (buf, &details);
1548
1549 classification = pred (&details);
1550
1551 return classification;
1552 }
1553
1554 /* The gdbarch insn_is_call method. */
1555
1556 static int
1557 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1558 {
1559 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1560 }
1561
1562 /* The gdbarch insn_is_ret method. */
1563
1564 static int
1565 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1566 {
1567 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1568 }
1569
1570 /* The gdbarch insn_is_jump method. */
1571
1572 static int
1573 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1574 {
1575 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1576 }
1577
1578 /* Fix up the state of registers and memory after having single-stepped
1579 a displaced instruction. */
1580
1581 void
1582 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1583 struct displaced_step_closure *dsc_,
1584 CORE_ADDR from, CORE_ADDR to,
1585 struct regcache *regs)
1586 {
1587 amd64_displaced_step_closure *dsc = (amd64_displaced_step_closure *) dsc_;
1588 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1589 /* The offset we applied to the instruction's address. */
1590 ULONGEST insn_offset = to - from;
1591 gdb_byte *insn = dsc->insn_buf.data ();
1592 const struct amd64_insn *insn_details = &dsc->insn_details;
1593
1594 if (debug_displaced)
1595 fprintf_unfiltered (gdb_stdlog,
1596 "displaced: fixup (%s, %s), "
1597 "insn = 0x%02x 0x%02x ...\n",
1598 paddress (gdbarch, from), paddress (gdbarch, to),
1599 insn[0], insn[1]);
1600
1601 /* If we used a tmp reg, restore it. */
1602
1603 if (dsc->tmp_used)
1604 {
1605 if (debug_displaced)
1606 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1607 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1608 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1609 }
1610
1611 /* The list of issues to contend with here is taken from
1612 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1613 Yay for Free Software! */
1614
1615 /* Relocate the %rip back to the program's instruction stream,
1616 if necessary. */
1617
1618 /* Except in the case of absolute or indirect jump or call
1619 instructions, or a return instruction, the new rip is relative to
1620 the displaced instruction; make it relative to the original insn.
1621 Well, signal handler returns don't need relocation either, but we use the
1622 value of %rip to recognize those; see below. */
1623 if (! amd64_absolute_jmp_p (insn_details)
1624 && ! amd64_absolute_call_p (insn_details)
1625 && ! amd64_ret_p (insn_details))
1626 {
1627 ULONGEST orig_rip;
1628 int insn_len;
1629
1630 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1631
1632 /* A signal trampoline system call changes the %rip, resuming
1633 execution of the main program after the signal handler has
1634 returned. That makes them like 'return' instructions; we
1635 shouldn't relocate %rip.
1636
1637 But most system calls don't, and we do need to relocate %rip.
1638
1639 Our heuristic for distinguishing these cases: if stepping
1640 over the system call instruction left control directly after
1641 the instruction, the we relocate --- control almost certainly
1642 doesn't belong in the displaced copy. Otherwise, we assume
1643 the instruction has put control where it belongs, and leave
1644 it unrelocated. Goodness help us if there are PC-relative
1645 system calls. */
1646 if (amd64_syscall_p (insn_details, &insn_len)
1647 && orig_rip != to + insn_len
1648 /* GDB can get control back after the insn after the syscall.
1649 Presumably this is a kernel bug.
1650 Fixup ensures its a nop, we add one to the length for it. */
1651 && orig_rip != to + insn_len + 1)
1652 {
1653 if (debug_displaced)
1654 fprintf_unfiltered (gdb_stdlog,
1655 "displaced: syscall changed %%rip; "
1656 "not relocating\n");
1657 }
1658 else
1659 {
1660 ULONGEST rip = orig_rip - insn_offset;
1661
1662 /* If we just stepped over a breakpoint insn, we don't backup
1663 the pc on purpose; this is to match behaviour without
1664 stepping. */
1665
1666 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1667
1668 if (debug_displaced)
1669 fprintf_unfiltered (gdb_stdlog,
1670 "displaced: "
1671 "relocated %%rip from %s to %s\n",
1672 paddress (gdbarch, orig_rip),
1673 paddress (gdbarch, rip));
1674 }
1675 }
1676
1677 /* If the instruction was PUSHFL, then the TF bit will be set in the
1678 pushed value, and should be cleared. We'll leave this for later,
1679 since GDB already messes up the TF flag when stepping over a
1680 pushfl. */
1681
1682 /* If the instruction was a call, the return address now atop the
1683 stack is the address following the copied instruction. We need
1684 to make it the address following the original instruction. */
1685 if (amd64_call_p (insn_details))
1686 {
1687 ULONGEST rsp;
1688 ULONGEST retaddr;
1689 const ULONGEST retaddr_len = 8;
1690
1691 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1692 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1693 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1694 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1695
1696 if (debug_displaced)
1697 fprintf_unfiltered (gdb_stdlog,
1698 "displaced: relocated return addr at %s "
1699 "to %s\n",
1700 paddress (gdbarch, rsp),
1701 paddress (gdbarch, retaddr));
1702 }
1703 }
1704
1705 /* If the instruction INSN uses RIP-relative addressing, return the
1706 offset into the raw INSN where the displacement to be adjusted is
1707 found. Returns 0 if the instruction doesn't use RIP-relative
1708 addressing. */
1709
1710 static int
1711 rip_relative_offset (struct amd64_insn *insn)
1712 {
1713 if (insn->modrm_offset != -1)
1714 {
1715 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1716
1717 if ((modrm & 0xc7) == 0x05)
1718 {
1719 /* The displacement is found right after the ModRM byte. */
1720 return insn->modrm_offset + 1;
1721 }
1722 }
1723
1724 return 0;
1725 }
1726
1727 static void
1728 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1729 {
1730 target_write_memory (*to, buf, len);
1731 *to += len;
1732 }
1733
1734 static void
1735 amd64_relocate_instruction (struct gdbarch *gdbarch,
1736 CORE_ADDR *to, CORE_ADDR oldloc)
1737 {
1738 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1739 int len = gdbarch_max_insn_length (gdbarch);
1740 /* Extra space for sentinels. */
1741 int fixup_sentinel_space = len;
1742 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1743 struct amd64_insn insn_details;
1744 int offset = 0;
1745 LONGEST rel32, newrel;
1746 gdb_byte *insn;
1747 int insn_length;
1748
1749 read_memory (oldloc, buf, len);
1750
1751 /* Set up the sentinel space so we don't have to worry about running
1752 off the end of the buffer. An excessive number of leading prefixes
1753 could otherwise cause this. */
1754 memset (buf + len, 0, fixup_sentinel_space);
1755
1756 insn = buf;
1757 amd64_get_insn_details (insn, &insn_details);
1758
1759 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1760
1761 /* Skip legacy instruction prefixes. */
1762 insn = amd64_skip_prefixes (insn);
1763
1764 /* Adjust calls with 32-bit relative addresses as push/jump, with
1765 the address pushed being the location where the original call in
1766 the user program would return to. */
1767 if (insn[0] == 0xe8)
1768 {
1769 gdb_byte push_buf[32];
1770 CORE_ADDR ret_addr;
1771 int i = 0;
1772
1773 /* Where "ret" in the original code will return to. */
1774 ret_addr = oldloc + insn_length;
1775
1776 /* If pushing an address higher than or equal to 0x80000000,
1777 avoid 'pushq', as that sign extends its 32-bit operand, which
1778 would be incorrect. */
1779 if (ret_addr <= 0x7fffffff)
1780 {
1781 push_buf[0] = 0x68; /* pushq $... */
1782 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1783 i = 5;
1784 }
1785 else
1786 {
1787 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1788 push_buf[i++] = 0x83;
1789 push_buf[i++] = 0xec;
1790 push_buf[i++] = 0x08;
1791
1792 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1793 push_buf[i++] = 0x04;
1794 push_buf[i++] = 0x24;
1795 store_unsigned_integer (&push_buf[i], 4, byte_order,
1796 ret_addr & 0xffffffff);
1797 i += 4;
1798
1799 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1800 push_buf[i++] = 0x44;
1801 push_buf[i++] = 0x24;
1802 push_buf[i++] = 0x04;
1803 store_unsigned_integer (&push_buf[i], 4, byte_order,
1804 ret_addr >> 32);
1805 i += 4;
1806 }
1807 gdb_assert (i <= sizeof (push_buf));
1808 /* Push the push. */
1809 append_insns (to, i, push_buf);
1810
1811 /* Convert the relative call to a relative jump. */
1812 insn[0] = 0xe9;
1813
1814 /* Adjust the destination offset. */
1815 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1816 newrel = (oldloc - *to) + rel32;
1817 store_signed_integer (insn + 1, 4, byte_order, newrel);
1818
1819 if (debug_displaced)
1820 fprintf_unfiltered (gdb_stdlog,
1821 "Adjusted insn rel32=%s at %s to"
1822 " rel32=%s at %s\n",
1823 hex_string (rel32), paddress (gdbarch, oldloc),
1824 hex_string (newrel), paddress (gdbarch, *to));
1825
1826 /* Write the adjusted jump into its displaced location. */
1827 append_insns (to, 5, insn);
1828 return;
1829 }
1830
1831 offset = rip_relative_offset (&insn_details);
1832 if (!offset)
1833 {
1834 /* Adjust jumps with 32-bit relative addresses. Calls are
1835 already handled above. */
1836 if (insn[0] == 0xe9)
1837 offset = 1;
1838 /* Adjust conditional jumps. */
1839 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1840 offset = 2;
1841 }
1842
1843 if (offset)
1844 {
1845 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1846 newrel = (oldloc - *to) + rel32;
1847 store_signed_integer (insn + offset, 4, byte_order, newrel);
1848 if (debug_displaced)
1849 fprintf_unfiltered (gdb_stdlog,
1850 "Adjusted insn rel32=%s at %s to"
1851 " rel32=%s at %s\n",
1852 hex_string (rel32), paddress (gdbarch, oldloc),
1853 hex_string (newrel), paddress (gdbarch, *to));
1854 }
1855
1856 /* Write the adjusted instruction into its displaced location. */
1857 append_insns (to, insn_length, buf);
1858 }
1859
1860 \f
1861 /* The maximum number of saved registers. This should include %rip. */
1862 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1863
1864 struct amd64_frame_cache
1865 {
1866 /* Base address. */
1867 CORE_ADDR base;
1868 int base_p;
1869 CORE_ADDR sp_offset;
1870 CORE_ADDR pc;
1871
1872 /* Saved registers. */
1873 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1874 CORE_ADDR saved_sp;
1875 int saved_sp_reg;
1876
1877 /* Do we have a frame? */
1878 int frameless_p;
1879 };
1880
1881 /* Initialize a frame cache. */
1882
1883 static void
1884 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1885 {
1886 int i;
1887
1888 /* Base address. */
1889 cache->base = 0;
1890 cache->base_p = 0;
1891 cache->sp_offset = -8;
1892 cache->pc = 0;
1893
1894 /* Saved registers. We initialize these to -1 since zero is a valid
1895 offset (that's where %rbp is supposed to be stored).
1896 The values start out as being offsets, and are later converted to
1897 addresses (at which point -1 is interpreted as an address, still meaning
1898 "invalid"). */
1899 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1900 cache->saved_regs[i] = -1;
1901 cache->saved_sp = 0;
1902 cache->saved_sp_reg = -1;
1903
1904 /* Frameless until proven otherwise. */
1905 cache->frameless_p = 1;
1906 }
1907
1908 /* Allocate and initialize a frame cache. */
1909
1910 static struct amd64_frame_cache *
1911 amd64_alloc_frame_cache (void)
1912 {
1913 struct amd64_frame_cache *cache;
1914
1915 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1916 amd64_init_frame_cache (cache);
1917 return cache;
1918 }
1919
1920 /* GCC 4.4 and later, can put code in the prologue to realign the
1921 stack pointer. Check whether PC points to such code, and update
1922 CACHE accordingly. Return the first instruction after the code
1923 sequence or CURRENT_PC, whichever is smaller. If we don't
1924 recognize the code, return PC. */
1925
1926 static CORE_ADDR
1927 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1928 struct amd64_frame_cache *cache)
1929 {
1930 /* There are 2 code sequences to re-align stack before the frame
1931 gets set up:
1932
1933 1. Use a caller-saved saved register:
1934
1935 leaq 8(%rsp), %reg
1936 andq $-XXX, %rsp
1937 pushq -8(%reg)
1938
1939 2. Use a callee-saved saved register:
1940
1941 pushq %reg
1942 leaq 16(%rsp), %reg
1943 andq $-XXX, %rsp
1944 pushq -8(%reg)
1945
1946 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1947
1948 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1949 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1950 */
1951
1952 gdb_byte buf[18];
1953 int reg, r;
1954 int offset, offset_and;
1955
1956 if (target_read_code (pc, buf, sizeof buf))
1957 return pc;
1958
1959 /* Check caller-saved saved register. The first instruction has
1960 to be "leaq 8(%rsp), %reg". */
1961 if ((buf[0] & 0xfb) == 0x48
1962 && buf[1] == 0x8d
1963 && buf[3] == 0x24
1964 && buf[4] == 0x8)
1965 {
1966 /* MOD must be binary 10 and R/M must be binary 100. */
1967 if ((buf[2] & 0xc7) != 0x44)
1968 return pc;
1969
1970 /* REG has register number. */
1971 reg = (buf[2] >> 3) & 7;
1972
1973 /* Check the REX.R bit. */
1974 if (buf[0] == 0x4c)
1975 reg += 8;
1976
1977 offset = 5;
1978 }
1979 else
1980 {
1981 /* Check callee-saved saved register. The first instruction
1982 has to be "pushq %reg". */
1983 reg = 0;
1984 if ((buf[0] & 0xf8) == 0x50)
1985 offset = 0;
1986 else if ((buf[0] & 0xf6) == 0x40
1987 && (buf[1] & 0xf8) == 0x50)
1988 {
1989 /* Check the REX.B bit. */
1990 if ((buf[0] & 1) != 0)
1991 reg = 8;
1992
1993 offset = 1;
1994 }
1995 else
1996 return pc;
1997
1998 /* Get register. */
1999 reg += buf[offset] & 0x7;
2000
2001 offset++;
2002
2003 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2004 if ((buf[offset] & 0xfb) != 0x48
2005 || buf[offset + 1] != 0x8d
2006 || buf[offset + 3] != 0x24
2007 || buf[offset + 4] != 0x10)
2008 return pc;
2009
2010 /* MOD must be binary 10 and R/M must be binary 100. */
2011 if ((buf[offset + 2] & 0xc7) != 0x44)
2012 return pc;
2013
2014 /* REG has register number. */
2015 r = (buf[offset + 2] >> 3) & 7;
2016
2017 /* Check the REX.R bit. */
2018 if (buf[offset] == 0x4c)
2019 r += 8;
2020
2021 /* Registers in pushq and leaq have to be the same. */
2022 if (reg != r)
2023 return pc;
2024
2025 offset += 5;
2026 }
2027
2028 /* Rigister can't be %rsp nor %rbp. */
2029 if (reg == 4 || reg == 5)
2030 return pc;
2031
2032 /* The next instruction has to be "andq $-XXX, %rsp". */
2033 if (buf[offset] != 0x48
2034 || buf[offset + 2] != 0xe4
2035 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2036 return pc;
2037
2038 offset_and = offset;
2039 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2040
2041 /* The next instruction has to be "pushq -8(%reg)". */
2042 r = 0;
2043 if (buf[offset] == 0xff)
2044 offset++;
2045 else if ((buf[offset] & 0xf6) == 0x40
2046 && buf[offset + 1] == 0xff)
2047 {
2048 /* Check the REX.B bit. */
2049 if ((buf[offset] & 0x1) != 0)
2050 r = 8;
2051 offset += 2;
2052 }
2053 else
2054 return pc;
2055
2056 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2057 01. */
2058 if (buf[offset + 1] != 0xf8
2059 || (buf[offset] & 0xf8) != 0x70)
2060 return pc;
2061
2062 /* R/M has register. */
2063 r += buf[offset] & 7;
2064
2065 /* Registers in leaq and pushq have to be the same. */
2066 if (reg != r)
2067 return pc;
2068
2069 if (current_pc > pc + offset_and)
2070 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2071
2072 return std::min (pc + offset + 2, current_pc);
2073 }
2074
2075 /* Similar to amd64_analyze_stack_align for x32. */
2076
2077 static CORE_ADDR
2078 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2079 struct amd64_frame_cache *cache)
2080 {
2081 /* There are 2 code sequences to re-align stack before the frame
2082 gets set up:
2083
2084 1. Use a caller-saved saved register:
2085
2086 leaq 8(%rsp), %reg
2087 andq $-XXX, %rsp
2088 pushq -8(%reg)
2089
2090 or
2091
2092 [addr32] leal 8(%rsp), %reg
2093 andl $-XXX, %esp
2094 [addr32] pushq -8(%reg)
2095
2096 2. Use a callee-saved saved register:
2097
2098 pushq %reg
2099 leaq 16(%rsp), %reg
2100 andq $-XXX, %rsp
2101 pushq -8(%reg)
2102
2103 or
2104
2105 pushq %reg
2106 [addr32] leal 16(%rsp), %reg
2107 andl $-XXX, %esp
2108 [addr32] pushq -8(%reg)
2109
2110 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2111
2112 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2113 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2114
2115 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2116
2117 0x83 0xe4 0xf0 andl $-16, %esp
2118 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2119 */
2120
2121 gdb_byte buf[19];
2122 int reg, r;
2123 int offset, offset_and;
2124
2125 if (target_read_memory (pc, buf, sizeof buf))
2126 return pc;
2127
2128 /* Skip optional addr32 prefix. */
2129 offset = buf[0] == 0x67 ? 1 : 0;
2130
2131 /* Check caller-saved saved register. The first instruction has
2132 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2133 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2134 && buf[offset + 1] == 0x8d
2135 && buf[offset + 3] == 0x24
2136 && buf[offset + 4] == 0x8)
2137 {
2138 /* MOD must be binary 10 and R/M must be binary 100. */
2139 if ((buf[offset + 2] & 0xc7) != 0x44)
2140 return pc;
2141
2142 /* REG has register number. */
2143 reg = (buf[offset + 2] >> 3) & 7;
2144
2145 /* Check the REX.R bit. */
2146 if ((buf[offset] & 0x4) != 0)
2147 reg += 8;
2148
2149 offset += 5;
2150 }
2151 else
2152 {
2153 /* Check callee-saved saved register. The first instruction
2154 has to be "pushq %reg". */
2155 reg = 0;
2156 if ((buf[offset] & 0xf6) == 0x40
2157 && (buf[offset + 1] & 0xf8) == 0x50)
2158 {
2159 /* Check the REX.B bit. */
2160 if ((buf[offset] & 1) != 0)
2161 reg = 8;
2162
2163 offset += 1;
2164 }
2165 else if ((buf[offset] & 0xf8) != 0x50)
2166 return pc;
2167
2168 /* Get register. */
2169 reg += buf[offset] & 0x7;
2170
2171 offset++;
2172
2173 /* Skip optional addr32 prefix. */
2174 if (buf[offset] == 0x67)
2175 offset++;
2176
2177 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2178 "leal 16(%rsp), %reg". */
2179 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2180 || buf[offset + 1] != 0x8d
2181 || buf[offset + 3] != 0x24
2182 || buf[offset + 4] != 0x10)
2183 return pc;
2184
2185 /* MOD must be binary 10 and R/M must be binary 100. */
2186 if ((buf[offset + 2] & 0xc7) != 0x44)
2187 return pc;
2188
2189 /* REG has register number. */
2190 r = (buf[offset + 2] >> 3) & 7;
2191
2192 /* Check the REX.R bit. */
2193 if ((buf[offset] & 0x4) != 0)
2194 r += 8;
2195
2196 /* Registers in pushq and leaq have to be the same. */
2197 if (reg != r)
2198 return pc;
2199
2200 offset += 5;
2201 }
2202
2203 /* Rigister can't be %rsp nor %rbp. */
2204 if (reg == 4 || reg == 5)
2205 return pc;
2206
2207 /* The next instruction may be "andq $-XXX, %rsp" or
2208 "andl $-XXX, %esp". */
2209 if (buf[offset] != 0x48)
2210 offset--;
2211
2212 if (buf[offset + 2] != 0xe4
2213 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2214 return pc;
2215
2216 offset_and = offset;
2217 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2218
2219 /* Skip optional addr32 prefix. */
2220 if (buf[offset] == 0x67)
2221 offset++;
2222
2223 /* The next instruction has to be "pushq -8(%reg)". */
2224 r = 0;
2225 if (buf[offset] == 0xff)
2226 offset++;
2227 else if ((buf[offset] & 0xf6) == 0x40
2228 && buf[offset + 1] == 0xff)
2229 {
2230 /* Check the REX.B bit. */
2231 if ((buf[offset] & 0x1) != 0)
2232 r = 8;
2233 offset += 2;
2234 }
2235 else
2236 return pc;
2237
2238 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2239 01. */
2240 if (buf[offset + 1] != 0xf8
2241 || (buf[offset] & 0xf8) != 0x70)
2242 return pc;
2243
2244 /* R/M has register. */
2245 r += buf[offset] & 7;
2246
2247 /* Registers in leaq and pushq have to be the same. */
2248 if (reg != r)
2249 return pc;
2250
2251 if (current_pc > pc + offset_and)
2252 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2253
2254 return std::min (pc + offset + 2, current_pc);
2255 }
2256
2257 /* Do a limited analysis of the prologue at PC and update CACHE
2258 accordingly. Bail out early if CURRENT_PC is reached. Return the
2259 address where the analysis stopped.
2260
2261 We will handle only functions beginning with:
2262
2263 pushq %rbp 0x55
2264 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2265
2266 or (for the X32 ABI):
2267
2268 pushq %rbp 0x55
2269 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2270
2271 Any function that doesn't start with one of these sequences will be
2272 assumed to have no prologue and thus no valid frame pointer in
2273 %rbp. */
2274
2275 static CORE_ADDR
2276 amd64_analyze_prologue (struct gdbarch *gdbarch,
2277 CORE_ADDR pc, CORE_ADDR current_pc,
2278 struct amd64_frame_cache *cache)
2279 {
2280 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2281 /* There are two variations of movq %rsp, %rbp. */
2282 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2283 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2284 /* Ditto for movl %esp, %ebp. */
2285 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2286 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2287
2288 gdb_byte buf[3];
2289 gdb_byte op;
2290
2291 if (current_pc <= pc)
2292 return current_pc;
2293
2294 if (gdbarch_ptr_bit (gdbarch) == 32)
2295 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2296 else
2297 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2298
2299 op = read_code_unsigned_integer (pc, 1, byte_order);
2300
2301 if (op == 0x55) /* pushq %rbp */
2302 {
2303 /* Take into account that we've executed the `pushq %rbp' that
2304 starts this instruction sequence. */
2305 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2306 cache->sp_offset += 8;
2307
2308 /* If that's all, return now. */
2309 if (current_pc <= pc + 1)
2310 return current_pc;
2311
2312 read_code (pc + 1, buf, 3);
2313
2314 /* Check for `movq %rsp, %rbp'. */
2315 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2316 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2317 {
2318 /* OK, we actually have a frame. */
2319 cache->frameless_p = 0;
2320 return pc + 4;
2321 }
2322
2323 /* For X32, also check for `movq %esp, %ebp'. */
2324 if (gdbarch_ptr_bit (gdbarch) == 32)
2325 {
2326 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2327 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2328 {
2329 /* OK, we actually have a frame. */
2330 cache->frameless_p = 0;
2331 return pc + 3;
2332 }
2333 }
2334
2335 return pc + 1;
2336 }
2337
2338 return pc;
2339 }
2340
2341 /* Work around false termination of prologue - GCC PR debug/48827.
2342
2343 START_PC is the first instruction of a function, PC is its minimal already
2344 determined advanced address. Function returns PC if it has nothing to do.
2345
2346 84 c0 test %al,%al
2347 74 23 je after
2348 <-- here is 0 lines advance - the false prologue end marker.
2349 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2350 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2351 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2352 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2353 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2354 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2355 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2356 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2357 after: */
2358
2359 static CORE_ADDR
2360 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2361 {
2362 struct symtab_and_line start_pc_sal, next_sal;
2363 gdb_byte buf[4 + 8 * 7];
2364 int offset, xmmreg;
2365
2366 if (pc == start_pc)
2367 return pc;
2368
2369 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2370 if (start_pc_sal.symtab == NULL
2371 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2372 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2373 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2374 return pc;
2375
2376 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2377 if (next_sal.line != start_pc_sal.line)
2378 return pc;
2379
2380 /* START_PC can be from overlayed memory, ignored here. */
2381 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2382 return pc;
2383
2384 /* test %al,%al */
2385 if (buf[0] != 0x84 || buf[1] != 0xc0)
2386 return pc;
2387 /* je AFTER */
2388 if (buf[2] != 0x74)
2389 return pc;
2390
2391 offset = 4;
2392 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2393 {
2394 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2395 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2396 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2397 return pc;
2398
2399 /* 0b01?????? */
2400 if ((buf[offset + 2] & 0xc0) == 0x40)
2401 {
2402 /* 8-bit displacement. */
2403 offset += 4;
2404 }
2405 /* 0b10?????? */
2406 else if ((buf[offset + 2] & 0xc0) == 0x80)
2407 {
2408 /* 32-bit displacement. */
2409 offset += 7;
2410 }
2411 else
2412 return pc;
2413 }
2414
2415 /* je AFTER */
2416 if (offset - 4 != buf[3])
2417 return pc;
2418
2419 return next_sal.end;
2420 }
2421
2422 /* Return PC of first real instruction. */
2423
2424 static CORE_ADDR
2425 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2426 {
2427 struct amd64_frame_cache cache;
2428 CORE_ADDR pc;
2429 CORE_ADDR func_addr;
2430
2431 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2432 {
2433 CORE_ADDR post_prologue_pc
2434 = skip_prologue_using_sal (gdbarch, func_addr);
2435 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2436
2437 /* Clang always emits a line note before the prologue and another
2438 one after. We trust clang to emit usable line notes. */
2439 if (post_prologue_pc
2440 && (cust != NULL
2441 && COMPUNIT_PRODUCER (cust) != NULL
2442 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2443 return std::max (start_pc, post_prologue_pc);
2444 }
2445
2446 amd64_init_frame_cache (&cache);
2447 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2448 &cache);
2449 if (cache.frameless_p)
2450 return start_pc;
2451
2452 return amd64_skip_xmm_prologue (pc, start_pc);
2453 }
2454 \f
2455
2456 /* Normal frames. */
2457
2458 static void
2459 amd64_frame_cache_1 (struct frame_info *this_frame,
2460 struct amd64_frame_cache *cache)
2461 {
2462 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2463 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2464 gdb_byte buf[8];
2465 int i;
2466
2467 cache->pc = get_frame_func (this_frame);
2468 if (cache->pc != 0)
2469 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2470 cache);
2471
2472 if (cache->frameless_p)
2473 {
2474 /* We didn't find a valid frame. If we're at the start of a
2475 function, or somewhere half-way its prologue, the function's
2476 frame probably hasn't been fully setup yet. Try to
2477 reconstruct the base address for the stack frame by looking
2478 at the stack pointer. For truly "frameless" functions this
2479 might work too. */
2480
2481 if (cache->saved_sp_reg != -1)
2482 {
2483 /* Stack pointer has been saved. */
2484 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2485 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2486
2487 /* We're halfway aligning the stack. */
2488 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2489 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2490
2491 /* This will be added back below. */
2492 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2493 }
2494 else
2495 {
2496 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2497 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2498 + cache->sp_offset;
2499 }
2500 }
2501 else
2502 {
2503 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2504 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2505 }
2506
2507 /* Now that we have the base address for the stack frame we can
2508 calculate the value of %rsp in the calling frame. */
2509 cache->saved_sp = cache->base + 16;
2510
2511 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2512 frame we find it at the same offset from the reconstructed base
2513 address. If we're halfway aligning the stack, %rip is handled
2514 differently (see above). */
2515 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2516 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2517
2518 /* Adjust all the saved registers such that they contain addresses
2519 instead of offsets. */
2520 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2521 if (cache->saved_regs[i] != -1)
2522 cache->saved_regs[i] += cache->base;
2523
2524 cache->base_p = 1;
2525 }
2526
2527 static struct amd64_frame_cache *
2528 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2529 {
2530 struct amd64_frame_cache *cache;
2531
2532 if (*this_cache)
2533 return (struct amd64_frame_cache *) *this_cache;
2534
2535 cache = amd64_alloc_frame_cache ();
2536 *this_cache = cache;
2537
2538 TRY
2539 {
2540 amd64_frame_cache_1 (this_frame, cache);
2541 }
2542 CATCH (ex, RETURN_MASK_ERROR)
2543 {
2544 if (ex.error != NOT_AVAILABLE_ERROR)
2545 throw_exception (ex);
2546 }
2547 END_CATCH
2548
2549 return cache;
2550 }
2551
2552 static enum unwind_stop_reason
2553 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2554 void **this_cache)
2555 {
2556 struct amd64_frame_cache *cache =
2557 amd64_frame_cache (this_frame, this_cache);
2558
2559 if (!cache->base_p)
2560 return UNWIND_UNAVAILABLE;
2561
2562 /* This marks the outermost frame. */
2563 if (cache->base == 0)
2564 return UNWIND_OUTERMOST;
2565
2566 return UNWIND_NO_REASON;
2567 }
2568
2569 static void
2570 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2571 struct frame_id *this_id)
2572 {
2573 struct amd64_frame_cache *cache =
2574 amd64_frame_cache (this_frame, this_cache);
2575
2576 if (!cache->base_p)
2577 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2578 else if (cache->base == 0)
2579 {
2580 /* This marks the outermost frame. */
2581 return;
2582 }
2583 else
2584 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2585 }
2586
2587 static struct value *
2588 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2589 int regnum)
2590 {
2591 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2592 struct amd64_frame_cache *cache =
2593 amd64_frame_cache (this_frame, this_cache);
2594
2595 gdb_assert (regnum >= 0);
2596
2597 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2598 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2599
2600 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2601 return frame_unwind_got_memory (this_frame, regnum,
2602 cache->saved_regs[regnum]);
2603
2604 return frame_unwind_got_register (this_frame, regnum, regnum);
2605 }
2606
2607 static const struct frame_unwind amd64_frame_unwind =
2608 {
2609 NORMAL_FRAME,
2610 amd64_frame_unwind_stop_reason,
2611 amd64_frame_this_id,
2612 amd64_frame_prev_register,
2613 NULL,
2614 default_frame_sniffer
2615 };
2616 \f
2617 /* Generate a bytecode expression to get the value of the saved PC. */
2618
2619 static void
2620 amd64_gen_return_address (struct gdbarch *gdbarch,
2621 struct agent_expr *ax, struct axs_value *value,
2622 CORE_ADDR scope)
2623 {
2624 /* The following sequence assumes the traditional use of the base
2625 register. */
2626 ax_reg (ax, AMD64_RBP_REGNUM);
2627 ax_const_l (ax, 8);
2628 ax_simple (ax, aop_add);
2629 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2630 value->kind = axs_lvalue_memory;
2631 }
2632 \f
2633
2634 /* Signal trampolines. */
2635
2636 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2637 64-bit variants. This would require using identical frame caches
2638 on both platforms. */
2639
2640 static struct amd64_frame_cache *
2641 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2642 {
2643 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2644 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2645 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2646 struct amd64_frame_cache *cache;
2647 CORE_ADDR addr;
2648 gdb_byte buf[8];
2649 int i;
2650
2651 if (*this_cache)
2652 return (struct amd64_frame_cache *) *this_cache;
2653
2654 cache = amd64_alloc_frame_cache ();
2655
2656 TRY
2657 {
2658 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2659 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2660
2661 addr = tdep->sigcontext_addr (this_frame);
2662 gdb_assert (tdep->sc_reg_offset);
2663 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2664 for (i = 0; i < tdep->sc_num_regs; i++)
2665 if (tdep->sc_reg_offset[i] != -1)
2666 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2667
2668 cache->base_p = 1;
2669 }
2670 CATCH (ex, RETURN_MASK_ERROR)
2671 {
2672 if (ex.error != NOT_AVAILABLE_ERROR)
2673 throw_exception (ex);
2674 }
2675 END_CATCH
2676
2677 *this_cache = cache;
2678 return cache;
2679 }
2680
2681 static enum unwind_stop_reason
2682 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2683 void **this_cache)
2684 {
2685 struct amd64_frame_cache *cache =
2686 amd64_sigtramp_frame_cache (this_frame, this_cache);
2687
2688 if (!cache->base_p)
2689 return UNWIND_UNAVAILABLE;
2690
2691 return UNWIND_NO_REASON;
2692 }
2693
2694 static void
2695 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2696 void **this_cache, struct frame_id *this_id)
2697 {
2698 struct amd64_frame_cache *cache =
2699 amd64_sigtramp_frame_cache (this_frame, this_cache);
2700
2701 if (!cache->base_p)
2702 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2703 else if (cache->base == 0)
2704 {
2705 /* This marks the outermost frame. */
2706 return;
2707 }
2708 else
2709 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2710 }
2711
2712 static struct value *
2713 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2714 void **this_cache, int regnum)
2715 {
2716 /* Make sure we've initialized the cache. */
2717 amd64_sigtramp_frame_cache (this_frame, this_cache);
2718
2719 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2720 }
2721
2722 static int
2723 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2724 struct frame_info *this_frame,
2725 void **this_cache)
2726 {
2727 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2728
2729 /* We shouldn't even bother if we don't have a sigcontext_addr
2730 handler. */
2731 if (tdep->sigcontext_addr == NULL)
2732 return 0;
2733
2734 if (tdep->sigtramp_p != NULL)
2735 {
2736 if (tdep->sigtramp_p (this_frame))
2737 return 1;
2738 }
2739
2740 if (tdep->sigtramp_start != 0)
2741 {
2742 CORE_ADDR pc = get_frame_pc (this_frame);
2743
2744 gdb_assert (tdep->sigtramp_end != 0);
2745 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2746 return 1;
2747 }
2748
2749 return 0;
2750 }
2751
2752 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2753 {
2754 SIGTRAMP_FRAME,
2755 amd64_sigtramp_frame_unwind_stop_reason,
2756 amd64_sigtramp_frame_this_id,
2757 amd64_sigtramp_frame_prev_register,
2758 NULL,
2759 amd64_sigtramp_frame_sniffer
2760 };
2761 \f
2762
2763 static CORE_ADDR
2764 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2765 {
2766 struct amd64_frame_cache *cache =
2767 amd64_frame_cache (this_frame, this_cache);
2768
2769 return cache->base;
2770 }
2771
2772 static const struct frame_base amd64_frame_base =
2773 {
2774 &amd64_frame_unwind,
2775 amd64_frame_base_address,
2776 amd64_frame_base_address,
2777 amd64_frame_base_address
2778 };
2779
2780 /* Normal frames, but in a function epilogue. */
2781
2782 /* Implement the stack_frame_destroyed_p gdbarch method.
2783
2784 The epilogue is defined here as the 'ret' instruction, which will
2785 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2786 the function's stack frame. */
2787
2788 static int
2789 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2790 {
2791 gdb_byte insn;
2792 struct compunit_symtab *cust;
2793
2794 cust = find_pc_compunit_symtab (pc);
2795 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2796 return 0;
2797
2798 if (target_read_memory (pc, &insn, 1))
2799 return 0; /* Can't read memory at pc. */
2800
2801 if (insn != 0xc3) /* 'ret' instruction. */
2802 return 0;
2803
2804 return 1;
2805 }
2806
2807 static int
2808 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2809 struct frame_info *this_frame,
2810 void **this_prologue_cache)
2811 {
2812 if (frame_relative_level (this_frame) == 0)
2813 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2814 get_frame_pc (this_frame));
2815 else
2816 return 0;
2817 }
2818
2819 static struct amd64_frame_cache *
2820 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2821 {
2822 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2823 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2824 struct amd64_frame_cache *cache;
2825 gdb_byte buf[8];
2826
2827 if (*this_cache)
2828 return (struct amd64_frame_cache *) *this_cache;
2829
2830 cache = amd64_alloc_frame_cache ();
2831 *this_cache = cache;
2832
2833 TRY
2834 {
2835 /* Cache base will be %esp plus cache->sp_offset (-8). */
2836 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2837 cache->base = extract_unsigned_integer (buf, 8,
2838 byte_order) + cache->sp_offset;
2839
2840 /* Cache pc will be the frame func. */
2841 cache->pc = get_frame_pc (this_frame);
2842
2843 /* The saved %esp will be at cache->base plus 16. */
2844 cache->saved_sp = cache->base + 16;
2845
2846 /* The saved %eip will be at cache->base plus 8. */
2847 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2848
2849 cache->base_p = 1;
2850 }
2851 CATCH (ex, RETURN_MASK_ERROR)
2852 {
2853 if (ex.error != NOT_AVAILABLE_ERROR)
2854 throw_exception (ex);
2855 }
2856 END_CATCH
2857
2858 return cache;
2859 }
2860
2861 static enum unwind_stop_reason
2862 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2863 void **this_cache)
2864 {
2865 struct amd64_frame_cache *cache
2866 = amd64_epilogue_frame_cache (this_frame, this_cache);
2867
2868 if (!cache->base_p)
2869 return UNWIND_UNAVAILABLE;
2870
2871 return UNWIND_NO_REASON;
2872 }
2873
2874 static void
2875 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2876 void **this_cache,
2877 struct frame_id *this_id)
2878 {
2879 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2880 this_cache);
2881
2882 if (!cache->base_p)
2883 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2884 else
2885 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2886 }
2887
2888 static const struct frame_unwind amd64_epilogue_frame_unwind =
2889 {
2890 NORMAL_FRAME,
2891 amd64_epilogue_frame_unwind_stop_reason,
2892 amd64_epilogue_frame_this_id,
2893 amd64_frame_prev_register,
2894 NULL,
2895 amd64_epilogue_frame_sniffer
2896 };
2897
2898 static struct frame_id
2899 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2900 {
2901 CORE_ADDR fp;
2902
2903 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2904
2905 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2906 }
2907
2908 /* 16 byte align the SP per frame requirements. */
2909
2910 static CORE_ADDR
2911 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2912 {
2913 return sp & -(CORE_ADDR)16;
2914 }
2915 \f
2916
2917 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2918 in the floating-point register set REGSET to register cache
2919 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2920
2921 static void
2922 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2923 int regnum, const void *fpregs, size_t len)
2924 {
2925 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2926 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2927
2928 gdb_assert (len >= tdep->sizeof_fpregset);
2929 amd64_supply_fxsave (regcache, regnum, fpregs);
2930 }
2931
2932 /* Collect register REGNUM from the register cache REGCACHE and store
2933 it in the buffer specified by FPREGS and LEN as described by the
2934 floating-point register set REGSET. If REGNUM is -1, do this for
2935 all registers in REGSET. */
2936
2937 static void
2938 amd64_collect_fpregset (const struct regset *regset,
2939 const struct regcache *regcache,
2940 int regnum, void *fpregs, size_t len)
2941 {
2942 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2943 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2944
2945 gdb_assert (len >= tdep->sizeof_fpregset);
2946 amd64_collect_fxsave (regcache, regnum, fpregs);
2947 }
2948
2949 const struct regset amd64_fpregset =
2950 {
2951 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2952 };
2953 \f
2954
2955 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2956 %rdi. We expect its value to be a pointer to the jmp_buf structure
2957 from which we extract the address that we will land at. This
2958 address is copied into PC. This routine returns non-zero on
2959 success. */
2960
2961 static int
2962 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2963 {
2964 gdb_byte buf[8];
2965 CORE_ADDR jb_addr;
2966 struct gdbarch *gdbarch = get_frame_arch (frame);
2967 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2968 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2969
2970 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2971 longjmp will land. */
2972 if (jb_pc_offset == -1)
2973 return 0;
2974
2975 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2976 jb_addr= extract_typed_address
2977 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2978 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2979 return 0;
2980
2981 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2982
2983 return 1;
2984 }
2985
2986 static const int amd64_record_regmap[] =
2987 {
2988 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2989 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2990 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2991 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2992 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2993 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2994 };
2995
2996 void
2997 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
2998 const target_desc *default_tdesc)
2999 {
3000 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3001 const struct target_desc *tdesc = info.target_desc;
3002 static const char *const stap_integer_prefixes[] = { "$", NULL };
3003 static const char *const stap_register_prefixes[] = { "%", NULL };
3004 static const char *const stap_register_indirection_prefixes[] = { "(",
3005 NULL };
3006 static const char *const stap_register_indirection_suffixes[] = { ")",
3007 NULL };
3008
3009 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3010 floating-point registers. */
3011 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3012 tdep->fpregset = &amd64_fpregset;
3013
3014 if (! tdesc_has_registers (tdesc))
3015 tdesc = default_tdesc;
3016 tdep->tdesc = tdesc;
3017
3018 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3019 tdep->register_names = amd64_register_names;
3020
3021 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3022 {
3023 tdep->zmmh_register_names = amd64_zmmh_names;
3024 tdep->k_register_names = amd64_k_names;
3025 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3026 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3027
3028 tdep->num_zmm_regs = 32;
3029 tdep->num_xmm_avx512_regs = 16;
3030 tdep->num_ymm_avx512_regs = 16;
3031
3032 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3033 tdep->k0_regnum = AMD64_K0_REGNUM;
3034 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3035 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3036 }
3037
3038 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3039 {
3040 tdep->ymmh_register_names = amd64_ymmh_names;
3041 tdep->num_ymm_regs = 16;
3042 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3043 }
3044
3045 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3046 {
3047 tdep->mpx_register_names = amd64_mpx_names;
3048 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3049 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3050 }
3051
3052 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3053 {
3054 const struct tdesc_feature *feature =
3055 tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
3056 struct tdesc_arch_data *tdesc_data_segments =
3057 (struct tdesc_arch_data *) info.tdep_info;
3058
3059 tdesc_numbered_register (feature, tdesc_data_segments,
3060 AMD64_FSBASE_REGNUM, "fs_base");
3061 tdesc_numbered_register (feature, tdesc_data_segments,
3062 AMD64_GSBASE_REGNUM, "gs_base");
3063 }
3064
3065 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3066 {
3067 tdep->pkeys_register_names = amd64_pkeys_names;
3068 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3069 tdep->num_pkeys_regs = 1;
3070 }
3071
3072 tdep->num_byte_regs = 20;
3073 tdep->num_word_regs = 16;
3074 tdep->num_dword_regs = 16;
3075 /* Avoid wiring in the MMX registers for now. */
3076 tdep->num_mmx_regs = 0;
3077
3078 set_gdbarch_pseudo_register_read_value (gdbarch,
3079 amd64_pseudo_register_read_value);
3080 set_gdbarch_pseudo_register_write (gdbarch,
3081 amd64_pseudo_register_write);
3082 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3083 amd64_ax_pseudo_register_collect);
3084
3085 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3086
3087 /* AMD64 has an FPU and 16 SSE registers. */
3088 tdep->st0_regnum = AMD64_ST0_REGNUM;
3089 tdep->num_xmm_regs = 16;
3090
3091 /* This is what all the fuss is about. */
3092 set_gdbarch_long_bit (gdbarch, 64);
3093 set_gdbarch_long_long_bit (gdbarch, 64);
3094 set_gdbarch_ptr_bit (gdbarch, 64);
3095
3096 /* In contrast to the i386, on AMD64 a `long double' actually takes
3097 up 128 bits, even though it's still based on the i387 extended
3098 floating-point format which has only 80 significant bits. */
3099 set_gdbarch_long_double_bit (gdbarch, 128);
3100
3101 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3102
3103 /* Register numbers of various important registers. */
3104 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3105 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3106 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3107 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3108
3109 /* The "default" register numbering scheme for AMD64 is referred to
3110 as the "DWARF Register Number Mapping" in the System V psABI.
3111 The preferred debugging format for all known AMD64 targets is
3112 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3113 DWARF-1), but we provide the same mapping just in case. This
3114 mapping is also used for stabs, which GCC does support. */
3115 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3116 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3117
3118 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3119 be in use on any of the supported AMD64 targets. */
3120
3121 /* Call dummy code. */
3122 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3123 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3124 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3125
3126 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3127 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3128 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3129
3130 set_gdbarch_return_value (gdbarch, amd64_return_value);
3131
3132 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3133
3134 tdep->record_regmap = amd64_record_regmap;
3135
3136 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3137
3138 /* Hook the function epilogue frame unwinder. This unwinder is
3139 appended to the list first, so that it supercedes the other
3140 unwinders in function epilogues. */
3141 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3142
3143 /* Hook the prologue-based frame unwinders. */
3144 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3145 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3146 frame_base_set_default (gdbarch, &amd64_frame_base);
3147
3148 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3149
3150 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3151
3152 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3153
3154 /* SystemTap variables and functions. */
3155 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3156 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3157 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3158 stap_register_indirection_prefixes);
3159 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3160 stap_register_indirection_suffixes);
3161 set_gdbarch_stap_is_single_operand (gdbarch,
3162 i386_stap_is_single_operand);
3163 set_gdbarch_stap_parse_special_token (gdbarch,
3164 i386_stap_parse_special_token);
3165 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3166 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3167 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3168 }
3169 \f
3170
3171 static struct type *
3172 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3173 {
3174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3175
3176 switch (regnum - tdep->eax_regnum)
3177 {
3178 case AMD64_RBP_REGNUM: /* %ebp */
3179 case AMD64_RSP_REGNUM: /* %esp */
3180 return builtin_type (gdbarch)->builtin_data_ptr;
3181 case AMD64_RIP_REGNUM: /* %eip */
3182 return builtin_type (gdbarch)->builtin_func_ptr;
3183 }
3184
3185 return i386_pseudo_register_type (gdbarch, regnum);
3186 }
3187
3188 void
3189 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3190 const target_desc *default_tdesc)
3191 {
3192 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3193
3194 amd64_init_abi (info, gdbarch, default_tdesc);
3195
3196 tdep->num_dword_regs = 17;
3197 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3198
3199 set_gdbarch_long_bit (gdbarch, 32);
3200 set_gdbarch_ptr_bit (gdbarch, 32);
3201 }
3202
3203 /* Return the target description for a specified XSAVE feature mask. */
3204
3205 const struct target_desc *
3206 amd64_target_description (uint64_t xcr0)
3207 {
3208 static target_desc *amd64_tdescs \
3209 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/] = {};
3210 target_desc **tdesc;
3211
3212 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3213 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3214 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3215 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0];
3216
3217 if (*tdesc == NULL)
3218 *tdesc = amd64_create_target_description (xcr0, false, false);
3219
3220 return *tdesc;
3221 }
3222
3223 void
3224 _initialize_amd64_tdep (void)
3225 {
3226 #if GDB_SELF_TEST
3227 struct
3228 {
3229 const char *xml;
3230 uint64_t mask;
3231 } xml_masks[] = {
3232 { "i386/amd64.xml", X86_XSTATE_SSE_MASK },
3233 { "i386/amd64-avx.xml", X86_XSTATE_AVX_MASK },
3234 { "i386/amd64-mpx.xml", X86_XSTATE_MPX_MASK },
3235 { "i386/amd64-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
3236 { "i386/amd64-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
3237 { "i386/amd64-avx-mpx-avx512-pku.xml",
3238 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
3239 };
3240
3241 for (auto &a : xml_masks)
3242 {
3243 auto tdesc = amd64_target_description (a.mask);
3244
3245 selftests::record_xml_tdesc (a.xml, tdesc);
3246 }
3247 #endif /* GDB_SELF_TEST */
3248 }
3249 \f
3250
3251 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3252 sense that the instruction pointer and data pointer are simply
3253 64-bit offsets into the code segment and the data segment instead
3254 of a selector offset pair. The functions below store the upper 32
3255 bits of these pointers (instead of just the 16-bits of the segment
3256 selector). */
3257
3258 /* Fill register REGNUM in REGCACHE with the appropriate
3259 floating-point or SSE register value from *FXSAVE. If REGNUM is
3260 -1, do this for all registers. This function masks off any of the
3261 reserved bits in *FXSAVE. */
3262
3263 void
3264 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3265 const void *fxsave)
3266 {
3267 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3269
3270 i387_supply_fxsave (regcache, regnum, fxsave);
3271
3272 if (fxsave
3273 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3274 {
3275 const gdb_byte *regs = (const gdb_byte *) fxsave;
3276
3277 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3278 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3279 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3280 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3281 }
3282 }
3283
3284 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3285
3286 void
3287 amd64_supply_xsave (struct regcache *regcache, int regnum,
3288 const void *xsave)
3289 {
3290 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3291 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3292
3293 i387_supply_xsave (regcache, regnum, xsave);
3294
3295 if (xsave
3296 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3297 {
3298 const gdb_byte *regs = (const gdb_byte *) xsave;
3299
3300 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3301 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3302 regs + 12);
3303 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3304 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3305 regs + 20);
3306 }
3307 }
3308
3309 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3310 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3311 all registers. This function doesn't touch any of the reserved
3312 bits in *FXSAVE. */
3313
3314 void
3315 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3316 void *fxsave)
3317 {
3318 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3320 gdb_byte *regs = (gdb_byte *) fxsave;
3321
3322 i387_collect_fxsave (regcache, regnum, fxsave);
3323
3324 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3325 {
3326 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3327 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3328 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3329 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3330 }
3331 }
3332
3333 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3334
3335 void
3336 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3337 void *xsave, int gcore)
3338 {
3339 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3341 gdb_byte *regs = (gdb_byte *) xsave;
3342
3343 i387_collect_xsave (regcache, regnum, xsave, gcore);
3344
3345 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3346 {
3347 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3348 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3349 regs + 12);
3350 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3351 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3352 regs + 20);
3353 }
3354 }
This page took 0.120872 seconds and 5 git commands to generate.