Fix amd64 dwarf register number mapping (MMX register and higher)
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42
43 #include "features/i386/amd64.c"
44 #include "features/i386/amd64-avx.c"
45 #include "features/i386/amd64-mpx.c"
46 #include "features/i386/amd64-avx512.c"
47
48 #include "features/i386/x32.c"
49 #include "features/i386/x32-avx.c"
50 #include "features/i386/x32-avx512.c"
51
52 #include "ax.h"
53 #include "ax-gdb.h"
54
55 /* Note that the AMD64 architecture was previously known as x86-64.
56 The latter is (forever) engraved into the canonical system name as
57 returned by config.guess, and used as the name for the AMD64 port
58 of GNU/Linux. The BSD's have renamed their ports to amd64; they
59 don't like to shout. For GDB we prefer the amd64_-prefix over the
60 x86_64_-prefix since it's so much easier to type. */
61
62 /* Register information. */
63
64 static const char *amd64_register_names[] =
65 {
66 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
67
68 /* %r8 is indeed register number 8. */
69 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
70 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
71
72 /* %st0 is register number 24. */
73 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
74 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
75
76 /* %xmm0 is register number 40. */
77 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
78 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
79 "mxcsr",
80 };
81
82 static const char *amd64_ymm_names[] =
83 {
84 "ymm0", "ymm1", "ymm2", "ymm3",
85 "ymm4", "ymm5", "ymm6", "ymm7",
86 "ymm8", "ymm9", "ymm10", "ymm11",
87 "ymm12", "ymm13", "ymm14", "ymm15"
88 };
89
90 static const char *amd64_ymm_avx512_names[] =
91 {
92 "ymm16", "ymm17", "ymm18", "ymm19",
93 "ymm20", "ymm21", "ymm22", "ymm23",
94 "ymm24", "ymm25", "ymm26", "ymm27",
95 "ymm28", "ymm29", "ymm30", "ymm31"
96 };
97
98 static const char *amd64_ymmh_names[] =
99 {
100 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
101 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
102 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
103 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
104 };
105
106 static const char *amd64_ymmh_avx512_names[] =
107 {
108 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
109 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
110 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
111 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
112 };
113
114 static const char *amd64_mpx_names[] =
115 {
116 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
117 };
118
119 static const char *amd64_k_names[] =
120 {
121 "k0", "k1", "k2", "k3",
122 "k4", "k5", "k6", "k7"
123 };
124
125 static const char *amd64_zmmh_names[] =
126 {
127 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
128 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
129 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
130 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
131 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
132 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
133 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
134 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
135 };
136
137 static const char *amd64_zmm_names[] =
138 {
139 "zmm0", "zmm1", "zmm2", "zmm3",
140 "zmm4", "zmm5", "zmm6", "zmm7",
141 "zmm8", "zmm9", "zmm10", "zmm11",
142 "zmm12", "zmm13", "zmm14", "zmm15",
143 "zmm16", "zmm17", "zmm18", "zmm19",
144 "zmm20", "zmm21", "zmm22", "zmm23",
145 "zmm24", "zmm25", "zmm26", "zmm27",
146 "zmm28", "zmm29", "zmm30", "zmm31"
147 };
148
149 static const char *amd64_xmm_avx512_names[] = {
150 "xmm16", "xmm17", "xmm18", "xmm19",
151 "xmm20", "xmm21", "xmm22", "xmm23",
152 "xmm24", "xmm25", "xmm26", "xmm27",
153 "xmm28", "xmm29", "xmm30", "xmm31"
154 };
155
156 /* DWARF Register Number Mapping as defined in the System V psABI,
157 section 3.6. */
158
159 static int amd64_dwarf_regmap[] =
160 {
161 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
162 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
163 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
164 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
165
166 /* Frame Pointer Register RBP. */
167 AMD64_RBP_REGNUM,
168
169 /* Stack Pointer Register RSP. */
170 AMD64_RSP_REGNUM,
171
172 /* Extended Integer Registers 8 - 15. */
173 AMD64_R8_REGNUM, /* %r8 */
174 AMD64_R9_REGNUM, /* %r9 */
175 AMD64_R10_REGNUM, /* %r10 */
176 AMD64_R11_REGNUM, /* %r11 */
177 AMD64_R12_REGNUM, /* %r12 */
178 AMD64_R13_REGNUM, /* %r13 */
179 AMD64_R14_REGNUM, /* %r14 */
180 AMD64_R15_REGNUM, /* %r15 */
181
182 /* Return Address RA. Mapped to RIP. */
183 AMD64_RIP_REGNUM,
184
185 /* SSE Registers 0 - 7. */
186 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
187 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
188 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
189 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
190
191 /* Extended SSE Registers 8 - 15. */
192 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
193 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
194 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
195 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
196
197 /* Floating Point Registers 0-7. */
198 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
199 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
200 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
201 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
202
203 /* MMX Registers 0 - 7.
204 We have to handle those registers specifically, as their register
205 number within GDB depends on the target (or they may even not be
206 available at all). */
207 -1, -1, -1, -1, -1, -1, -1, -1,
208
209 /* Control and Status Flags Register. */
210 AMD64_EFLAGS_REGNUM,
211
212 /* Selector Registers. */
213 AMD64_ES_REGNUM,
214 AMD64_CS_REGNUM,
215 AMD64_SS_REGNUM,
216 AMD64_DS_REGNUM,
217 AMD64_FS_REGNUM,
218 AMD64_GS_REGNUM,
219 -1,
220 -1,
221
222 /* Segment Base Address Registers. */
223 -1,
224 -1,
225 -1,
226 -1,
227
228 /* Special Selector Registers. */
229 -1,
230 -1,
231
232 /* Floating Point Control Registers. */
233 AMD64_MXCSR_REGNUM,
234 AMD64_FCTRL_REGNUM,
235 AMD64_FSTAT_REGNUM
236 };
237
238 static const int amd64_dwarf_regmap_len =
239 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
240
241 /* Convert DWARF register number REG to the appropriate register
242 number used by GDB. */
243
244 static int
245 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248 int ymm0_regnum = tdep->ymm0_regnum;
249 int regnum = -1;
250
251 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
252 regnum = amd64_dwarf_regmap[reg];
253
254 if (regnum == -1)
255 warning (_("Unmapped DWARF Register #%d encountered."), reg);
256 else if (ymm0_regnum >= 0
257 && i386_xmm_regnum_p (gdbarch, regnum))
258 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
259
260 return regnum;
261 }
262
263 /* Map architectural register numbers to gdb register numbers. */
264
265 static const int amd64_arch_regmap[16] =
266 {
267 AMD64_RAX_REGNUM, /* %rax */
268 AMD64_RCX_REGNUM, /* %rcx */
269 AMD64_RDX_REGNUM, /* %rdx */
270 AMD64_RBX_REGNUM, /* %rbx */
271 AMD64_RSP_REGNUM, /* %rsp */
272 AMD64_RBP_REGNUM, /* %rbp */
273 AMD64_RSI_REGNUM, /* %rsi */
274 AMD64_RDI_REGNUM, /* %rdi */
275 AMD64_R8_REGNUM, /* %r8 */
276 AMD64_R9_REGNUM, /* %r9 */
277 AMD64_R10_REGNUM, /* %r10 */
278 AMD64_R11_REGNUM, /* %r11 */
279 AMD64_R12_REGNUM, /* %r12 */
280 AMD64_R13_REGNUM, /* %r13 */
281 AMD64_R14_REGNUM, /* %r14 */
282 AMD64_R15_REGNUM /* %r15 */
283 };
284
285 static const int amd64_arch_regmap_len =
286 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
287
288 /* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 amd64_arch_reg_to_regnum (int reg)
293 {
294 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
295
296 return amd64_arch_regmap[reg];
297 }
298
299 /* Register names for byte pseudo-registers. */
300
301 static const char *amd64_byte_names[] =
302 {
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
306 };
307
308 /* Number of lower byte registers. */
309 #define AMD64_NUM_LOWER_BYTE_REGS 16
310
311 /* Register names for word pseudo-registers. */
312
313 static const char *amd64_word_names[] =
314 {
315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317 };
318
319 /* Register names for dword pseudo-registers. */
320
321 static const char *amd64_dword_names[] =
322 {
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
325 "eip"
326 };
327
328 /* Return the name of register REGNUM. */
329
330 static const char *
331 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 if (i386_byte_regnum_p (gdbarch, regnum))
335 return amd64_byte_names[regnum - tdep->al_regnum];
336 else if (i386_zmm_regnum_p (gdbarch, regnum))
337 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
338 else if (i386_ymm_regnum_p (gdbarch, regnum))
339 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
340 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
341 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
342 else if (i386_word_regnum_p (gdbarch, regnum))
343 return amd64_word_names[regnum - tdep->ax_regnum];
344 else if (i386_dword_regnum_p (gdbarch, regnum))
345 return amd64_dword_names[regnum - tdep->eax_regnum];
346 else
347 return i386_pseudo_register_name (gdbarch, regnum);
348 }
349
350 static struct value *
351 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
352 struct regcache *regcache,
353 int regnum)
354 {
355 gdb_byte raw_buf[MAX_REGISTER_SIZE];
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 enum register_status status;
358 struct value *result_value;
359 gdb_byte *buf;
360
361 result_value = allocate_value (register_type (gdbarch, regnum));
362 VALUE_LVAL (result_value) = lval_register;
363 VALUE_REGNUM (result_value) = regnum;
364 buf = value_contents_raw (result_value);
365
366 if (i386_byte_regnum_p (gdbarch, regnum))
367 {
368 int gpnum = regnum - tdep->al_regnum;
369
370 /* Extract (always little endian). */
371 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
372 {
373 /* Special handling for AH, BH, CH, DH. */
374 status = regcache_raw_read (regcache,
375 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
376 raw_buf);
377 if (status == REG_VALID)
378 memcpy (buf, raw_buf + 1, 1);
379 else
380 mark_value_bytes_unavailable (result_value, 0,
381 TYPE_LENGTH (value_type (result_value)));
382 }
383 else
384 {
385 status = regcache_raw_read (regcache, gpnum, raw_buf);
386 if (status == REG_VALID)
387 memcpy (buf, raw_buf, 1);
388 else
389 mark_value_bytes_unavailable (result_value, 0,
390 TYPE_LENGTH (value_type (result_value)));
391 }
392 }
393 else if (i386_dword_regnum_p (gdbarch, regnum))
394 {
395 int gpnum = regnum - tdep->eax_regnum;
396 /* Extract (always little endian). */
397 status = regcache_raw_read (regcache, gpnum, raw_buf);
398 if (status == REG_VALID)
399 memcpy (buf, raw_buf, 4);
400 else
401 mark_value_bytes_unavailable (result_value, 0,
402 TYPE_LENGTH (value_type (result_value)));
403 }
404 else
405 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
406 result_value);
407
408 return result_value;
409 }
410
411 static void
412 amd64_pseudo_register_write (struct gdbarch *gdbarch,
413 struct regcache *regcache,
414 int regnum, const gdb_byte *buf)
415 {
416 gdb_byte raw_buf[MAX_REGISTER_SIZE];
417 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
418
419 if (i386_byte_regnum_p (gdbarch, regnum))
420 {
421 int gpnum = regnum - tdep->al_regnum;
422
423 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
424 {
425 /* Read ... AH, BH, CH, DH. */
426 regcache_raw_read (regcache,
427 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
428 /* ... Modify ... (always little endian). */
429 memcpy (raw_buf + 1, buf, 1);
430 /* ... Write. */
431 regcache_raw_write (regcache,
432 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
433 }
434 else
435 {
436 /* Read ... */
437 regcache_raw_read (regcache, gpnum, raw_buf);
438 /* ... Modify ... (always little endian). */
439 memcpy (raw_buf, buf, 1);
440 /* ... Write. */
441 regcache_raw_write (regcache, gpnum, raw_buf);
442 }
443 }
444 else if (i386_dword_regnum_p (gdbarch, regnum))
445 {
446 int gpnum = regnum - tdep->eax_regnum;
447
448 /* Read ... */
449 regcache_raw_read (regcache, gpnum, raw_buf);
450 /* ... Modify ... (always little endian). */
451 memcpy (raw_buf, buf, 4);
452 /* ... Write. */
453 regcache_raw_write (regcache, gpnum, raw_buf);
454 }
455 else
456 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
457 }
458
459 \f
460
461 /* Register classes as defined in the psABI. */
462
463 enum amd64_reg_class
464 {
465 AMD64_INTEGER,
466 AMD64_SSE,
467 AMD64_SSEUP,
468 AMD64_X87,
469 AMD64_X87UP,
470 AMD64_COMPLEX_X87,
471 AMD64_NO_CLASS,
472 AMD64_MEMORY
473 };
474
475 /* Return the union class of CLASS1 and CLASS2. See the psABI for
476 details. */
477
478 static enum amd64_reg_class
479 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
480 {
481 /* Rule (a): If both classes are equal, this is the resulting class. */
482 if (class1 == class2)
483 return class1;
484
485 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
486 is the other class. */
487 if (class1 == AMD64_NO_CLASS)
488 return class2;
489 if (class2 == AMD64_NO_CLASS)
490 return class1;
491
492 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
493 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
494 return AMD64_MEMORY;
495
496 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
497 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
498 return AMD64_INTEGER;
499
500 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
501 MEMORY is used as class. */
502 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
503 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
504 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
505 return AMD64_MEMORY;
506
507 /* Rule (f): Otherwise class SSE is used. */
508 return AMD64_SSE;
509 }
510
511 static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
512
513 /* Return non-zero if TYPE is a non-POD structure or union type. */
514
515 static int
516 amd64_non_pod_p (struct type *type)
517 {
518 /* ??? A class with a base class certainly isn't POD, but does this
519 catch all non-POD structure types? */
520 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
521 return 1;
522
523 return 0;
524 }
525
526 /* Classify TYPE according to the rules for aggregate (structures and
527 arrays) and union types, and store the result in CLASS. */
528
529 static void
530 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
531 {
532 /* 1. If the size of an object is larger than two eightbytes, or in
533 C++, is a non-POD structure or union type, or contains
534 unaligned fields, it has class memory. */
535 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
536 {
537 class[0] = class[1] = AMD64_MEMORY;
538 return;
539 }
540
541 /* 2. Both eightbytes get initialized to class NO_CLASS. */
542 class[0] = class[1] = AMD64_NO_CLASS;
543
544 /* 3. Each field of an object is classified recursively so that
545 always two fields are considered. The resulting class is
546 calculated according to the classes of the fields in the
547 eightbyte: */
548
549 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
550 {
551 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
552
553 /* All fields in an array have the same type. */
554 amd64_classify (subtype, class);
555 if (TYPE_LENGTH (type) > 8 && class[1] == AMD64_NO_CLASS)
556 class[1] = class[0];
557 }
558 else
559 {
560 int i;
561
562 /* Structure or union. */
563 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
564 || TYPE_CODE (type) == TYPE_CODE_UNION);
565
566 for (i = 0; i < TYPE_NFIELDS (type); i++)
567 {
568 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
569 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
570 enum amd64_reg_class subclass[2];
571 int bitsize = TYPE_FIELD_BITSIZE (type, i);
572 int endpos;
573
574 if (bitsize == 0)
575 bitsize = TYPE_LENGTH (subtype) * 8;
576 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
577
578 /* Ignore static fields. */
579 if (field_is_static (&TYPE_FIELD (type, i)))
580 continue;
581
582 gdb_assert (pos == 0 || pos == 1);
583
584 amd64_classify (subtype, subclass);
585 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
586 if (bitsize <= 64 && pos == 0 && endpos == 1)
587 /* This is a bit of an odd case: We have a field that would
588 normally fit in one of the two eightbytes, except that
589 it is placed in a way that this field straddles them.
590 This has been seen with a structure containing an array.
591
592 The ABI is a bit unclear in this case, but we assume that
593 this field's class (stored in subclass[0]) must also be merged
594 into class[1]. In other words, our field has a piece stored
595 in the second eight-byte, and thus its class applies to
596 the second eight-byte as well.
597
598 In the case where the field length exceeds 8 bytes,
599 it should not be necessary to merge the field class
600 into class[1]. As LEN > 8, subclass[1] is necessarily
601 different from AMD64_NO_CLASS. If subclass[1] is equal
602 to subclass[0], then the normal class[1]/subclass[1]
603 merging will take care of everything. For subclass[1]
604 to be different from subclass[0], I can only see the case
605 where we have a SSE/SSEUP or X87/X87UP pair, which both
606 use up all 16 bytes of the aggregate, and are already
607 handled just fine (because each portion sits on its own
608 8-byte). */
609 class[1] = amd64_merge_classes (class[1], subclass[0]);
610 if (pos == 0)
611 class[1] = amd64_merge_classes (class[1], subclass[1]);
612 }
613 }
614
615 /* 4. Then a post merger cleanup is done: */
616
617 /* Rule (a): If one of the classes is MEMORY, the whole argument is
618 passed in memory. */
619 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
620 class[0] = class[1] = AMD64_MEMORY;
621
622 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
623 SSE. */
624 if (class[0] == AMD64_SSEUP)
625 class[0] = AMD64_SSE;
626 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
627 class[1] = AMD64_SSE;
628 }
629
630 /* Classify TYPE, and store the result in CLASS. */
631
632 static void
633 amd64_classify (struct type *type, enum amd64_reg_class class[2])
634 {
635 enum type_code code = TYPE_CODE (type);
636 int len = TYPE_LENGTH (type);
637
638 class[0] = class[1] = AMD64_NO_CLASS;
639
640 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
641 long, long long, and pointers are in the INTEGER class. Similarly,
642 range types, used by languages such as Ada, are also in the INTEGER
643 class. */
644 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
645 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
646 || code == TYPE_CODE_CHAR
647 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
648 && (len == 1 || len == 2 || len == 4 || len == 8))
649 class[0] = AMD64_INTEGER;
650
651 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
652 are in class SSE. */
653 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
654 && (len == 4 || len == 8))
655 /* FIXME: __m64 . */
656 class[0] = AMD64_SSE;
657
658 /* Arguments of types __float128, _Decimal128 and __m128 are split into
659 two halves. The least significant ones belong to class SSE, the most
660 significant one to class SSEUP. */
661 else if (code == TYPE_CODE_DECFLOAT && len == 16)
662 /* FIXME: __float128, __m128. */
663 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
664
665 /* The 64-bit mantissa of arguments of type long double belongs to
666 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
667 class X87UP. */
668 else if (code == TYPE_CODE_FLT && len == 16)
669 /* Class X87 and X87UP. */
670 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
671
672 /* Arguments of complex T where T is one of the types float or
673 double get treated as if they are implemented as:
674
675 struct complexT {
676 T real;
677 T imag;
678 };
679
680 */
681 else if (code == TYPE_CODE_COMPLEX && len == 8)
682 class[0] = AMD64_SSE;
683 else if (code == TYPE_CODE_COMPLEX && len == 16)
684 class[0] = class[1] = AMD64_SSE;
685
686 /* A variable of type complex long double is classified as type
687 COMPLEX_X87. */
688 else if (code == TYPE_CODE_COMPLEX && len == 32)
689 class[0] = AMD64_COMPLEX_X87;
690
691 /* Aggregates. */
692 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
693 || code == TYPE_CODE_UNION)
694 amd64_classify_aggregate (type, class);
695 }
696
697 static enum return_value_convention
698 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
699 struct type *type, struct regcache *regcache,
700 gdb_byte *readbuf, const gdb_byte *writebuf)
701 {
702 enum amd64_reg_class class[2];
703 int len = TYPE_LENGTH (type);
704 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
705 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
706 int integer_reg = 0;
707 int sse_reg = 0;
708 int i;
709
710 gdb_assert (!(readbuf && writebuf));
711
712 /* 1. Classify the return type with the classification algorithm. */
713 amd64_classify (type, class);
714
715 /* 2. If the type has class MEMORY, then the caller provides space
716 for the return value and passes the address of this storage in
717 %rdi as if it were the first argument to the function. In effect,
718 this address becomes a hidden first argument.
719
720 On return %rax will contain the address that has been passed in
721 by the caller in %rdi. */
722 if (class[0] == AMD64_MEMORY)
723 {
724 /* As indicated by the comment above, the ABI guarantees that we
725 can always find the return value just after the function has
726 returned. */
727
728 if (readbuf)
729 {
730 ULONGEST addr;
731
732 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
733 read_memory (addr, readbuf, TYPE_LENGTH (type));
734 }
735
736 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
737 }
738
739 /* 8. If the class is COMPLEX_X87, the real part of the value is
740 returned in %st0 and the imaginary part in %st1. */
741 if (class[0] == AMD64_COMPLEX_X87)
742 {
743 if (readbuf)
744 {
745 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
746 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
747 }
748
749 if (writebuf)
750 {
751 i387_return_value (gdbarch, regcache);
752 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
753 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
754
755 /* Fix up the tag word such that both %st(0) and %st(1) are
756 marked as valid. */
757 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
758 }
759
760 return RETURN_VALUE_REGISTER_CONVENTION;
761 }
762
763 gdb_assert (class[1] != AMD64_MEMORY);
764 gdb_assert (len <= 16);
765
766 for (i = 0; len > 0; i++, len -= 8)
767 {
768 int regnum = -1;
769 int offset = 0;
770
771 switch (class[i])
772 {
773 case AMD64_INTEGER:
774 /* 3. If the class is INTEGER, the next available register
775 of the sequence %rax, %rdx is used. */
776 regnum = integer_regnum[integer_reg++];
777 break;
778
779 case AMD64_SSE:
780 /* 4. If the class is SSE, the next available SSE register
781 of the sequence %xmm0, %xmm1 is used. */
782 regnum = sse_regnum[sse_reg++];
783 break;
784
785 case AMD64_SSEUP:
786 /* 5. If the class is SSEUP, the eightbyte is passed in the
787 upper half of the last used SSE register. */
788 gdb_assert (sse_reg > 0);
789 regnum = sse_regnum[sse_reg - 1];
790 offset = 8;
791 break;
792
793 case AMD64_X87:
794 /* 6. If the class is X87, the value is returned on the X87
795 stack in %st0 as 80-bit x87 number. */
796 regnum = AMD64_ST0_REGNUM;
797 if (writebuf)
798 i387_return_value (gdbarch, regcache);
799 break;
800
801 case AMD64_X87UP:
802 /* 7. If the class is X87UP, the value is returned together
803 with the previous X87 value in %st0. */
804 gdb_assert (i > 0 && class[0] == AMD64_X87);
805 regnum = AMD64_ST0_REGNUM;
806 offset = 8;
807 len = 2;
808 break;
809
810 case AMD64_NO_CLASS:
811 continue;
812
813 default:
814 gdb_assert (!"Unexpected register class.");
815 }
816
817 gdb_assert (regnum != -1);
818
819 if (readbuf)
820 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
821 readbuf + i * 8);
822 if (writebuf)
823 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
824 writebuf + i * 8);
825 }
826
827 return RETURN_VALUE_REGISTER_CONVENTION;
828 }
829 \f
830
831 static CORE_ADDR
832 amd64_push_arguments (struct regcache *regcache, int nargs,
833 struct value **args, CORE_ADDR sp, int struct_return)
834 {
835 static int integer_regnum[] =
836 {
837 AMD64_RDI_REGNUM, /* %rdi */
838 AMD64_RSI_REGNUM, /* %rsi */
839 AMD64_RDX_REGNUM, /* %rdx */
840 AMD64_RCX_REGNUM, /* %rcx */
841 AMD64_R8_REGNUM, /* %r8 */
842 AMD64_R9_REGNUM /* %r9 */
843 };
844 static int sse_regnum[] =
845 {
846 /* %xmm0 ... %xmm7 */
847 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
848 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
849 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
850 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
851 };
852 struct value **stack_args = alloca (nargs * sizeof (struct value *));
853 int num_stack_args = 0;
854 int num_elements = 0;
855 int element = 0;
856 int integer_reg = 0;
857 int sse_reg = 0;
858 int i;
859
860 /* Reserve a register for the "hidden" argument. */
861 if (struct_return)
862 integer_reg++;
863
864 for (i = 0; i < nargs; i++)
865 {
866 struct type *type = value_type (args[i]);
867 int len = TYPE_LENGTH (type);
868 enum amd64_reg_class class[2];
869 int needed_integer_regs = 0;
870 int needed_sse_regs = 0;
871 int j;
872
873 /* Classify argument. */
874 amd64_classify (type, class);
875
876 /* Calculate the number of integer and SSE registers needed for
877 this argument. */
878 for (j = 0; j < 2; j++)
879 {
880 if (class[j] == AMD64_INTEGER)
881 needed_integer_regs++;
882 else if (class[j] == AMD64_SSE)
883 needed_sse_regs++;
884 }
885
886 /* Check whether enough registers are available, and if the
887 argument should be passed in registers at all. */
888 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
889 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
890 || (needed_integer_regs == 0 && needed_sse_regs == 0))
891 {
892 /* The argument will be passed on the stack. */
893 num_elements += ((len + 7) / 8);
894 stack_args[num_stack_args++] = args[i];
895 }
896 else
897 {
898 /* The argument will be passed in registers. */
899 const gdb_byte *valbuf = value_contents (args[i]);
900 gdb_byte buf[8];
901
902 gdb_assert (len <= 16);
903
904 for (j = 0; len > 0; j++, len -= 8)
905 {
906 int regnum = -1;
907 int offset = 0;
908
909 switch (class[j])
910 {
911 case AMD64_INTEGER:
912 regnum = integer_regnum[integer_reg++];
913 break;
914
915 case AMD64_SSE:
916 regnum = sse_regnum[sse_reg++];
917 break;
918
919 case AMD64_SSEUP:
920 gdb_assert (sse_reg > 0);
921 regnum = sse_regnum[sse_reg - 1];
922 offset = 8;
923 break;
924
925 default:
926 gdb_assert (!"Unexpected register class.");
927 }
928
929 gdb_assert (regnum != -1);
930 memset (buf, 0, sizeof buf);
931 memcpy (buf, valbuf + j * 8, min (len, 8));
932 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
933 }
934 }
935 }
936
937 /* Allocate space for the arguments on the stack. */
938 sp -= num_elements * 8;
939
940 /* The psABI says that "The end of the input argument area shall be
941 aligned on a 16 byte boundary." */
942 sp &= ~0xf;
943
944 /* Write out the arguments to the stack. */
945 for (i = 0; i < num_stack_args; i++)
946 {
947 struct type *type = value_type (stack_args[i]);
948 const gdb_byte *valbuf = value_contents (stack_args[i]);
949 int len = TYPE_LENGTH (type);
950
951 write_memory (sp + element * 8, valbuf, len);
952 element += ((len + 7) / 8);
953 }
954
955 /* The psABI says that "For calls that may call functions that use
956 varargs or stdargs (prototype-less calls or calls to functions
957 containing ellipsis (...) in the declaration) %al is used as
958 hidden argument to specify the number of SSE registers used. */
959 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
960 return sp;
961 }
962
963 static CORE_ADDR
964 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
965 struct regcache *regcache, CORE_ADDR bp_addr,
966 int nargs, struct value **args, CORE_ADDR sp,
967 int struct_return, CORE_ADDR struct_addr)
968 {
969 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
970 gdb_byte buf[8];
971
972 /* Pass arguments. */
973 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
974
975 /* Pass "hidden" argument". */
976 if (struct_return)
977 {
978 store_unsigned_integer (buf, 8, byte_order, struct_addr);
979 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
980 }
981
982 /* Store return address. */
983 sp -= 8;
984 store_unsigned_integer (buf, 8, byte_order, bp_addr);
985 write_memory (sp, buf, 8);
986
987 /* Finally, update the stack pointer... */
988 store_unsigned_integer (buf, 8, byte_order, sp);
989 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
990
991 /* ...and fake a frame pointer. */
992 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
993
994 return sp + 16;
995 }
996 \f
997 /* Displaced instruction handling. */
998
999 /* A partially decoded instruction.
1000 This contains enough details for displaced stepping purposes. */
1001
1002 struct amd64_insn
1003 {
1004 /* The number of opcode bytes. */
1005 int opcode_len;
1006 /* The offset of the rex prefix or -1 if not present. */
1007 int rex_offset;
1008 /* The offset to the first opcode byte. */
1009 int opcode_offset;
1010 /* The offset to the modrm byte or -1 if not present. */
1011 int modrm_offset;
1012
1013 /* The raw instruction. */
1014 gdb_byte *raw_insn;
1015 };
1016
1017 struct displaced_step_closure
1018 {
1019 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1020 int tmp_used;
1021 int tmp_regno;
1022 ULONGEST tmp_save;
1023
1024 /* Details of the instruction. */
1025 struct amd64_insn insn_details;
1026
1027 /* Amount of space allocated to insn_buf. */
1028 int max_len;
1029
1030 /* The possibly modified insn.
1031 This is a variable-length field. */
1032 gdb_byte insn_buf[1];
1033 };
1034
1035 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1036 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1037 at which point delete these in favor of libopcodes' versions). */
1038
1039 static const unsigned char onebyte_has_modrm[256] = {
1040 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1041 /* ------------------------------- */
1042 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1043 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1044 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1045 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1046 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1047 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1048 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1049 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1050 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1051 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1052 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1053 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1054 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1055 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1056 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1057 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1058 /* ------------------------------- */
1059 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1060 };
1061
1062 static const unsigned char twobyte_has_modrm[256] = {
1063 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1064 /* ------------------------------- */
1065 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1066 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1067 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1068 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1069 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1070 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1071 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1072 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1073 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1074 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1075 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1076 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1077 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1078 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1079 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1080 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1081 /* ------------------------------- */
1082 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1083 };
1084
1085 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1086
1087 static int
1088 rex_prefix_p (gdb_byte pfx)
1089 {
1090 return REX_PREFIX_P (pfx);
1091 }
1092
1093 /* Skip the legacy instruction prefixes in INSN.
1094 We assume INSN is properly sentineled so we don't have to worry
1095 about falling off the end of the buffer. */
1096
1097 static gdb_byte *
1098 amd64_skip_prefixes (gdb_byte *insn)
1099 {
1100 while (1)
1101 {
1102 switch (*insn)
1103 {
1104 case DATA_PREFIX_OPCODE:
1105 case ADDR_PREFIX_OPCODE:
1106 case CS_PREFIX_OPCODE:
1107 case DS_PREFIX_OPCODE:
1108 case ES_PREFIX_OPCODE:
1109 case FS_PREFIX_OPCODE:
1110 case GS_PREFIX_OPCODE:
1111 case SS_PREFIX_OPCODE:
1112 case LOCK_PREFIX_OPCODE:
1113 case REPE_PREFIX_OPCODE:
1114 case REPNE_PREFIX_OPCODE:
1115 ++insn;
1116 continue;
1117 default:
1118 break;
1119 }
1120 break;
1121 }
1122
1123 return insn;
1124 }
1125
1126 /* Return an integer register (other than RSP) that is unused as an input
1127 operand in INSN.
1128 In order to not require adding a rex prefix if the insn doesn't already
1129 have one, the result is restricted to RAX ... RDI, sans RSP.
1130 The register numbering of the result follows architecture ordering,
1131 e.g. RDI = 7. */
1132
1133 static int
1134 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1135 {
1136 /* 1 bit for each reg */
1137 int used_regs_mask = 0;
1138
1139 /* There can be at most 3 int regs used as inputs in an insn, and we have
1140 7 to choose from (RAX ... RDI, sans RSP).
1141 This allows us to take a conservative approach and keep things simple.
1142 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1143 that implicitly specify RAX. */
1144
1145 /* Avoid RAX. */
1146 used_regs_mask |= 1 << EAX_REG_NUM;
1147 /* Similarily avoid RDX, implicit operand in divides. */
1148 used_regs_mask |= 1 << EDX_REG_NUM;
1149 /* Avoid RSP. */
1150 used_regs_mask |= 1 << ESP_REG_NUM;
1151
1152 /* If the opcode is one byte long and there's no ModRM byte,
1153 assume the opcode specifies a register. */
1154 if (details->opcode_len == 1 && details->modrm_offset == -1)
1155 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1156
1157 /* Mark used regs in the modrm/sib bytes. */
1158 if (details->modrm_offset != -1)
1159 {
1160 int modrm = details->raw_insn[details->modrm_offset];
1161 int mod = MODRM_MOD_FIELD (modrm);
1162 int reg = MODRM_REG_FIELD (modrm);
1163 int rm = MODRM_RM_FIELD (modrm);
1164 int have_sib = mod != 3 && rm == 4;
1165
1166 /* Assume the reg field of the modrm byte specifies a register. */
1167 used_regs_mask |= 1 << reg;
1168
1169 if (have_sib)
1170 {
1171 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1172 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1173 used_regs_mask |= 1 << base;
1174 used_regs_mask |= 1 << idx;
1175 }
1176 else
1177 {
1178 used_regs_mask |= 1 << rm;
1179 }
1180 }
1181
1182 gdb_assert (used_regs_mask < 256);
1183 gdb_assert (used_regs_mask != 255);
1184
1185 /* Finally, find a free reg. */
1186 {
1187 int i;
1188
1189 for (i = 0; i < 8; ++i)
1190 {
1191 if (! (used_regs_mask & (1 << i)))
1192 return i;
1193 }
1194
1195 /* We shouldn't get here. */
1196 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1197 }
1198 }
1199
1200 /* Extract the details of INSN that we need. */
1201
1202 static void
1203 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1204 {
1205 gdb_byte *start = insn;
1206 int need_modrm;
1207
1208 details->raw_insn = insn;
1209
1210 details->opcode_len = -1;
1211 details->rex_offset = -1;
1212 details->opcode_offset = -1;
1213 details->modrm_offset = -1;
1214
1215 /* Skip legacy instruction prefixes. */
1216 insn = amd64_skip_prefixes (insn);
1217
1218 /* Skip REX instruction prefix. */
1219 if (rex_prefix_p (*insn))
1220 {
1221 details->rex_offset = insn - start;
1222 ++insn;
1223 }
1224
1225 details->opcode_offset = insn - start;
1226
1227 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1228 {
1229 /* Two or three-byte opcode. */
1230 ++insn;
1231 need_modrm = twobyte_has_modrm[*insn];
1232
1233 /* Check for three-byte opcode. */
1234 switch (*insn)
1235 {
1236 case 0x24:
1237 case 0x25:
1238 case 0x38:
1239 case 0x3a:
1240 case 0x7a:
1241 case 0x7b:
1242 ++insn;
1243 details->opcode_len = 3;
1244 break;
1245 default:
1246 details->opcode_len = 2;
1247 break;
1248 }
1249 }
1250 else
1251 {
1252 /* One-byte opcode. */
1253 need_modrm = onebyte_has_modrm[*insn];
1254 details->opcode_len = 1;
1255 }
1256
1257 if (need_modrm)
1258 {
1259 ++insn;
1260 details->modrm_offset = insn - start;
1261 }
1262 }
1263
1264 /* Update %rip-relative addressing in INSN.
1265
1266 %rip-relative addressing only uses a 32-bit displacement.
1267 32 bits is not enough to be guaranteed to cover the distance between where
1268 the real instruction is and where its copy is.
1269 Convert the insn to use base+disp addressing.
1270 We set base = pc + insn_length so we can leave disp unchanged. */
1271
1272 static void
1273 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1274 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1275 {
1276 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1277 const struct amd64_insn *insn_details = &dsc->insn_details;
1278 int modrm_offset = insn_details->modrm_offset;
1279 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1280 CORE_ADDR rip_base;
1281 int32_t disp;
1282 int insn_length;
1283 int arch_tmp_regno, tmp_regno;
1284 ULONGEST orig_value;
1285
1286 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1287 ++insn;
1288
1289 /* Compute the rip-relative address. */
1290 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1291 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1292 dsc->max_len, from);
1293 rip_base = from + insn_length;
1294
1295 /* We need a register to hold the address.
1296 Pick one not used in the insn.
1297 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1298 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1299 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1300
1301 /* REX.B should be unset as we were using rip-relative addressing,
1302 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1303 if (insn_details->rex_offset != -1)
1304 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1305
1306 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1307 dsc->tmp_regno = tmp_regno;
1308 dsc->tmp_save = orig_value;
1309 dsc->tmp_used = 1;
1310
1311 /* Convert the ModRM field to be base+disp. */
1312 dsc->insn_buf[modrm_offset] &= ~0xc7;
1313 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1314
1315 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1316
1317 if (debug_displaced)
1318 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1319 "displaced: using temp reg %d, old value %s, new value %s\n",
1320 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1321 paddress (gdbarch, rip_base));
1322 }
1323
1324 static void
1325 fixup_displaced_copy (struct gdbarch *gdbarch,
1326 struct displaced_step_closure *dsc,
1327 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1328 {
1329 const struct amd64_insn *details = &dsc->insn_details;
1330
1331 if (details->modrm_offset != -1)
1332 {
1333 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1334
1335 if ((modrm & 0xc7) == 0x05)
1336 {
1337 /* The insn uses rip-relative addressing.
1338 Deal with it. */
1339 fixup_riprel (gdbarch, dsc, from, to, regs);
1340 }
1341 }
1342 }
1343
1344 struct displaced_step_closure *
1345 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1346 CORE_ADDR from, CORE_ADDR to,
1347 struct regcache *regs)
1348 {
1349 int len = gdbarch_max_insn_length (gdbarch);
1350 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1351 continually watch for running off the end of the buffer. */
1352 int fixup_sentinel_space = len;
1353 struct displaced_step_closure *dsc =
1354 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1355 gdb_byte *buf = &dsc->insn_buf[0];
1356 struct amd64_insn *details = &dsc->insn_details;
1357
1358 dsc->tmp_used = 0;
1359 dsc->max_len = len + fixup_sentinel_space;
1360
1361 read_memory (from, buf, len);
1362
1363 /* Set up the sentinel space so we don't have to worry about running
1364 off the end of the buffer. An excessive number of leading prefixes
1365 could otherwise cause this. */
1366 memset (buf + len, 0, fixup_sentinel_space);
1367
1368 amd64_get_insn_details (buf, details);
1369
1370 /* GDB may get control back after the insn after the syscall.
1371 Presumably this is a kernel bug.
1372 If this is a syscall, make sure there's a nop afterwards. */
1373 {
1374 int syscall_length;
1375
1376 if (amd64_syscall_p (details, &syscall_length))
1377 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1378 }
1379
1380 /* Modify the insn to cope with the address where it will be executed from.
1381 In particular, handle any rip-relative addressing. */
1382 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1383
1384 write_memory (to, buf, len);
1385
1386 if (debug_displaced)
1387 {
1388 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1389 paddress (gdbarch, from), paddress (gdbarch, to));
1390 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1391 }
1392
1393 return dsc;
1394 }
1395
1396 static int
1397 amd64_absolute_jmp_p (const struct amd64_insn *details)
1398 {
1399 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1400
1401 if (insn[0] == 0xff)
1402 {
1403 /* jump near, absolute indirect (/4) */
1404 if ((insn[1] & 0x38) == 0x20)
1405 return 1;
1406
1407 /* jump far, absolute indirect (/5) */
1408 if ((insn[1] & 0x38) == 0x28)
1409 return 1;
1410 }
1411
1412 return 0;
1413 }
1414
1415 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1416
1417 static int
1418 amd64_jmp_p (const struct amd64_insn *details)
1419 {
1420 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1421
1422 /* jump short, relative. */
1423 if (insn[0] == 0xeb)
1424 return 1;
1425
1426 /* jump near, relative. */
1427 if (insn[0] == 0xe9)
1428 return 1;
1429
1430 return amd64_absolute_jmp_p (details);
1431 }
1432
1433 static int
1434 amd64_absolute_call_p (const struct amd64_insn *details)
1435 {
1436 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1437
1438 if (insn[0] == 0xff)
1439 {
1440 /* Call near, absolute indirect (/2) */
1441 if ((insn[1] & 0x38) == 0x10)
1442 return 1;
1443
1444 /* Call far, absolute indirect (/3) */
1445 if ((insn[1] & 0x38) == 0x18)
1446 return 1;
1447 }
1448
1449 return 0;
1450 }
1451
1452 static int
1453 amd64_ret_p (const struct amd64_insn *details)
1454 {
1455 /* NOTE: gcc can emit "repz ; ret". */
1456 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1457
1458 switch (insn[0])
1459 {
1460 case 0xc2: /* ret near, pop N bytes */
1461 case 0xc3: /* ret near */
1462 case 0xca: /* ret far, pop N bytes */
1463 case 0xcb: /* ret far */
1464 case 0xcf: /* iret */
1465 return 1;
1466
1467 default:
1468 return 0;
1469 }
1470 }
1471
1472 static int
1473 amd64_call_p (const struct amd64_insn *details)
1474 {
1475 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1476
1477 if (amd64_absolute_call_p (details))
1478 return 1;
1479
1480 /* call near, relative */
1481 if (insn[0] == 0xe8)
1482 return 1;
1483
1484 return 0;
1485 }
1486
1487 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1488 length in bytes. Otherwise, return zero. */
1489
1490 static int
1491 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1492 {
1493 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1494
1495 if (insn[0] == 0x0f && insn[1] == 0x05)
1496 {
1497 *lengthp = 2;
1498 return 1;
1499 }
1500
1501 return 0;
1502 }
1503
1504 /* Classify the instruction at ADDR using PRED.
1505 Throw an error if the memory can't be read. */
1506
1507 static int
1508 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1509 int (*pred) (const struct amd64_insn *))
1510 {
1511 struct amd64_insn details;
1512 gdb_byte *buf;
1513 int len, classification;
1514
1515 len = gdbarch_max_insn_length (gdbarch);
1516 buf = alloca (len);
1517
1518 read_code (addr, buf, len);
1519 amd64_get_insn_details (buf, &details);
1520
1521 classification = pred (&details);
1522
1523 return classification;
1524 }
1525
1526 /* The gdbarch insn_is_call method. */
1527
1528 static int
1529 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1530 {
1531 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1532 }
1533
1534 /* The gdbarch insn_is_ret method. */
1535
1536 static int
1537 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1538 {
1539 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1540 }
1541
1542 /* The gdbarch insn_is_jump method. */
1543
1544 static int
1545 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1546 {
1547 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1548 }
1549
1550 /* Fix up the state of registers and memory after having single-stepped
1551 a displaced instruction. */
1552
1553 void
1554 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1555 struct displaced_step_closure *dsc,
1556 CORE_ADDR from, CORE_ADDR to,
1557 struct regcache *regs)
1558 {
1559 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1560 /* The offset we applied to the instruction's address. */
1561 ULONGEST insn_offset = to - from;
1562 gdb_byte *insn = dsc->insn_buf;
1563 const struct amd64_insn *insn_details = &dsc->insn_details;
1564
1565 if (debug_displaced)
1566 fprintf_unfiltered (gdb_stdlog,
1567 "displaced: fixup (%s, %s), "
1568 "insn = 0x%02x 0x%02x ...\n",
1569 paddress (gdbarch, from), paddress (gdbarch, to),
1570 insn[0], insn[1]);
1571
1572 /* If we used a tmp reg, restore it. */
1573
1574 if (dsc->tmp_used)
1575 {
1576 if (debug_displaced)
1577 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1578 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1579 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1580 }
1581
1582 /* The list of issues to contend with here is taken from
1583 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1584 Yay for Free Software! */
1585
1586 /* Relocate the %rip back to the program's instruction stream,
1587 if necessary. */
1588
1589 /* Except in the case of absolute or indirect jump or call
1590 instructions, or a return instruction, the new rip is relative to
1591 the displaced instruction; make it relative to the original insn.
1592 Well, signal handler returns don't need relocation either, but we use the
1593 value of %rip to recognize those; see below. */
1594 if (! amd64_absolute_jmp_p (insn_details)
1595 && ! amd64_absolute_call_p (insn_details)
1596 && ! amd64_ret_p (insn_details))
1597 {
1598 ULONGEST orig_rip;
1599 int insn_len;
1600
1601 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1602
1603 /* A signal trampoline system call changes the %rip, resuming
1604 execution of the main program after the signal handler has
1605 returned. That makes them like 'return' instructions; we
1606 shouldn't relocate %rip.
1607
1608 But most system calls don't, and we do need to relocate %rip.
1609
1610 Our heuristic for distinguishing these cases: if stepping
1611 over the system call instruction left control directly after
1612 the instruction, the we relocate --- control almost certainly
1613 doesn't belong in the displaced copy. Otherwise, we assume
1614 the instruction has put control where it belongs, and leave
1615 it unrelocated. Goodness help us if there are PC-relative
1616 system calls. */
1617 if (amd64_syscall_p (insn_details, &insn_len)
1618 && orig_rip != to + insn_len
1619 /* GDB can get control back after the insn after the syscall.
1620 Presumably this is a kernel bug.
1621 Fixup ensures its a nop, we add one to the length for it. */
1622 && orig_rip != to + insn_len + 1)
1623 {
1624 if (debug_displaced)
1625 fprintf_unfiltered (gdb_stdlog,
1626 "displaced: syscall changed %%rip; "
1627 "not relocating\n");
1628 }
1629 else
1630 {
1631 ULONGEST rip = orig_rip - insn_offset;
1632
1633 /* If we just stepped over a breakpoint insn, we don't backup
1634 the pc on purpose; this is to match behaviour without
1635 stepping. */
1636
1637 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1638
1639 if (debug_displaced)
1640 fprintf_unfiltered (gdb_stdlog,
1641 "displaced: "
1642 "relocated %%rip from %s to %s\n",
1643 paddress (gdbarch, orig_rip),
1644 paddress (gdbarch, rip));
1645 }
1646 }
1647
1648 /* If the instruction was PUSHFL, then the TF bit will be set in the
1649 pushed value, and should be cleared. We'll leave this for later,
1650 since GDB already messes up the TF flag when stepping over a
1651 pushfl. */
1652
1653 /* If the instruction was a call, the return address now atop the
1654 stack is the address following the copied instruction. We need
1655 to make it the address following the original instruction. */
1656 if (amd64_call_p (insn_details))
1657 {
1658 ULONGEST rsp;
1659 ULONGEST retaddr;
1660 const ULONGEST retaddr_len = 8;
1661
1662 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1663 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1664 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1665 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1666
1667 if (debug_displaced)
1668 fprintf_unfiltered (gdb_stdlog,
1669 "displaced: relocated return addr at %s "
1670 "to %s\n",
1671 paddress (gdbarch, rsp),
1672 paddress (gdbarch, retaddr));
1673 }
1674 }
1675
1676 /* If the instruction INSN uses RIP-relative addressing, return the
1677 offset into the raw INSN where the displacement to be adjusted is
1678 found. Returns 0 if the instruction doesn't use RIP-relative
1679 addressing. */
1680
1681 static int
1682 rip_relative_offset (struct amd64_insn *insn)
1683 {
1684 if (insn->modrm_offset != -1)
1685 {
1686 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1687
1688 if ((modrm & 0xc7) == 0x05)
1689 {
1690 /* The displacement is found right after the ModRM byte. */
1691 return insn->modrm_offset + 1;
1692 }
1693 }
1694
1695 return 0;
1696 }
1697
1698 static void
1699 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1700 {
1701 target_write_memory (*to, buf, len);
1702 *to += len;
1703 }
1704
1705 static void
1706 amd64_relocate_instruction (struct gdbarch *gdbarch,
1707 CORE_ADDR *to, CORE_ADDR oldloc)
1708 {
1709 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1710 int len = gdbarch_max_insn_length (gdbarch);
1711 /* Extra space for sentinels. */
1712 int fixup_sentinel_space = len;
1713 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1714 struct amd64_insn insn_details;
1715 int offset = 0;
1716 LONGEST rel32, newrel;
1717 gdb_byte *insn;
1718 int insn_length;
1719
1720 read_memory (oldloc, buf, len);
1721
1722 /* Set up the sentinel space so we don't have to worry about running
1723 off the end of the buffer. An excessive number of leading prefixes
1724 could otherwise cause this. */
1725 memset (buf + len, 0, fixup_sentinel_space);
1726
1727 insn = buf;
1728 amd64_get_insn_details (insn, &insn_details);
1729
1730 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1731
1732 /* Skip legacy instruction prefixes. */
1733 insn = amd64_skip_prefixes (insn);
1734
1735 /* Adjust calls with 32-bit relative addresses as push/jump, with
1736 the address pushed being the location where the original call in
1737 the user program would return to. */
1738 if (insn[0] == 0xe8)
1739 {
1740 gdb_byte push_buf[16];
1741 unsigned int ret_addr;
1742
1743 /* Where "ret" in the original code will return to. */
1744 ret_addr = oldloc + insn_length;
1745 push_buf[0] = 0x68; /* pushq $... */
1746 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1747 /* Push the push. */
1748 append_insns (to, 5, push_buf);
1749
1750 /* Convert the relative call to a relative jump. */
1751 insn[0] = 0xe9;
1752
1753 /* Adjust the destination offset. */
1754 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1755 newrel = (oldloc - *to) + rel32;
1756 store_signed_integer (insn + 1, 4, byte_order, newrel);
1757
1758 if (debug_displaced)
1759 fprintf_unfiltered (gdb_stdlog,
1760 "Adjusted insn rel32=%s at %s to"
1761 " rel32=%s at %s\n",
1762 hex_string (rel32), paddress (gdbarch, oldloc),
1763 hex_string (newrel), paddress (gdbarch, *to));
1764
1765 /* Write the adjusted jump into its displaced location. */
1766 append_insns (to, 5, insn);
1767 return;
1768 }
1769
1770 offset = rip_relative_offset (&insn_details);
1771 if (!offset)
1772 {
1773 /* Adjust jumps with 32-bit relative addresses. Calls are
1774 already handled above. */
1775 if (insn[0] == 0xe9)
1776 offset = 1;
1777 /* Adjust conditional jumps. */
1778 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1779 offset = 2;
1780 }
1781
1782 if (offset)
1783 {
1784 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1785 newrel = (oldloc - *to) + rel32;
1786 store_signed_integer (insn + offset, 4, byte_order, newrel);
1787 if (debug_displaced)
1788 fprintf_unfiltered (gdb_stdlog,
1789 "Adjusted insn rel32=%s at %s to"
1790 " rel32=%s at %s\n",
1791 hex_string (rel32), paddress (gdbarch, oldloc),
1792 hex_string (newrel), paddress (gdbarch, *to));
1793 }
1794
1795 /* Write the adjusted instruction into its displaced location. */
1796 append_insns (to, insn_length, buf);
1797 }
1798
1799 \f
1800 /* The maximum number of saved registers. This should include %rip. */
1801 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1802
1803 struct amd64_frame_cache
1804 {
1805 /* Base address. */
1806 CORE_ADDR base;
1807 int base_p;
1808 CORE_ADDR sp_offset;
1809 CORE_ADDR pc;
1810
1811 /* Saved registers. */
1812 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1813 CORE_ADDR saved_sp;
1814 int saved_sp_reg;
1815
1816 /* Do we have a frame? */
1817 int frameless_p;
1818 };
1819
1820 /* Initialize a frame cache. */
1821
1822 static void
1823 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1824 {
1825 int i;
1826
1827 /* Base address. */
1828 cache->base = 0;
1829 cache->base_p = 0;
1830 cache->sp_offset = -8;
1831 cache->pc = 0;
1832
1833 /* Saved registers. We initialize these to -1 since zero is a valid
1834 offset (that's where %rbp is supposed to be stored).
1835 The values start out as being offsets, and are later converted to
1836 addresses (at which point -1 is interpreted as an address, still meaning
1837 "invalid"). */
1838 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1839 cache->saved_regs[i] = -1;
1840 cache->saved_sp = 0;
1841 cache->saved_sp_reg = -1;
1842
1843 /* Frameless until proven otherwise. */
1844 cache->frameless_p = 1;
1845 }
1846
1847 /* Allocate and initialize a frame cache. */
1848
1849 static struct amd64_frame_cache *
1850 amd64_alloc_frame_cache (void)
1851 {
1852 struct amd64_frame_cache *cache;
1853
1854 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1855 amd64_init_frame_cache (cache);
1856 return cache;
1857 }
1858
1859 /* GCC 4.4 and later, can put code in the prologue to realign the
1860 stack pointer. Check whether PC points to such code, and update
1861 CACHE accordingly. Return the first instruction after the code
1862 sequence or CURRENT_PC, whichever is smaller. If we don't
1863 recognize the code, return PC. */
1864
1865 static CORE_ADDR
1866 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1867 struct amd64_frame_cache *cache)
1868 {
1869 /* There are 2 code sequences to re-align stack before the frame
1870 gets set up:
1871
1872 1. Use a caller-saved saved register:
1873
1874 leaq 8(%rsp), %reg
1875 andq $-XXX, %rsp
1876 pushq -8(%reg)
1877
1878 2. Use a callee-saved saved register:
1879
1880 pushq %reg
1881 leaq 16(%rsp), %reg
1882 andq $-XXX, %rsp
1883 pushq -8(%reg)
1884
1885 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1886
1887 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1888 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1889 */
1890
1891 gdb_byte buf[18];
1892 int reg, r;
1893 int offset, offset_and;
1894
1895 if (target_read_code (pc, buf, sizeof buf))
1896 return pc;
1897
1898 /* Check caller-saved saved register. The first instruction has
1899 to be "leaq 8(%rsp), %reg". */
1900 if ((buf[0] & 0xfb) == 0x48
1901 && buf[1] == 0x8d
1902 && buf[3] == 0x24
1903 && buf[4] == 0x8)
1904 {
1905 /* MOD must be binary 10 and R/M must be binary 100. */
1906 if ((buf[2] & 0xc7) != 0x44)
1907 return pc;
1908
1909 /* REG has register number. */
1910 reg = (buf[2] >> 3) & 7;
1911
1912 /* Check the REX.R bit. */
1913 if (buf[0] == 0x4c)
1914 reg += 8;
1915
1916 offset = 5;
1917 }
1918 else
1919 {
1920 /* Check callee-saved saved register. The first instruction
1921 has to be "pushq %reg". */
1922 reg = 0;
1923 if ((buf[0] & 0xf8) == 0x50)
1924 offset = 0;
1925 else if ((buf[0] & 0xf6) == 0x40
1926 && (buf[1] & 0xf8) == 0x50)
1927 {
1928 /* Check the REX.B bit. */
1929 if ((buf[0] & 1) != 0)
1930 reg = 8;
1931
1932 offset = 1;
1933 }
1934 else
1935 return pc;
1936
1937 /* Get register. */
1938 reg += buf[offset] & 0x7;
1939
1940 offset++;
1941
1942 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1943 if ((buf[offset] & 0xfb) != 0x48
1944 || buf[offset + 1] != 0x8d
1945 || buf[offset + 3] != 0x24
1946 || buf[offset + 4] != 0x10)
1947 return pc;
1948
1949 /* MOD must be binary 10 and R/M must be binary 100. */
1950 if ((buf[offset + 2] & 0xc7) != 0x44)
1951 return pc;
1952
1953 /* REG has register number. */
1954 r = (buf[offset + 2] >> 3) & 7;
1955
1956 /* Check the REX.R bit. */
1957 if (buf[offset] == 0x4c)
1958 r += 8;
1959
1960 /* Registers in pushq and leaq have to be the same. */
1961 if (reg != r)
1962 return pc;
1963
1964 offset += 5;
1965 }
1966
1967 /* Rigister can't be %rsp nor %rbp. */
1968 if (reg == 4 || reg == 5)
1969 return pc;
1970
1971 /* The next instruction has to be "andq $-XXX, %rsp". */
1972 if (buf[offset] != 0x48
1973 || buf[offset + 2] != 0xe4
1974 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1975 return pc;
1976
1977 offset_and = offset;
1978 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1979
1980 /* The next instruction has to be "pushq -8(%reg)". */
1981 r = 0;
1982 if (buf[offset] == 0xff)
1983 offset++;
1984 else if ((buf[offset] & 0xf6) == 0x40
1985 && buf[offset + 1] == 0xff)
1986 {
1987 /* Check the REX.B bit. */
1988 if ((buf[offset] & 0x1) != 0)
1989 r = 8;
1990 offset += 2;
1991 }
1992 else
1993 return pc;
1994
1995 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1996 01. */
1997 if (buf[offset + 1] != 0xf8
1998 || (buf[offset] & 0xf8) != 0x70)
1999 return pc;
2000
2001 /* R/M has register. */
2002 r += buf[offset] & 7;
2003
2004 /* Registers in leaq and pushq have to be the same. */
2005 if (reg != r)
2006 return pc;
2007
2008 if (current_pc > pc + offset_and)
2009 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2010
2011 return min (pc + offset + 2, current_pc);
2012 }
2013
2014 /* Similar to amd64_analyze_stack_align for x32. */
2015
2016 static CORE_ADDR
2017 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2018 struct amd64_frame_cache *cache)
2019 {
2020 /* There are 2 code sequences to re-align stack before the frame
2021 gets set up:
2022
2023 1. Use a caller-saved saved register:
2024
2025 leaq 8(%rsp), %reg
2026 andq $-XXX, %rsp
2027 pushq -8(%reg)
2028
2029 or
2030
2031 [addr32] leal 8(%rsp), %reg
2032 andl $-XXX, %esp
2033 [addr32] pushq -8(%reg)
2034
2035 2. Use a callee-saved saved register:
2036
2037 pushq %reg
2038 leaq 16(%rsp), %reg
2039 andq $-XXX, %rsp
2040 pushq -8(%reg)
2041
2042 or
2043
2044 pushq %reg
2045 [addr32] leal 16(%rsp), %reg
2046 andl $-XXX, %esp
2047 [addr32] pushq -8(%reg)
2048
2049 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2050
2051 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2052 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2053
2054 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2055
2056 0x83 0xe4 0xf0 andl $-16, %esp
2057 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2058 */
2059
2060 gdb_byte buf[19];
2061 int reg, r;
2062 int offset, offset_and;
2063
2064 if (target_read_memory (pc, buf, sizeof buf))
2065 return pc;
2066
2067 /* Skip optional addr32 prefix. */
2068 offset = buf[0] == 0x67 ? 1 : 0;
2069
2070 /* Check caller-saved saved register. The first instruction has
2071 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2072 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2073 && buf[offset + 1] == 0x8d
2074 && buf[offset + 3] == 0x24
2075 && buf[offset + 4] == 0x8)
2076 {
2077 /* MOD must be binary 10 and R/M must be binary 100. */
2078 if ((buf[offset + 2] & 0xc7) != 0x44)
2079 return pc;
2080
2081 /* REG has register number. */
2082 reg = (buf[offset + 2] >> 3) & 7;
2083
2084 /* Check the REX.R bit. */
2085 if ((buf[offset] & 0x4) != 0)
2086 reg += 8;
2087
2088 offset += 5;
2089 }
2090 else
2091 {
2092 /* Check callee-saved saved register. The first instruction
2093 has to be "pushq %reg". */
2094 reg = 0;
2095 if ((buf[offset] & 0xf6) == 0x40
2096 && (buf[offset + 1] & 0xf8) == 0x50)
2097 {
2098 /* Check the REX.B bit. */
2099 if ((buf[offset] & 1) != 0)
2100 reg = 8;
2101
2102 offset += 1;
2103 }
2104 else if ((buf[offset] & 0xf8) != 0x50)
2105 return pc;
2106
2107 /* Get register. */
2108 reg += buf[offset] & 0x7;
2109
2110 offset++;
2111
2112 /* Skip optional addr32 prefix. */
2113 if (buf[offset] == 0x67)
2114 offset++;
2115
2116 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2117 "leal 16(%rsp), %reg". */
2118 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2119 || buf[offset + 1] != 0x8d
2120 || buf[offset + 3] != 0x24
2121 || buf[offset + 4] != 0x10)
2122 return pc;
2123
2124 /* MOD must be binary 10 and R/M must be binary 100. */
2125 if ((buf[offset + 2] & 0xc7) != 0x44)
2126 return pc;
2127
2128 /* REG has register number. */
2129 r = (buf[offset + 2] >> 3) & 7;
2130
2131 /* Check the REX.R bit. */
2132 if ((buf[offset] & 0x4) != 0)
2133 r += 8;
2134
2135 /* Registers in pushq and leaq have to be the same. */
2136 if (reg != r)
2137 return pc;
2138
2139 offset += 5;
2140 }
2141
2142 /* Rigister can't be %rsp nor %rbp. */
2143 if (reg == 4 || reg == 5)
2144 return pc;
2145
2146 /* The next instruction may be "andq $-XXX, %rsp" or
2147 "andl $-XXX, %esp". */
2148 if (buf[offset] != 0x48)
2149 offset--;
2150
2151 if (buf[offset + 2] != 0xe4
2152 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2153 return pc;
2154
2155 offset_and = offset;
2156 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2157
2158 /* Skip optional addr32 prefix. */
2159 if (buf[offset] == 0x67)
2160 offset++;
2161
2162 /* The next instruction has to be "pushq -8(%reg)". */
2163 r = 0;
2164 if (buf[offset] == 0xff)
2165 offset++;
2166 else if ((buf[offset] & 0xf6) == 0x40
2167 && buf[offset + 1] == 0xff)
2168 {
2169 /* Check the REX.B bit. */
2170 if ((buf[offset] & 0x1) != 0)
2171 r = 8;
2172 offset += 2;
2173 }
2174 else
2175 return pc;
2176
2177 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2178 01. */
2179 if (buf[offset + 1] != 0xf8
2180 || (buf[offset] & 0xf8) != 0x70)
2181 return pc;
2182
2183 /* R/M has register. */
2184 r += buf[offset] & 7;
2185
2186 /* Registers in leaq and pushq have to be the same. */
2187 if (reg != r)
2188 return pc;
2189
2190 if (current_pc > pc + offset_and)
2191 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2192
2193 return min (pc + offset + 2, current_pc);
2194 }
2195
2196 /* Do a limited analysis of the prologue at PC and update CACHE
2197 accordingly. Bail out early if CURRENT_PC is reached. Return the
2198 address where the analysis stopped.
2199
2200 We will handle only functions beginning with:
2201
2202 pushq %rbp 0x55
2203 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2204
2205 or (for the X32 ABI):
2206
2207 pushq %rbp 0x55
2208 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2209
2210 Any function that doesn't start with one of these sequences will be
2211 assumed to have no prologue and thus no valid frame pointer in
2212 %rbp. */
2213
2214 static CORE_ADDR
2215 amd64_analyze_prologue (struct gdbarch *gdbarch,
2216 CORE_ADDR pc, CORE_ADDR current_pc,
2217 struct amd64_frame_cache *cache)
2218 {
2219 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2220 /* There are two variations of movq %rsp, %rbp. */
2221 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2222 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2223 /* Ditto for movl %esp, %ebp. */
2224 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2225 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2226
2227 gdb_byte buf[3];
2228 gdb_byte op;
2229
2230 if (current_pc <= pc)
2231 return current_pc;
2232
2233 if (gdbarch_ptr_bit (gdbarch) == 32)
2234 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2235 else
2236 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2237
2238 op = read_code_unsigned_integer (pc, 1, byte_order);
2239
2240 if (op == 0x55) /* pushq %rbp */
2241 {
2242 /* Take into account that we've executed the `pushq %rbp' that
2243 starts this instruction sequence. */
2244 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2245 cache->sp_offset += 8;
2246
2247 /* If that's all, return now. */
2248 if (current_pc <= pc + 1)
2249 return current_pc;
2250
2251 read_code (pc + 1, buf, 3);
2252
2253 /* Check for `movq %rsp, %rbp'. */
2254 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2255 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2256 {
2257 /* OK, we actually have a frame. */
2258 cache->frameless_p = 0;
2259 return pc + 4;
2260 }
2261
2262 /* For X32, also check for `movq %esp, %ebp'. */
2263 if (gdbarch_ptr_bit (gdbarch) == 32)
2264 {
2265 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2266 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2267 {
2268 /* OK, we actually have a frame. */
2269 cache->frameless_p = 0;
2270 return pc + 3;
2271 }
2272 }
2273
2274 return pc + 1;
2275 }
2276
2277 return pc;
2278 }
2279
2280 /* Work around false termination of prologue - GCC PR debug/48827.
2281
2282 START_PC is the first instruction of a function, PC is its minimal already
2283 determined advanced address. Function returns PC if it has nothing to do.
2284
2285 84 c0 test %al,%al
2286 74 23 je after
2287 <-- here is 0 lines advance - the false prologue end marker.
2288 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2289 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2290 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2291 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2292 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2293 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2294 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2295 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2296 after: */
2297
2298 static CORE_ADDR
2299 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2300 {
2301 struct symtab_and_line start_pc_sal, next_sal;
2302 gdb_byte buf[4 + 8 * 7];
2303 int offset, xmmreg;
2304
2305 if (pc == start_pc)
2306 return pc;
2307
2308 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2309 if (start_pc_sal.symtab == NULL
2310 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2311 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2312 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2313 return pc;
2314
2315 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2316 if (next_sal.line != start_pc_sal.line)
2317 return pc;
2318
2319 /* START_PC can be from overlayed memory, ignored here. */
2320 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2321 return pc;
2322
2323 /* test %al,%al */
2324 if (buf[0] != 0x84 || buf[1] != 0xc0)
2325 return pc;
2326 /* je AFTER */
2327 if (buf[2] != 0x74)
2328 return pc;
2329
2330 offset = 4;
2331 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2332 {
2333 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2334 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2335 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2336 return pc;
2337
2338 /* 0b01?????? */
2339 if ((buf[offset + 2] & 0xc0) == 0x40)
2340 {
2341 /* 8-bit displacement. */
2342 offset += 4;
2343 }
2344 /* 0b10?????? */
2345 else if ((buf[offset + 2] & 0xc0) == 0x80)
2346 {
2347 /* 32-bit displacement. */
2348 offset += 7;
2349 }
2350 else
2351 return pc;
2352 }
2353
2354 /* je AFTER */
2355 if (offset - 4 != buf[3])
2356 return pc;
2357
2358 return next_sal.end;
2359 }
2360
2361 /* Return PC of first real instruction. */
2362
2363 static CORE_ADDR
2364 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2365 {
2366 struct amd64_frame_cache cache;
2367 CORE_ADDR pc;
2368 CORE_ADDR func_addr;
2369
2370 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2371 {
2372 CORE_ADDR post_prologue_pc
2373 = skip_prologue_using_sal (gdbarch, func_addr);
2374 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2375
2376 /* Clang always emits a line note before the prologue and another
2377 one after. We trust clang to emit usable line notes. */
2378 if (post_prologue_pc
2379 && (cust != NULL
2380 && COMPUNIT_PRODUCER (cust) != NULL
2381 && strncmp (COMPUNIT_PRODUCER (cust), "clang ",
2382 sizeof ("clang ") - 1) == 0))
2383 return max (start_pc, post_prologue_pc);
2384 }
2385
2386 amd64_init_frame_cache (&cache);
2387 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2388 &cache);
2389 if (cache.frameless_p)
2390 return start_pc;
2391
2392 return amd64_skip_xmm_prologue (pc, start_pc);
2393 }
2394 \f
2395
2396 /* Normal frames. */
2397
2398 static void
2399 amd64_frame_cache_1 (struct frame_info *this_frame,
2400 struct amd64_frame_cache *cache)
2401 {
2402 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2403 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2404 gdb_byte buf[8];
2405 int i;
2406
2407 cache->pc = get_frame_func (this_frame);
2408 if (cache->pc != 0)
2409 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2410 cache);
2411
2412 if (cache->frameless_p)
2413 {
2414 /* We didn't find a valid frame. If we're at the start of a
2415 function, or somewhere half-way its prologue, the function's
2416 frame probably hasn't been fully setup yet. Try to
2417 reconstruct the base address for the stack frame by looking
2418 at the stack pointer. For truly "frameless" functions this
2419 might work too. */
2420
2421 if (cache->saved_sp_reg != -1)
2422 {
2423 /* Stack pointer has been saved. */
2424 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2425 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2426
2427 /* We're halfway aligning the stack. */
2428 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2429 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2430
2431 /* This will be added back below. */
2432 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2433 }
2434 else
2435 {
2436 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2437 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2438 + cache->sp_offset;
2439 }
2440 }
2441 else
2442 {
2443 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2444 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2445 }
2446
2447 /* Now that we have the base address for the stack frame we can
2448 calculate the value of %rsp in the calling frame. */
2449 cache->saved_sp = cache->base + 16;
2450
2451 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2452 frame we find it at the same offset from the reconstructed base
2453 address. If we're halfway aligning the stack, %rip is handled
2454 differently (see above). */
2455 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2456 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2457
2458 /* Adjust all the saved registers such that they contain addresses
2459 instead of offsets. */
2460 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2461 if (cache->saved_regs[i] != -1)
2462 cache->saved_regs[i] += cache->base;
2463
2464 cache->base_p = 1;
2465 }
2466
2467 static struct amd64_frame_cache *
2468 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2469 {
2470 volatile struct gdb_exception ex;
2471 struct amd64_frame_cache *cache;
2472
2473 if (*this_cache)
2474 return *this_cache;
2475
2476 cache = amd64_alloc_frame_cache ();
2477 *this_cache = cache;
2478
2479 TRY_CATCH (ex, RETURN_MASK_ERROR)
2480 {
2481 amd64_frame_cache_1 (this_frame, cache);
2482 }
2483 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2484 throw_exception (ex);
2485
2486 return cache;
2487 }
2488
2489 static enum unwind_stop_reason
2490 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2491 void **this_cache)
2492 {
2493 struct amd64_frame_cache *cache =
2494 amd64_frame_cache (this_frame, this_cache);
2495
2496 if (!cache->base_p)
2497 return UNWIND_UNAVAILABLE;
2498
2499 /* This marks the outermost frame. */
2500 if (cache->base == 0)
2501 return UNWIND_OUTERMOST;
2502
2503 return UNWIND_NO_REASON;
2504 }
2505
2506 static void
2507 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2508 struct frame_id *this_id)
2509 {
2510 struct amd64_frame_cache *cache =
2511 amd64_frame_cache (this_frame, this_cache);
2512
2513 if (!cache->base_p)
2514 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2515 else if (cache->base == 0)
2516 {
2517 /* This marks the outermost frame. */
2518 return;
2519 }
2520 else
2521 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2522 }
2523
2524 static struct value *
2525 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2526 int regnum)
2527 {
2528 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2529 struct amd64_frame_cache *cache =
2530 amd64_frame_cache (this_frame, this_cache);
2531
2532 gdb_assert (regnum >= 0);
2533
2534 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2535 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2536
2537 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2538 return frame_unwind_got_memory (this_frame, regnum,
2539 cache->saved_regs[regnum]);
2540
2541 return frame_unwind_got_register (this_frame, regnum, regnum);
2542 }
2543
2544 static const struct frame_unwind amd64_frame_unwind =
2545 {
2546 NORMAL_FRAME,
2547 amd64_frame_unwind_stop_reason,
2548 amd64_frame_this_id,
2549 amd64_frame_prev_register,
2550 NULL,
2551 default_frame_sniffer
2552 };
2553 \f
2554 /* Generate a bytecode expression to get the value of the saved PC. */
2555
2556 static void
2557 amd64_gen_return_address (struct gdbarch *gdbarch,
2558 struct agent_expr *ax, struct axs_value *value,
2559 CORE_ADDR scope)
2560 {
2561 /* The following sequence assumes the traditional use of the base
2562 register. */
2563 ax_reg (ax, AMD64_RBP_REGNUM);
2564 ax_const_l (ax, 8);
2565 ax_simple (ax, aop_add);
2566 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2567 value->kind = axs_lvalue_memory;
2568 }
2569 \f
2570
2571 /* Signal trampolines. */
2572
2573 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2574 64-bit variants. This would require using identical frame caches
2575 on both platforms. */
2576
2577 static struct amd64_frame_cache *
2578 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2579 {
2580 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2581 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2582 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2583 volatile struct gdb_exception ex;
2584 struct amd64_frame_cache *cache;
2585 CORE_ADDR addr;
2586 gdb_byte buf[8];
2587 int i;
2588
2589 if (*this_cache)
2590 return *this_cache;
2591
2592 cache = amd64_alloc_frame_cache ();
2593
2594 TRY_CATCH (ex, RETURN_MASK_ERROR)
2595 {
2596 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2597 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2598
2599 addr = tdep->sigcontext_addr (this_frame);
2600 gdb_assert (tdep->sc_reg_offset);
2601 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2602 for (i = 0; i < tdep->sc_num_regs; i++)
2603 if (tdep->sc_reg_offset[i] != -1)
2604 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2605
2606 cache->base_p = 1;
2607 }
2608 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2609 throw_exception (ex);
2610
2611 *this_cache = cache;
2612 return cache;
2613 }
2614
2615 static enum unwind_stop_reason
2616 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2617 void **this_cache)
2618 {
2619 struct amd64_frame_cache *cache =
2620 amd64_sigtramp_frame_cache (this_frame, this_cache);
2621
2622 if (!cache->base_p)
2623 return UNWIND_UNAVAILABLE;
2624
2625 return UNWIND_NO_REASON;
2626 }
2627
2628 static void
2629 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2630 void **this_cache, struct frame_id *this_id)
2631 {
2632 struct amd64_frame_cache *cache =
2633 amd64_sigtramp_frame_cache (this_frame, this_cache);
2634
2635 if (!cache->base_p)
2636 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2637 else if (cache->base == 0)
2638 {
2639 /* This marks the outermost frame. */
2640 return;
2641 }
2642 else
2643 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2644 }
2645
2646 static struct value *
2647 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2648 void **this_cache, int regnum)
2649 {
2650 /* Make sure we've initialized the cache. */
2651 amd64_sigtramp_frame_cache (this_frame, this_cache);
2652
2653 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2654 }
2655
2656 static int
2657 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2658 struct frame_info *this_frame,
2659 void **this_cache)
2660 {
2661 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2662
2663 /* We shouldn't even bother if we don't have a sigcontext_addr
2664 handler. */
2665 if (tdep->sigcontext_addr == NULL)
2666 return 0;
2667
2668 if (tdep->sigtramp_p != NULL)
2669 {
2670 if (tdep->sigtramp_p (this_frame))
2671 return 1;
2672 }
2673
2674 if (tdep->sigtramp_start != 0)
2675 {
2676 CORE_ADDR pc = get_frame_pc (this_frame);
2677
2678 gdb_assert (tdep->sigtramp_end != 0);
2679 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2680 return 1;
2681 }
2682
2683 return 0;
2684 }
2685
2686 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2687 {
2688 SIGTRAMP_FRAME,
2689 amd64_sigtramp_frame_unwind_stop_reason,
2690 amd64_sigtramp_frame_this_id,
2691 amd64_sigtramp_frame_prev_register,
2692 NULL,
2693 amd64_sigtramp_frame_sniffer
2694 };
2695 \f
2696
2697 static CORE_ADDR
2698 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2699 {
2700 struct amd64_frame_cache *cache =
2701 amd64_frame_cache (this_frame, this_cache);
2702
2703 return cache->base;
2704 }
2705
2706 static const struct frame_base amd64_frame_base =
2707 {
2708 &amd64_frame_unwind,
2709 amd64_frame_base_address,
2710 amd64_frame_base_address,
2711 amd64_frame_base_address
2712 };
2713
2714 /* Normal frames, but in a function epilogue. */
2715
2716 /* The epilogue is defined here as the 'ret' instruction, which will
2717 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2718 the function's stack frame. */
2719
2720 static int
2721 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2722 {
2723 gdb_byte insn;
2724 struct compunit_symtab *cust;
2725
2726 cust = find_pc_compunit_symtab (pc);
2727 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2728 return 0;
2729
2730 if (target_read_memory (pc, &insn, 1))
2731 return 0; /* Can't read memory at pc. */
2732
2733 if (insn != 0xc3) /* 'ret' instruction. */
2734 return 0;
2735
2736 return 1;
2737 }
2738
2739 static int
2740 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2741 struct frame_info *this_frame,
2742 void **this_prologue_cache)
2743 {
2744 if (frame_relative_level (this_frame) == 0)
2745 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2746 get_frame_pc (this_frame));
2747 else
2748 return 0;
2749 }
2750
2751 static struct amd64_frame_cache *
2752 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2753 {
2754 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2755 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2756 volatile struct gdb_exception ex;
2757 struct amd64_frame_cache *cache;
2758 gdb_byte buf[8];
2759
2760 if (*this_cache)
2761 return *this_cache;
2762
2763 cache = amd64_alloc_frame_cache ();
2764 *this_cache = cache;
2765
2766 TRY_CATCH (ex, RETURN_MASK_ERROR)
2767 {
2768 /* Cache base will be %esp plus cache->sp_offset (-8). */
2769 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2770 cache->base = extract_unsigned_integer (buf, 8,
2771 byte_order) + cache->sp_offset;
2772
2773 /* Cache pc will be the frame func. */
2774 cache->pc = get_frame_pc (this_frame);
2775
2776 /* The saved %esp will be at cache->base plus 16. */
2777 cache->saved_sp = cache->base + 16;
2778
2779 /* The saved %eip will be at cache->base plus 8. */
2780 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2781
2782 cache->base_p = 1;
2783 }
2784 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2785 throw_exception (ex);
2786
2787 return cache;
2788 }
2789
2790 static enum unwind_stop_reason
2791 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2792 void **this_cache)
2793 {
2794 struct amd64_frame_cache *cache
2795 = amd64_epilogue_frame_cache (this_frame, this_cache);
2796
2797 if (!cache->base_p)
2798 return UNWIND_UNAVAILABLE;
2799
2800 return UNWIND_NO_REASON;
2801 }
2802
2803 static void
2804 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2805 void **this_cache,
2806 struct frame_id *this_id)
2807 {
2808 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2809 this_cache);
2810
2811 if (!cache->base_p)
2812 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2813 else
2814 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2815 }
2816
2817 static const struct frame_unwind amd64_epilogue_frame_unwind =
2818 {
2819 NORMAL_FRAME,
2820 amd64_epilogue_frame_unwind_stop_reason,
2821 amd64_epilogue_frame_this_id,
2822 amd64_frame_prev_register,
2823 NULL,
2824 amd64_epilogue_frame_sniffer
2825 };
2826
2827 static struct frame_id
2828 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2829 {
2830 CORE_ADDR fp;
2831
2832 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2833
2834 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2835 }
2836
2837 /* 16 byte align the SP per frame requirements. */
2838
2839 static CORE_ADDR
2840 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2841 {
2842 return sp & -(CORE_ADDR)16;
2843 }
2844 \f
2845
2846 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2847 in the floating-point register set REGSET to register cache
2848 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2849
2850 static void
2851 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2852 int regnum, const void *fpregs, size_t len)
2853 {
2854 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2855 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2856
2857 gdb_assert (len == tdep->sizeof_fpregset);
2858 amd64_supply_fxsave (regcache, regnum, fpregs);
2859 }
2860
2861 /* Collect register REGNUM from the register cache REGCACHE and store
2862 it in the buffer specified by FPREGS and LEN as described by the
2863 floating-point register set REGSET. If REGNUM is -1, do this for
2864 all registers in REGSET. */
2865
2866 static void
2867 amd64_collect_fpregset (const struct regset *regset,
2868 const struct regcache *regcache,
2869 int regnum, void *fpregs, size_t len)
2870 {
2871 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2872 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2873
2874 gdb_assert (len == tdep->sizeof_fpregset);
2875 amd64_collect_fxsave (regcache, regnum, fpregs);
2876 }
2877
2878 const struct regset amd64_fpregset =
2879 {
2880 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2881 };
2882 \f
2883
2884 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2885 %rdi. We expect its value to be a pointer to the jmp_buf structure
2886 from which we extract the address that we will land at. This
2887 address is copied into PC. This routine returns non-zero on
2888 success. */
2889
2890 static int
2891 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2892 {
2893 gdb_byte buf[8];
2894 CORE_ADDR jb_addr;
2895 struct gdbarch *gdbarch = get_frame_arch (frame);
2896 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2897 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2898
2899 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2900 longjmp will land. */
2901 if (jb_pc_offset == -1)
2902 return 0;
2903
2904 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2905 jb_addr= extract_typed_address
2906 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2907 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2908 return 0;
2909
2910 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2911
2912 return 1;
2913 }
2914
2915 static const int amd64_record_regmap[] =
2916 {
2917 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2918 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2919 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2920 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2921 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2922 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2923 };
2924
2925 void
2926 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2927 {
2928 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2929 const struct target_desc *tdesc = info.target_desc;
2930 static const char *const stap_integer_prefixes[] = { "$", NULL };
2931 static const char *const stap_register_prefixes[] = { "%", NULL };
2932 static const char *const stap_register_indirection_prefixes[] = { "(",
2933 NULL };
2934 static const char *const stap_register_indirection_suffixes[] = { ")",
2935 NULL };
2936
2937 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2938 floating-point registers. */
2939 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2940 tdep->fpregset = &amd64_fpregset;
2941
2942 if (! tdesc_has_registers (tdesc))
2943 tdesc = tdesc_amd64;
2944 tdep->tdesc = tdesc;
2945
2946 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2947 tdep->register_names = amd64_register_names;
2948
2949 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
2950 {
2951 tdep->zmmh_register_names = amd64_zmmh_names;
2952 tdep->k_register_names = amd64_k_names;
2953 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
2954 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
2955
2956 tdep->num_zmm_regs = 32;
2957 tdep->num_xmm_avx512_regs = 16;
2958 tdep->num_ymm_avx512_regs = 16;
2959
2960 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
2961 tdep->k0_regnum = AMD64_K0_REGNUM;
2962 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
2963 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
2964 }
2965
2966 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2967 {
2968 tdep->ymmh_register_names = amd64_ymmh_names;
2969 tdep->num_ymm_regs = 16;
2970 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2971 }
2972
2973 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
2974 {
2975 tdep->mpx_register_names = amd64_mpx_names;
2976 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
2977 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
2978 }
2979
2980 tdep->num_byte_regs = 20;
2981 tdep->num_word_regs = 16;
2982 tdep->num_dword_regs = 16;
2983 /* Avoid wiring in the MMX registers for now. */
2984 tdep->num_mmx_regs = 0;
2985
2986 set_gdbarch_pseudo_register_read_value (gdbarch,
2987 amd64_pseudo_register_read_value);
2988 set_gdbarch_pseudo_register_write (gdbarch,
2989 amd64_pseudo_register_write);
2990
2991 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2992
2993 /* AMD64 has an FPU and 16 SSE registers. */
2994 tdep->st0_regnum = AMD64_ST0_REGNUM;
2995 tdep->num_xmm_regs = 16;
2996
2997 /* This is what all the fuss is about. */
2998 set_gdbarch_long_bit (gdbarch, 64);
2999 set_gdbarch_long_long_bit (gdbarch, 64);
3000 set_gdbarch_ptr_bit (gdbarch, 64);
3001
3002 /* In contrast to the i386, on AMD64 a `long double' actually takes
3003 up 128 bits, even though it's still based on the i387 extended
3004 floating-point format which has only 80 significant bits. */
3005 set_gdbarch_long_double_bit (gdbarch, 128);
3006
3007 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3008
3009 /* Register numbers of various important registers. */
3010 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3011 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3012 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3013 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3014
3015 /* The "default" register numbering scheme for AMD64 is referred to
3016 as the "DWARF Register Number Mapping" in the System V psABI.
3017 The preferred debugging format for all known AMD64 targets is
3018 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3019 DWARF-1), but we provide the same mapping just in case. This
3020 mapping is also used for stabs, which GCC does support. */
3021 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3022 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3023
3024 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3025 be in use on any of the supported AMD64 targets. */
3026
3027 /* Call dummy code. */
3028 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3029 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3030 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3031
3032 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3033 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3034 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3035
3036 set_gdbarch_return_value (gdbarch, amd64_return_value);
3037
3038 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3039
3040 tdep->record_regmap = amd64_record_regmap;
3041
3042 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3043
3044 /* Hook the function epilogue frame unwinder. This unwinder is
3045 appended to the list first, so that it supercedes the other
3046 unwinders in function epilogues. */
3047 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3048
3049 /* Hook the prologue-based frame unwinders. */
3050 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3051 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3052 frame_base_set_default (gdbarch, &amd64_frame_base);
3053
3054 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3055
3056 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3057
3058 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3059
3060 /* SystemTap variables and functions. */
3061 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3062 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3063 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3064 stap_register_indirection_prefixes);
3065 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3066 stap_register_indirection_suffixes);
3067 set_gdbarch_stap_is_single_operand (gdbarch,
3068 i386_stap_is_single_operand);
3069 set_gdbarch_stap_parse_special_token (gdbarch,
3070 i386_stap_parse_special_token);
3071 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3072 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3073 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3074 }
3075 \f
3076
3077 static struct type *
3078 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3079 {
3080 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3081
3082 switch (regnum - tdep->eax_regnum)
3083 {
3084 case AMD64_RBP_REGNUM: /* %ebp */
3085 case AMD64_RSP_REGNUM: /* %esp */
3086 return builtin_type (gdbarch)->builtin_data_ptr;
3087 case AMD64_RIP_REGNUM: /* %eip */
3088 return builtin_type (gdbarch)->builtin_func_ptr;
3089 }
3090
3091 return i386_pseudo_register_type (gdbarch, regnum);
3092 }
3093
3094 void
3095 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3096 {
3097 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3098 const struct target_desc *tdesc = info.target_desc;
3099
3100 amd64_init_abi (info, gdbarch);
3101
3102 if (! tdesc_has_registers (tdesc))
3103 tdesc = tdesc_x32;
3104 tdep->tdesc = tdesc;
3105
3106 tdep->num_dword_regs = 17;
3107 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3108
3109 set_gdbarch_long_bit (gdbarch, 32);
3110 set_gdbarch_ptr_bit (gdbarch, 32);
3111 }
3112
3113 /* Provide a prototype to silence -Wmissing-prototypes. */
3114 void _initialize_amd64_tdep (void);
3115
3116 void
3117 _initialize_amd64_tdep (void)
3118 {
3119 initialize_tdesc_amd64 ();
3120 initialize_tdesc_amd64_avx ();
3121 initialize_tdesc_amd64_mpx ();
3122 initialize_tdesc_amd64_avx512 ();
3123
3124 initialize_tdesc_x32 ();
3125 initialize_tdesc_x32_avx ();
3126 initialize_tdesc_x32_avx512 ();
3127 }
3128 \f
3129
3130 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3131 sense that the instruction pointer and data pointer are simply
3132 64-bit offsets into the code segment and the data segment instead
3133 of a selector offset pair. The functions below store the upper 32
3134 bits of these pointers (instead of just the 16-bits of the segment
3135 selector). */
3136
3137 /* Fill register REGNUM in REGCACHE with the appropriate
3138 floating-point or SSE register value from *FXSAVE. If REGNUM is
3139 -1, do this for all registers. This function masks off any of the
3140 reserved bits in *FXSAVE. */
3141
3142 void
3143 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3144 const void *fxsave)
3145 {
3146 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3148
3149 i387_supply_fxsave (regcache, regnum, fxsave);
3150
3151 if (fxsave
3152 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3153 {
3154 const gdb_byte *regs = fxsave;
3155
3156 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3157 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3158 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3159 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3160 }
3161 }
3162
3163 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3164
3165 void
3166 amd64_supply_xsave (struct regcache *regcache, int regnum,
3167 const void *xsave)
3168 {
3169 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3171
3172 i387_supply_xsave (regcache, regnum, xsave);
3173
3174 if (xsave
3175 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3176 {
3177 const gdb_byte *regs = xsave;
3178
3179 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3180 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3181 regs + 12);
3182 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3183 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3184 regs + 20);
3185 }
3186 }
3187
3188 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3189 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3190 all registers. This function doesn't touch any of the reserved
3191 bits in *FXSAVE. */
3192
3193 void
3194 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3195 void *fxsave)
3196 {
3197 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3198 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3199 gdb_byte *regs = fxsave;
3200
3201 i387_collect_fxsave (regcache, regnum, fxsave);
3202
3203 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3204 {
3205 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3206 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3207 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3208 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3209 }
3210 }
3211
3212 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3213
3214 void
3215 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3216 void *xsave, int gcore)
3217 {
3218 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3220 gdb_byte *regs = xsave;
3221
3222 i387_collect_xsave (regcache, regnum, xsave, gcore);
3223
3224 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3225 {
3226 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3227 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3228 regs + 12);
3229 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3230 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3231 regs + 20);
3232 }
3233 }
This page took 0.101373 seconds and 5 git commands to generate.