gdb: remove gdbarch_info_init
[deliverable/binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright (C) 1998-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "arch-utils.h"
23 #include "gdbcmd.h"
24 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et al. */
25 #include "infrun.h"
26 #include "regcache.h"
27 #include "sim-regno.h"
28 #include "gdbcore.h"
29 #include "osabi.h"
30 #include "target-descriptions.h"
31 #include "objfiles.h"
32 #include "language.h"
33 #include "symtab.h"
34
35 #include "gdbsupport/version.h"
36
37 #include "floatformat.h"
38
39 #include "dis-asm.h"
40
41 bool
42 default_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
43 {
44 return !gdbarch_software_single_step_p (gdbarch);
45 }
46
47 CORE_ADDR
48 displaced_step_at_entry_point (struct gdbarch *gdbarch)
49 {
50 CORE_ADDR addr;
51 int bp_len;
52
53 addr = entry_point_address ();
54
55 /* Inferior calls also use the entry point as a breakpoint location.
56 We don't want displaced stepping to interfere with those
57 breakpoints, so leave space. */
58 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
59 addr += bp_len * 2;
60
61 return addr;
62 }
63
64 int
65 legacy_register_sim_regno (struct gdbarch *gdbarch, int regnum)
66 {
67 /* Only makes sense to supply raw registers. */
68 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
69 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
70 suspected that some GDB/SIM combinations may rely on this
71 behaviour. The default should be one2one_register_sim_regno
72 (below). */
73 if (gdbarch_register_name (gdbarch, regnum) != NULL
74 && gdbarch_register_name (gdbarch, regnum)[0] != '\0')
75 return regnum;
76 else
77 return LEGACY_SIM_REGNO_IGNORE;
78 }
79
80
81 /* See arch-utils.h */
82
83 std::string
84 default_memtag_to_string (struct gdbarch *gdbarch, struct value *tag)
85 {
86 error (_("This architecture has no method to convert a memory tag to"
87 " a string."));
88 }
89
90 /* See arch-utils.h */
91
92 bool
93 default_tagged_address_p (struct gdbarch *gdbarch, struct value *address)
94 {
95 /* By default, assume the address is untagged. */
96 return false;
97 }
98
99 /* See arch-utils.h */
100
101 bool
102 default_memtag_matches_p (struct gdbarch *gdbarch, struct value *address)
103 {
104 /* By default, assume the tags match. */
105 return true;
106 }
107
108 /* See arch-utils.h */
109
110 bool
111 default_set_memtags (struct gdbarch *gdbarch, struct value *address,
112 size_t length, const gdb::byte_vector &tags,
113 memtag_type tag_type)
114 {
115 /* By default, return true (successful); */
116 return true;
117 }
118
119 /* See arch-utils.h */
120
121 struct value *
122 default_get_memtag (struct gdbarch *gdbarch, struct value *address,
123 memtag_type tag_type)
124 {
125 /* By default, return no tag. */
126 return nullptr;
127 }
128
129 CORE_ADDR
130 generic_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
131 {
132 return 0;
133 }
134
135 CORE_ADDR
136 generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
137 {
138 return 0;
139 }
140
141 int
142 generic_in_solib_return_trampoline (struct gdbarch *gdbarch,
143 CORE_ADDR pc, const char *name)
144 {
145 return 0;
146 }
147
148 int
149 generic_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
150 {
151 return 0;
152 }
153
154 int
155 default_code_of_frame_writable (struct gdbarch *gdbarch,
156 struct frame_info *frame)
157 {
158 return 1;
159 }
160
161 /* Helper functions for gdbarch_inner_than */
162
163 int
164 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
165 {
166 return (lhs < rhs);
167 }
168
169 int
170 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
171 {
172 return (lhs > rhs);
173 }
174
175 /* Misc helper functions for targets. */
176
177 CORE_ADDR
178 core_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr)
179 {
180 return addr;
181 }
182
183 CORE_ADDR
184 convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
185 struct target_ops *targ)
186 {
187 return addr;
188 }
189
190 int
191 no_op_reg_to_regnum (struct gdbarch *gdbarch, int reg)
192 {
193 return reg;
194 }
195
196 void
197 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
198 {
199 return;
200 }
201
202 /* See arch-utils.h. */
203
204 void
205 default_make_symbol_special (struct symbol *sym, struct objfile *objfile)
206 {
207 return;
208 }
209
210 /* See arch-utils.h. */
211
212 CORE_ADDR
213 default_adjust_dwarf2_addr (CORE_ADDR pc)
214 {
215 return pc;
216 }
217
218 /* See arch-utils.h. */
219
220 CORE_ADDR
221 default_adjust_dwarf2_line (CORE_ADDR addr, int rel)
222 {
223 return addr;
224 }
225
226 /* See arch-utils.h. */
227
228 bool
229 default_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
230 struct dwarf2_frame_state *fs)
231 {
232 return false;
233 }
234
235 int
236 cannot_register_not (struct gdbarch *gdbarch, int regnum)
237 {
238 return 0;
239 }
240
241 /* Legacy version of target_virtual_frame_pointer(). Assumes that
242 there is an gdbarch_deprecated_fp_regnum and that it is the same,
243 cooked or raw. */
244
245 void
246 legacy_virtual_frame_pointer (struct gdbarch *gdbarch,
247 CORE_ADDR pc,
248 int *frame_regnum,
249 LONGEST *frame_offset)
250 {
251 /* FIXME: cagney/2002-09-13: This code is used when identifying the
252 frame pointer of the current PC. It is assuming that a single
253 register and an offset can determine this. I think it should
254 instead generate a byte code expression as that would work better
255 with things like Dwarf2's CFI. */
256 if (gdbarch_deprecated_fp_regnum (gdbarch) >= 0
257 && gdbarch_deprecated_fp_regnum (gdbarch)
258 < gdbarch_num_regs (gdbarch))
259 *frame_regnum = gdbarch_deprecated_fp_regnum (gdbarch);
260 else if (gdbarch_sp_regnum (gdbarch) >= 0
261 && gdbarch_sp_regnum (gdbarch)
262 < gdbarch_num_regs (gdbarch))
263 *frame_regnum = gdbarch_sp_regnum (gdbarch);
264 else
265 /* Should this be an internal error? I guess so, it is reflecting
266 an architectural limitation in the current design. */
267 internal_error (__FILE__, __LINE__,
268 _("No virtual frame pointer available"));
269 *frame_offset = 0;
270 }
271
272 /* Return a floating-point format for a floating-point variable of
273 length LEN in bits. If non-NULL, NAME is the name of its type.
274 If no suitable type is found, return NULL. */
275
276 const struct floatformat **
277 default_floatformat_for_type (struct gdbarch *gdbarch,
278 const char *name, int len)
279 {
280 const struct floatformat **format = NULL;
281
282 /* Check if this is a bfloat16 type. It has the same size as the
283 IEEE half float type, so we use the base type name to tell them
284 apart. */
285 if (name != nullptr && strcmp (name, "__bf16") == 0
286 && len == gdbarch_bfloat16_bit (gdbarch))
287 format = gdbarch_bfloat16_format (gdbarch);
288 else if (len == gdbarch_half_bit (gdbarch))
289 format = gdbarch_half_format (gdbarch);
290 else if (len == gdbarch_float_bit (gdbarch))
291 format = gdbarch_float_format (gdbarch);
292 else if (len == gdbarch_double_bit (gdbarch))
293 format = gdbarch_double_format (gdbarch);
294 else if (len == gdbarch_long_double_bit (gdbarch))
295 format = gdbarch_long_double_format (gdbarch);
296 /* On i386 the 'long double' type takes 96 bits,
297 while the real number of used bits is only 80,
298 both in processor and in memory.
299 The code below accepts the real bit size. */
300 else if (gdbarch_long_double_format (gdbarch) != NULL
301 && len == gdbarch_long_double_format (gdbarch)[0]->totalsize)
302 format = gdbarch_long_double_format (gdbarch);
303
304 return format;
305 }
306 \f
307 int
308 generic_convert_register_p (struct gdbarch *gdbarch, int regnum,
309 struct type *type)
310 {
311 return 0;
312 }
313
314 int
315 default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
316 {
317 return 0;
318 }
319
320 int
321 generic_instruction_nullified (struct gdbarch *gdbarch,
322 struct regcache *regcache)
323 {
324 return 0;
325 }
326
327 int
328 default_remote_register_number (struct gdbarch *gdbarch,
329 int regno)
330 {
331 return regno;
332 }
333
334 /* See arch-utils.h. */
335
336 int
337 default_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
338 {
339 return 0;
340 }
341
342 \f
343 /* Functions to manipulate the endianness of the target. */
344
345 static enum bfd_endian target_byte_order_user = BFD_ENDIAN_UNKNOWN;
346
347 static const char endian_big[] = "big";
348 static const char endian_little[] = "little";
349 static const char endian_auto[] = "auto";
350 static const char *const endian_enum[] =
351 {
352 endian_big,
353 endian_little,
354 endian_auto,
355 NULL,
356 };
357 static const char *set_endian_string;
358
359 enum bfd_endian
360 selected_byte_order (void)
361 {
362 return target_byte_order_user;
363 }
364
365 /* Called by ``show endian''. */
366
367 static void
368 show_endian (struct ui_file *file, int from_tty, struct cmd_list_element *c,
369 const char *value)
370 {
371 if (target_byte_order_user == BFD_ENDIAN_UNKNOWN)
372 if (gdbarch_byte_order (get_current_arch ()) == BFD_ENDIAN_BIG)
373 fprintf_unfiltered (file, _("The target endianness is set automatically "
374 "(currently big endian).\n"));
375 else
376 fprintf_unfiltered (file, _("The target endianness is set automatically "
377 "(currently little endian).\n"));
378 else
379 if (target_byte_order_user == BFD_ENDIAN_BIG)
380 fprintf_unfiltered (file,
381 _("The target is set to big endian.\n"));
382 else
383 fprintf_unfiltered (file,
384 _("The target is set to little endian.\n"));
385 }
386
387 static void
388 set_endian (const char *ignore_args, int from_tty, struct cmd_list_element *c)
389 {
390 struct gdbarch_info info;
391
392 if (set_endian_string == endian_auto)
393 {
394 target_byte_order_user = BFD_ENDIAN_UNKNOWN;
395 if (! gdbarch_update_p (info))
396 internal_error (__FILE__, __LINE__,
397 _("set_endian: architecture update failed"));
398 }
399 else if (set_endian_string == endian_little)
400 {
401 info.byte_order = BFD_ENDIAN_LITTLE;
402 if (! gdbarch_update_p (info))
403 printf_unfiltered (_("Little endian target not supported by GDB\n"));
404 else
405 target_byte_order_user = BFD_ENDIAN_LITTLE;
406 }
407 else if (set_endian_string == endian_big)
408 {
409 info.byte_order = BFD_ENDIAN_BIG;
410 if (! gdbarch_update_p (info))
411 printf_unfiltered (_("Big endian target not supported by GDB\n"));
412 else
413 target_byte_order_user = BFD_ENDIAN_BIG;
414 }
415 else
416 internal_error (__FILE__, __LINE__,
417 _("set_endian: bad value"));
418
419 show_endian (gdb_stdout, from_tty, NULL, NULL);
420 }
421
422 /* Given SELECTED, a currently selected BFD architecture, and
423 TARGET_DESC, the current target description, return what
424 architecture to use.
425
426 SELECTED may be NULL, in which case we return the architecture
427 associated with TARGET_DESC. If SELECTED specifies a variant
428 of the architecture associated with TARGET_DESC, return the
429 more specific of the two.
430
431 If SELECTED is a different architecture, but it is accepted as
432 compatible by the target, we can use the target architecture.
433
434 If SELECTED is obviously incompatible, warn the user. */
435
436 static const struct bfd_arch_info *
437 choose_architecture_for_target (const struct target_desc *target_desc,
438 const struct bfd_arch_info *selected)
439 {
440 const struct bfd_arch_info *from_target = tdesc_architecture (target_desc);
441 const struct bfd_arch_info *compat1, *compat2;
442
443 if (selected == NULL)
444 return from_target;
445
446 if (from_target == NULL)
447 return selected;
448
449 /* struct bfd_arch_info objects are singletons: that is, there's
450 supposed to be exactly one instance for a given machine. So you
451 can tell whether two are equivalent by comparing pointers. */
452 if (from_target == selected)
453 return selected;
454
455 /* BFD's 'A->compatible (A, B)' functions return zero if A and B are
456 incompatible. But if they are compatible, it returns the 'more
457 featureful' of the two arches. That is, if A can run code
458 written for B, but B can't run code written for A, then it'll
459 return A.
460
461 Some targets (e.g. MIPS as of 2006-12-04) don't fully
462 implement this, instead always returning NULL or the first
463 argument. We detect that case by checking both directions. */
464
465 compat1 = selected->compatible (selected, from_target);
466 compat2 = from_target->compatible (from_target, selected);
467
468 if (compat1 == NULL && compat2 == NULL)
469 {
470 /* BFD considers the architectures incompatible. Check our
471 target description whether it accepts SELECTED as compatible
472 anyway. */
473 if (tdesc_compatible_p (target_desc, selected))
474 return from_target;
475
476 warning (_("Selected architecture %s is not compatible "
477 "with reported target architecture %s"),
478 selected->printable_name, from_target->printable_name);
479 return selected;
480 }
481
482 if (compat1 == NULL)
483 return compat2;
484 if (compat2 == NULL)
485 return compat1;
486 if (compat1 == compat2)
487 return compat1;
488
489 /* If the two didn't match, but one of them was a default
490 architecture, assume the more specific one is correct. This
491 handles the case where an executable or target description just
492 says "mips", but the other knows which MIPS variant. */
493 if (compat1->the_default)
494 return compat2;
495 if (compat2->the_default)
496 return compat1;
497
498 /* We have no idea which one is better. This is a bug, but not
499 a critical problem; warn the user. */
500 warning (_("Selected architecture %s is ambiguous with "
501 "reported target architecture %s"),
502 selected->printable_name, from_target->printable_name);
503 return selected;
504 }
505
506 /* Functions to manipulate the architecture of the target. */
507
508 enum set_arch { set_arch_auto, set_arch_manual };
509
510 static const struct bfd_arch_info *target_architecture_user;
511
512 static const char *set_architecture_string;
513
514 const char *
515 selected_architecture_name (void)
516 {
517 if (target_architecture_user == NULL)
518 return NULL;
519 else
520 return set_architecture_string;
521 }
522
523 /* Called if the user enters ``show architecture'' without an
524 argument. */
525
526 static void
527 show_architecture (struct ui_file *file, int from_tty,
528 struct cmd_list_element *c, const char *value)
529 {
530 if (target_architecture_user == NULL)
531 fprintf_filtered (file, _("The target architecture is set to "
532 "\"auto\" (currently \"%s\").\n"),
533 gdbarch_bfd_arch_info (get_current_arch ())->printable_name);
534 else
535 fprintf_filtered (file, _("The target architecture is set to \"%s\".\n"),
536 set_architecture_string);
537 }
538
539
540 /* Called if the user enters ``set architecture'' with or without an
541 argument. */
542
543 static void
544 set_architecture (const char *ignore_args,
545 int from_tty, struct cmd_list_element *c)
546 {
547 struct gdbarch_info info;
548
549 if (strcmp (set_architecture_string, "auto") == 0)
550 {
551 target_architecture_user = NULL;
552 if (!gdbarch_update_p (info))
553 internal_error (__FILE__, __LINE__,
554 _("could not select an architecture automatically"));
555 }
556 else
557 {
558 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
559 if (info.bfd_arch_info == NULL)
560 internal_error (__FILE__, __LINE__,
561 _("set_architecture: bfd_scan_arch failed"));
562 if (gdbarch_update_p (info))
563 target_architecture_user = info.bfd_arch_info;
564 else
565 printf_unfiltered (_("Architecture `%s' not recognized.\n"),
566 set_architecture_string);
567 }
568 show_architecture (gdb_stdout, from_tty, NULL, NULL);
569 }
570
571 /* Try to select a global architecture that matches "info". Return
572 non-zero if the attempt succeeds. */
573 int
574 gdbarch_update_p (struct gdbarch_info info)
575 {
576 struct gdbarch *new_gdbarch;
577
578 /* Check for the current file. */
579 if (info.abfd == NULL)
580 info.abfd = current_program_space->exec_bfd ();
581 if (info.abfd == NULL)
582 info.abfd = core_bfd;
583
584 /* Check for the current target description. */
585 if (info.target_desc == NULL)
586 info.target_desc = target_current_description ();
587
588 new_gdbarch = gdbarch_find_by_info (info);
589
590 /* If there no architecture by that name, reject the request. */
591 if (new_gdbarch == NULL)
592 {
593 if (gdbarch_debug)
594 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
595 "Architecture not found\n");
596 return 0;
597 }
598
599 /* If it is the same old architecture, accept the request (but don't
600 swap anything). */
601 if (new_gdbarch == target_gdbarch ())
602 {
603 if (gdbarch_debug)
604 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
605 "Architecture %s (%s) unchanged\n",
606 host_address_to_string (new_gdbarch),
607 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
608 return 1;
609 }
610
611 /* It's a new architecture, swap it in. */
612 if (gdbarch_debug)
613 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
614 "New architecture %s (%s) selected\n",
615 host_address_to_string (new_gdbarch),
616 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
617 set_target_gdbarch (new_gdbarch);
618
619 return 1;
620 }
621
622 /* Return the architecture for ABFD. If no suitable architecture
623 could be find, return NULL. */
624
625 struct gdbarch *
626 gdbarch_from_bfd (bfd *abfd)
627 {
628 struct gdbarch_info info;
629
630 info.abfd = abfd;
631 return gdbarch_find_by_info (info);
632 }
633
634 /* Set the dynamic target-system-dependent parameters (architecture,
635 byte-order) using information found in the BFD */
636
637 void
638 set_gdbarch_from_file (bfd *abfd)
639 {
640 struct gdbarch_info info;
641 struct gdbarch *gdbarch;
642
643 info.abfd = abfd;
644 info.target_desc = target_current_description ();
645 gdbarch = gdbarch_find_by_info (info);
646
647 if (gdbarch == NULL)
648 error (_("Architecture of file not recognized."));
649 set_target_gdbarch (gdbarch);
650 }
651
652 /* Initialize the current architecture. Update the ``set
653 architecture'' command so that it specifies a list of valid
654 architectures. */
655
656 #ifdef DEFAULT_BFD_ARCH
657 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
658 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
659 #else
660 static const bfd_arch_info_type *default_bfd_arch;
661 #endif
662
663 #ifdef DEFAULT_BFD_VEC
664 extern const bfd_target DEFAULT_BFD_VEC;
665 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
666 #else
667 static const bfd_target *default_bfd_vec;
668 #endif
669
670 static enum bfd_endian default_byte_order = BFD_ENDIAN_UNKNOWN;
671
672 void
673 initialize_current_architecture (void)
674 {
675 const char **arches = gdbarch_printable_names ();
676
677 /* Find a default architecture. */
678 if (default_bfd_arch == NULL)
679 {
680 /* Choose the architecture by taking the first one
681 alphabetically. */
682 const char *chosen = arches[0];
683 const char **arch;
684 for (arch = arches; *arch != NULL; arch++)
685 {
686 if (strcmp (*arch, chosen) < 0)
687 chosen = *arch;
688 }
689 if (chosen == NULL)
690 internal_error (__FILE__, __LINE__,
691 _("initialize_current_architecture: No arch"));
692 default_bfd_arch = bfd_scan_arch (chosen);
693 if (default_bfd_arch == NULL)
694 internal_error (__FILE__, __LINE__,
695 _("initialize_current_architecture: Arch not found"));
696 }
697
698 gdbarch_info info;
699 info.bfd_arch_info = default_bfd_arch;
700
701 /* Take several guesses at a byte order. */
702 if (default_byte_order == BFD_ENDIAN_UNKNOWN
703 && default_bfd_vec != NULL)
704 {
705 /* Extract BFD's default vector's byte order. */
706 switch (default_bfd_vec->byteorder)
707 {
708 case BFD_ENDIAN_BIG:
709 default_byte_order = BFD_ENDIAN_BIG;
710 break;
711 case BFD_ENDIAN_LITTLE:
712 default_byte_order = BFD_ENDIAN_LITTLE;
713 break;
714 default:
715 break;
716 }
717 }
718 if (default_byte_order == BFD_ENDIAN_UNKNOWN)
719 {
720 /* look for ``*el-*'' in the target name. */
721 const char *chp;
722 chp = strchr (target_name, '-');
723 if (chp != NULL
724 && chp - 2 >= target_name
725 && startswith (chp - 2, "el"))
726 default_byte_order = BFD_ENDIAN_LITTLE;
727 }
728 if (default_byte_order == BFD_ENDIAN_UNKNOWN)
729 {
730 /* Wire it to big-endian!!! */
731 default_byte_order = BFD_ENDIAN_BIG;
732 }
733
734 info.byte_order = default_byte_order;
735 info.byte_order_for_code = info.byte_order;
736
737 if (! gdbarch_update_p (info))
738 internal_error (__FILE__, __LINE__,
739 _("initialize_current_architecture: Selection of "
740 "initial architecture failed"));
741
742 /* Create the ``set architecture'' command appending ``auto'' to the
743 list of architectures. */
744 {
745 /* Append ``auto''. */
746 int nr;
747 for (nr = 0; arches[nr] != NULL; nr++);
748 arches = XRESIZEVEC (const char *, arches, nr + 2);
749 arches[nr + 0] = "auto";
750 arches[nr + 1] = NULL;
751 set_show_commands architecture_cmds
752 = add_setshow_enum_cmd ("architecture", class_support,
753 arches, &set_architecture_string,
754 _("Set architecture of target."),
755 _("Show architecture of target."), NULL,
756 set_architecture, show_architecture,
757 &setlist, &showlist);
758 add_alias_cmd ("processor", architecture_cmds.set, class_support, 1,
759 &setlist);
760 }
761 }
762
763 /* Similar to init, but this time fill in the blanks. Information is
764 obtained from the global "set ..." options and explicitly
765 initialized INFO fields. */
766
767 void
768 gdbarch_info_fill (struct gdbarch_info *info)
769 {
770 /* "(gdb) set architecture ...". */
771 if (info->bfd_arch_info == NULL
772 && target_architecture_user)
773 info->bfd_arch_info = target_architecture_user;
774 /* From the file. */
775 if (info->bfd_arch_info == NULL
776 && info->abfd != NULL
777 && bfd_get_arch (info->abfd) != bfd_arch_unknown
778 && bfd_get_arch (info->abfd) != bfd_arch_obscure)
779 info->bfd_arch_info = bfd_get_arch_info (info->abfd);
780 /* From the target. */
781 if (info->target_desc != NULL)
782 info->bfd_arch_info = choose_architecture_for_target
783 (info->target_desc, info->bfd_arch_info);
784 /* From the default. */
785 if (info->bfd_arch_info == NULL)
786 info->bfd_arch_info = default_bfd_arch;
787
788 /* "(gdb) set byte-order ...". */
789 if (info->byte_order == BFD_ENDIAN_UNKNOWN
790 && target_byte_order_user != BFD_ENDIAN_UNKNOWN)
791 info->byte_order = target_byte_order_user;
792 /* From the INFO struct. */
793 if (info->byte_order == BFD_ENDIAN_UNKNOWN
794 && info->abfd != NULL)
795 info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
796 : bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
797 : BFD_ENDIAN_UNKNOWN);
798 /* From the default. */
799 if (info->byte_order == BFD_ENDIAN_UNKNOWN)
800 info->byte_order = default_byte_order;
801 info->byte_order_for_code = info->byte_order;
802 /* Wire the default to the last selected byte order. */
803 default_byte_order = info->byte_order;
804
805 /* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */
806 /* From the manual override, or from file. */
807 if (info->osabi == GDB_OSABI_UNKNOWN)
808 info->osabi = gdbarch_lookup_osabi (info->abfd);
809 /* From the target. */
810
811 if (info->osabi == GDB_OSABI_UNKNOWN && info->target_desc != NULL)
812 info->osabi = tdesc_osabi (info->target_desc);
813 /* From the configured default. */
814 #ifdef GDB_OSABI_DEFAULT
815 if (info->osabi == GDB_OSABI_UNKNOWN)
816 info->osabi = GDB_OSABI_DEFAULT;
817 #endif
818 /* If we still don't know which osabi to pick, pick none. */
819 if (info->osabi == GDB_OSABI_UNKNOWN)
820 info->osabi = GDB_OSABI_NONE;
821
822 /* Must have at least filled in the architecture. */
823 gdb_assert (info->bfd_arch_info != NULL);
824 }
825
826 /* Return "current" architecture. If the target is running, this is
827 the architecture of the selected frame. Otherwise, the "current"
828 architecture defaults to the target architecture.
829
830 This function should normally be called solely by the command
831 interpreter routines to determine the architecture to execute a
832 command in. */
833 struct gdbarch *
834 get_current_arch (void)
835 {
836 if (has_stack_frames ())
837 return get_frame_arch (get_selected_frame (NULL));
838 else
839 return target_gdbarch ();
840 }
841
842 int
843 default_has_shared_address_space (struct gdbarch *gdbarch)
844 {
845 /* Simply say no. In most unix-like targets each inferior/process
846 has its own address space. */
847 return 0;
848 }
849
850 int
851 default_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
852 std::string *msg)
853 {
854 /* We don't know if maybe the target has some way to do fast
855 tracepoints that doesn't need gdbarch, so always say yes. */
856 if (msg)
857 msg->clear ();
858 return 1;
859 }
860
861 const gdb_byte *
862 default_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
863 int *lenptr)
864 {
865 int kind = gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr);
866
867 return gdbarch_sw_breakpoint_from_kind (gdbarch, kind, lenptr);
868 }
869 int
870 default_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
871 struct regcache *regcache,
872 CORE_ADDR *pcptr)
873 {
874 return gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr);
875 }
876
877
878 void
879 default_gen_return_address (struct gdbarch *gdbarch,
880 struct agent_expr *ax, struct axs_value *value,
881 CORE_ADDR scope)
882 {
883 error (_("This architecture has no method to collect a return address."));
884 }
885
886 int
887 default_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
888 struct type *type)
889 {
890 /* Usually, the return value's address is stored the in the "first hidden"
891 parameter if the return value should be passed by reference, as
892 specified in ABI. */
893 return !(language_pass_by_reference (type).trivially_copyable);
894 }
895
896 int default_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
897 {
898 return 0;
899 }
900
901 int default_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
902 {
903 return 0;
904 }
905
906 int default_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
907 {
908 return 0;
909 }
910
911 /* See arch-utils.h. */
912
913 bool
914 default_program_breakpoint_here_p (struct gdbarch *gdbarch,
915 CORE_ADDR address)
916 {
917 int len;
918 const gdb_byte *bpoint = gdbarch_breakpoint_from_pc (gdbarch, &address, &len);
919
920 /* Software breakpoints unsupported? */
921 if (bpoint == nullptr)
922 return false;
923
924 gdb_byte *target_mem = (gdb_byte *) alloca (len);
925
926 /* Enable the automatic memory restoration from breakpoints while
927 we read the memory. Otherwise we may find temporary breakpoints, ones
928 inserted by GDB, and flag them as permanent breakpoints. */
929 scoped_restore restore_memory
930 = make_scoped_restore_show_memory_breakpoints (0);
931
932 if (target_read_memory (address, target_mem, len) == 0)
933 {
934 /* Check if this is a breakpoint instruction for this architecture,
935 including ones used by GDB. */
936 if (memcmp (target_mem, bpoint, len) == 0)
937 return true;
938 }
939
940 return false;
941 }
942
943 void
944 default_skip_permanent_breakpoint (struct regcache *regcache)
945 {
946 struct gdbarch *gdbarch = regcache->arch ();
947 CORE_ADDR current_pc = regcache_read_pc (regcache);
948 int bp_len;
949
950 gdbarch_breakpoint_from_pc (gdbarch, &current_pc, &bp_len);
951 current_pc += bp_len;
952 regcache_write_pc (regcache, current_pc);
953 }
954
955 CORE_ADDR
956 default_infcall_mmap (CORE_ADDR size, unsigned prot)
957 {
958 error (_("This target does not support inferior memory allocation by mmap."));
959 }
960
961 void
962 default_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
963 {
964 /* Memory reserved by inferior mmap is kept leaked. */
965 }
966
967 /* -mcmodel=large is used so that no GOT (Global Offset Table) is needed to be
968 created in inferior memory by GDB (normally it is set by ld.so). */
969
970 std::string
971 default_gcc_target_options (struct gdbarch *gdbarch)
972 {
973 return string_printf ("-m%d%s", gdbarch_ptr_bit (gdbarch),
974 (gdbarch_ptr_bit (gdbarch) == 64
975 ? " -mcmodel=large" : ""));
976 }
977
978 /* gdbarch gnu_triplet_regexp method. */
979
980 const char *
981 default_gnu_triplet_regexp (struct gdbarch *gdbarch)
982 {
983 return gdbarch_bfd_arch_info (gdbarch)->arch_name;
984 }
985
986 /* Default method for gdbarch_addressable_memory_unit_size. The default is
987 based on the bits_per_byte defined in the bfd library for the current
988 architecture, this is usually 8-bits, and so this function will usually
989 return 1 indicating 1 byte is 1 octet. */
990
991 int
992 default_addressable_memory_unit_size (struct gdbarch *gdbarch)
993 {
994 return gdbarch_bfd_arch_info (gdbarch)->bits_per_byte / 8;
995 }
996
997 void
998 default_guess_tracepoint_registers (struct gdbarch *gdbarch,
999 struct regcache *regcache,
1000 CORE_ADDR addr)
1001 {
1002 int pc_regno = gdbarch_pc_regnum (gdbarch);
1003 gdb_byte *regs;
1004
1005 /* This guessing code below only works if the PC register isn't
1006 a pseudo-register. The value of a pseudo-register isn't stored
1007 in the (non-readonly) regcache -- instead it's recomputed
1008 (probably from some other cached raw register) whenever the
1009 register is read. In this case, a custom method implementation
1010 should be used by the architecture. */
1011 if (pc_regno < 0 || pc_regno >= gdbarch_num_regs (gdbarch))
1012 return;
1013
1014 regs = (gdb_byte *) alloca (register_size (gdbarch, pc_regno));
1015 store_unsigned_integer (regs, register_size (gdbarch, pc_regno),
1016 gdbarch_byte_order (gdbarch), addr);
1017 regcache->raw_supply (pc_regno, regs);
1018 }
1019
1020 int
1021 default_print_insn (bfd_vma memaddr, disassemble_info *info)
1022 {
1023 disassembler_ftype disassemble_fn;
1024
1025 disassemble_fn = disassembler (info->arch, info->endian == BFD_ENDIAN_BIG,
1026 info->mach, current_program_space->exec_bfd ());
1027
1028 gdb_assert (disassemble_fn != NULL);
1029 return (*disassemble_fn) (memaddr, info);
1030 }
1031
1032 /* See arch-utils.h. */
1033
1034 CORE_ADDR
1035 gdbarch_skip_prologue_noexcept (gdbarch *gdbarch, CORE_ADDR pc) noexcept
1036 {
1037 CORE_ADDR new_pc = pc;
1038
1039 try
1040 {
1041 new_pc = gdbarch_skip_prologue (gdbarch, pc);
1042 }
1043 catch (const gdb_exception &ex)
1044 {}
1045
1046 return new_pc;
1047 }
1048
1049 /* See arch-utils.h. */
1050
1051 bool
1052 default_in_indirect_branch_thunk (gdbarch *gdbarch, CORE_ADDR pc)
1053 {
1054 return false;
1055 }
1056
1057 /* See arch-utils.h. */
1058
1059 ULONGEST
1060 default_type_align (struct gdbarch *gdbarch, struct type *type)
1061 {
1062 return 0;
1063 }
1064
1065 /* See arch-utils.h. */
1066
1067 std::string
1068 default_get_pc_address_flags (frame_info *frame, CORE_ADDR pc)
1069 {
1070 return "";
1071 }
1072
1073 /* See arch-utils.h. */
1074 void
1075 default_read_core_file_mappings (struct gdbarch *gdbarch,
1076 struct bfd *cbfd,
1077 gdb::function_view<void (ULONGEST count)>
1078 pre_loop_cb,
1079 gdb::function_view<void (int num,
1080 ULONGEST start,
1081 ULONGEST end,
1082 ULONGEST file_ofs,
1083 const char *filename)>
1084 loop_cb)
1085 {
1086 }
1087
1088 void _initialize_gdbarch_utils ();
1089 void
1090 _initialize_gdbarch_utils ()
1091 {
1092 add_setshow_enum_cmd ("endian", class_support,
1093 endian_enum, &set_endian_string,
1094 _("Set endianness of target."),
1095 _("Show endianness of target."),
1096 NULL, set_endian, show_endian,
1097 &setlist, &showlist);
1098 }
This page took 0.0603 seconds and 4 git commands to generate.