windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / arm-linux-nat.c
1 /* GNU/Linux on ARM native support.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "inferior.h"
21 #include "gdbcore.h"
22 #include "regcache.h"
23 #include "target.h"
24 #include "linux-nat.h"
25 #include "target-descriptions.h"
26 #include "auxv.h"
27 #include "observer.h"
28 #include "gdbthread.h"
29
30 #include "arm-tdep.h"
31 #include "arm-linux-tdep.h"
32
33 #include <elf/common.h>
34 #include <sys/user.h>
35 #include <sys/ptrace.h>
36 #include <sys/utsname.h>
37 #include <sys/procfs.h>
38
39 /* Prototypes for supply_gregset etc. */
40 #include "gregset.h"
41
42 /* Defines ps_err_e, struct ps_prochandle. */
43 #include "gdb_proc_service.h"
44
45 #ifndef PTRACE_GET_THREAD_AREA
46 #define PTRACE_GET_THREAD_AREA 22
47 #endif
48
49 #ifndef PTRACE_GETWMMXREGS
50 #define PTRACE_GETWMMXREGS 18
51 #define PTRACE_SETWMMXREGS 19
52 #endif
53
54 #ifndef PTRACE_GETVFPREGS
55 #define PTRACE_GETVFPREGS 27
56 #define PTRACE_SETVFPREGS 28
57 #endif
58
59 #ifndef PTRACE_GETHBPREGS
60 #define PTRACE_GETHBPREGS 29
61 #define PTRACE_SETHBPREGS 30
62 #endif
63
64 /* A flag for whether the WMMX registers are available. */
65 static int arm_linux_has_wmmx_registers;
66
67 /* The number of 64-bit VFP registers we have (expect this to be 0,
68 16, or 32). */
69 static int arm_linux_vfp_register_count;
70
71 extern int arm_apcs_32;
72
73 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
74 case we may be tracing more than one process at a time. In that
75 case, inferior_ptid will contain the main process ID and the
76 individual thread (process) ID. get_thread_id () is used to get
77 the thread id if it's available, and the process id otherwise. */
78
79 static int
80 get_thread_id (ptid_t ptid)
81 {
82 int tid = ptid_get_lwp (ptid);
83 if (0 == tid)
84 tid = ptid_get_pid (ptid);
85 return tid;
86 }
87
88 #define GET_THREAD_ID(PTID) get_thread_id (PTID)
89
90 /* Get the value of a particular register from the floating point
91 state of the process and store it into regcache. */
92
93 static void
94 fetch_fpregister (struct regcache *regcache, int regno)
95 {
96 int ret, tid;
97 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
98
99 /* Get the thread id for the ptrace call. */
100 tid = GET_THREAD_ID (inferior_ptid);
101
102 /* Read the floating point state. */
103 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
104 if (ret < 0)
105 {
106 warning (_("Unable to fetch floating point register."));
107 return;
108 }
109
110 /* Fetch fpsr. */
111 if (ARM_FPS_REGNUM == regno)
112 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
113 fp + NWFPE_FPSR_OFFSET);
114
115 /* Fetch the floating point register. */
116 if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
117 supply_nwfpe_register (regcache, regno, fp);
118 }
119
120 /* Get the whole floating point state of the process and store it
121 into regcache. */
122
123 static void
124 fetch_fpregs (struct regcache *regcache)
125 {
126 int ret, regno, tid;
127 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
128
129 /* Get the thread id for the ptrace call. */
130 tid = GET_THREAD_ID (inferior_ptid);
131
132 /* Read the floating point state. */
133 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
134 if (ret < 0)
135 {
136 warning (_("Unable to fetch the floating point registers."));
137 return;
138 }
139
140 /* Fetch fpsr. */
141 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
142 fp + NWFPE_FPSR_OFFSET);
143
144 /* Fetch the floating point registers. */
145 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
146 supply_nwfpe_register (regcache, regno, fp);
147 }
148
149 /* Save a particular register into the floating point state of the
150 process using the contents from regcache. */
151
152 static void
153 store_fpregister (const struct regcache *regcache, int regno)
154 {
155 int ret, tid;
156 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
157
158 /* Get the thread id for the ptrace call. */
159 tid = GET_THREAD_ID (inferior_ptid);
160
161 /* Read the floating point state. */
162 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
163 if (ret < 0)
164 {
165 warning (_("Unable to fetch the floating point registers."));
166 return;
167 }
168
169 /* Store fpsr. */
170 if (ARM_FPS_REGNUM == regno
171 && REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
172 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
173
174 /* Store the floating point register. */
175 if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
176 collect_nwfpe_register (regcache, regno, fp);
177
178 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
179 if (ret < 0)
180 {
181 warning (_("Unable to store floating point register."));
182 return;
183 }
184 }
185
186 /* Save the whole floating point state of the process using
187 the contents from regcache. */
188
189 static void
190 store_fpregs (const struct regcache *regcache)
191 {
192 int ret, regno, tid;
193 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
194
195 /* Get the thread id for the ptrace call. */
196 tid = GET_THREAD_ID (inferior_ptid);
197
198 /* Read the floating point state. */
199 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
200 if (ret < 0)
201 {
202 warning (_("Unable to fetch the floating point registers."));
203 return;
204 }
205
206 /* Store fpsr. */
207 if (REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
208 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
209
210 /* Store the floating point registers. */
211 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
212 if (REG_VALID == regcache_register_status (regcache, regno))
213 collect_nwfpe_register (regcache, regno, fp);
214
215 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
216 if (ret < 0)
217 {
218 warning (_("Unable to store floating point registers."));
219 return;
220 }
221 }
222
223 /* Fetch a general register of the process and store into
224 regcache. */
225
226 static void
227 fetch_register (struct regcache *regcache, int regno)
228 {
229 int ret, tid;
230 elf_gregset_t regs;
231
232 /* Get the thread id for the ptrace call. */
233 tid = GET_THREAD_ID (inferior_ptid);
234
235 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
236 if (ret < 0)
237 {
238 warning (_("Unable to fetch general register."));
239 return;
240 }
241
242 if (regno >= ARM_A1_REGNUM && regno < ARM_PC_REGNUM)
243 regcache_raw_supply (regcache, regno, (char *) &regs[regno]);
244
245 if (ARM_PS_REGNUM == regno)
246 {
247 if (arm_apcs_32)
248 regcache_raw_supply (regcache, ARM_PS_REGNUM,
249 (char *) &regs[ARM_CPSR_GREGNUM]);
250 else
251 regcache_raw_supply (regcache, ARM_PS_REGNUM,
252 (char *) &regs[ARM_PC_REGNUM]);
253 }
254
255 if (ARM_PC_REGNUM == regno)
256 {
257 regs[ARM_PC_REGNUM] = gdbarch_addr_bits_remove
258 (get_regcache_arch (regcache),
259 regs[ARM_PC_REGNUM]);
260 regcache_raw_supply (regcache, ARM_PC_REGNUM,
261 (char *) &regs[ARM_PC_REGNUM]);
262 }
263 }
264
265 /* Fetch all general registers of the process and store into
266 regcache. */
267
268 static void
269 fetch_regs (struct regcache *regcache)
270 {
271 int ret, regno, tid;
272 elf_gregset_t regs;
273
274 /* Get the thread id for the ptrace call. */
275 tid = GET_THREAD_ID (inferior_ptid);
276
277 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
278 if (ret < 0)
279 {
280 warning (_("Unable to fetch general registers."));
281 return;
282 }
283
284 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
285 regcache_raw_supply (regcache, regno, (char *) &regs[regno]);
286
287 if (arm_apcs_32)
288 regcache_raw_supply (regcache, ARM_PS_REGNUM,
289 (char *) &regs[ARM_CPSR_GREGNUM]);
290 else
291 regcache_raw_supply (regcache, ARM_PS_REGNUM,
292 (char *) &regs[ARM_PC_REGNUM]);
293
294 regs[ARM_PC_REGNUM] = gdbarch_addr_bits_remove
295 (get_regcache_arch (regcache), regs[ARM_PC_REGNUM]);
296 regcache_raw_supply (regcache, ARM_PC_REGNUM,
297 (char *) &regs[ARM_PC_REGNUM]);
298 }
299
300 /* Store all general registers of the process from the values in
301 regcache. */
302
303 static void
304 store_register (const struct regcache *regcache, int regno)
305 {
306 int ret, tid;
307 elf_gregset_t regs;
308
309 if (REG_VALID != regcache_register_status (regcache, regno))
310 return;
311
312 /* Get the thread id for the ptrace call. */
313 tid = GET_THREAD_ID (inferior_ptid);
314
315 /* Get the general registers from the process. */
316 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
317 if (ret < 0)
318 {
319 warning (_("Unable to fetch general registers."));
320 return;
321 }
322
323 if (regno >= ARM_A1_REGNUM && regno <= ARM_PC_REGNUM)
324 regcache_raw_collect (regcache, regno, (char *) &regs[regno]);
325 else if (arm_apcs_32 && regno == ARM_PS_REGNUM)
326 regcache_raw_collect (regcache, regno,
327 (char *) &regs[ARM_CPSR_GREGNUM]);
328 else if (!arm_apcs_32 && regno == ARM_PS_REGNUM)
329 regcache_raw_collect (regcache, ARM_PC_REGNUM,
330 (char *) &regs[ARM_PC_REGNUM]);
331
332 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
333 if (ret < 0)
334 {
335 warning (_("Unable to store general register."));
336 return;
337 }
338 }
339
340 static void
341 store_regs (const struct regcache *regcache)
342 {
343 int ret, regno, tid;
344 elf_gregset_t regs;
345
346 /* Get the thread id for the ptrace call. */
347 tid = GET_THREAD_ID (inferior_ptid);
348
349 /* Fetch the general registers. */
350 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
351 if (ret < 0)
352 {
353 warning (_("Unable to fetch general registers."));
354 return;
355 }
356
357 for (regno = ARM_A1_REGNUM; regno <= ARM_PC_REGNUM; regno++)
358 {
359 if (REG_VALID == regcache_register_status (regcache, regno))
360 regcache_raw_collect (regcache, regno, (char *) &regs[regno]);
361 }
362
363 if (arm_apcs_32 && REG_VALID == regcache_register_status (regcache, ARM_PS_REGNUM))
364 regcache_raw_collect (regcache, ARM_PS_REGNUM,
365 (char *) &regs[ARM_CPSR_GREGNUM]);
366
367 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
368
369 if (ret < 0)
370 {
371 warning (_("Unable to store general registers."));
372 return;
373 }
374 }
375
376 /* Fetch all WMMX registers of the process and store into
377 regcache. */
378
379 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
380
381 static void
382 fetch_wmmx_regs (struct regcache *regcache)
383 {
384 char regbuf[IWMMXT_REGS_SIZE];
385 int ret, regno, tid;
386
387 /* Get the thread id for the ptrace call. */
388 tid = GET_THREAD_ID (inferior_ptid);
389
390 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
391 if (ret < 0)
392 {
393 warning (_("Unable to fetch WMMX registers."));
394 return;
395 }
396
397 for (regno = 0; regno < 16; regno++)
398 regcache_raw_supply (regcache, regno + ARM_WR0_REGNUM,
399 &regbuf[regno * 8]);
400
401 for (regno = 0; regno < 2; regno++)
402 regcache_raw_supply (regcache, regno + ARM_WCSSF_REGNUM,
403 &regbuf[16 * 8 + regno * 4]);
404
405 for (regno = 0; regno < 4; regno++)
406 regcache_raw_supply (regcache, regno + ARM_WCGR0_REGNUM,
407 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
408 }
409
410 static void
411 store_wmmx_regs (const struct regcache *regcache)
412 {
413 char regbuf[IWMMXT_REGS_SIZE];
414 int ret, regno, tid;
415
416 /* Get the thread id for the ptrace call. */
417 tid = GET_THREAD_ID (inferior_ptid);
418
419 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
420 if (ret < 0)
421 {
422 warning (_("Unable to fetch WMMX registers."));
423 return;
424 }
425
426 for (regno = 0; regno < 16; regno++)
427 if (REG_VALID == regcache_register_status (regcache,
428 regno + ARM_WR0_REGNUM))
429 regcache_raw_collect (regcache, regno + ARM_WR0_REGNUM,
430 &regbuf[regno * 8]);
431
432 for (regno = 0; regno < 2; regno++)
433 if (REG_VALID == regcache_register_status (regcache,
434 regno + ARM_WCSSF_REGNUM))
435 regcache_raw_collect (regcache, regno + ARM_WCSSF_REGNUM,
436 &regbuf[16 * 8 + regno * 4]);
437
438 for (regno = 0; regno < 4; regno++)
439 if (REG_VALID == regcache_register_status (regcache,
440 regno + ARM_WCGR0_REGNUM))
441 regcache_raw_collect (regcache, regno + ARM_WCGR0_REGNUM,
442 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
443
444 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
445
446 if (ret < 0)
447 {
448 warning (_("Unable to store WMMX registers."));
449 return;
450 }
451 }
452
453 /* Fetch and store VFP Registers. The kernel object has space for 32
454 64-bit registers, and the FPSCR. This is even when on a VFPv2 or
455 VFPv3D16 target. */
456 #define VFP_REGS_SIZE (32 * 8 + 4)
457
458 static void
459 fetch_vfp_regs (struct regcache *regcache)
460 {
461 char regbuf[VFP_REGS_SIZE];
462 int ret, regno, tid;
463
464 /* Get the thread id for the ptrace call. */
465 tid = GET_THREAD_ID (inferior_ptid);
466
467 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
468 if (ret < 0)
469 {
470 warning (_("Unable to fetch VFP registers."));
471 return;
472 }
473
474 for (regno = 0; regno < arm_linux_vfp_register_count; regno++)
475 regcache_raw_supply (regcache, regno + ARM_D0_REGNUM,
476 (char *) regbuf + regno * 8);
477
478 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM,
479 (char *) regbuf + 32 * 8);
480 }
481
482 static void
483 store_vfp_regs (const struct regcache *regcache)
484 {
485 char regbuf[VFP_REGS_SIZE];
486 int ret, regno, tid;
487
488 /* Get the thread id for the ptrace call. */
489 tid = GET_THREAD_ID (inferior_ptid);
490
491 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
492 if (ret < 0)
493 {
494 warning (_("Unable to fetch VFP registers (for update)."));
495 return;
496 }
497
498 for (regno = 0; regno < arm_linux_vfp_register_count; regno++)
499 regcache_raw_collect (regcache, regno + ARM_D0_REGNUM,
500 (char *) regbuf + regno * 8);
501
502 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM,
503 (char *) regbuf + 32 * 8);
504
505 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
506
507 if (ret < 0)
508 {
509 warning (_("Unable to store VFP registers."));
510 return;
511 }
512 }
513
514 /* Fetch registers from the child process. Fetch all registers if
515 regno == -1, otherwise fetch all general registers or all floating
516 point registers depending upon the value of regno. */
517
518 static void
519 arm_linux_fetch_inferior_registers (struct target_ops *ops,
520 struct regcache *regcache, int regno)
521 {
522 if (-1 == regno)
523 {
524 fetch_regs (regcache);
525 fetch_fpregs (regcache);
526 if (arm_linux_has_wmmx_registers)
527 fetch_wmmx_regs (regcache);
528 if (arm_linux_vfp_register_count > 0)
529 fetch_vfp_regs (regcache);
530 }
531 else
532 {
533 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
534 fetch_register (regcache, regno);
535 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
536 fetch_fpregister (regcache, regno);
537 else if (arm_linux_has_wmmx_registers
538 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
539 fetch_wmmx_regs (regcache);
540 else if (arm_linux_vfp_register_count > 0
541 && regno >= ARM_D0_REGNUM
542 && regno <= ARM_D0_REGNUM + arm_linux_vfp_register_count)
543 fetch_vfp_regs (regcache);
544 }
545 }
546
547 /* Store registers back into the inferior. Store all registers if
548 regno == -1, otherwise store all general registers or all floating
549 point registers depending upon the value of regno. */
550
551 static void
552 arm_linux_store_inferior_registers (struct target_ops *ops,
553 struct regcache *regcache, int regno)
554 {
555 if (-1 == regno)
556 {
557 store_regs (regcache);
558 store_fpregs (regcache);
559 if (arm_linux_has_wmmx_registers)
560 store_wmmx_regs (regcache);
561 if (arm_linux_vfp_register_count > 0)
562 store_vfp_regs (regcache);
563 }
564 else
565 {
566 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
567 store_register (regcache, regno);
568 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
569 store_fpregister (regcache, regno);
570 else if (arm_linux_has_wmmx_registers
571 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
572 store_wmmx_regs (regcache);
573 else if (arm_linux_vfp_register_count > 0
574 && regno >= ARM_D0_REGNUM
575 && regno <= ARM_D0_REGNUM + arm_linux_vfp_register_count)
576 store_vfp_regs (regcache);
577 }
578 }
579
580 /* Wrapper functions for the standard regset handling, used by
581 thread debugging. */
582
583 void
584 fill_gregset (const struct regcache *regcache,
585 gdb_gregset_t *gregsetp, int regno)
586 {
587 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
588 }
589
590 void
591 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
592 {
593 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
594 }
595
596 void
597 fill_fpregset (const struct regcache *regcache,
598 gdb_fpregset_t *fpregsetp, int regno)
599 {
600 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
601 }
602
603 /* Fill GDB's register array with the floating-point register values
604 in *fpregsetp. */
605
606 void
607 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
608 {
609 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
610 }
611
612 /* Fetch the thread-local storage pointer for libthread_db. */
613
614 ps_err_e
615 ps_get_thread_area (const struct ps_prochandle *ph,
616 lwpid_t lwpid, int idx, void **base)
617 {
618 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
619 return PS_ERR;
620
621 /* IDX is the bias from the thread pointer to the beginning of the
622 thread descriptor. It has to be subtracted due to implementation
623 quirks in libthread_db. */
624 *base = (void *) ((char *)*base - idx);
625
626 return PS_OK;
627 }
628
629 static const struct target_desc *
630 arm_linux_read_description (struct target_ops *ops)
631 {
632 CORE_ADDR arm_hwcap = 0;
633 arm_linux_has_wmmx_registers = 0;
634 arm_linux_vfp_register_count = 0;
635
636 if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1)
637 {
638 return ops->beneath->to_read_description (ops->beneath);
639 }
640
641 if (arm_hwcap & HWCAP_IWMMXT)
642 {
643 arm_linux_has_wmmx_registers = 1;
644 return tdesc_arm_with_iwmmxt;
645 }
646
647 if (arm_hwcap & HWCAP_VFP)
648 {
649 int pid;
650 char *buf;
651 const struct target_desc * result = NULL;
652
653 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
654 Neon with VFPv3-D32. */
655 if (arm_hwcap & HWCAP_NEON)
656 {
657 arm_linux_vfp_register_count = 32;
658 result = tdesc_arm_with_neon;
659 }
660 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
661 {
662 arm_linux_vfp_register_count = 32;
663 result = tdesc_arm_with_vfpv3;
664 }
665 else
666 {
667 arm_linux_vfp_register_count = 16;
668 result = tdesc_arm_with_vfpv2;
669 }
670
671 /* Now make sure that the kernel supports reading these
672 registers. Support was added in 2.6.30. */
673 pid = ptid_get_lwp (inferior_ptid);
674 errno = 0;
675 buf = alloca (VFP_REGS_SIZE);
676 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
677 && errno == EIO)
678 result = NULL;
679
680 return result;
681 }
682
683 return ops->beneath->to_read_description (ops->beneath);
684 }
685
686 /* Information describing the hardware breakpoint capabilities. */
687 struct arm_linux_hwbp_cap
688 {
689 gdb_byte arch;
690 gdb_byte max_wp_length;
691 gdb_byte wp_count;
692 gdb_byte bp_count;
693 };
694
695 /* Since we cannot dynamically allocate subfields of arm_linux_process_info,
696 assume a maximum number of supported break-/watchpoints. */
697 #define MAX_BPTS 16
698 #define MAX_WPTS 16
699
700 /* Get hold of the Hardware Breakpoint information for the target we are
701 attached to. Returns NULL if the kernel doesn't support Hardware
702 breakpoints at all, or a pointer to the information structure. */
703 static const struct arm_linux_hwbp_cap *
704 arm_linux_get_hwbp_cap (void)
705 {
706 /* The info structure we return. */
707 static struct arm_linux_hwbp_cap info;
708
709 /* Is INFO in a good state? -1 means that no attempt has been made to
710 initialize INFO; 0 means an attempt has been made, but it failed; 1
711 means INFO is in an initialized state. */
712 static int available = -1;
713
714 if (available == -1)
715 {
716 int tid;
717 unsigned int val;
718
719 tid = GET_THREAD_ID (inferior_ptid);
720 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
721 available = 0;
722 else
723 {
724 info.arch = (gdb_byte)((val >> 24) & 0xff);
725 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
726 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
727 info.bp_count = (gdb_byte)(val & 0xff);
728
729 if (info.wp_count > MAX_WPTS)
730 {
731 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
732 supports %d"), MAX_WPTS, info.wp_count);
733 info.wp_count = MAX_WPTS;
734 }
735
736 if (info.bp_count > MAX_BPTS)
737 {
738 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
739 supports %d"), MAX_BPTS, info.bp_count);
740 info.bp_count = MAX_BPTS;
741 }
742 available = (info.arch != 0);
743 }
744 }
745
746 return available == 1 ? &info : NULL;
747 }
748
749 /* How many hardware breakpoints are available? */
750 static int
751 arm_linux_get_hw_breakpoint_count (void)
752 {
753 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
754 return cap != NULL ? cap->bp_count : 0;
755 }
756
757 /* How many hardware watchpoints are available? */
758 static int
759 arm_linux_get_hw_watchpoint_count (void)
760 {
761 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
762 return cap != NULL ? cap->wp_count : 0;
763 }
764
765 /* Have we got a free break-/watch-point available for use? Returns -1 if
766 there is not an appropriate resource available, otherwise returns 1. */
767 static int
768 arm_linux_can_use_hw_breakpoint (struct target_ops *self,
769 int type, int cnt, int ot)
770 {
771 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
772 || type == bp_access_watchpoint || type == bp_watchpoint)
773 {
774 int count = arm_linux_get_hw_watchpoint_count ();
775
776 if (count == 0)
777 return 0;
778 else if (cnt + ot > count)
779 return -1;
780 }
781 else if (type == bp_hardware_breakpoint)
782 {
783 int count = arm_linux_get_hw_breakpoint_count ();
784
785 if (count == 0)
786 return 0;
787 else if (cnt > count)
788 return -1;
789 }
790 else
791 gdb_assert (FALSE);
792
793 return 1;
794 }
795
796 /* Enum describing the different types of ARM hardware break-/watch-points. */
797 typedef enum
798 {
799 arm_hwbp_break = 0,
800 arm_hwbp_load = 1,
801 arm_hwbp_store = 2,
802 arm_hwbp_access = 3
803 } arm_hwbp_type;
804
805 /* Type describing an ARM Hardware Breakpoint Control register value. */
806 typedef unsigned int arm_hwbp_control_t;
807
808 /* Structure used to keep track of hardware break-/watch-points. */
809 struct arm_linux_hw_breakpoint
810 {
811 /* Address to break on, or being watched. */
812 unsigned int address;
813 /* Control register for break-/watch- point. */
814 arm_hwbp_control_t control;
815 };
816
817 /* Structure containing arrays of per process hardware break-/watchpoints
818 for caching address and control information.
819
820 The Linux ptrace interface to hardware break-/watch-points presents the
821 values in a vector centred around 0 (which is used fo generic information).
822 Positive indicies refer to breakpoint addresses/control registers, negative
823 indices to watchpoint addresses/control registers.
824
825 The Linux vector is indexed as follows:
826 -((i << 1) + 2): Control register for watchpoint i.
827 -((i << 1) + 1): Address register for watchpoint i.
828 0: Information register.
829 ((i << 1) + 1): Address register for breakpoint i.
830 ((i << 1) + 2): Control register for breakpoint i.
831
832 This structure is used as a per-thread cache of the state stored by the
833 kernel, so that we don't need to keep calling into the kernel to find a
834 free breakpoint.
835
836 We treat break-/watch-points with their enable bit clear as being deleted.
837 */
838 struct arm_linux_debug_reg_state
839 {
840 /* Hardware breakpoints for this process. */
841 struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
842 /* Hardware watchpoints for this process. */
843 struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
844 };
845
846 /* Per-process arch-specific data we want to keep. */
847 struct arm_linux_process_info
848 {
849 /* Linked list. */
850 struct arm_linux_process_info *next;
851 /* The process identifier. */
852 pid_t pid;
853 /* Hardware break-/watchpoints state information. */
854 struct arm_linux_debug_reg_state state;
855
856 };
857
858 /* Per-thread arch-specific data we want to keep. */
859 struct arch_lwp_info
860 {
861 /* Non-zero if our copy differs from what's recorded in the thread. */
862 char bpts_changed[MAX_BPTS];
863 char wpts_changed[MAX_WPTS];
864 };
865
866 static struct arm_linux_process_info *arm_linux_process_list = NULL;
867
868 /* Find process data for process PID. */
869
870 static struct arm_linux_process_info *
871 arm_linux_find_process_pid (pid_t pid)
872 {
873 struct arm_linux_process_info *proc;
874
875 for (proc = arm_linux_process_list; proc; proc = proc->next)
876 if (proc->pid == pid)
877 return proc;
878
879 return NULL;
880 }
881
882 /* Add process data for process PID. Returns newly allocated info
883 object. */
884
885 static struct arm_linux_process_info *
886 arm_linux_add_process (pid_t pid)
887 {
888 struct arm_linux_process_info *proc;
889
890 proc = xcalloc (1, sizeof (*proc));
891 proc->pid = pid;
892
893 proc->next = arm_linux_process_list;
894 arm_linux_process_list = proc;
895
896 return proc;
897 }
898
899 /* Get data specific info for process PID, creating it if necessary.
900 Never returns NULL. */
901
902 static struct arm_linux_process_info *
903 arm_linux_process_info_get (pid_t pid)
904 {
905 struct arm_linux_process_info *proc;
906
907 proc = arm_linux_find_process_pid (pid);
908 if (proc == NULL)
909 proc = arm_linux_add_process (pid);
910
911 return proc;
912 }
913
914 /* Called whenever GDB is no longer debugging process PID. It deletes
915 data structures that keep track of debug register state. */
916
917 static void
918 arm_linux_forget_process (pid_t pid)
919 {
920 struct arm_linux_process_info *proc, **proc_link;
921
922 proc = arm_linux_process_list;
923 proc_link = &arm_linux_process_list;
924
925 while (proc != NULL)
926 {
927 if (proc->pid == pid)
928 {
929 *proc_link = proc->next;
930
931 xfree (proc);
932 return;
933 }
934
935 proc_link = &proc->next;
936 proc = *proc_link;
937 }
938 }
939
940 /* Get hardware break-/watchpoint state for process PID. */
941
942 static struct arm_linux_debug_reg_state *
943 arm_linux_get_debug_reg_state (pid_t pid)
944 {
945 return &arm_linux_process_info_get (pid)->state;
946 }
947
948 /* Initialize an ARM hardware break-/watch-point control register value.
949 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
950 type of break-/watch-point; ENABLE indicates whether the point is enabled.
951 */
952 static arm_hwbp_control_t
953 arm_hwbp_control_initialize (unsigned byte_address_select,
954 arm_hwbp_type hwbp_type,
955 int enable)
956 {
957 gdb_assert ((byte_address_select & ~0xffU) == 0);
958 gdb_assert (hwbp_type != arm_hwbp_break
959 || ((byte_address_select & 0xfU) != 0));
960
961 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
962 }
963
964 /* Does the breakpoint control value CONTROL have the enable bit set? */
965 static int
966 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
967 {
968 return control & 0x1;
969 }
970
971 /* Change a breakpoint control word so that it is in the disabled state. */
972 static arm_hwbp_control_t
973 arm_hwbp_control_disable (arm_hwbp_control_t control)
974 {
975 return control & ~0x1;
976 }
977
978 /* Initialise the hardware breakpoint structure P. The breakpoint will be
979 enabled, and will point to the placed address of BP_TGT. */
980 static void
981 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
982 struct bp_target_info *bp_tgt,
983 struct arm_linux_hw_breakpoint *p)
984 {
985 unsigned mask;
986 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
987
988 /* We have to create a mask for the control register which says which bits
989 of the word pointed to by address to break on. */
990 if (arm_pc_is_thumb (gdbarch, address))
991 {
992 mask = 0x3;
993 address &= ~1;
994 }
995 else
996 {
997 mask = 0xf;
998 address &= ~3;
999 }
1000
1001 p->address = (unsigned int) address;
1002 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
1003 }
1004
1005 /* Get the ARM hardware breakpoint type from the RW value we're given when
1006 asked to set a watchpoint. */
1007 static arm_hwbp_type
1008 arm_linux_get_hwbp_type (int rw)
1009 {
1010 if (rw == hw_read)
1011 return arm_hwbp_load;
1012 else if (rw == hw_write)
1013 return arm_hwbp_store;
1014 else
1015 return arm_hwbp_access;
1016 }
1017
1018 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
1019 to LEN. The type of watchpoint is given in RW. */
1020 static void
1021 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len, int rw,
1022 struct arm_linux_hw_breakpoint *p)
1023 {
1024 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1025 unsigned mask;
1026
1027 gdb_assert (cap != NULL);
1028 gdb_assert (cap->max_wp_length != 0);
1029
1030 mask = (1 << len) - 1;
1031
1032 p->address = (unsigned int) addr;
1033 p->control = arm_hwbp_control_initialize (mask,
1034 arm_linux_get_hwbp_type (rw), 1);
1035 }
1036
1037 /* Are two break-/watch-points equal? */
1038 static int
1039 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
1040 const struct arm_linux_hw_breakpoint *p2)
1041 {
1042 return p1->address == p2->address && p1->control == p2->control;
1043 }
1044
1045 /* Callback to mark a watch-/breakpoint to be updated in all threads of
1046 the current process. */
1047
1048 struct update_registers_data
1049 {
1050 int watch;
1051 int index;
1052 };
1053
1054 static int
1055 update_registers_callback (struct lwp_info *lwp, void *arg)
1056 {
1057 struct update_registers_data *data = (struct update_registers_data *) arg;
1058
1059 if (lwp->arch_private == NULL)
1060 lwp->arch_private = XCNEW (struct arch_lwp_info);
1061
1062 /* The actual update is done later just before resuming the lwp,
1063 we just mark that the registers need updating. */
1064 if (data->watch)
1065 lwp->arch_private->wpts_changed[data->index] = 1;
1066 else
1067 lwp->arch_private->bpts_changed[data->index] = 1;
1068
1069 /* If the lwp isn't stopped, force it to momentarily pause, so
1070 we can update its breakpoint registers. */
1071 if (!lwp->stopped)
1072 linux_stop_lwp (lwp);
1073
1074 return 0;
1075 }
1076
1077 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
1078 =1) BPT for thread TID. */
1079 static void
1080 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
1081 int watchpoint)
1082 {
1083 int pid;
1084 ptid_t pid_ptid;
1085 gdb_byte count, i;
1086 struct arm_linux_hw_breakpoint* bpts;
1087 struct update_registers_data data;
1088
1089 pid = ptid_get_pid (inferior_ptid);
1090 pid_ptid = pid_to_ptid (pid);
1091
1092 if (watchpoint)
1093 {
1094 count = arm_linux_get_hw_watchpoint_count ();
1095 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1096 }
1097 else
1098 {
1099 count = arm_linux_get_hw_breakpoint_count ();
1100 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1101 }
1102
1103 for (i = 0; i < count; ++i)
1104 if (!arm_hwbp_control_is_enabled (bpts[i].control))
1105 {
1106 data.watch = watchpoint;
1107 data.index = i;
1108 bpts[i] = *bpt;
1109 iterate_over_lwps (pid_ptid, update_registers_callback, &data);
1110 break;
1111 }
1112
1113 gdb_assert (i != count);
1114 }
1115
1116 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1117 (WATCHPOINT = 1) BPT for thread TID. */
1118 static void
1119 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1120 int watchpoint)
1121 {
1122 int pid;
1123 gdb_byte count, i;
1124 ptid_t pid_ptid;
1125 struct arm_linux_hw_breakpoint* bpts;
1126 struct update_registers_data data;
1127
1128 pid = ptid_get_pid (inferior_ptid);
1129 pid_ptid = pid_to_ptid (pid);
1130
1131 if (watchpoint)
1132 {
1133 count = arm_linux_get_hw_watchpoint_count ();
1134 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1135 }
1136 else
1137 {
1138 count = arm_linux_get_hw_breakpoint_count ();
1139 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1140 }
1141
1142 for (i = 0; i < count; ++i)
1143 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1144 {
1145 data.watch = watchpoint;
1146 data.index = i;
1147 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1148 iterate_over_lwps (pid_ptid, update_registers_callback, &data);
1149 break;
1150 }
1151
1152 gdb_assert (i != count);
1153 }
1154
1155 /* Insert a Hardware breakpoint. */
1156 static int
1157 arm_linux_insert_hw_breakpoint (struct target_ops *self,
1158 struct gdbarch *gdbarch,
1159 struct bp_target_info *bp_tgt)
1160 {
1161 struct lwp_info *lp;
1162 struct arm_linux_hw_breakpoint p;
1163
1164 if (arm_linux_get_hw_breakpoint_count () == 0)
1165 return -1;
1166
1167 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1168
1169 arm_linux_insert_hw_breakpoint1 (&p, 0);
1170
1171 return 0;
1172 }
1173
1174 /* Remove a hardware breakpoint. */
1175 static int
1176 arm_linux_remove_hw_breakpoint (struct target_ops *self,
1177 struct gdbarch *gdbarch,
1178 struct bp_target_info *bp_tgt)
1179 {
1180 struct lwp_info *lp;
1181 struct arm_linux_hw_breakpoint p;
1182
1183 if (arm_linux_get_hw_breakpoint_count () == 0)
1184 return -1;
1185
1186 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1187
1188 arm_linux_remove_hw_breakpoint1 (&p, 0);
1189
1190 return 0;
1191 }
1192
1193 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1194 ADDR? */
1195 static int
1196 arm_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1197 CORE_ADDR addr, int len)
1198 {
1199 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1200 CORE_ADDR max_wp_length, aligned_addr;
1201
1202 /* Can not set watchpoints for zero or negative lengths. */
1203 if (len <= 0)
1204 return 0;
1205
1206 /* Need to be able to use the ptrace interface. */
1207 if (cap == NULL || cap->wp_count == 0)
1208 return 0;
1209
1210 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1211 range covered by a watchpoint. */
1212 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1213 aligned_addr = addr & ~(max_wp_length - 1);
1214
1215 if (aligned_addr + max_wp_length < addr + len)
1216 return 0;
1217
1218 /* The current ptrace interface can only handle watchpoints that are a
1219 power of 2. */
1220 if ((len & (len - 1)) != 0)
1221 return 0;
1222
1223 /* All tests passed so we must be able to set a watchpoint. */
1224 return 1;
1225 }
1226
1227 /* Insert a Hardware breakpoint. */
1228 static int
1229 arm_linux_insert_watchpoint (struct target_ops *self,
1230 CORE_ADDR addr, int len, int rw,
1231 struct expression *cond)
1232 {
1233 struct lwp_info *lp;
1234 struct arm_linux_hw_breakpoint p;
1235
1236 if (arm_linux_get_hw_watchpoint_count () == 0)
1237 return -1;
1238
1239 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1240
1241 arm_linux_insert_hw_breakpoint1 (&p, 1);
1242
1243 return 0;
1244 }
1245
1246 /* Remove a hardware breakpoint. */
1247 static int
1248 arm_linux_remove_watchpoint (struct target_ops *self,
1249 CORE_ADDR addr, int len, int rw,
1250 struct expression *cond)
1251 {
1252 struct lwp_info *lp;
1253 struct arm_linux_hw_breakpoint p;
1254
1255 if (arm_linux_get_hw_watchpoint_count () == 0)
1256 return -1;
1257
1258 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1259
1260 arm_linux_remove_hw_breakpoint1 (&p, 1);
1261
1262 return 0;
1263 }
1264
1265 /* What was the data address the target was stopped on accessing. */
1266 static int
1267 arm_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
1268 {
1269 siginfo_t siginfo;
1270 int slot;
1271
1272 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1273 return 0;
1274
1275 /* This must be a hardware breakpoint. */
1276 if (siginfo.si_signo != SIGTRAP
1277 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1278 return 0;
1279
1280 /* We must be able to set hardware watchpoints. */
1281 if (arm_linux_get_hw_watchpoint_count () == 0)
1282 return 0;
1283
1284 slot = siginfo.si_errno;
1285
1286 /* If we are in a positive slot then we're looking at a breakpoint and not
1287 a watchpoint. */
1288 if (slot >= 0)
1289 return 0;
1290
1291 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1292 return 1;
1293 }
1294
1295 /* Has the target been stopped by hitting a watchpoint? */
1296 static int
1297 arm_linux_stopped_by_watchpoint (struct target_ops *ops)
1298 {
1299 CORE_ADDR addr;
1300 return arm_linux_stopped_data_address (ops, &addr);
1301 }
1302
1303 static int
1304 arm_linux_watchpoint_addr_within_range (struct target_ops *target,
1305 CORE_ADDR addr,
1306 CORE_ADDR start, int length)
1307 {
1308 return start <= addr && start + length - 1 >= addr;
1309 }
1310
1311 /* Handle thread creation. We need to copy the breakpoints and watchpoints
1312 in the parent thread to the child thread. */
1313 static void
1314 arm_linux_new_thread (struct lwp_info *lp)
1315 {
1316 int i;
1317 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1318
1319 /* Mark that all the hardware breakpoint/watchpoint register pairs
1320 for this thread need to be initialized. */
1321
1322 for (i = 0; i < MAX_BPTS; i++)
1323 {
1324 info->bpts_changed[i] = 1;
1325 info->wpts_changed[i] = 1;
1326 }
1327
1328 lp->arch_private = info;
1329 }
1330
1331 /* Called when resuming a thread.
1332 The hardware debug registers are updated when there is any change. */
1333
1334 static void
1335 arm_linux_prepare_to_resume (struct lwp_info *lwp)
1336 {
1337 int pid, i;
1338 struct arm_linux_hw_breakpoint *bpts, *wpts;
1339 struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1340
1341 pid = ptid_get_lwp (lwp->ptid);
1342 bpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->bpts;
1343 wpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->wpts;
1344
1345 /* NULL means this is the main thread still going through the shell,
1346 or, no watchpoint has been set yet. In that case, there's
1347 nothing to do. */
1348 if (arm_lwp_info == NULL)
1349 return;
1350
1351 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1352 if (arm_lwp_info->bpts_changed[i])
1353 {
1354 errno = 0;
1355 if (arm_hwbp_control_is_enabled (bpts[i].control))
1356 if (ptrace (PTRACE_SETHBPREGS, pid,
1357 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1358 perror_with_name (_("Unexpected error setting breakpoint"));
1359
1360 if (bpts[i].control != 0)
1361 if (ptrace (PTRACE_SETHBPREGS, pid,
1362 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1363 perror_with_name (_("Unexpected error setting breakpoint"));
1364
1365 arm_lwp_info->bpts_changed[i] = 0;
1366 }
1367
1368 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1369 if (arm_lwp_info->wpts_changed[i])
1370 {
1371 errno = 0;
1372 if (arm_hwbp_control_is_enabled (wpts[i].control))
1373 if (ptrace (PTRACE_SETHBPREGS, pid,
1374 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1375 perror_with_name (_("Unexpected error setting watchpoint"));
1376
1377 if (wpts[i].control != 0)
1378 if (ptrace (PTRACE_SETHBPREGS, pid,
1379 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1380 perror_with_name (_("Unexpected error setting watchpoint"));
1381
1382 arm_lwp_info->wpts_changed[i] = 0;
1383 }
1384 }
1385
1386 /* linux_nat_new_fork hook. */
1387
1388 static void
1389 arm_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
1390 {
1391 pid_t parent_pid;
1392 struct arm_linux_debug_reg_state *parent_state;
1393 struct arm_linux_debug_reg_state *child_state;
1394
1395 /* NULL means no watchpoint has ever been set in the parent. In
1396 that case, there's nothing to do. */
1397 if (parent->arch_private == NULL)
1398 return;
1399
1400 /* GDB core assumes the child inherits the watchpoints/hw
1401 breakpoints of the parent, and will remove them all from the
1402 forked off process. Copy the debug registers mirrors into the
1403 new process so that all breakpoints and watchpoints can be
1404 removed together. */
1405
1406 parent_pid = ptid_get_pid (parent->ptid);
1407 parent_state = arm_linux_get_debug_reg_state (parent_pid);
1408 child_state = arm_linux_get_debug_reg_state (child_pid);
1409 *child_state = *parent_state;
1410 }
1411
1412 void _initialize_arm_linux_nat (void);
1413
1414 void
1415 _initialize_arm_linux_nat (void)
1416 {
1417 struct target_ops *t;
1418
1419 /* Fill in the generic GNU/Linux methods. */
1420 t = linux_target ();
1421
1422 /* Add our register access methods. */
1423 t->to_fetch_registers = arm_linux_fetch_inferior_registers;
1424 t->to_store_registers = arm_linux_store_inferior_registers;
1425
1426 /* Add our hardware breakpoint and watchpoint implementation. */
1427 t->to_can_use_hw_breakpoint = arm_linux_can_use_hw_breakpoint;
1428 t->to_insert_hw_breakpoint = arm_linux_insert_hw_breakpoint;
1429 t->to_remove_hw_breakpoint = arm_linux_remove_hw_breakpoint;
1430 t->to_region_ok_for_hw_watchpoint = arm_linux_region_ok_for_hw_watchpoint;
1431 t->to_insert_watchpoint = arm_linux_insert_watchpoint;
1432 t->to_remove_watchpoint = arm_linux_remove_watchpoint;
1433 t->to_stopped_by_watchpoint = arm_linux_stopped_by_watchpoint;
1434 t->to_stopped_data_address = arm_linux_stopped_data_address;
1435 t->to_watchpoint_addr_within_range = arm_linux_watchpoint_addr_within_range;
1436
1437 t->to_read_description = arm_linux_read_description;
1438
1439 /* Register the target. */
1440 linux_nat_add_target (t);
1441
1442 /* Handle thread creation and exit. */
1443 linux_nat_set_new_thread (t, arm_linux_new_thread);
1444 linux_nat_set_prepare_to_resume (t, arm_linux_prepare_to_resume);
1445
1446 /* Handle process creation and exit. */
1447 linux_nat_set_new_fork (t, arm_linux_new_fork);
1448 linux_nat_set_forget_process (t, arm_linux_forget_process);
1449 }
This page took 0.071682 seconds and 4 git commands to generate.