Avoid software breakpoint's instruction shadow inconsistency
[deliverable/binutils-gdb.git] / gdb / arm-linux-nat.c
1 /* GNU/Linux on ARM native support.
2 Copyright (C) 1999-2014 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "inferior.h"
21 #include "gdbcore.h"
22 #include "regcache.h"
23 #include "target.h"
24 #include "linux-nat.h"
25 #include "target-descriptions.h"
26 #include "auxv.h"
27 #include "observer.h"
28 #include "gdbthread.h"
29
30 #include "arm-tdep.h"
31 #include "arm-linux-tdep.h"
32
33 #include <elf/common.h>
34 #include <sys/user.h>
35 #include <sys/ptrace.h>
36 #include <sys/utsname.h>
37 #include <sys/procfs.h>
38
39 /* Prototypes for supply_gregset etc. */
40 #include "gregset.h"
41
42 /* Defines ps_err_e, struct ps_prochandle. */
43 #include "gdb_proc_service.h"
44
45 #ifndef PTRACE_GET_THREAD_AREA
46 #define PTRACE_GET_THREAD_AREA 22
47 #endif
48
49 #ifndef PTRACE_GETWMMXREGS
50 #define PTRACE_GETWMMXREGS 18
51 #define PTRACE_SETWMMXREGS 19
52 #endif
53
54 #ifndef PTRACE_GETVFPREGS
55 #define PTRACE_GETVFPREGS 27
56 #define PTRACE_SETVFPREGS 28
57 #endif
58
59 #ifndef PTRACE_GETHBPREGS
60 #define PTRACE_GETHBPREGS 29
61 #define PTRACE_SETHBPREGS 30
62 #endif
63
64 /* A flag for whether the WMMX registers are available. */
65 static int arm_linux_has_wmmx_registers;
66
67 /* The number of 64-bit VFP registers we have (expect this to be 0,
68 16, or 32). */
69 static int arm_linux_vfp_register_count;
70
71 extern int arm_apcs_32;
72
73 /* On GNU/Linux, threads are implemented as pseudo-processes, in which
74 case we may be tracing more than one process at a time. In that
75 case, inferior_ptid will contain the main process ID and the
76 individual thread (process) ID. get_thread_id () is used to get
77 the thread id if it's available, and the process id otherwise. */
78
79 static int
80 get_thread_id (ptid_t ptid)
81 {
82 int tid = ptid_get_lwp (ptid);
83 if (0 == tid)
84 tid = ptid_get_pid (ptid);
85 return tid;
86 }
87
88 #define GET_THREAD_ID(PTID) get_thread_id (PTID)
89
90 /* Get the value of a particular register from the floating point
91 state of the process and store it into regcache. */
92
93 static void
94 fetch_fpregister (struct regcache *regcache, int regno)
95 {
96 int ret, tid;
97 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
98
99 /* Get the thread id for the ptrace call. */
100 tid = GET_THREAD_ID (inferior_ptid);
101
102 /* Read the floating point state. */
103 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
104 if (ret < 0)
105 {
106 warning (_("Unable to fetch floating point register."));
107 return;
108 }
109
110 /* Fetch fpsr. */
111 if (ARM_FPS_REGNUM == regno)
112 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
113 fp + NWFPE_FPSR_OFFSET);
114
115 /* Fetch the floating point register. */
116 if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
117 supply_nwfpe_register (regcache, regno, fp);
118 }
119
120 /* Get the whole floating point state of the process and store it
121 into regcache. */
122
123 static void
124 fetch_fpregs (struct regcache *regcache)
125 {
126 int ret, regno, tid;
127 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
128
129 /* Get the thread id for the ptrace call. */
130 tid = GET_THREAD_ID (inferior_ptid);
131
132 /* Read the floating point state. */
133 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
134 if (ret < 0)
135 {
136 warning (_("Unable to fetch the floating point registers."));
137 return;
138 }
139
140 /* Fetch fpsr. */
141 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
142 fp + NWFPE_FPSR_OFFSET);
143
144 /* Fetch the floating point registers. */
145 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
146 supply_nwfpe_register (regcache, regno, fp);
147 }
148
149 /* Save a particular register into the floating point state of the
150 process using the contents from regcache. */
151
152 static void
153 store_fpregister (const struct regcache *regcache, int regno)
154 {
155 int ret, tid;
156 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
157
158 /* Get the thread id for the ptrace call. */
159 tid = GET_THREAD_ID (inferior_ptid);
160
161 /* Read the floating point state. */
162 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
163 if (ret < 0)
164 {
165 warning (_("Unable to fetch the floating point registers."));
166 return;
167 }
168
169 /* Store fpsr. */
170 if (ARM_FPS_REGNUM == regno
171 && REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
172 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
173
174 /* Store the floating point register. */
175 if (regno >= ARM_F0_REGNUM && regno <= ARM_F7_REGNUM)
176 collect_nwfpe_register (regcache, regno, fp);
177
178 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
179 if (ret < 0)
180 {
181 warning (_("Unable to store floating point register."));
182 return;
183 }
184 }
185
186 /* Save the whole floating point state of the process using
187 the contents from regcache. */
188
189 static void
190 store_fpregs (const struct regcache *regcache)
191 {
192 int ret, regno, tid;
193 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
194
195 /* Get the thread id for the ptrace call. */
196 tid = GET_THREAD_ID (inferior_ptid);
197
198 /* Read the floating point state. */
199 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
200 if (ret < 0)
201 {
202 warning (_("Unable to fetch the floating point registers."));
203 return;
204 }
205
206 /* Store fpsr. */
207 if (REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
208 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
209
210 /* Store the floating point registers. */
211 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
212 if (REG_VALID == regcache_register_status (regcache, regno))
213 collect_nwfpe_register (regcache, regno, fp);
214
215 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
216 if (ret < 0)
217 {
218 warning (_("Unable to store floating point registers."));
219 return;
220 }
221 }
222
223 /* Fetch a general register of the process and store into
224 regcache. */
225
226 static void
227 fetch_register (struct regcache *regcache, int regno)
228 {
229 int ret, tid;
230 elf_gregset_t regs;
231
232 /* Get the thread id for the ptrace call. */
233 tid = GET_THREAD_ID (inferior_ptid);
234
235 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
236 if (ret < 0)
237 {
238 warning (_("Unable to fetch general register."));
239 return;
240 }
241
242 if (regno >= ARM_A1_REGNUM && regno < ARM_PC_REGNUM)
243 regcache_raw_supply (regcache, regno, (char *) &regs[regno]);
244
245 if (ARM_PS_REGNUM == regno)
246 {
247 if (arm_apcs_32)
248 regcache_raw_supply (regcache, ARM_PS_REGNUM,
249 (char *) &regs[ARM_CPSR_GREGNUM]);
250 else
251 regcache_raw_supply (regcache, ARM_PS_REGNUM,
252 (char *) &regs[ARM_PC_REGNUM]);
253 }
254
255 if (ARM_PC_REGNUM == regno)
256 {
257 regs[ARM_PC_REGNUM] = gdbarch_addr_bits_remove
258 (get_regcache_arch (regcache),
259 regs[ARM_PC_REGNUM]);
260 regcache_raw_supply (regcache, ARM_PC_REGNUM,
261 (char *) &regs[ARM_PC_REGNUM]);
262 }
263 }
264
265 /* Fetch all general registers of the process and store into
266 regcache. */
267
268 static void
269 fetch_regs (struct regcache *regcache)
270 {
271 int ret, regno, tid;
272 elf_gregset_t regs;
273
274 /* Get the thread id for the ptrace call. */
275 tid = GET_THREAD_ID (inferior_ptid);
276
277 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
278 if (ret < 0)
279 {
280 warning (_("Unable to fetch general registers."));
281 return;
282 }
283
284 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
285 regcache_raw_supply (regcache, regno, (char *) &regs[regno]);
286
287 if (arm_apcs_32)
288 regcache_raw_supply (regcache, ARM_PS_REGNUM,
289 (char *) &regs[ARM_CPSR_GREGNUM]);
290 else
291 regcache_raw_supply (regcache, ARM_PS_REGNUM,
292 (char *) &regs[ARM_PC_REGNUM]);
293
294 regs[ARM_PC_REGNUM] = gdbarch_addr_bits_remove
295 (get_regcache_arch (regcache), regs[ARM_PC_REGNUM]);
296 regcache_raw_supply (regcache, ARM_PC_REGNUM,
297 (char *) &regs[ARM_PC_REGNUM]);
298 }
299
300 /* Store all general registers of the process from the values in
301 regcache. */
302
303 static void
304 store_register (const struct regcache *regcache, int regno)
305 {
306 int ret, tid;
307 elf_gregset_t regs;
308
309 if (REG_VALID != regcache_register_status (regcache, regno))
310 return;
311
312 /* Get the thread id for the ptrace call. */
313 tid = GET_THREAD_ID (inferior_ptid);
314
315 /* Get the general registers from the process. */
316 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
317 if (ret < 0)
318 {
319 warning (_("Unable to fetch general registers."));
320 return;
321 }
322
323 if (regno >= ARM_A1_REGNUM && regno <= ARM_PC_REGNUM)
324 regcache_raw_collect (regcache, regno, (char *) &regs[regno]);
325 else if (arm_apcs_32 && regno == ARM_PS_REGNUM)
326 regcache_raw_collect (regcache, regno,
327 (char *) &regs[ARM_CPSR_GREGNUM]);
328 else if (!arm_apcs_32 && regno == ARM_PS_REGNUM)
329 regcache_raw_collect (regcache, ARM_PC_REGNUM,
330 (char *) &regs[ARM_PC_REGNUM]);
331
332 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
333 if (ret < 0)
334 {
335 warning (_("Unable to store general register."));
336 return;
337 }
338 }
339
340 static void
341 store_regs (const struct regcache *regcache)
342 {
343 int ret, regno, tid;
344 elf_gregset_t regs;
345
346 /* Get the thread id for the ptrace call. */
347 tid = GET_THREAD_ID (inferior_ptid);
348
349 /* Fetch the general registers. */
350 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
351 if (ret < 0)
352 {
353 warning (_("Unable to fetch general registers."));
354 return;
355 }
356
357 for (regno = ARM_A1_REGNUM; regno <= ARM_PC_REGNUM; regno++)
358 {
359 if (REG_VALID == regcache_register_status (regcache, regno))
360 regcache_raw_collect (regcache, regno, (char *) &regs[regno]);
361 }
362
363 if (arm_apcs_32 && REG_VALID == regcache_register_status (regcache, ARM_PS_REGNUM))
364 regcache_raw_collect (regcache, ARM_PS_REGNUM,
365 (char *) &regs[ARM_CPSR_GREGNUM]);
366
367 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
368
369 if (ret < 0)
370 {
371 warning (_("Unable to store general registers."));
372 return;
373 }
374 }
375
376 /* Fetch all WMMX registers of the process and store into
377 regcache. */
378
379 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
380
381 static void
382 fetch_wmmx_regs (struct regcache *regcache)
383 {
384 char regbuf[IWMMXT_REGS_SIZE];
385 int ret, regno, tid;
386
387 /* Get the thread id for the ptrace call. */
388 tid = GET_THREAD_ID (inferior_ptid);
389
390 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
391 if (ret < 0)
392 {
393 warning (_("Unable to fetch WMMX registers."));
394 return;
395 }
396
397 for (regno = 0; regno < 16; regno++)
398 regcache_raw_supply (regcache, regno + ARM_WR0_REGNUM,
399 &regbuf[regno * 8]);
400
401 for (regno = 0; regno < 2; regno++)
402 regcache_raw_supply (regcache, regno + ARM_WCSSF_REGNUM,
403 &regbuf[16 * 8 + regno * 4]);
404
405 for (regno = 0; regno < 4; regno++)
406 regcache_raw_supply (regcache, regno + ARM_WCGR0_REGNUM,
407 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
408 }
409
410 static void
411 store_wmmx_regs (const struct regcache *regcache)
412 {
413 char regbuf[IWMMXT_REGS_SIZE];
414 int ret, regno, tid;
415
416 /* Get the thread id for the ptrace call. */
417 tid = GET_THREAD_ID (inferior_ptid);
418
419 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
420 if (ret < 0)
421 {
422 warning (_("Unable to fetch WMMX registers."));
423 return;
424 }
425
426 for (regno = 0; regno < 16; regno++)
427 if (REG_VALID == regcache_register_status (regcache,
428 regno + ARM_WR0_REGNUM))
429 regcache_raw_collect (regcache, regno + ARM_WR0_REGNUM,
430 &regbuf[regno * 8]);
431
432 for (regno = 0; regno < 2; regno++)
433 if (REG_VALID == regcache_register_status (regcache,
434 regno + ARM_WCSSF_REGNUM))
435 regcache_raw_collect (regcache, regno + ARM_WCSSF_REGNUM,
436 &regbuf[16 * 8 + regno * 4]);
437
438 for (regno = 0; regno < 4; regno++)
439 if (REG_VALID == regcache_register_status (regcache,
440 regno + ARM_WCGR0_REGNUM))
441 regcache_raw_collect (regcache, regno + ARM_WCGR0_REGNUM,
442 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
443
444 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
445
446 if (ret < 0)
447 {
448 warning (_("Unable to store WMMX registers."));
449 return;
450 }
451 }
452
453 /* Fetch and store VFP Registers. The kernel object has space for 32
454 64-bit registers, and the FPSCR. This is even when on a VFPv2 or
455 VFPv3D16 target. */
456 #define VFP_REGS_SIZE (32 * 8 + 4)
457
458 static void
459 fetch_vfp_regs (struct regcache *regcache)
460 {
461 char regbuf[VFP_REGS_SIZE];
462 int ret, regno, tid;
463
464 /* Get the thread id for the ptrace call. */
465 tid = GET_THREAD_ID (inferior_ptid);
466
467 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
468 if (ret < 0)
469 {
470 warning (_("Unable to fetch VFP registers."));
471 return;
472 }
473
474 for (regno = 0; regno < arm_linux_vfp_register_count; regno++)
475 regcache_raw_supply (regcache, regno + ARM_D0_REGNUM,
476 (char *) regbuf + regno * 8);
477
478 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM,
479 (char *) regbuf + 32 * 8);
480 }
481
482 static void
483 store_vfp_regs (const struct regcache *regcache)
484 {
485 char regbuf[VFP_REGS_SIZE];
486 int ret, regno, tid;
487
488 /* Get the thread id for the ptrace call. */
489 tid = GET_THREAD_ID (inferior_ptid);
490
491 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
492 if (ret < 0)
493 {
494 warning (_("Unable to fetch VFP registers (for update)."));
495 return;
496 }
497
498 for (regno = 0; regno < arm_linux_vfp_register_count; regno++)
499 regcache_raw_collect (regcache, regno + ARM_D0_REGNUM,
500 (char *) regbuf + regno * 8);
501
502 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM,
503 (char *) regbuf + 32 * 8);
504
505 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
506
507 if (ret < 0)
508 {
509 warning (_("Unable to store VFP registers."));
510 return;
511 }
512 }
513
514 /* Fetch registers from the child process. Fetch all registers if
515 regno == -1, otherwise fetch all general registers or all floating
516 point registers depending upon the value of regno. */
517
518 static void
519 arm_linux_fetch_inferior_registers (struct target_ops *ops,
520 struct regcache *regcache, int regno)
521 {
522 if (-1 == regno)
523 {
524 fetch_regs (regcache);
525 fetch_fpregs (regcache);
526 if (arm_linux_has_wmmx_registers)
527 fetch_wmmx_regs (regcache);
528 if (arm_linux_vfp_register_count > 0)
529 fetch_vfp_regs (regcache);
530 }
531 else
532 {
533 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
534 fetch_register (regcache, regno);
535 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
536 fetch_fpregister (regcache, regno);
537 else if (arm_linux_has_wmmx_registers
538 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
539 fetch_wmmx_regs (regcache);
540 else if (arm_linux_vfp_register_count > 0
541 && regno >= ARM_D0_REGNUM
542 && regno <= ARM_D0_REGNUM + arm_linux_vfp_register_count)
543 fetch_vfp_regs (regcache);
544 }
545 }
546
547 /* Store registers back into the inferior. Store all registers if
548 regno == -1, otherwise store all general registers or all floating
549 point registers depending upon the value of regno. */
550
551 static void
552 arm_linux_store_inferior_registers (struct target_ops *ops,
553 struct regcache *regcache, int regno)
554 {
555 if (-1 == regno)
556 {
557 store_regs (regcache);
558 store_fpregs (regcache);
559 if (arm_linux_has_wmmx_registers)
560 store_wmmx_regs (regcache);
561 if (arm_linux_vfp_register_count > 0)
562 store_vfp_regs (regcache);
563 }
564 else
565 {
566 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
567 store_register (regcache, regno);
568 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
569 store_fpregister (regcache, regno);
570 else if (arm_linux_has_wmmx_registers
571 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
572 store_wmmx_regs (regcache);
573 else if (arm_linux_vfp_register_count > 0
574 && regno >= ARM_D0_REGNUM
575 && regno <= ARM_D0_REGNUM + arm_linux_vfp_register_count)
576 store_vfp_regs (regcache);
577 }
578 }
579
580 /* Wrapper functions for the standard regset handling, used by
581 thread debugging. */
582
583 void
584 fill_gregset (const struct regcache *regcache,
585 gdb_gregset_t *gregsetp, int regno)
586 {
587 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
588 }
589
590 void
591 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
592 {
593 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
594 }
595
596 void
597 fill_fpregset (const struct regcache *regcache,
598 gdb_fpregset_t *fpregsetp, int regno)
599 {
600 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
601 }
602
603 /* Fill GDB's register array with the floating-point register values
604 in *fpregsetp. */
605
606 void
607 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
608 {
609 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
610 }
611
612 /* Fetch the thread-local storage pointer for libthread_db. */
613
614 ps_err_e
615 ps_get_thread_area (const struct ps_prochandle *ph,
616 lwpid_t lwpid, int idx, void **base)
617 {
618 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
619 return PS_ERR;
620
621 /* IDX is the bias from the thread pointer to the beginning of the
622 thread descriptor. It has to be subtracted due to implementation
623 quirks in libthread_db. */
624 *base = (void *) ((char *)*base - idx);
625
626 return PS_OK;
627 }
628
629 static const struct target_desc *
630 arm_linux_read_description (struct target_ops *ops)
631 {
632 CORE_ADDR arm_hwcap = 0;
633 arm_linux_has_wmmx_registers = 0;
634 arm_linux_vfp_register_count = 0;
635
636 if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1)
637 {
638 return ops->beneath->to_read_description (ops->beneath);
639 }
640
641 if (arm_hwcap & HWCAP_IWMMXT)
642 {
643 arm_linux_has_wmmx_registers = 1;
644 return tdesc_arm_with_iwmmxt;
645 }
646
647 if (arm_hwcap & HWCAP_VFP)
648 {
649 int pid;
650 char *buf;
651 const struct target_desc * result = NULL;
652
653 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
654 Neon with VFPv3-D32. */
655 if (arm_hwcap & HWCAP_NEON)
656 {
657 arm_linux_vfp_register_count = 32;
658 result = tdesc_arm_with_neon;
659 }
660 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
661 {
662 arm_linux_vfp_register_count = 32;
663 result = tdesc_arm_with_vfpv3;
664 }
665 else
666 {
667 arm_linux_vfp_register_count = 16;
668 result = tdesc_arm_with_vfpv2;
669 }
670
671 /* Now make sure that the kernel supports reading these
672 registers. Support was added in 2.6.30. */
673 pid = ptid_get_lwp (inferior_ptid);
674 errno = 0;
675 buf = alloca (VFP_REGS_SIZE);
676 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
677 && errno == EIO)
678 result = NULL;
679
680 return result;
681 }
682
683 return ops->beneath->to_read_description (ops->beneath);
684 }
685
686 /* Information describing the hardware breakpoint capabilities. */
687 struct arm_linux_hwbp_cap
688 {
689 gdb_byte arch;
690 gdb_byte max_wp_length;
691 gdb_byte wp_count;
692 gdb_byte bp_count;
693 };
694
695 /* Since we cannot dynamically allocate subfields of arm_linux_process_info,
696 assume a maximum number of supported break-/watchpoints. */
697 #define MAX_BPTS 16
698 #define MAX_WPTS 16
699
700 /* Get hold of the Hardware Breakpoint information for the target we are
701 attached to. Returns NULL if the kernel doesn't support Hardware
702 breakpoints at all, or a pointer to the information structure. */
703 static const struct arm_linux_hwbp_cap *
704 arm_linux_get_hwbp_cap (void)
705 {
706 /* The info structure we return. */
707 static struct arm_linux_hwbp_cap info;
708
709 /* Is INFO in a good state? -1 means that no attempt has been made to
710 initialize INFO; 0 means an attempt has been made, but it failed; 1
711 means INFO is in an initialized state. */
712 static int available = -1;
713
714 if (available == -1)
715 {
716 int tid;
717 unsigned int val;
718
719 tid = GET_THREAD_ID (inferior_ptid);
720 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
721 available = 0;
722 else
723 {
724 info.arch = (gdb_byte)((val >> 24) & 0xff);
725 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
726 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
727 info.bp_count = (gdb_byte)(val & 0xff);
728
729 if (info.wp_count > MAX_WPTS)
730 {
731 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
732 supports %d"), MAX_WPTS, info.wp_count);
733 info.wp_count = MAX_WPTS;
734 }
735
736 if (info.bp_count > MAX_BPTS)
737 {
738 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
739 supports %d"), MAX_BPTS, info.bp_count);
740 info.bp_count = MAX_BPTS;
741 }
742 available = (info.arch != 0);
743 }
744 }
745
746 return available == 1 ? &info : NULL;
747 }
748
749 /* How many hardware breakpoints are available? */
750 static int
751 arm_linux_get_hw_breakpoint_count (void)
752 {
753 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
754 return cap != NULL ? cap->bp_count : 0;
755 }
756
757 /* How many hardware watchpoints are available? */
758 static int
759 arm_linux_get_hw_watchpoint_count (void)
760 {
761 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
762 return cap != NULL ? cap->wp_count : 0;
763 }
764
765 /* Have we got a free break-/watch-point available for use? Returns -1 if
766 there is not an appropriate resource available, otherwise returns 1. */
767 static int
768 arm_linux_can_use_hw_breakpoint (struct target_ops *self,
769 int type, int cnt, int ot)
770 {
771 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
772 || type == bp_access_watchpoint || type == bp_watchpoint)
773 {
774 if (cnt + ot > arm_linux_get_hw_watchpoint_count ())
775 return -1;
776 }
777 else if (type == bp_hardware_breakpoint)
778 {
779 if (cnt > arm_linux_get_hw_breakpoint_count ())
780 return -1;
781 }
782 else
783 gdb_assert (FALSE);
784
785 return 1;
786 }
787
788 /* Enum describing the different types of ARM hardware break-/watch-points. */
789 typedef enum
790 {
791 arm_hwbp_break = 0,
792 arm_hwbp_load = 1,
793 arm_hwbp_store = 2,
794 arm_hwbp_access = 3
795 } arm_hwbp_type;
796
797 /* Type describing an ARM Hardware Breakpoint Control register value. */
798 typedef unsigned int arm_hwbp_control_t;
799
800 /* Structure used to keep track of hardware break-/watch-points. */
801 struct arm_linux_hw_breakpoint
802 {
803 /* Address to break on, or being watched. */
804 unsigned int address;
805 /* Control register for break-/watch- point. */
806 arm_hwbp_control_t control;
807 };
808
809 /* Structure containing arrays of per process hardware break-/watchpoints
810 for caching address and control information.
811
812 The Linux ptrace interface to hardware break-/watch-points presents the
813 values in a vector centred around 0 (which is used fo generic information).
814 Positive indicies refer to breakpoint addresses/control registers, negative
815 indices to watchpoint addresses/control registers.
816
817 The Linux vector is indexed as follows:
818 -((i << 1) + 2): Control register for watchpoint i.
819 -((i << 1) + 1): Address register for watchpoint i.
820 0: Information register.
821 ((i << 1) + 1): Address register for breakpoint i.
822 ((i << 1) + 2): Control register for breakpoint i.
823
824 This structure is used as a per-thread cache of the state stored by the
825 kernel, so that we don't need to keep calling into the kernel to find a
826 free breakpoint.
827
828 We treat break-/watch-points with their enable bit clear as being deleted.
829 */
830 struct arm_linux_debug_reg_state
831 {
832 /* Hardware breakpoints for this process. */
833 struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
834 /* Hardware watchpoints for this process. */
835 struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
836 };
837
838 /* Per-process arch-specific data we want to keep. */
839 struct arm_linux_process_info
840 {
841 /* Linked list. */
842 struct arm_linux_process_info *next;
843 /* The process identifier. */
844 pid_t pid;
845 /* Hardware break-/watchpoints state information. */
846 struct arm_linux_debug_reg_state state;
847
848 };
849
850 /* Per-thread arch-specific data we want to keep. */
851 struct arch_lwp_info
852 {
853 /* Non-zero if our copy differs from what's recorded in the thread. */
854 char bpts_changed[MAX_BPTS];
855 char wpts_changed[MAX_WPTS];
856 };
857
858 static struct arm_linux_process_info *arm_linux_process_list = NULL;
859
860 /* Find process data for process PID. */
861
862 static struct arm_linux_process_info *
863 arm_linux_find_process_pid (pid_t pid)
864 {
865 struct arm_linux_process_info *proc;
866
867 for (proc = arm_linux_process_list; proc; proc = proc->next)
868 if (proc->pid == pid)
869 return proc;
870
871 return NULL;
872 }
873
874 /* Add process data for process PID. Returns newly allocated info
875 object. */
876
877 static struct arm_linux_process_info *
878 arm_linux_add_process (pid_t pid)
879 {
880 struct arm_linux_process_info *proc;
881
882 proc = xcalloc (1, sizeof (*proc));
883 proc->pid = pid;
884
885 proc->next = arm_linux_process_list;
886 arm_linux_process_list = proc;
887
888 return proc;
889 }
890
891 /* Get data specific info for process PID, creating it if necessary.
892 Never returns NULL. */
893
894 static struct arm_linux_process_info *
895 arm_linux_process_info_get (pid_t pid)
896 {
897 struct arm_linux_process_info *proc;
898
899 proc = arm_linux_find_process_pid (pid);
900 if (proc == NULL)
901 proc = arm_linux_add_process (pid);
902
903 return proc;
904 }
905
906 /* Called whenever GDB is no longer debugging process PID. It deletes
907 data structures that keep track of debug register state. */
908
909 static void
910 arm_linux_forget_process (pid_t pid)
911 {
912 struct arm_linux_process_info *proc, **proc_link;
913
914 proc = arm_linux_process_list;
915 proc_link = &arm_linux_process_list;
916
917 while (proc != NULL)
918 {
919 if (proc->pid == pid)
920 {
921 *proc_link = proc->next;
922
923 xfree (proc);
924 return;
925 }
926
927 proc_link = &proc->next;
928 proc = *proc_link;
929 }
930 }
931
932 /* Get hardware break-/watchpoint state for process PID. */
933
934 static struct arm_linux_debug_reg_state *
935 arm_linux_get_debug_reg_state (pid_t pid)
936 {
937 return &arm_linux_process_info_get (pid)->state;
938 }
939
940 /* Initialize an ARM hardware break-/watch-point control register value.
941 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
942 type of break-/watch-point; ENABLE indicates whether the point is enabled.
943 */
944 static arm_hwbp_control_t
945 arm_hwbp_control_initialize (unsigned byte_address_select,
946 arm_hwbp_type hwbp_type,
947 int enable)
948 {
949 gdb_assert ((byte_address_select & ~0xffU) == 0);
950 gdb_assert (hwbp_type != arm_hwbp_break
951 || ((byte_address_select & 0xfU) != 0));
952
953 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
954 }
955
956 /* Does the breakpoint control value CONTROL have the enable bit set? */
957 static int
958 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
959 {
960 return control & 0x1;
961 }
962
963 /* Change a breakpoint control word so that it is in the disabled state. */
964 static arm_hwbp_control_t
965 arm_hwbp_control_disable (arm_hwbp_control_t control)
966 {
967 return control & ~0x1;
968 }
969
970 /* Initialise the hardware breakpoint structure P. The breakpoint will be
971 enabled, and will point to the placed address of BP_TGT. */
972 static void
973 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
974 struct bp_target_info *bp_tgt,
975 struct arm_linux_hw_breakpoint *p)
976 {
977 unsigned mask;
978 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
979
980 /* We have to create a mask for the control register which says which bits
981 of the word pointed to by address to break on. */
982 if (arm_pc_is_thumb (gdbarch, address))
983 {
984 mask = 0x3;
985 address &= ~1;
986 }
987 else
988 {
989 mask = 0xf;
990 address &= ~3;
991 }
992
993 p->address = (unsigned int) address;
994 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
995 }
996
997 /* Get the ARM hardware breakpoint type from the RW value we're given when
998 asked to set a watchpoint. */
999 static arm_hwbp_type
1000 arm_linux_get_hwbp_type (int rw)
1001 {
1002 if (rw == hw_read)
1003 return arm_hwbp_load;
1004 else if (rw == hw_write)
1005 return arm_hwbp_store;
1006 else
1007 return arm_hwbp_access;
1008 }
1009
1010 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
1011 to LEN. The type of watchpoint is given in RW. */
1012 static void
1013 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len, int rw,
1014 struct arm_linux_hw_breakpoint *p)
1015 {
1016 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1017 unsigned mask;
1018
1019 gdb_assert (cap != NULL);
1020 gdb_assert (cap->max_wp_length != 0);
1021
1022 mask = (1 << len) - 1;
1023
1024 p->address = (unsigned int) addr;
1025 p->control = arm_hwbp_control_initialize (mask,
1026 arm_linux_get_hwbp_type (rw), 1);
1027 }
1028
1029 /* Are two break-/watch-points equal? */
1030 static int
1031 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
1032 const struct arm_linux_hw_breakpoint *p2)
1033 {
1034 return p1->address == p2->address && p1->control == p2->control;
1035 }
1036
1037 /* Callback to mark a watch-/breakpoint to be updated in all threads of
1038 the current process. */
1039
1040 struct update_registers_data
1041 {
1042 int watch;
1043 int index;
1044 };
1045
1046 static int
1047 update_registers_callback (struct lwp_info *lwp, void *arg)
1048 {
1049 struct update_registers_data *data = (struct update_registers_data *) arg;
1050
1051 if (lwp->arch_private == NULL)
1052 lwp->arch_private = XCNEW (struct arch_lwp_info);
1053
1054 /* The actual update is done later just before resuming the lwp,
1055 we just mark that the registers need updating. */
1056 if (data->watch)
1057 lwp->arch_private->wpts_changed[data->index] = 1;
1058 else
1059 lwp->arch_private->bpts_changed[data->index] = 1;
1060
1061 /* If the lwp isn't stopped, force it to momentarily pause, so
1062 we can update its breakpoint registers. */
1063 if (!lwp->stopped)
1064 linux_stop_lwp (lwp);
1065
1066 return 0;
1067 }
1068
1069 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
1070 =1) BPT for thread TID. */
1071 static void
1072 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
1073 int watchpoint)
1074 {
1075 int pid;
1076 ptid_t pid_ptid;
1077 gdb_byte count, i;
1078 struct arm_linux_hw_breakpoint* bpts;
1079 struct update_registers_data data;
1080
1081 pid = ptid_get_pid (inferior_ptid);
1082 pid_ptid = pid_to_ptid (pid);
1083
1084 if (watchpoint)
1085 {
1086 count = arm_linux_get_hw_watchpoint_count ();
1087 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1088 }
1089 else
1090 {
1091 count = arm_linux_get_hw_breakpoint_count ();
1092 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1093 }
1094
1095 for (i = 0; i < count; ++i)
1096 if (!arm_hwbp_control_is_enabled (bpts[i].control))
1097 {
1098 data.watch = watchpoint;
1099 data.index = i;
1100 bpts[i] = *bpt;
1101 iterate_over_lwps (pid_ptid, update_registers_callback, &data);
1102 break;
1103 }
1104
1105 gdb_assert (i != count);
1106 }
1107
1108 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1109 (WATCHPOINT = 1) BPT for thread TID. */
1110 static void
1111 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1112 int watchpoint)
1113 {
1114 int pid;
1115 gdb_byte count, i;
1116 ptid_t pid_ptid;
1117 struct arm_linux_hw_breakpoint* bpts;
1118 struct update_registers_data data;
1119
1120 pid = ptid_get_pid (inferior_ptid);
1121 pid_ptid = pid_to_ptid (pid);
1122
1123 if (watchpoint)
1124 {
1125 count = arm_linux_get_hw_watchpoint_count ();
1126 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1127 }
1128 else
1129 {
1130 count = arm_linux_get_hw_breakpoint_count ();
1131 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1132 }
1133
1134 for (i = 0; i < count; ++i)
1135 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1136 {
1137 data.watch = watchpoint;
1138 data.index = i;
1139 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1140 iterate_over_lwps (pid_ptid, update_registers_callback, &data);
1141 break;
1142 }
1143
1144 gdb_assert (i != count);
1145 }
1146
1147 /* Insert a Hardware breakpoint. */
1148 static int
1149 arm_linux_insert_hw_breakpoint (struct target_ops *self,
1150 struct gdbarch *gdbarch,
1151 struct bp_target_info *bp_tgt)
1152 {
1153 struct lwp_info *lp;
1154 struct arm_linux_hw_breakpoint p;
1155
1156 if (arm_linux_get_hw_breakpoint_count () == 0)
1157 return -1;
1158
1159 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1160
1161 arm_linux_insert_hw_breakpoint1 (&p, 0);
1162
1163 return 0;
1164 }
1165
1166 /* Remove a hardware breakpoint. */
1167 static int
1168 arm_linux_remove_hw_breakpoint (struct target_ops *self,
1169 struct gdbarch *gdbarch,
1170 struct bp_target_info *bp_tgt)
1171 {
1172 struct lwp_info *lp;
1173 struct arm_linux_hw_breakpoint p;
1174
1175 if (arm_linux_get_hw_breakpoint_count () == 0)
1176 return -1;
1177
1178 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1179
1180 arm_linux_remove_hw_breakpoint1 (&p, 0);
1181
1182 return 0;
1183 }
1184
1185 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1186 ADDR? */
1187 static int
1188 arm_linux_region_ok_for_hw_watchpoint (struct target_ops *self,
1189 CORE_ADDR addr, int len)
1190 {
1191 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1192 CORE_ADDR max_wp_length, aligned_addr;
1193
1194 /* Can not set watchpoints for zero or negative lengths. */
1195 if (len <= 0)
1196 return 0;
1197
1198 /* Need to be able to use the ptrace interface. */
1199 if (cap == NULL || cap->wp_count == 0)
1200 return 0;
1201
1202 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1203 range covered by a watchpoint. */
1204 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1205 aligned_addr = addr & ~(max_wp_length - 1);
1206
1207 if (aligned_addr + max_wp_length < addr + len)
1208 return 0;
1209
1210 /* The current ptrace interface can only handle watchpoints that are a
1211 power of 2. */
1212 if ((len & (len - 1)) != 0)
1213 return 0;
1214
1215 /* All tests passed so we must be able to set a watchpoint. */
1216 return 1;
1217 }
1218
1219 /* Insert a Hardware breakpoint. */
1220 static int
1221 arm_linux_insert_watchpoint (struct target_ops *self,
1222 CORE_ADDR addr, int len, int rw,
1223 struct expression *cond)
1224 {
1225 struct lwp_info *lp;
1226 struct arm_linux_hw_breakpoint p;
1227
1228 if (arm_linux_get_hw_watchpoint_count () == 0)
1229 return -1;
1230
1231 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1232
1233 arm_linux_insert_hw_breakpoint1 (&p, 1);
1234
1235 return 0;
1236 }
1237
1238 /* Remove a hardware breakpoint. */
1239 static int
1240 arm_linux_remove_watchpoint (struct target_ops *self,
1241 CORE_ADDR addr, int len, int rw,
1242 struct expression *cond)
1243 {
1244 struct lwp_info *lp;
1245 struct arm_linux_hw_breakpoint p;
1246
1247 if (arm_linux_get_hw_watchpoint_count () == 0)
1248 return -1;
1249
1250 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1251
1252 arm_linux_remove_hw_breakpoint1 (&p, 1);
1253
1254 return 0;
1255 }
1256
1257 /* What was the data address the target was stopped on accessing. */
1258 static int
1259 arm_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
1260 {
1261 siginfo_t siginfo;
1262 int slot;
1263
1264 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1265 return 0;
1266
1267 /* This must be a hardware breakpoint. */
1268 if (siginfo.si_signo != SIGTRAP
1269 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1270 return 0;
1271
1272 /* We must be able to set hardware watchpoints. */
1273 if (arm_linux_get_hw_watchpoint_count () == 0)
1274 return 0;
1275
1276 slot = siginfo.si_errno;
1277
1278 /* If we are in a positive slot then we're looking at a breakpoint and not
1279 a watchpoint. */
1280 if (slot >= 0)
1281 return 0;
1282
1283 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1284 return 1;
1285 }
1286
1287 /* Has the target been stopped by hitting a watchpoint? */
1288 static int
1289 arm_linux_stopped_by_watchpoint (struct target_ops *ops)
1290 {
1291 CORE_ADDR addr;
1292 return arm_linux_stopped_data_address (ops, &addr);
1293 }
1294
1295 static int
1296 arm_linux_watchpoint_addr_within_range (struct target_ops *target,
1297 CORE_ADDR addr,
1298 CORE_ADDR start, int length)
1299 {
1300 return start <= addr && start + length - 1 >= addr;
1301 }
1302
1303 /* Handle thread creation. We need to copy the breakpoints and watchpoints
1304 in the parent thread to the child thread. */
1305 static void
1306 arm_linux_new_thread (struct lwp_info *lp)
1307 {
1308 int i;
1309 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1310
1311 /* Mark that all the hardware breakpoint/watchpoint register pairs
1312 for this thread need to be initialized. */
1313
1314 for (i = 0; i < MAX_BPTS; i++)
1315 {
1316 info->bpts_changed[i] = 1;
1317 info->wpts_changed[i] = 1;
1318 }
1319
1320 lp->arch_private = info;
1321 }
1322
1323 /* Called when resuming a thread.
1324 The hardware debug registers are updated when there is any change. */
1325
1326 static void
1327 arm_linux_prepare_to_resume (struct lwp_info *lwp)
1328 {
1329 int pid, i;
1330 struct arm_linux_hw_breakpoint *bpts, *wpts;
1331 struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1332
1333 pid = ptid_get_lwp (lwp->ptid);
1334 bpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->bpts;
1335 wpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->wpts;
1336
1337 /* NULL means this is the main thread still going through the shell,
1338 or, no watchpoint has been set yet. In that case, there's
1339 nothing to do. */
1340 if (arm_lwp_info == NULL)
1341 return;
1342
1343 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1344 if (arm_lwp_info->bpts_changed[i])
1345 {
1346 errno = 0;
1347 if (arm_hwbp_control_is_enabled (bpts[i].control))
1348 if (ptrace (PTRACE_SETHBPREGS, pid,
1349 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1350 perror_with_name (_("Unexpected error setting breakpoint"));
1351
1352 if (bpts[i].control != 0)
1353 if (ptrace (PTRACE_SETHBPREGS, pid,
1354 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1355 perror_with_name (_("Unexpected error setting breakpoint"));
1356
1357 arm_lwp_info->bpts_changed[i] = 0;
1358 }
1359
1360 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1361 if (arm_lwp_info->wpts_changed[i])
1362 {
1363 errno = 0;
1364 if (arm_hwbp_control_is_enabled (wpts[i].control))
1365 if (ptrace (PTRACE_SETHBPREGS, pid,
1366 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1367 perror_with_name (_("Unexpected error setting watchpoint"));
1368
1369 if (wpts[i].control != 0)
1370 if (ptrace (PTRACE_SETHBPREGS, pid,
1371 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1372 perror_with_name (_("Unexpected error setting watchpoint"));
1373
1374 arm_lwp_info->wpts_changed[i] = 0;
1375 }
1376 }
1377
1378 /* linux_nat_new_fork hook. */
1379
1380 static void
1381 arm_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
1382 {
1383 pid_t parent_pid;
1384 struct arm_linux_debug_reg_state *parent_state;
1385 struct arm_linux_debug_reg_state *child_state;
1386
1387 /* NULL means no watchpoint has ever been set in the parent. In
1388 that case, there's nothing to do. */
1389 if (parent->arch_private == NULL)
1390 return;
1391
1392 /* GDB core assumes the child inherits the watchpoints/hw
1393 breakpoints of the parent, and will remove them all from the
1394 forked off process. Copy the debug registers mirrors into the
1395 new process so that all breakpoints and watchpoints can be
1396 removed together. */
1397
1398 parent_pid = ptid_get_pid (parent->ptid);
1399 parent_state = arm_linux_get_debug_reg_state (parent_pid);
1400 child_state = arm_linux_get_debug_reg_state (child_pid);
1401 *child_state = *parent_state;
1402 }
1403
1404 void _initialize_arm_linux_nat (void);
1405
1406 void
1407 _initialize_arm_linux_nat (void)
1408 {
1409 struct target_ops *t;
1410
1411 /* Fill in the generic GNU/Linux methods. */
1412 t = linux_target ();
1413
1414 /* Add our register access methods. */
1415 t->to_fetch_registers = arm_linux_fetch_inferior_registers;
1416 t->to_store_registers = arm_linux_store_inferior_registers;
1417
1418 /* Add our hardware breakpoint and watchpoint implementation. */
1419 t->to_can_use_hw_breakpoint = arm_linux_can_use_hw_breakpoint;
1420 t->to_insert_hw_breakpoint = arm_linux_insert_hw_breakpoint;
1421 t->to_remove_hw_breakpoint = arm_linux_remove_hw_breakpoint;
1422 t->to_region_ok_for_hw_watchpoint = arm_linux_region_ok_for_hw_watchpoint;
1423 t->to_insert_watchpoint = arm_linux_insert_watchpoint;
1424 t->to_remove_watchpoint = arm_linux_remove_watchpoint;
1425 t->to_stopped_by_watchpoint = arm_linux_stopped_by_watchpoint;
1426 t->to_stopped_data_address = arm_linux_stopped_data_address;
1427 t->to_watchpoint_addr_within_range = arm_linux_watchpoint_addr_within_range;
1428
1429 t->to_read_description = arm_linux_read_description;
1430
1431 /* Register the target. */
1432 linux_nat_add_target (t);
1433
1434 /* Handle thread creation and exit. */
1435 linux_nat_set_new_thread (t, arm_linux_new_thread);
1436 linux_nat_set_prepare_to_resume (t, arm_linux_prepare_to_resume);
1437
1438 /* Handle process creation and exit. */
1439 linux_nat_set_new_fork (t, arm_linux_new_fork);
1440 linux_nat_set_forget_process (t, arm_linux_forget_process);
1441 }
This page took 0.06636 seconds and 5 git commands to generate.