Add linux_get_hwcap
[deliverable/binutils-gdb.git] / gdb / arm-linux-nat.c
1 /* GNU/Linux on ARM native support.
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "inferior.h"
21 #include "gdbcore.h"
22 #include "regcache.h"
23 #include "target.h"
24 #include "linux-nat.h"
25 #include "target-descriptions.h"
26 #include "auxv.h"
27 #include "observable.h"
28 #include "gdbthread.h"
29
30 #include "arm-tdep.h"
31 #include "arm-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
33
34 #include <elf/common.h>
35 #include <sys/user.h>
36 #include "nat/gdb_ptrace.h"
37 #include <sys/utsname.h>
38 #include <sys/procfs.h>
39
40 #include "nat/linux-ptrace.h"
41
42 /* Prototypes for supply_gregset etc. */
43 #include "gregset.h"
44
45 /* Defines ps_err_e, struct ps_prochandle. */
46 #include "gdb_proc_service.h"
47
48 #ifndef PTRACE_GET_THREAD_AREA
49 #define PTRACE_GET_THREAD_AREA 22
50 #endif
51
52 #ifndef PTRACE_GETWMMXREGS
53 #define PTRACE_GETWMMXREGS 18
54 #define PTRACE_SETWMMXREGS 19
55 #endif
56
57 #ifndef PTRACE_GETVFPREGS
58 #define PTRACE_GETVFPREGS 27
59 #define PTRACE_SETVFPREGS 28
60 #endif
61
62 #ifndef PTRACE_GETHBPREGS
63 #define PTRACE_GETHBPREGS 29
64 #define PTRACE_SETHBPREGS 30
65 #endif
66
67 extern int arm_apcs_32;
68
69 class arm_linux_nat_target final : public linux_nat_target
70 {
71 public:
72 /* Add our register access methods. */
73 void fetch_registers (struct regcache *, int) override;
74 void store_registers (struct regcache *, int) override;
75
76 /* Add our hardware breakpoint and watchpoint implementation. */
77 int can_use_hw_breakpoint (enum bptype, int, int) override;
78
79 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
80
81 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
82
83 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
84
85 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
86 struct expression *) override;
87
88 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
89 struct expression *) override;
90 bool stopped_by_watchpoint () override;
91
92 bool stopped_data_address (CORE_ADDR *) override;
93
94 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
95
96 const struct target_desc *read_description () override;
97
98 /* Override linux_nat_target low methods. */
99
100 /* Handle thread creation and exit. */
101 void low_new_thread (struct lwp_info *lp) override;
102 void low_delete_thread (struct arch_lwp_info *lp) override;
103 void low_prepare_to_resume (struct lwp_info *lp) override;
104
105 /* Handle process creation and exit. */
106 void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
107 void low_forget_process (pid_t pid) override;
108 };
109
110 static arm_linux_nat_target the_arm_linux_nat_target;
111
112 /* Get the whole floating point state of the process and store it
113 into regcache. */
114
115 static void
116 fetch_fpregs (struct regcache *regcache)
117 {
118 int ret, regno, tid;
119 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
120
121 /* Get the thread id for the ptrace call. */
122 tid = regcache->ptid ().lwp ();
123
124 /* Read the floating point state. */
125 if (have_ptrace_getregset == TRIBOOL_TRUE)
126 {
127 struct iovec iov;
128
129 iov.iov_base = &fp;
130 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
131
132 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
133 }
134 else
135 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
136
137 if (ret < 0)
138 perror_with_name (_("Unable to fetch the floating point registers."));
139
140 /* Fetch fpsr. */
141 regcache->raw_supply (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
142
143 /* Fetch the floating point registers. */
144 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
145 supply_nwfpe_register (regcache, regno, fp);
146 }
147
148 /* Save the whole floating point state of the process using
149 the contents from regcache. */
150
151 static void
152 store_fpregs (const struct regcache *regcache)
153 {
154 int ret, regno, tid;
155 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
156
157 /* Get the thread id for the ptrace call. */
158 tid = regcache->ptid ().lwp ();
159
160 /* Read the floating point state. */
161 if (have_ptrace_getregset == TRIBOOL_TRUE)
162 {
163 elf_fpregset_t fpregs;
164 struct iovec iov;
165
166 iov.iov_base = &fpregs;
167 iov.iov_len = sizeof (fpregs);
168
169 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
170 }
171 else
172 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
173
174 if (ret < 0)
175 perror_with_name (_("Unable to fetch the floating point registers."));
176
177 /* Store fpsr. */
178 if (REG_VALID == regcache->get_register_status (ARM_FPS_REGNUM))
179 regcache->raw_collect (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
180
181 /* Store the floating point registers. */
182 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
183 if (REG_VALID == regcache->get_register_status (regno))
184 collect_nwfpe_register (regcache, regno, fp);
185
186 if (have_ptrace_getregset == TRIBOOL_TRUE)
187 {
188 struct iovec iov;
189
190 iov.iov_base = &fp;
191 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
192
193 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov);
194 }
195 else
196 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
197
198 if (ret < 0)
199 perror_with_name (_("Unable to store floating point registers."));
200 }
201
202 /* Fetch all general registers of the process and store into
203 regcache. */
204
205 static void
206 fetch_regs (struct regcache *regcache)
207 {
208 int ret, tid;
209 elf_gregset_t regs;
210
211 /* Get the thread id for the ptrace call. */
212 tid = regcache->ptid ().lwp ();
213
214 if (have_ptrace_getregset == TRIBOOL_TRUE)
215 {
216 struct iovec iov;
217
218 iov.iov_base = &regs;
219 iov.iov_len = sizeof (regs);
220
221 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
222 }
223 else
224 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
225
226 if (ret < 0)
227 perror_with_name (_("Unable to fetch general registers."));
228
229 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32);
230 }
231
232 static void
233 store_regs (const struct regcache *regcache)
234 {
235 int ret, tid;
236 elf_gregset_t regs;
237
238 /* Get the thread id for the ptrace call. */
239 tid = regcache->ptid ().lwp ();
240
241 /* Fetch the general registers. */
242 if (have_ptrace_getregset == TRIBOOL_TRUE)
243 {
244 struct iovec iov;
245
246 iov.iov_base = &regs;
247 iov.iov_len = sizeof (regs);
248
249 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
250 }
251 else
252 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
253
254 if (ret < 0)
255 perror_with_name (_("Unable to fetch general registers."));
256
257 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32);
258
259 if (have_ptrace_getregset == TRIBOOL_TRUE)
260 {
261 struct iovec iov;
262
263 iov.iov_base = &regs;
264 iov.iov_len = sizeof (regs);
265
266 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov);
267 }
268 else
269 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
270
271 if (ret < 0)
272 perror_with_name (_("Unable to store general registers."));
273 }
274
275 /* Fetch all WMMX registers of the process and store into
276 regcache. */
277
278 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
279
280 static void
281 fetch_wmmx_regs (struct regcache *regcache)
282 {
283 char regbuf[IWMMXT_REGS_SIZE];
284 int ret, regno, tid;
285
286 /* Get the thread id for the ptrace call. */
287 tid = regcache->ptid ().lwp ();
288
289 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
290 if (ret < 0)
291 perror_with_name (_("Unable to fetch WMMX registers."));
292
293 for (regno = 0; regno < 16; regno++)
294 regcache->raw_supply (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
295
296 for (regno = 0; regno < 2; regno++)
297 regcache->raw_supply (regno + ARM_WCSSF_REGNUM,
298 &regbuf[16 * 8 + regno * 4]);
299
300 for (regno = 0; regno < 4; regno++)
301 regcache->raw_supply (regno + ARM_WCGR0_REGNUM,
302 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
303 }
304
305 static void
306 store_wmmx_regs (const struct regcache *regcache)
307 {
308 char regbuf[IWMMXT_REGS_SIZE];
309 int ret, regno, tid;
310
311 /* Get the thread id for the ptrace call. */
312 tid = regcache->ptid ().lwp ();
313
314 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
315 if (ret < 0)
316 perror_with_name (_("Unable to fetch WMMX registers."));
317
318 for (regno = 0; regno < 16; regno++)
319 if (REG_VALID == regcache->get_register_status (regno + ARM_WR0_REGNUM))
320 regcache->raw_collect (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
321
322 for (regno = 0; regno < 2; regno++)
323 if (REG_VALID == regcache->get_register_status (regno + ARM_WCSSF_REGNUM))
324 regcache->raw_collect (regno + ARM_WCSSF_REGNUM,
325 &regbuf[16 * 8 + regno * 4]);
326
327 for (regno = 0; regno < 4; regno++)
328 if (REG_VALID == regcache->get_register_status (regno + ARM_WCGR0_REGNUM))
329 regcache->raw_collect (regno + ARM_WCGR0_REGNUM,
330 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
331
332 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
333
334 if (ret < 0)
335 perror_with_name (_("Unable to store WMMX registers."));
336 }
337
338 static void
339 fetch_vfp_regs (struct regcache *regcache)
340 {
341 gdb_byte regbuf[VFP_REGS_SIZE];
342 int ret, tid;
343 struct gdbarch *gdbarch = regcache->arch ();
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345
346 /* Get the thread id for the ptrace call. */
347 tid = regcache->ptid ().lwp ();
348
349 if (have_ptrace_getregset == TRIBOOL_TRUE)
350 {
351 struct iovec iov;
352
353 iov.iov_base = regbuf;
354 iov.iov_len = VFP_REGS_SIZE;
355 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
356 }
357 else
358 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
359
360 if (ret < 0)
361 perror_with_name (_("Unable to fetch VFP registers."));
362
363 aarch32_vfp_regcache_supply (regcache, regbuf,
364 tdep->vfp_register_count);
365 }
366
367 static void
368 store_vfp_regs (const struct regcache *regcache)
369 {
370 gdb_byte regbuf[VFP_REGS_SIZE];
371 int ret, tid;
372 struct gdbarch *gdbarch = regcache->arch ();
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374
375 /* Get the thread id for the ptrace call. */
376 tid = regcache->ptid ().lwp ();
377
378 if (have_ptrace_getregset == TRIBOOL_TRUE)
379 {
380 struct iovec iov;
381
382 iov.iov_base = regbuf;
383 iov.iov_len = VFP_REGS_SIZE;
384 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
385 }
386 else
387 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
388
389 if (ret < 0)
390 perror_with_name (_("Unable to fetch VFP registers (for update)."));
391
392 aarch32_vfp_regcache_collect (regcache, regbuf,
393 tdep->vfp_register_count);
394
395 if (have_ptrace_getregset == TRIBOOL_TRUE)
396 {
397 struct iovec iov;
398
399 iov.iov_base = regbuf;
400 iov.iov_len = VFP_REGS_SIZE;
401 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov);
402 }
403 else
404 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
405
406 if (ret < 0)
407 perror_with_name (_("Unable to store VFP registers."));
408 }
409
410 /* Fetch registers from the child process. Fetch all registers if
411 regno == -1, otherwise fetch all general registers or all floating
412 point registers depending upon the value of regno. */
413
414 void
415 arm_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
416 {
417 struct gdbarch *gdbarch = regcache->arch ();
418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
419
420 if (-1 == regno)
421 {
422 fetch_regs (regcache);
423 if (tdep->have_wmmx_registers)
424 fetch_wmmx_regs (regcache);
425 if (tdep->vfp_register_count > 0)
426 fetch_vfp_regs (regcache);
427 if (tdep->have_fpa_registers)
428 fetch_fpregs (regcache);
429 }
430 else
431 {
432 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
433 fetch_regs (regcache);
434 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
435 fetch_fpregs (regcache);
436 else if (tdep->have_wmmx_registers
437 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
438 fetch_wmmx_regs (regcache);
439 else if (tdep->vfp_register_count > 0
440 && regno >= ARM_D0_REGNUM
441 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
442 || regno == ARM_FPSCR_REGNUM))
443 fetch_vfp_regs (regcache);
444 }
445 }
446
447 /* Store registers back into the inferior. Store all registers if
448 regno == -1, otherwise store all general registers or all floating
449 point registers depending upon the value of regno. */
450
451 void
452 arm_linux_nat_target::store_registers (struct regcache *regcache, int regno)
453 {
454 struct gdbarch *gdbarch = regcache->arch ();
455 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
456
457 if (-1 == regno)
458 {
459 store_regs (regcache);
460 if (tdep->have_wmmx_registers)
461 store_wmmx_regs (regcache);
462 if (tdep->vfp_register_count > 0)
463 store_vfp_regs (regcache);
464 if (tdep->have_fpa_registers)
465 store_fpregs (regcache);
466 }
467 else
468 {
469 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
470 store_regs (regcache);
471 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
472 store_fpregs (regcache);
473 else if (tdep->have_wmmx_registers
474 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
475 store_wmmx_regs (regcache);
476 else if (tdep->vfp_register_count > 0
477 && regno >= ARM_D0_REGNUM
478 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
479 || regno == ARM_FPSCR_REGNUM))
480 store_vfp_regs (regcache);
481 }
482 }
483
484 /* Wrapper functions for the standard regset handling, used by
485 thread debugging. */
486
487 void
488 fill_gregset (const struct regcache *regcache,
489 gdb_gregset_t *gregsetp, int regno)
490 {
491 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
492 }
493
494 void
495 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
496 {
497 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
498 }
499
500 void
501 fill_fpregset (const struct regcache *regcache,
502 gdb_fpregset_t *fpregsetp, int regno)
503 {
504 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
505 }
506
507 /* Fill GDB's register array with the floating-point register values
508 in *fpregsetp. */
509
510 void
511 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
512 {
513 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
514 }
515
516 /* Fetch the thread-local storage pointer for libthread_db. */
517
518 ps_err_e
519 ps_get_thread_area (struct ps_prochandle *ph,
520 lwpid_t lwpid, int idx, void **base)
521 {
522 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
523 return PS_ERR;
524
525 /* IDX is the bias from the thread pointer to the beginning of the
526 thread descriptor. It has to be subtracted due to implementation
527 quirks in libthread_db. */
528 *base = (void *) ((char *)*base - idx);
529
530 return PS_OK;
531 }
532
533 const struct target_desc *
534 arm_linux_nat_target::read_description ()
535 {
536 CORE_ADDR arm_hwcap = linux_get_hwcap (this);
537
538 if (have_ptrace_getregset == TRIBOOL_UNKNOWN)
539 {
540 elf_gregset_t gpregs;
541 struct iovec iov;
542 int tid = inferior_ptid.lwp ();
543
544 iov.iov_base = &gpregs;
545 iov.iov_len = sizeof (gpregs);
546
547 /* Check if PTRACE_GETREGSET works. */
548 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0)
549 have_ptrace_getregset = TRIBOOL_FALSE;
550 else
551 have_ptrace_getregset = TRIBOOL_TRUE;
552 }
553
554 if (arm_hwcap & HWCAP_IWMMXT)
555 return tdesc_arm_with_iwmmxt;
556
557 if (arm_hwcap & HWCAP_VFP)
558 {
559 int pid;
560 char *buf;
561 const struct target_desc * result = NULL;
562
563 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
564 Neon with VFPv3-D32. */
565 if (arm_hwcap & HWCAP_NEON)
566 result = tdesc_arm_with_neon;
567 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
568 result = tdesc_arm_with_vfpv3;
569 else
570 result = tdesc_arm_with_vfpv2;
571
572 /* Now make sure that the kernel supports reading these
573 registers. Support was added in 2.6.30. */
574 pid = inferior_ptid.lwp ();
575 errno = 0;
576 buf = (char *) alloca (VFP_REGS_SIZE);
577 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
578 && errno == EIO)
579 result = NULL;
580
581 return result;
582 }
583
584 return this->beneath ()->read_description ();
585 }
586
587 /* Information describing the hardware breakpoint capabilities. */
588 struct arm_linux_hwbp_cap
589 {
590 gdb_byte arch;
591 gdb_byte max_wp_length;
592 gdb_byte wp_count;
593 gdb_byte bp_count;
594 };
595
596 /* Since we cannot dynamically allocate subfields of arm_linux_process_info,
597 assume a maximum number of supported break-/watchpoints. */
598 #define MAX_BPTS 16
599 #define MAX_WPTS 16
600
601 /* Get hold of the Hardware Breakpoint information for the target we are
602 attached to. Returns NULL if the kernel doesn't support Hardware
603 breakpoints at all, or a pointer to the information structure. */
604 static const struct arm_linux_hwbp_cap *
605 arm_linux_get_hwbp_cap (void)
606 {
607 /* The info structure we return. */
608 static struct arm_linux_hwbp_cap info;
609
610 /* Is INFO in a good state? -1 means that no attempt has been made to
611 initialize INFO; 0 means an attempt has been made, but it failed; 1
612 means INFO is in an initialized state. */
613 static int available = -1;
614
615 if (available == -1)
616 {
617 int tid;
618 unsigned int val;
619
620 tid = inferior_ptid.lwp ();
621 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
622 available = 0;
623 else
624 {
625 info.arch = (gdb_byte)((val >> 24) & 0xff);
626 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
627 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
628 info.bp_count = (gdb_byte)(val & 0xff);
629
630 if (info.wp_count > MAX_WPTS)
631 {
632 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
633 supports %d"), MAX_WPTS, info.wp_count);
634 info.wp_count = MAX_WPTS;
635 }
636
637 if (info.bp_count > MAX_BPTS)
638 {
639 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
640 supports %d"), MAX_BPTS, info.bp_count);
641 info.bp_count = MAX_BPTS;
642 }
643 available = (info.arch != 0);
644 }
645 }
646
647 return available == 1 ? &info : NULL;
648 }
649
650 /* How many hardware breakpoints are available? */
651 static int
652 arm_linux_get_hw_breakpoint_count (void)
653 {
654 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
655 return cap != NULL ? cap->bp_count : 0;
656 }
657
658 /* How many hardware watchpoints are available? */
659 static int
660 arm_linux_get_hw_watchpoint_count (void)
661 {
662 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
663 return cap != NULL ? cap->wp_count : 0;
664 }
665
666 /* Have we got a free break-/watch-point available for use? Returns -1 if
667 there is not an appropriate resource available, otherwise returns 1. */
668 int
669 arm_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
670 int cnt, int ot)
671 {
672 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
673 || type == bp_access_watchpoint || type == bp_watchpoint)
674 {
675 int count = arm_linux_get_hw_watchpoint_count ();
676
677 if (count == 0)
678 return 0;
679 else if (cnt + ot > count)
680 return -1;
681 }
682 else if (type == bp_hardware_breakpoint)
683 {
684 int count = arm_linux_get_hw_breakpoint_count ();
685
686 if (count == 0)
687 return 0;
688 else if (cnt > count)
689 return -1;
690 }
691 else
692 gdb_assert (FALSE);
693
694 return 1;
695 }
696
697 /* Enum describing the different types of ARM hardware break-/watch-points. */
698 typedef enum
699 {
700 arm_hwbp_break = 0,
701 arm_hwbp_load = 1,
702 arm_hwbp_store = 2,
703 arm_hwbp_access = 3
704 } arm_hwbp_type;
705
706 /* Type describing an ARM Hardware Breakpoint Control register value. */
707 typedef unsigned int arm_hwbp_control_t;
708
709 /* Structure used to keep track of hardware break-/watch-points. */
710 struct arm_linux_hw_breakpoint
711 {
712 /* Address to break on, or being watched. */
713 unsigned int address;
714 /* Control register for break-/watch- point. */
715 arm_hwbp_control_t control;
716 };
717
718 /* Structure containing arrays of per process hardware break-/watchpoints
719 for caching address and control information.
720
721 The Linux ptrace interface to hardware break-/watch-points presents the
722 values in a vector centred around 0 (which is used fo generic information).
723 Positive indicies refer to breakpoint addresses/control registers, negative
724 indices to watchpoint addresses/control registers.
725
726 The Linux vector is indexed as follows:
727 -((i << 1) + 2): Control register for watchpoint i.
728 -((i << 1) + 1): Address register for watchpoint i.
729 0: Information register.
730 ((i << 1) + 1): Address register for breakpoint i.
731 ((i << 1) + 2): Control register for breakpoint i.
732
733 This structure is used as a per-thread cache of the state stored by the
734 kernel, so that we don't need to keep calling into the kernel to find a
735 free breakpoint.
736
737 We treat break-/watch-points with their enable bit clear as being deleted.
738 */
739 struct arm_linux_debug_reg_state
740 {
741 /* Hardware breakpoints for this process. */
742 struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
743 /* Hardware watchpoints for this process. */
744 struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
745 };
746
747 /* Per-process arch-specific data we want to keep. */
748 struct arm_linux_process_info
749 {
750 /* Linked list. */
751 struct arm_linux_process_info *next;
752 /* The process identifier. */
753 pid_t pid;
754 /* Hardware break-/watchpoints state information. */
755 struct arm_linux_debug_reg_state state;
756
757 };
758
759 /* Per-thread arch-specific data we want to keep. */
760 struct arch_lwp_info
761 {
762 /* Non-zero if our copy differs from what's recorded in the thread. */
763 char bpts_changed[MAX_BPTS];
764 char wpts_changed[MAX_WPTS];
765 };
766
767 static struct arm_linux_process_info *arm_linux_process_list = NULL;
768
769 /* Find process data for process PID. */
770
771 static struct arm_linux_process_info *
772 arm_linux_find_process_pid (pid_t pid)
773 {
774 struct arm_linux_process_info *proc;
775
776 for (proc = arm_linux_process_list; proc; proc = proc->next)
777 if (proc->pid == pid)
778 return proc;
779
780 return NULL;
781 }
782
783 /* Add process data for process PID. Returns newly allocated info
784 object. */
785
786 static struct arm_linux_process_info *
787 arm_linux_add_process (pid_t pid)
788 {
789 struct arm_linux_process_info *proc;
790
791 proc = XCNEW (struct arm_linux_process_info);
792 proc->pid = pid;
793
794 proc->next = arm_linux_process_list;
795 arm_linux_process_list = proc;
796
797 return proc;
798 }
799
800 /* Get data specific info for process PID, creating it if necessary.
801 Never returns NULL. */
802
803 static struct arm_linux_process_info *
804 arm_linux_process_info_get (pid_t pid)
805 {
806 struct arm_linux_process_info *proc;
807
808 proc = arm_linux_find_process_pid (pid);
809 if (proc == NULL)
810 proc = arm_linux_add_process (pid);
811
812 return proc;
813 }
814
815 /* Called whenever GDB is no longer debugging process PID. It deletes
816 data structures that keep track of debug register state. */
817
818 void
819 arm_linux_nat_target::low_forget_process (pid_t pid)
820 {
821 struct arm_linux_process_info *proc, **proc_link;
822
823 proc = arm_linux_process_list;
824 proc_link = &arm_linux_process_list;
825
826 while (proc != NULL)
827 {
828 if (proc->pid == pid)
829 {
830 *proc_link = proc->next;
831
832 xfree (proc);
833 return;
834 }
835
836 proc_link = &proc->next;
837 proc = *proc_link;
838 }
839 }
840
841 /* Get hardware break-/watchpoint state for process PID. */
842
843 static struct arm_linux_debug_reg_state *
844 arm_linux_get_debug_reg_state (pid_t pid)
845 {
846 return &arm_linux_process_info_get (pid)->state;
847 }
848
849 /* Initialize an ARM hardware break-/watch-point control register value.
850 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
851 type of break-/watch-point; ENABLE indicates whether the point is enabled.
852 */
853 static arm_hwbp_control_t
854 arm_hwbp_control_initialize (unsigned byte_address_select,
855 arm_hwbp_type hwbp_type,
856 int enable)
857 {
858 gdb_assert ((byte_address_select & ~0xffU) == 0);
859 gdb_assert (hwbp_type != arm_hwbp_break
860 || ((byte_address_select & 0xfU) != 0));
861
862 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
863 }
864
865 /* Does the breakpoint control value CONTROL have the enable bit set? */
866 static int
867 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
868 {
869 return control & 0x1;
870 }
871
872 /* Change a breakpoint control word so that it is in the disabled state. */
873 static arm_hwbp_control_t
874 arm_hwbp_control_disable (arm_hwbp_control_t control)
875 {
876 return control & ~0x1;
877 }
878
879 /* Initialise the hardware breakpoint structure P. The breakpoint will be
880 enabled, and will point to the placed address of BP_TGT. */
881 static void
882 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
883 struct bp_target_info *bp_tgt,
884 struct arm_linux_hw_breakpoint *p)
885 {
886 unsigned mask;
887 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
888
889 /* We have to create a mask for the control register which says which bits
890 of the word pointed to by address to break on. */
891 if (arm_pc_is_thumb (gdbarch, address))
892 {
893 mask = 0x3;
894 address &= ~1;
895 }
896 else
897 {
898 mask = 0xf;
899 address &= ~3;
900 }
901
902 p->address = (unsigned int) address;
903 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
904 }
905
906 /* Get the ARM hardware breakpoint type from the TYPE value we're
907 given when asked to set a watchpoint. */
908 static arm_hwbp_type
909 arm_linux_get_hwbp_type (enum target_hw_bp_type type)
910 {
911 if (type == hw_read)
912 return arm_hwbp_load;
913 else if (type == hw_write)
914 return arm_hwbp_store;
915 else
916 return arm_hwbp_access;
917 }
918
919 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
920 to LEN. The type of watchpoint is given in RW. */
921 static void
922 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len,
923 enum target_hw_bp_type type,
924 struct arm_linux_hw_breakpoint *p)
925 {
926 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
927 unsigned mask;
928
929 gdb_assert (cap != NULL);
930 gdb_assert (cap->max_wp_length != 0);
931
932 mask = (1 << len) - 1;
933
934 p->address = (unsigned int) addr;
935 p->control = arm_hwbp_control_initialize (mask,
936 arm_linux_get_hwbp_type (type), 1);
937 }
938
939 /* Are two break-/watch-points equal? */
940 static int
941 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
942 const struct arm_linux_hw_breakpoint *p2)
943 {
944 return p1->address == p2->address && p1->control == p2->control;
945 }
946
947 /* Callback to mark a watch-/breakpoint to be updated in all threads of
948 the current process. */
949
950 static int
951 update_registers_callback (struct lwp_info *lwp, int watch, int index)
952 {
953 if (lwp->arch_private == NULL)
954 lwp->arch_private = XCNEW (struct arch_lwp_info);
955
956 /* The actual update is done later just before resuming the lwp,
957 we just mark that the registers need updating. */
958 if (watch)
959 lwp->arch_private->wpts_changed[index] = 1;
960 else
961 lwp->arch_private->bpts_changed[index] = 1;
962
963 /* If the lwp isn't stopped, force it to momentarily pause, so
964 we can update its breakpoint registers. */
965 if (!lwp->stopped)
966 linux_stop_lwp (lwp);
967
968 return 0;
969 }
970
971 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
972 =1) BPT for thread TID. */
973 static void
974 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
975 int watchpoint)
976 {
977 int pid;
978 ptid_t pid_ptid;
979 gdb_byte count, i;
980 struct arm_linux_hw_breakpoint* bpts;
981
982 pid = inferior_ptid.pid ();
983 pid_ptid = ptid_t (pid);
984
985 if (watchpoint)
986 {
987 count = arm_linux_get_hw_watchpoint_count ();
988 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
989 }
990 else
991 {
992 count = arm_linux_get_hw_breakpoint_count ();
993 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
994 }
995
996 for (i = 0; i < count; ++i)
997 if (!arm_hwbp_control_is_enabled (bpts[i].control))
998 {
999 bpts[i] = *bpt;
1000 iterate_over_lwps (pid_ptid,
1001 [=] (struct lwp_info *info)
1002 {
1003 return update_registers_callback (info, watchpoint,
1004 i);
1005 });
1006 break;
1007 }
1008
1009 gdb_assert (i != count);
1010 }
1011
1012 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1013 (WATCHPOINT = 1) BPT for thread TID. */
1014 static void
1015 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1016 int watchpoint)
1017 {
1018 int pid;
1019 gdb_byte count, i;
1020 ptid_t pid_ptid;
1021 struct arm_linux_hw_breakpoint* bpts;
1022
1023 pid = inferior_ptid.pid ();
1024 pid_ptid = ptid_t (pid);
1025
1026 if (watchpoint)
1027 {
1028 count = arm_linux_get_hw_watchpoint_count ();
1029 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1030 }
1031 else
1032 {
1033 count = arm_linux_get_hw_breakpoint_count ();
1034 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1035 }
1036
1037 for (i = 0; i < count; ++i)
1038 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1039 {
1040 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1041 iterate_over_lwps (pid_ptid,
1042 [=] (struct lwp_info *info)
1043 {
1044 return update_registers_callback (info, watchpoint,
1045 i);
1046 });
1047 break;
1048 }
1049
1050 gdb_assert (i != count);
1051 }
1052
1053 /* Insert a Hardware breakpoint. */
1054 int
1055 arm_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1056 struct bp_target_info *bp_tgt)
1057 {
1058 struct arm_linux_hw_breakpoint p;
1059
1060 if (arm_linux_get_hw_breakpoint_count () == 0)
1061 return -1;
1062
1063 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1064
1065 arm_linux_insert_hw_breakpoint1 (&p, 0);
1066
1067 return 0;
1068 }
1069
1070 /* Remove a hardware breakpoint. */
1071 int
1072 arm_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1073 struct bp_target_info *bp_tgt)
1074 {
1075 struct arm_linux_hw_breakpoint p;
1076
1077 if (arm_linux_get_hw_breakpoint_count () == 0)
1078 return -1;
1079
1080 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1081
1082 arm_linux_remove_hw_breakpoint1 (&p, 0);
1083
1084 return 0;
1085 }
1086
1087 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1088 ADDR? */
1089 int
1090 arm_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1091 {
1092 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1093 CORE_ADDR max_wp_length, aligned_addr;
1094
1095 /* Can not set watchpoints for zero or negative lengths. */
1096 if (len <= 0)
1097 return 0;
1098
1099 /* Need to be able to use the ptrace interface. */
1100 if (cap == NULL || cap->wp_count == 0)
1101 return 0;
1102
1103 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1104 range covered by a watchpoint. */
1105 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1106 aligned_addr = addr & ~(max_wp_length - 1);
1107
1108 if (aligned_addr + max_wp_length < addr + len)
1109 return 0;
1110
1111 /* The current ptrace interface can only handle watchpoints that are a
1112 power of 2. */
1113 if ((len & (len - 1)) != 0)
1114 return 0;
1115
1116 /* All tests passed so we must be able to set a watchpoint. */
1117 return 1;
1118 }
1119
1120 /* Insert a Hardware breakpoint. */
1121 int
1122 arm_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
1123 enum target_hw_bp_type rw,
1124 struct expression *cond)
1125 {
1126 struct arm_linux_hw_breakpoint p;
1127
1128 if (arm_linux_get_hw_watchpoint_count () == 0)
1129 return -1;
1130
1131 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1132
1133 arm_linux_insert_hw_breakpoint1 (&p, 1);
1134
1135 return 0;
1136 }
1137
1138 /* Remove a hardware breakpoint. */
1139 int
1140 arm_linux_nat_target::remove_watchpoint (CORE_ADDR addr,
1141 int len, enum target_hw_bp_type rw,
1142 struct expression *cond)
1143 {
1144 struct arm_linux_hw_breakpoint p;
1145
1146 if (arm_linux_get_hw_watchpoint_count () == 0)
1147 return -1;
1148
1149 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1150
1151 arm_linux_remove_hw_breakpoint1 (&p, 1);
1152
1153 return 0;
1154 }
1155
1156 /* What was the data address the target was stopped on accessing. */
1157 bool
1158 arm_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
1159 {
1160 siginfo_t siginfo;
1161 int slot;
1162
1163 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1164 return false;
1165
1166 /* This must be a hardware breakpoint. */
1167 if (siginfo.si_signo != SIGTRAP
1168 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1169 return false;
1170
1171 /* We must be able to set hardware watchpoints. */
1172 if (arm_linux_get_hw_watchpoint_count () == 0)
1173 return 0;
1174
1175 slot = siginfo.si_errno;
1176
1177 /* If we are in a positive slot then we're looking at a breakpoint and not
1178 a watchpoint. */
1179 if (slot >= 0)
1180 return false;
1181
1182 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1183 return true;
1184 }
1185
1186 /* Has the target been stopped by hitting a watchpoint? */
1187 bool
1188 arm_linux_nat_target::stopped_by_watchpoint ()
1189 {
1190 CORE_ADDR addr;
1191 return stopped_data_address (&addr);
1192 }
1193
1194 bool
1195 arm_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
1196 CORE_ADDR start,
1197 int length)
1198 {
1199 return start <= addr && start + length - 1 >= addr;
1200 }
1201
1202 /* Handle thread creation. We need to copy the breakpoints and watchpoints
1203 in the parent thread to the child thread. */
1204 void
1205 arm_linux_nat_target::low_new_thread (struct lwp_info *lp)
1206 {
1207 int i;
1208 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1209
1210 /* Mark that all the hardware breakpoint/watchpoint register pairs
1211 for this thread need to be initialized. */
1212
1213 for (i = 0; i < MAX_BPTS; i++)
1214 {
1215 info->bpts_changed[i] = 1;
1216 info->wpts_changed[i] = 1;
1217 }
1218
1219 lp->arch_private = info;
1220 }
1221
1222 /* Function to call when a thread is being deleted. */
1223
1224 void
1225 arm_linux_nat_target::low_delete_thread (struct arch_lwp_info *arch_lwp)
1226 {
1227 xfree (arch_lwp);
1228 }
1229
1230 /* Called when resuming a thread.
1231 The hardware debug registers are updated when there is any change. */
1232
1233 void
1234 arm_linux_nat_target::low_prepare_to_resume (struct lwp_info *lwp)
1235 {
1236 int pid, i;
1237 struct arm_linux_hw_breakpoint *bpts, *wpts;
1238 struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1239
1240 pid = lwp->ptid.lwp ();
1241 bpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->bpts;
1242 wpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->wpts;
1243
1244 /* NULL means this is the main thread still going through the shell,
1245 or, no watchpoint has been set yet. In that case, there's
1246 nothing to do. */
1247 if (arm_lwp_info == NULL)
1248 return;
1249
1250 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1251 if (arm_lwp_info->bpts_changed[i])
1252 {
1253 errno = 0;
1254 if (arm_hwbp_control_is_enabled (bpts[i].control))
1255 if (ptrace (PTRACE_SETHBPREGS, pid,
1256 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1257 perror_with_name (_("Unexpected error setting breakpoint"));
1258
1259 if (bpts[i].control != 0)
1260 if (ptrace (PTRACE_SETHBPREGS, pid,
1261 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1262 perror_with_name (_("Unexpected error setting breakpoint"));
1263
1264 arm_lwp_info->bpts_changed[i] = 0;
1265 }
1266
1267 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1268 if (arm_lwp_info->wpts_changed[i])
1269 {
1270 errno = 0;
1271 if (arm_hwbp_control_is_enabled (wpts[i].control))
1272 if (ptrace (PTRACE_SETHBPREGS, pid,
1273 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1274 perror_with_name (_("Unexpected error setting watchpoint"));
1275
1276 if (wpts[i].control != 0)
1277 if (ptrace (PTRACE_SETHBPREGS, pid,
1278 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1279 perror_with_name (_("Unexpected error setting watchpoint"));
1280
1281 arm_lwp_info->wpts_changed[i] = 0;
1282 }
1283 }
1284
1285 /* linux_nat_new_fork hook. */
1286
1287 void
1288 arm_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid)
1289 {
1290 pid_t parent_pid;
1291 struct arm_linux_debug_reg_state *parent_state;
1292 struct arm_linux_debug_reg_state *child_state;
1293
1294 /* NULL means no watchpoint has ever been set in the parent. In
1295 that case, there's nothing to do. */
1296 if (parent->arch_private == NULL)
1297 return;
1298
1299 /* GDB core assumes the child inherits the watchpoints/hw
1300 breakpoints of the parent, and will remove them all from the
1301 forked off process. Copy the debug registers mirrors into the
1302 new process so that all breakpoints and watchpoints can be
1303 removed together. */
1304
1305 parent_pid = parent->ptid.pid ();
1306 parent_state = arm_linux_get_debug_reg_state (parent_pid);
1307 child_state = arm_linux_get_debug_reg_state (child_pid);
1308 *child_state = *parent_state;
1309 }
1310
1311 void
1312 _initialize_arm_linux_nat (void)
1313 {
1314 /* Register the target. */
1315 linux_target = &the_arm_linux_nat_target;
1316 add_inf_child_target (&the_arm_linux_nat_target);
1317 }
This page took 0.072454 seconds and 5 git commands to generate.