Fix Arm build error
[deliverable/binutils-gdb.git] / gdb / arm-linux-nat.c
1 /* GNU/Linux on ARM native support.
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "inferior.h"
21 #include "gdbcore.h"
22 #include "regcache.h"
23 #include "target.h"
24 #include "linux-nat.h"
25 #include "target-descriptions.h"
26 #include "auxv.h"
27 #include "observable.h"
28 #include "gdbthread.h"
29
30 #include "arm-tdep.h"
31 #include "arm-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
33
34 #include <elf/common.h>
35 #include <sys/user.h>
36 #include "nat/gdb_ptrace.h"
37 #include <sys/utsname.h>
38 #include <sys/procfs.h>
39
40 #include "nat/linux-ptrace.h"
41
42 /* Prototypes for supply_gregset etc. */
43 #include "gregset.h"
44
45 /* Defines ps_err_e, struct ps_prochandle. */
46 #include "gdb_proc_service.h"
47
48 #ifndef PTRACE_GET_THREAD_AREA
49 #define PTRACE_GET_THREAD_AREA 22
50 #endif
51
52 #ifndef PTRACE_GETWMMXREGS
53 #define PTRACE_GETWMMXREGS 18
54 #define PTRACE_SETWMMXREGS 19
55 #endif
56
57 #ifndef PTRACE_GETVFPREGS
58 #define PTRACE_GETVFPREGS 27
59 #define PTRACE_SETVFPREGS 28
60 #endif
61
62 #ifndef PTRACE_GETHBPREGS
63 #define PTRACE_GETHBPREGS 29
64 #define PTRACE_SETHBPREGS 30
65 #endif
66
67 extern int arm_apcs_32;
68
69 class arm_linux_nat_target final : public linux_nat_target
70 {
71 public:
72 /* Add our register access methods. */
73 void fetch_registers (struct regcache *, int) override;
74 void store_registers (struct regcache *, int) override;
75
76 /* Add our hardware breakpoint and watchpoint implementation. */
77 int can_use_hw_breakpoint (enum bptype, int, int) override;
78
79 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
80
81 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
82
83 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
84
85 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
86 struct expression *) override;
87
88 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
89 struct expression *) override;
90 bool stopped_by_watchpoint () override;
91
92 bool stopped_data_address (CORE_ADDR *) override;
93
94 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
95
96 const struct target_desc *read_description () override;
97
98 /* Override linux_nat_target low methods. */
99
100 /* Handle thread creation and exit. */
101 void low_new_thread (struct lwp_info *lp) override;
102 void low_delete_thread (struct arch_lwp_info *lp) override;
103 void low_prepare_to_resume (struct lwp_info *lp) override;
104
105 /* Handle process creation and exit. */
106 void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
107 void low_forget_process (pid_t pid) override;
108 };
109
110 static arm_linux_nat_target the_arm_linux_nat_target;
111
112 /* Get the whole floating point state of the process and store it
113 into regcache. */
114
115 static void
116 fetch_fpregs (struct regcache *regcache)
117 {
118 int ret, regno, tid;
119 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
120
121 /* Get the thread id for the ptrace call. */
122 tid = regcache->ptid ().lwp ();
123
124 /* Read the floating point state. */
125 if (have_ptrace_getregset == TRIBOOL_TRUE)
126 {
127 struct iovec iov;
128
129 iov.iov_base = &fp;
130 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
131
132 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
133 }
134 else
135 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
136
137 if (ret < 0)
138 perror_with_name (_("Unable to fetch the floating point registers."));
139
140 /* Fetch fpsr. */
141 regcache->raw_supply (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
142
143 /* Fetch the floating point registers. */
144 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
145 supply_nwfpe_register (regcache, regno, fp);
146 }
147
148 /* Save the whole floating point state of the process using
149 the contents from regcache. */
150
151 static void
152 store_fpregs (const struct regcache *regcache)
153 {
154 int ret, regno, tid;
155 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
156
157 /* Get the thread id for the ptrace call. */
158 tid = regcache->ptid ().lwp ();
159
160 /* Read the floating point state. */
161 if (have_ptrace_getregset == TRIBOOL_TRUE)
162 {
163 elf_fpregset_t fpregs;
164 struct iovec iov;
165
166 iov.iov_base = &fpregs;
167 iov.iov_len = sizeof (fpregs);
168
169 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
170 }
171 else
172 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
173
174 if (ret < 0)
175 perror_with_name (_("Unable to fetch the floating point registers."));
176
177 /* Store fpsr. */
178 if (REG_VALID == regcache->get_register_status (ARM_FPS_REGNUM))
179 regcache->raw_collect (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
180
181 /* Store the floating point registers. */
182 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
183 if (REG_VALID == regcache->get_register_status (regno))
184 collect_nwfpe_register (regcache, regno, fp);
185
186 if (have_ptrace_getregset == TRIBOOL_TRUE)
187 {
188 struct iovec iov;
189
190 iov.iov_base = &fp;
191 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
192
193 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov);
194 }
195 else
196 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
197
198 if (ret < 0)
199 perror_with_name (_("Unable to store floating point registers."));
200 }
201
202 /* Fetch all general registers of the process and store into
203 regcache. */
204
205 static void
206 fetch_regs (struct regcache *regcache)
207 {
208 int ret, tid;
209 elf_gregset_t regs;
210
211 /* Get the thread id for the ptrace call. */
212 tid = regcache->ptid ().lwp ();
213
214 if (have_ptrace_getregset == TRIBOOL_TRUE)
215 {
216 struct iovec iov;
217
218 iov.iov_base = &regs;
219 iov.iov_len = sizeof (regs);
220
221 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
222 }
223 else
224 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
225
226 if (ret < 0)
227 perror_with_name (_("Unable to fetch general registers."));
228
229 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32);
230 }
231
232 static void
233 store_regs (const struct regcache *regcache)
234 {
235 int ret, tid;
236 elf_gregset_t regs;
237
238 /* Get the thread id for the ptrace call. */
239 tid = regcache->ptid ().lwp ();
240
241 /* Fetch the general registers. */
242 if (have_ptrace_getregset == TRIBOOL_TRUE)
243 {
244 struct iovec iov;
245
246 iov.iov_base = &regs;
247 iov.iov_len = sizeof (regs);
248
249 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
250 }
251 else
252 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
253
254 if (ret < 0)
255 perror_with_name (_("Unable to fetch general registers."));
256
257 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32);
258
259 if (have_ptrace_getregset == TRIBOOL_TRUE)
260 {
261 struct iovec iov;
262
263 iov.iov_base = &regs;
264 iov.iov_len = sizeof (regs);
265
266 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov);
267 }
268 else
269 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
270
271 if (ret < 0)
272 perror_with_name (_("Unable to store general registers."));
273 }
274
275 /* Fetch all WMMX registers of the process and store into
276 regcache. */
277
278 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
279
280 static void
281 fetch_wmmx_regs (struct regcache *regcache)
282 {
283 char regbuf[IWMMXT_REGS_SIZE];
284 int ret, regno, tid;
285
286 /* Get the thread id for the ptrace call. */
287 tid = regcache->ptid ().lwp ();
288
289 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
290 if (ret < 0)
291 perror_with_name (_("Unable to fetch WMMX registers."));
292
293 for (regno = 0; regno < 16; regno++)
294 regcache->raw_supply (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
295
296 for (regno = 0; regno < 2; regno++)
297 regcache->raw_supply (regno + ARM_WCSSF_REGNUM,
298 &regbuf[16 * 8 + regno * 4]);
299
300 for (regno = 0; regno < 4; regno++)
301 regcache->raw_supply (regno + ARM_WCGR0_REGNUM,
302 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
303 }
304
305 static void
306 store_wmmx_regs (const struct regcache *regcache)
307 {
308 char regbuf[IWMMXT_REGS_SIZE];
309 int ret, regno, tid;
310
311 /* Get the thread id for the ptrace call. */
312 tid = regcache->ptid ().lwp ();
313
314 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
315 if (ret < 0)
316 perror_with_name (_("Unable to fetch WMMX registers."));
317
318 for (regno = 0; regno < 16; regno++)
319 if (REG_VALID == regcache->get_register_status (regno + ARM_WR0_REGNUM))
320 regcache->raw_collect (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
321
322 for (regno = 0; regno < 2; regno++)
323 if (REG_VALID == regcache->get_register_status (regno + ARM_WCSSF_REGNUM))
324 regcache->raw_collect (regno + ARM_WCSSF_REGNUM,
325 &regbuf[16 * 8 + regno * 4]);
326
327 for (regno = 0; regno < 4; regno++)
328 if (REG_VALID == regcache->get_register_status (regno + ARM_WCGR0_REGNUM))
329 regcache->raw_collect (regno + ARM_WCGR0_REGNUM,
330 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
331
332 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
333
334 if (ret < 0)
335 perror_with_name (_("Unable to store WMMX registers."));
336 }
337
338 static void
339 fetch_vfp_regs (struct regcache *regcache)
340 {
341 gdb_byte regbuf[VFP_REGS_SIZE];
342 int ret, tid;
343 struct gdbarch *gdbarch = regcache->arch ();
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345
346 /* Get the thread id for the ptrace call. */
347 tid = regcache->ptid ().lwp ();
348
349 if (have_ptrace_getregset == TRIBOOL_TRUE)
350 {
351 struct iovec iov;
352
353 iov.iov_base = regbuf;
354 iov.iov_len = VFP_REGS_SIZE;
355 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
356 }
357 else
358 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
359
360 if (ret < 0)
361 perror_with_name (_("Unable to fetch VFP registers."));
362
363 aarch32_vfp_regcache_supply (regcache, regbuf,
364 tdep->vfp_register_count);
365 }
366
367 static void
368 store_vfp_regs (const struct regcache *regcache)
369 {
370 gdb_byte regbuf[VFP_REGS_SIZE];
371 int ret, tid;
372 struct gdbarch *gdbarch = regcache->arch ();
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374
375 /* Get the thread id for the ptrace call. */
376 tid = regcache->ptid ().lwp ();
377
378 if (have_ptrace_getregset == TRIBOOL_TRUE)
379 {
380 struct iovec iov;
381
382 iov.iov_base = regbuf;
383 iov.iov_len = VFP_REGS_SIZE;
384 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
385 }
386 else
387 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
388
389 if (ret < 0)
390 perror_with_name (_("Unable to fetch VFP registers (for update)."));
391
392 aarch32_vfp_regcache_collect (regcache, regbuf,
393 tdep->vfp_register_count);
394
395 if (have_ptrace_getregset == TRIBOOL_TRUE)
396 {
397 struct iovec iov;
398
399 iov.iov_base = regbuf;
400 iov.iov_len = VFP_REGS_SIZE;
401 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov);
402 }
403 else
404 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
405
406 if (ret < 0)
407 perror_with_name (_("Unable to store VFP registers."));
408 }
409
410 /* Fetch registers from the child process. Fetch all registers if
411 regno == -1, otherwise fetch all general registers or all floating
412 point registers depending upon the value of regno. */
413
414 void
415 arm_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
416 {
417 struct gdbarch *gdbarch = regcache->arch ();
418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
419
420 if (-1 == regno)
421 {
422 fetch_regs (regcache);
423 if (tdep->have_wmmx_registers)
424 fetch_wmmx_regs (regcache);
425 if (tdep->vfp_register_count > 0)
426 fetch_vfp_regs (regcache);
427 if (tdep->have_fpa_registers)
428 fetch_fpregs (regcache);
429 }
430 else
431 {
432 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
433 fetch_regs (regcache);
434 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
435 fetch_fpregs (regcache);
436 else if (tdep->have_wmmx_registers
437 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
438 fetch_wmmx_regs (regcache);
439 else if (tdep->vfp_register_count > 0
440 && regno >= ARM_D0_REGNUM
441 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
442 || regno == ARM_FPSCR_REGNUM))
443 fetch_vfp_regs (regcache);
444 }
445 }
446
447 /* Store registers back into the inferior. Store all registers if
448 regno == -1, otherwise store all general registers or all floating
449 point registers depending upon the value of regno. */
450
451 void
452 arm_linux_nat_target::store_registers (struct regcache *regcache, int regno)
453 {
454 struct gdbarch *gdbarch = regcache->arch ();
455 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
456
457 if (-1 == regno)
458 {
459 store_regs (regcache);
460 if (tdep->have_wmmx_registers)
461 store_wmmx_regs (regcache);
462 if (tdep->vfp_register_count > 0)
463 store_vfp_regs (regcache);
464 if (tdep->have_fpa_registers)
465 store_fpregs (regcache);
466 }
467 else
468 {
469 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
470 store_regs (regcache);
471 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
472 store_fpregs (regcache);
473 else if (tdep->have_wmmx_registers
474 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
475 store_wmmx_regs (regcache);
476 else if (tdep->vfp_register_count > 0
477 && regno >= ARM_D0_REGNUM
478 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
479 || regno == ARM_FPSCR_REGNUM))
480 store_vfp_regs (regcache);
481 }
482 }
483
484 /* Wrapper functions for the standard regset handling, used by
485 thread debugging. */
486
487 void
488 fill_gregset (const struct regcache *regcache,
489 gdb_gregset_t *gregsetp, int regno)
490 {
491 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
492 }
493
494 void
495 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
496 {
497 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
498 }
499
500 void
501 fill_fpregset (const struct regcache *regcache,
502 gdb_fpregset_t *fpregsetp, int regno)
503 {
504 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
505 }
506
507 /* Fill GDB's register array with the floating-point register values
508 in *fpregsetp. */
509
510 void
511 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
512 {
513 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
514 }
515
516 /* Fetch the thread-local storage pointer for libthread_db. */
517
518 ps_err_e
519 ps_get_thread_area (struct ps_prochandle *ph,
520 lwpid_t lwpid, int idx, void **base)
521 {
522 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
523 return PS_ERR;
524
525 /* IDX is the bias from the thread pointer to the beginning of the
526 thread descriptor. It has to be subtracted due to implementation
527 quirks in libthread_db. */
528 *base = (void *) ((char *)*base - idx);
529
530 return PS_OK;
531 }
532
533 const struct target_desc *
534 arm_linux_nat_target::read_description ()
535 {
536 CORE_ADDR arm_hwcap = 0;
537
538 if (have_ptrace_getregset == TRIBOOL_UNKNOWN)
539 {
540 elf_gregset_t gpregs;
541 struct iovec iov;
542 int tid = inferior_ptid.lwp ();
543
544 iov.iov_base = &gpregs;
545 iov.iov_len = sizeof (gpregs);
546
547 /* Check if PTRACE_GETREGSET works. */
548 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0)
549 have_ptrace_getregset = TRIBOOL_FALSE;
550 else
551 have_ptrace_getregset = TRIBOOL_TRUE;
552 }
553
554 if (target_auxv_search (this, AT_HWCAP, &arm_hwcap) != 1)
555 {
556 return this->beneath ()->read_description ();
557 }
558
559 if (arm_hwcap & HWCAP_IWMMXT)
560 return tdesc_arm_with_iwmmxt;
561
562 if (arm_hwcap & HWCAP_VFP)
563 {
564 int pid;
565 char *buf;
566 const struct target_desc * result = NULL;
567
568 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
569 Neon with VFPv3-D32. */
570 if (arm_hwcap & HWCAP_NEON)
571 result = tdesc_arm_with_neon;
572 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
573 result = tdesc_arm_with_vfpv3;
574 else
575 result = tdesc_arm_with_vfpv2;
576
577 /* Now make sure that the kernel supports reading these
578 registers. Support was added in 2.6.30. */
579 pid = inferior_ptid.lwp ();
580 errno = 0;
581 buf = (char *) alloca (VFP_REGS_SIZE);
582 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
583 && errno == EIO)
584 result = NULL;
585
586 return result;
587 }
588
589 return this->beneath ()->read_description ();
590 }
591
592 /* Information describing the hardware breakpoint capabilities. */
593 struct arm_linux_hwbp_cap
594 {
595 gdb_byte arch;
596 gdb_byte max_wp_length;
597 gdb_byte wp_count;
598 gdb_byte bp_count;
599 };
600
601 /* Since we cannot dynamically allocate subfields of arm_linux_process_info,
602 assume a maximum number of supported break-/watchpoints. */
603 #define MAX_BPTS 16
604 #define MAX_WPTS 16
605
606 /* Get hold of the Hardware Breakpoint information for the target we are
607 attached to. Returns NULL if the kernel doesn't support Hardware
608 breakpoints at all, or a pointer to the information structure. */
609 static const struct arm_linux_hwbp_cap *
610 arm_linux_get_hwbp_cap (void)
611 {
612 /* The info structure we return. */
613 static struct arm_linux_hwbp_cap info;
614
615 /* Is INFO in a good state? -1 means that no attempt has been made to
616 initialize INFO; 0 means an attempt has been made, but it failed; 1
617 means INFO is in an initialized state. */
618 static int available = -1;
619
620 if (available == -1)
621 {
622 int tid;
623 unsigned int val;
624
625 tid = inferior_ptid.lwp ();
626 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
627 available = 0;
628 else
629 {
630 info.arch = (gdb_byte)((val >> 24) & 0xff);
631 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
632 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
633 info.bp_count = (gdb_byte)(val & 0xff);
634
635 if (info.wp_count > MAX_WPTS)
636 {
637 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
638 supports %d"), MAX_WPTS, info.wp_count);
639 info.wp_count = MAX_WPTS;
640 }
641
642 if (info.bp_count > MAX_BPTS)
643 {
644 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
645 supports %d"), MAX_BPTS, info.bp_count);
646 info.bp_count = MAX_BPTS;
647 }
648 available = (info.arch != 0);
649 }
650 }
651
652 return available == 1 ? &info : NULL;
653 }
654
655 /* How many hardware breakpoints are available? */
656 static int
657 arm_linux_get_hw_breakpoint_count (void)
658 {
659 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
660 return cap != NULL ? cap->bp_count : 0;
661 }
662
663 /* How many hardware watchpoints are available? */
664 static int
665 arm_linux_get_hw_watchpoint_count (void)
666 {
667 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
668 return cap != NULL ? cap->wp_count : 0;
669 }
670
671 /* Have we got a free break-/watch-point available for use? Returns -1 if
672 there is not an appropriate resource available, otherwise returns 1. */
673 int
674 arm_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
675 int cnt, int ot)
676 {
677 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
678 || type == bp_access_watchpoint || type == bp_watchpoint)
679 {
680 int count = arm_linux_get_hw_watchpoint_count ();
681
682 if (count == 0)
683 return 0;
684 else if (cnt + ot > count)
685 return -1;
686 }
687 else if (type == bp_hardware_breakpoint)
688 {
689 int count = arm_linux_get_hw_breakpoint_count ();
690
691 if (count == 0)
692 return 0;
693 else if (cnt > count)
694 return -1;
695 }
696 else
697 gdb_assert (FALSE);
698
699 return 1;
700 }
701
702 /* Enum describing the different types of ARM hardware break-/watch-points. */
703 typedef enum
704 {
705 arm_hwbp_break = 0,
706 arm_hwbp_load = 1,
707 arm_hwbp_store = 2,
708 arm_hwbp_access = 3
709 } arm_hwbp_type;
710
711 /* Type describing an ARM Hardware Breakpoint Control register value. */
712 typedef unsigned int arm_hwbp_control_t;
713
714 /* Structure used to keep track of hardware break-/watch-points. */
715 struct arm_linux_hw_breakpoint
716 {
717 /* Address to break on, or being watched. */
718 unsigned int address;
719 /* Control register for break-/watch- point. */
720 arm_hwbp_control_t control;
721 };
722
723 /* Structure containing arrays of per process hardware break-/watchpoints
724 for caching address and control information.
725
726 The Linux ptrace interface to hardware break-/watch-points presents the
727 values in a vector centred around 0 (which is used fo generic information).
728 Positive indicies refer to breakpoint addresses/control registers, negative
729 indices to watchpoint addresses/control registers.
730
731 The Linux vector is indexed as follows:
732 -((i << 1) + 2): Control register for watchpoint i.
733 -((i << 1) + 1): Address register for watchpoint i.
734 0: Information register.
735 ((i << 1) + 1): Address register for breakpoint i.
736 ((i << 1) + 2): Control register for breakpoint i.
737
738 This structure is used as a per-thread cache of the state stored by the
739 kernel, so that we don't need to keep calling into the kernel to find a
740 free breakpoint.
741
742 We treat break-/watch-points with their enable bit clear as being deleted.
743 */
744 struct arm_linux_debug_reg_state
745 {
746 /* Hardware breakpoints for this process. */
747 struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
748 /* Hardware watchpoints for this process. */
749 struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
750 };
751
752 /* Per-process arch-specific data we want to keep. */
753 struct arm_linux_process_info
754 {
755 /* Linked list. */
756 struct arm_linux_process_info *next;
757 /* The process identifier. */
758 pid_t pid;
759 /* Hardware break-/watchpoints state information. */
760 struct arm_linux_debug_reg_state state;
761
762 };
763
764 /* Per-thread arch-specific data we want to keep. */
765 struct arch_lwp_info
766 {
767 /* Non-zero if our copy differs from what's recorded in the thread. */
768 char bpts_changed[MAX_BPTS];
769 char wpts_changed[MAX_WPTS];
770 };
771
772 static struct arm_linux_process_info *arm_linux_process_list = NULL;
773
774 /* Find process data for process PID. */
775
776 static struct arm_linux_process_info *
777 arm_linux_find_process_pid (pid_t pid)
778 {
779 struct arm_linux_process_info *proc;
780
781 for (proc = arm_linux_process_list; proc; proc = proc->next)
782 if (proc->pid == pid)
783 return proc;
784
785 return NULL;
786 }
787
788 /* Add process data for process PID. Returns newly allocated info
789 object. */
790
791 static struct arm_linux_process_info *
792 arm_linux_add_process (pid_t pid)
793 {
794 struct arm_linux_process_info *proc;
795
796 proc = XCNEW (struct arm_linux_process_info);
797 proc->pid = pid;
798
799 proc->next = arm_linux_process_list;
800 arm_linux_process_list = proc;
801
802 return proc;
803 }
804
805 /* Get data specific info for process PID, creating it if necessary.
806 Never returns NULL. */
807
808 static struct arm_linux_process_info *
809 arm_linux_process_info_get (pid_t pid)
810 {
811 struct arm_linux_process_info *proc;
812
813 proc = arm_linux_find_process_pid (pid);
814 if (proc == NULL)
815 proc = arm_linux_add_process (pid);
816
817 return proc;
818 }
819
820 /* Called whenever GDB is no longer debugging process PID. It deletes
821 data structures that keep track of debug register state. */
822
823 void
824 arm_linux_nat_target::low_forget_process (pid_t pid)
825 {
826 struct arm_linux_process_info *proc, **proc_link;
827
828 proc = arm_linux_process_list;
829 proc_link = &arm_linux_process_list;
830
831 while (proc != NULL)
832 {
833 if (proc->pid == pid)
834 {
835 *proc_link = proc->next;
836
837 xfree (proc);
838 return;
839 }
840
841 proc_link = &proc->next;
842 proc = *proc_link;
843 }
844 }
845
846 /* Get hardware break-/watchpoint state for process PID. */
847
848 static struct arm_linux_debug_reg_state *
849 arm_linux_get_debug_reg_state (pid_t pid)
850 {
851 return &arm_linux_process_info_get (pid)->state;
852 }
853
854 /* Initialize an ARM hardware break-/watch-point control register value.
855 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
856 type of break-/watch-point; ENABLE indicates whether the point is enabled.
857 */
858 static arm_hwbp_control_t
859 arm_hwbp_control_initialize (unsigned byte_address_select,
860 arm_hwbp_type hwbp_type,
861 int enable)
862 {
863 gdb_assert ((byte_address_select & ~0xffU) == 0);
864 gdb_assert (hwbp_type != arm_hwbp_break
865 || ((byte_address_select & 0xfU) != 0));
866
867 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
868 }
869
870 /* Does the breakpoint control value CONTROL have the enable bit set? */
871 static int
872 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
873 {
874 return control & 0x1;
875 }
876
877 /* Change a breakpoint control word so that it is in the disabled state. */
878 static arm_hwbp_control_t
879 arm_hwbp_control_disable (arm_hwbp_control_t control)
880 {
881 return control & ~0x1;
882 }
883
884 /* Initialise the hardware breakpoint structure P. The breakpoint will be
885 enabled, and will point to the placed address of BP_TGT. */
886 static void
887 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
888 struct bp_target_info *bp_tgt,
889 struct arm_linux_hw_breakpoint *p)
890 {
891 unsigned mask;
892 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
893
894 /* We have to create a mask for the control register which says which bits
895 of the word pointed to by address to break on. */
896 if (arm_pc_is_thumb (gdbarch, address))
897 {
898 mask = 0x3;
899 address &= ~1;
900 }
901 else
902 {
903 mask = 0xf;
904 address &= ~3;
905 }
906
907 p->address = (unsigned int) address;
908 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
909 }
910
911 /* Get the ARM hardware breakpoint type from the TYPE value we're
912 given when asked to set a watchpoint. */
913 static arm_hwbp_type
914 arm_linux_get_hwbp_type (enum target_hw_bp_type type)
915 {
916 if (type == hw_read)
917 return arm_hwbp_load;
918 else if (type == hw_write)
919 return arm_hwbp_store;
920 else
921 return arm_hwbp_access;
922 }
923
924 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
925 to LEN. The type of watchpoint is given in RW. */
926 static void
927 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len,
928 enum target_hw_bp_type type,
929 struct arm_linux_hw_breakpoint *p)
930 {
931 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
932 unsigned mask;
933
934 gdb_assert (cap != NULL);
935 gdb_assert (cap->max_wp_length != 0);
936
937 mask = (1 << len) - 1;
938
939 p->address = (unsigned int) addr;
940 p->control = arm_hwbp_control_initialize (mask,
941 arm_linux_get_hwbp_type (type), 1);
942 }
943
944 /* Are two break-/watch-points equal? */
945 static int
946 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
947 const struct arm_linux_hw_breakpoint *p2)
948 {
949 return p1->address == p2->address && p1->control == p2->control;
950 }
951
952 /* Callback to mark a watch-/breakpoint to be updated in all threads of
953 the current process. */
954
955 static int
956 update_registers_callback (struct lwp_info *lwp, int watch, int index)
957 {
958 if (lwp->arch_private == NULL)
959 lwp->arch_private = XCNEW (struct arch_lwp_info);
960
961 /* The actual update is done later just before resuming the lwp,
962 we just mark that the registers need updating. */
963 if (watch)
964 lwp->arch_private->wpts_changed[index] = 1;
965 else
966 lwp->arch_private->bpts_changed[index] = 1;
967
968 /* If the lwp isn't stopped, force it to momentarily pause, so
969 we can update its breakpoint registers. */
970 if (!lwp->stopped)
971 linux_stop_lwp (lwp);
972
973 return 0;
974 }
975
976 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
977 =1) BPT for thread TID. */
978 static void
979 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
980 int watchpoint)
981 {
982 int pid;
983 ptid_t pid_ptid;
984 gdb_byte count, i;
985 struct arm_linux_hw_breakpoint* bpts;
986
987 pid = inferior_ptid.pid ();
988 pid_ptid = ptid_t (pid);
989
990 if (watchpoint)
991 {
992 count = arm_linux_get_hw_watchpoint_count ();
993 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
994 }
995 else
996 {
997 count = arm_linux_get_hw_breakpoint_count ();
998 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
999 }
1000
1001 for (i = 0; i < count; ++i)
1002 if (!arm_hwbp_control_is_enabled (bpts[i].control))
1003 {
1004 bpts[i] = *bpt;
1005 iterate_over_lwps (pid_ptid,
1006 [=] (struct lwp_info *info)
1007 {
1008 return update_registers_callback (info, watchpoint,
1009 i);
1010 });
1011 break;
1012 }
1013
1014 gdb_assert (i != count);
1015 }
1016
1017 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1018 (WATCHPOINT = 1) BPT for thread TID. */
1019 static void
1020 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1021 int watchpoint)
1022 {
1023 int pid;
1024 gdb_byte count, i;
1025 ptid_t pid_ptid;
1026 struct arm_linux_hw_breakpoint* bpts;
1027
1028 pid = inferior_ptid.pid ();
1029 pid_ptid = ptid_t (pid);
1030
1031 if (watchpoint)
1032 {
1033 count = arm_linux_get_hw_watchpoint_count ();
1034 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1035 }
1036 else
1037 {
1038 count = arm_linux_get_hw_breakpoint_count ();
1039 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1040 }
1041
1042 for (i = 0; i < count; ++i)
1043 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1044 {
1045 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1046 iterate_over_lwps (pid_ptid,
1047 [=] (struct lwp_info *info)
1048 {
1049 return update_registers_callback (info, watchpoint,
1050 i);
1051 });
1052 break;
1053 }
1054
1055 gdb_assert (i != count);
1056 }
1057
1058 /* Insert a Hardware breakpoint. */
1059 int
1060 arm_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1061 struct bp_target_info *bp_tgt)
1062 {
1063 struct arm_linux_hw_breakpoint p;
1064
1065 if (arm_linux_get_hw_breakpoint_count () == 0)
1066 return -1;
1067
1068 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1069
1070 arm_linux_insert_hw_breakpoint1 (&p, 0);
1071
1072 return 0;
1073 }
1074
1075 /* Remove a hardware breakpoint. */
1076 int
1077 arm_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1078 struct bp_target_info *bp_tgt)
1079 {
1080 struct arm_linux_hw_breakpoint p;
1081
1082 if (arm_linux_get_hw_breakpoint_count () == 0)
1083 return -1;
1084
1085 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1086
1087 arm_linux_remove_hw_breakpoint1 (&p, 0);
1088
1089 return 0;
1090 }
1091
1092 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1093 ADDR? */
1094 int
1095 arm_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1096 {
1097 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1098 CORE_ADDR max_wp_length, aligned_addr;
1099
1100 /* Can not set watchpoints for zero or negative lengths. */
1101 if (len <= 0)
1102 return 0;
1103
1104 /* Need to be able to use the ptrace interface. */
1105 if (cap == NULL || cap->wp_count == 0)
1106 return 0;
1107
1108 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1109 range covered by a watchpoint. */
1110 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1111 aligned_addr = addr & ~(max_wp_length - 1);
1112
1113 if (aligned_addr + max_wp_length < addr + len)
1114 return 0;
1115
1116 /* The current ptrace interface can only handle watchpoints that are a
1117 power of 2. */
1118 if ((len & (len - 1)) != 0)
1119 return 0;
1120
1121 /* All tests passed so we must be able to set a watchpoint. */
1122 return 1;
1123 }
1124
1125 /* Insert a Hardware breakpoint. */
1126 int
1127 arm_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
1128 enum target_hw_bp_type rw,
1129 struct expression *cond)
1130 {
1131 struct arm_linux_hw_breakpoint p;
1132
1133 if (arm_linux_get_hw_watchpoint_count () == 0)
1134 return -1;
1135
1136 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1137
1138 arm_linux_insert_hw_breakpoint1 (&p, 1);
1139
1140 return 0;
1141 }
1142
1143 /* Remove a hardware breakpoint. */
1144 int
1145 arm_linux_nat_target::remove_watchpoint (CORE_ADDR addr,
1146 int len, enum target_hw_bp_type rw,
1147 struct expression *cond)
1148 {
1149 struct arm_linux_hw_breakpoint p;
1150
1151 if (arm_linux_get_hw_watchpoint_count () == 0)
1152 return -1;
1153
1154 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1155
1156 arm_linux_remove_hw_breakpoint1 (&p, 1);
1157
1158 return 0;
1159 }
1160
1161 /* What was the data address the target was stopped on accessing. */
1162 bool
1163 arm_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
1164 {
1165 siginfo_t siginfo;
1166 int slot;
1167
1168 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1169 return false;
1170
1171 /* This must be a hardware breakpoint. */
1172 if (siginfo.si_signo != SIGTRAP
1173 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1174 return false;
1175
1176 /* We must be able to set hardware watchpoints. */
1177 if (arm_linux_get_hw_watchpoint_count () == 0)
1178 return 0;
1179
1180 slot = siginfo.si_errno;
1181
1182 /* If we are in a positive slot then we're looking at a breakpoint and not
1183 a watchpoint. */
1184 if (slot >= 0)
1185 return false;
1186
1187 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1188 return true;
1189 }
1190
1191 /* Has the target been stopped by hitting a watchpoint? */
1192 bool
1193 arm_linux_nat_target::stopped_by_watchpoint ()
1194 {
1195 CORE_ADDR addr;
1196 return stopped_data_address (&addr);
1197 }
1198
1199 bool
1200 arm_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
1201 CORE_ADDR start,
1202 int length)
1203 {
1204 return start <= addr && start + length - 1 >= addr;
1205 }
1206
1207 /* Handle thread creation. We need to copy the breakpoints and watchpoints
1208 in the parent thread to the child thread. */
1209 void
1210 arm_linux_nat_target::low_new_thread (struct lwp_info *lp)
1211 {
1212 int i;
1213 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1214
1215 /* Mark that all the hardware breakpoint/watchpoint register pairs
1216 for this thread need to be initialized. */
1217
1218 for (i = 0; i < MAX_BPTS; i++)
1219 {
1220 info->bpts_changed[i] = 1;
1221 info->wpts_changed[i] = 1;
1222 }
1223
1224 lp->arch_private = info;
1225 }
1226
1227 /* Function to call when a thread is being deleted. */
1228
1229 void
1230 arm_linux_nat_target::low_delete_thread (struct arch_lwp_info *arch_lwp)
1231 {
1232 xfree (arch_lwp);
1233 }
1234
1235 /* Called when resuming a thread.
1236 The hardware debug registers are updated when there is any change. */
1237
1238 void
1239 arm_linux_nat_target::low_prepare_to_resume (struct lwp_info *lwp)
1240 {
1241 int pid, i;
1242 struct arm_linux_hw_breakpoint *bpts, *wpts;
1243 struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1244
1245 pid = lwp->ptid.lwp ();
1246 bpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->bpts;
1247 wpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->wpts;
1248
1249 /* NULL means this is the main thread still going through the shell,
1250 or, no watchpoint has been set yet. In that case, there's
1251 nothing to do. */
1252 if (arm_lwp_info == NULL)
1253 return;
1254
1255 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1256 if (arm_lwp_info->bpts_changed[i])
1257 {
1258 errno = 0;
1259 if (arm_hwbp_control_is_enabled (bpts[i].control))
1260 if (ptrace (PTRACE_SETHBPREGS, pid,
1261 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1262 perror_with_name (_("Unexpected error setting breakpoint"));
1263
1264 if (bpts[i].control != 0)
1265 if (ptrace (PTRACE_SETHBPREGS, pid,
1266 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1267 perror_with_name (_("Unexpected error setting breakpoint"));
1268
1269 arm_lwp_info->bpts_changed[i] = 0;
1270 }
1271
1272 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1273 if (arm_lwp_info->wpts_changed[i])
1274 {
1275 errno = 0;
1276 if (arm_hwbp_control_is_enabled (wpts[i].control))
1277 if (ptrace (PTRACE_SETHBPREGS, pid,
1278 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1279 perror_with_name (_("Unexpected error setting watchpoint"));
1280
1281 if (wpts[i].control != 0)
1282 if (ptrace (PTRACE_SETHBPREGS, pid,
1283 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1284 perror_with_name (_("Unexpected error setting watchpoint"));
1285
1286 arm_lwp_info->wpts_changed[i] = 0;
1287 }
1288 }
1289
1290 /* linux_nat_new_fork hook. */
1291
1292 void
1293 arm_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid)
1294 {
1295 pid_t parent_pid;
1296 struct arm_linux_debug_reg_state *parent_state;
1297 struct arm_linux_debug_reg_state *child_state;
1298
1299 /* NULL means no watchpoint has ever been set in the parent. In
1300 that case, there's nothing to do. */
1301 if (parent->arch_private == NULL)
1302 return;
1303
1304 /* GDB core assumes the child inherits the watchpoints/hw
1305 breakpoints of the parent, and will remove them all from the
1306 forked off process. Copy the debug registers mirrors into the
1307 new process so that all breakpoints and watchpoints can be
1308 removed together. */
1309
1310 parent_pid = parent->ptid.pid ();
1311 parent_state = arm_linux_get_debug_reg_state (parent_pid);
1312 child_state = arm_linux_get_debug_reg_state (child_pid);
1313 *child_state = *parent_state;
1314 }
1315
1316 void
1317 _initialize_arm_linux_nat (void)
1318 {
1319 /* Register the target. */
1320 linux_target = &the_arm_linux_nat_target;
1321 add_inf_child_target (&the_arm_linux_nat_target);
1322 }
This page took 0.089106 seconds and 5 git commands to generate.