target_ops: Use bool throughout
[deliverable/binutils-gdb.git] / gdb / arm-linux-nat.c
1 /* GNU/Linux on ARM native support.
2 Copyright (C) 1999-2018 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "inferior.h"
21 #include "gdbcore.h"
22 #include "regcache.h"
23 #include "target.h"
24 #include "linux-nat.h"
25 #include "target-descriptions.h"
26 #include "auxv.h"
27 #include "observable.h"
28 #include "gdbthread.h"
29
30 #include "arm-tdep.h"
31 #include "arm-linux-tdep.h"
32 #include "aarch32-linux-nat.h"
33
34 #include <elf/common.h>
35 #include <sys/user.h>
36 #include "nat/gdb_ptrace.h"
37 #include <sys/utsname.h>
38 #include <sys/procfs.h>
39
40 #include "nat/linux-ptrace.h"
41
42 /* Prototypes for supply_gregset etc. */
43 #include "gregset.h"
44
45 /* Defines ps_err_e, struct ps_prochandle. */
46 #include "gdb_proc_service.h"
47
48 #ifndef PTRACE_GET_THREAD_AREA
49 #define PTRACE_GET_THREAD_AREA 22
50 #endif
51
52 #ifndef PTRACE_GETWMMXREGS
53 #define PTRACE_GETWMMXREGS 18
54 #define PTRACE_SETWMMXREGS 19
55 #endif
56
57 #ifndef PTRACE_GETVFPREGS
58 #define PTRACE_GETVFPREGS 27
59 #define PTRACE_SETVFPREGS 28
60 #endif
61
62 #ifndef PTRACE_GETHBPREGS
63 #define PTRACE_GETHBPREGS 29
64 #define PTRACE_SETHBPREGS 30
65 #endif
66
67 extern int arm_apcs_32;
68
69 class arm_linux_nat_target final : public linux_nat_target
70 {
71 public:
72 /* Add our register access methods. */
73 void fetch_registers (struct regcache *, int) override;
74 void store_registers (struct regcache *, int) override;
75
76 /* Add our hardware breakpoint and watchpoint implementation. */
77 int can_use_hw_breakpoint (enum bptype, int, int) override;
78
79 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
80
81 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
82
83 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
84
85 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
86 struct expression *) override;
87
88 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
89 struct expression *) override;
90 bool stopped_by_watchpoint () override;
91
92 bool stopped_data_address (CORE_ADDR *) override;
93
94 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
95
96 const struct target_desc *read_description () override;
97 };
98
99 static arm_linux_nat_target the_arm_linux_nat_target;
100
101 /* Get the whole floating point state of the process and store it
102 into regcache. */
103
104 static void
105 fetch_fpregs (struct regcache *regcache)
106 {
107 int ret, regno, tid;
108 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
109
110 /* Get the thread id for the ptrace call. */
111 tid = ptid_get_lwp (regcache_get_ptid (regcache));
112
113 /* Read the floating point state. */
114 if (have_ptrace_getregset == TRIBOOL_TRUE)
115 {
116 struct iovec iov;
117
118 iov.iov_base = &fp;
119 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
120
121 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
122 }
123 else
124 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
125
126 if (ret < 0)
127 perror_with_name (_("Unable to fetch the floating point registers."));
128
129 /* Fetch fpsr. */
130 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
131 fp + NWFPE_FPSR_OFFSET);
132
133 /* Fetch the floating point registers. */
134 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
135 supply_nwfpe_register (regcache, regno, fp);
136 }
137
138 /* Save the whole floating point state of the process using
139 the contents from regcache. */
140
141 static void
142 store_fpregs (const struct regcache *regcache)
143 {
144 int ret, regno, tid;
145 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
146
147 /* Get the thread id for the ptrace call. */
148 tid = ptid_get_lwp (regcache_get_ptid (regcache));
149
150 /* Read the floating point state. */
151 if (have_ptrace_getregset == TRIBOOL_TRUE)
152 {
153 elf_fpregset_t fpregs;
154 struct iovec iov;
155
156 iov.iov_base = &fpregs;
157 iov.iov_len = sizeof (fpregs);
158
159 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
160 }
161 else
162 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
163
164 if (ret < 0)
165 perror_with_name (_("Unable to fetch the floating point registers."));
166
167 /* Store fpsr. */
168 if (REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM))
169 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
170
171 /* Store the floating point registers. */
172 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
173 if (REG_VALID == regcache_register_status (regcache, regno))
174 collect_nwfpe_register (regcache, regno, fp);
175
176 if (have_ptrace_getregset == TRIBOOL_TRUE)
177 {
178 struct iovec iov;
179
180 iov.iov_base = &fp;
181 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
182
183 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov);
184 }
185 else
186 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
187
188 if (ret < 0)
189 perror_with_name (_("Unable to store floating point registers."));
190 }
191
192 /* Fetch all general registers of the process and store into
193 regcache. */
194
195 static void
196 fetch_regs (struct regcache *regcache)
197 {
198 int ret, regno, tid;
199 elf_gregset_t regs;
200
201 /* Get the thread id for the ptrace call. */
202 tid = ptid_get_lwp (regcache_get_ptid (regcache));
203
204 if (have_ptrace_getregset == TRIBOOL_TRUE)
205 {
206 struct iovec iov;
207
208 iov.iov_base = &regs;
209 iov.iov_len = sizeof (regs);
210
211 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
212 }
213 else
214 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
215
216 if (ret < 0)
217 perror_with_name (_("Unable to fetch general registers."));
218
219 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32);
220 }
221
222 static void
223 store_regs (const struct regcache *regcache)
224 {
225 int ret, regno, tid;
226 elf_gregset_t regs;
227
228 /* Get the thread id for the ptrace call. */
229 tid = ptid_get_lwp (regcache_get_ptid (regcache));
230
231 /* Fetch the general registers. */
232 if (have_ptrace_getregset == TRIBOOL_TRUE)
233 {
234 struct iovec iov;
235
236 iov.iov_base = &regs;
237 iov.iov_len = sizeof (regs);
238
239 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
240 }
241 else
242 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
243
244 if (ret < 0)
245 perror_with_name (_("Unable to fetch general registers."));
246
247 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32);
248
249 if (have_ptrace_getregset == TRIBOOL_TRUE)
250 {
251 struct iovec iov;
252
253 iov.iov_base = &regs;
254 iov.iov_len = sizeof (regs);
255
256 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov);
257 }
258 else
259 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
260
261 if (ret < 0)
262 perror_with_name (_("Unable to store general registers."));
263 }
264
265 /* Fetch all WMMX registers of the process and store into
266 regcache. */
267
268 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4)
269
270 static void
271 fetch_wmmx_regs (struct regcache *regcache)
272 {
273 char regbuf[IWMMXT_REGS_SIZE];
274 int ret, regno, tid;
275
276 /* Get the thread id for the ptrace call. */
277 tid = ptid_get_lwp (regcache_get_ptid (regcache));
278
279 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
280 if (ret < 0)
281 perror_with_name (_("Unable to fetch WMMX registers."));
282
283 for (regno = 0; regno < 16; regno++)
284 regcache_raw_supply (regcache, regno + ARM_WR0_REGNUM,
285 &regbuf[regno * 8]);
286
287 for (regno = 0; regno < 2; regno++)
288 regcache_raw_supply (regcache, regno + ARM_WCSSF_REGNUM,
289 &regbuf[16 * 8 + regno * 4]);
290
291 for (regno = 0; regno < 4; regno++)
292 regcache_raw_supply (regcache, regno + ARM_WCGR0_REGNUM,
293 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
294 }
295
296 static void
297 store_wmmx_regs (const struct regcache *regcache)
298 {
299 char regbuf[IWMMXT_REGS_SIZE];
300 int ret, regno, tid;
301
302 /* Get the thread id for the ptrace call. */
303 tid = ptid_get_lwp (regcache_get_ptid (regcache));
304
305 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
306 if (ret < 0)
307 perror_with_name (_("Unable to fetch WMMX registers."));
308
309 for (regno = 0; regno < 16; regno++)
310 if (REG_VALID == regcache_register_status (regcache,
311 regno + ARM_WR0_REGNUM))
312 regcache_raw_collect (regcache, regno + ARM_WR0_REGNUM,
313 &regbuf[regno * 8]);
314
315 for (regno = 0; regno < 2; regno++)
316 if (REG_VALID == regcache_register_status (regcache,
317 regno + ARM_WCSSF_REGNUM))
318 regcache_raw_collect (regcache, regno + ARM_WCSSF_REGNUM,
319 &regbuf[16 * 8 + regno * 4]);
320
321 for (regno = 0; regno < 4; regno++)
322 if (REG_VALID == regcache_register_status (regcache,
323 regno + ARM_WCGR0_REGNUM))
324 regcache_raw_collect (regcache, regno + ARM_WCGR0_REGNUM,
325 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
326
327 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
328
329 if (ret < 0)
330 perror_with_name (_("Unable to store WMMX registers."));
331 }
332
333 static void
334 fetch_vfp_regs (struct regcache *regcache)
335 {
336 gdb_byte regbuf[VFP_REGS_SIZE];
337 int ret, regno, tid;
338 struct gdbarch *gdbarch = regcache->arch ();
339 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
340
341 /* Get the thread id for the ptrace call. */
342 tid = ptid_get_lwp (regcache_get_ptid (regcache));
343
344 if (have_ptrace_getregset == TRIBOOL_TRUE)
345 {
346 struct iovec iov;
347
348 iov.iov_base = regbuf;
349 iov.iov_len = VFP_REGS_SIZE;
350 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
351 }
352 else
353 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
354
355 if (ret < 0)
356 perror_with_name (_("Unable to fetch VFP registers."));
357
358 aarch32_vfp_regcache_supply (regcache, regbuf,
359 tdep->vfp_register_count);
360 }
361
362 static void
363 store_vfp_regs (const struct regcache *regcache)
364 {
365 gdb_byte regbuf[VFP_REGS_SIZE];
366 int ret, regno, tid;
367 struct gdbarch *gdbarch = regcache->arch ();
368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
369
370 /* Get the thread id for the ptrace call. */
371 tid = ptid_get_lwp (regcache_get_ptid (regcache));
372
373 if (have_ptrace_getregset == TRIBOOL_TRUE)
374 {
375 struct iovec iov;
376
377 iov.iov_base = regbuf;
378 iov.iov_len = VFP_REGS_SIZE;
379 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
380 }
381 else
382 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
383
384 if (ret < 0)
385 perror_with_name (_("Unable to fetch VFP registers (for update)."));
386
387 aarch32_vfp_regcache_collect (regcache, regbuf,
388 tdep->vfp_register_count);
389
390 if (have_ptrace_getregset == TRIBOOL_TRUE)
391 {
392 struct iovec iov;
393
394 iov.iov_base = regbuf;
395 iov.iov_len = VFP_REGS_SIZE;
396 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov);
397 }
398 else
399 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
400
401 if (ret < 0)
402 perror_with_name (_("Unable to store VFP registers."));
403 }
404
405 /* Fetch registers from the child process. Fetch all registers if
406 regno == -1, otherwise fetch all general registers or all floating
407 point registers depending upon the value of regno. */
408
409 void
410 arm_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
411 {
412 struct gdbarch *gdbarch = regcache->arch ();
413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
414
415 if (-1 == regno)
416 {
417 fetch_regs (regcache);
418 if (tdep->have_wmmx_registers)
419 fetch_wmmx_regs (regcache);
420 if (tdep->vfp_register_count > 0)
421 fetch_vfp_regs (regcache);
422 if (tdep->have_fpa_registers)
423 fetch_fpregs (regcache);
424 }
425 else
426 {
427 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
428 fetch_regs (regcache);
429 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
430 fetch_fpregs (regcache);
431 else if (tdep->have_wmmx_registers
432 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
433 fetch_wmmx_regs (regcache);
434 else if (tdep->vfp_register_count > 0
435 && regno >= ARM_D0_REGNUM
436 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
437 || regno == ARM_FPSCR_REGNUM))
438 fetch_vfp_regs (regcache);
439 }
440 }
441
442 /* Store registers back into the inferior. Store all registers if
443 regno == -1, otherwise store all general registers or all floating
444 point registers depending upon the value of regno. */
445
446 void
447 arm_linux_nat_target::store_registers (struct regcache *regcache, int regno)
448 {
449 struct gdbarch *gdbarch = regcache->arch ();
450 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
451
452 if (-1 == regno)
453 {
454 store_regs (regcache);
455 if (tdep->have_wmmx_registers)
456 store_wmmx_regs (regcache);
457 if (tdep->vfp_register_count > 0)
458 store_vfp_regs (regcache);
459 if (tdep->have_fpa_registers)
460 store_fpregs (regcache);
461 }
462 else
463 {
464 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
465 store_regs (regcache);
466 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
467 store_fpregs (regcache);
468 else if (tdep->have_wmmx_registers
469 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
470 store_wmmx_regs (regcache);
471 else if (tdep->vfp_register_count > 0
472 && regno >= ARM_D0_REGNUM
473 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
474 || regno == ARM_FPSCR_REGNUM))
475 store_vfp_regs (regcache);
476 }
477 }
478
479 /* Wrapper functions for the standard regset handling, used by
480 thread debugging. */
481
482 void
483 fill_gregset (const struct regcache *regcache,
484 gdb_gregset_t *gregsetp, int regno)
485 {
486 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
487 }
488
489 void
490 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
491 {
492 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
493 }
494
495 void
496 fill_fpregset (const struct regcache *regcache,
497 gdb_fpregset_t *fpregsetp, int regno)
498 {
499 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
500 }
501
502 /* Fill GDB's register array with the floating-point register values
503 in *fpregsetp. */
504
505 void
506 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
507 {
508 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
509 }
510
511 /* Fetch the thread-local storage pointer for libthread_db. */
512
513 ps_err_e
514 ps_get_thread_area (struct ps_prochandle *ph,
515 lwpid_t lwpid, int idx, void **base)
516 {
517 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
518 return PS_ERR;
519
520 /* IDX is the bias from the thread pointer to the beginning of the
521 thread descriptor. It has to be subtracted due to implementation
522 quirks in libthread_db. */
523 *base = (void *) ((char *)*base - idx);
524
525 return PS_OK;
526 }
527
528 const struct target_desc *
529 arm_linux_nat_target::read_description ()
530 {
531 CORE_ADDR arm_hwcap = 0;
532
533 if (have_ptrace_getregset == TRIBOOL_UNKNOWN)
534 {
535 elf_gregset_t gpregs;
536 struct iovec iov;
537 int tid = ptid_get_lwp (inferior_ptid);
538
539 iov.iov_base = &gpregs;
540 iov.iov_len = sizeof (gpregs);
541
542 /* Check if PTRACE_GETREGSET works. */
543 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0)
544 have_ptrace_getregset = TRIBOOL_FALSE;
545 else
546 have_ptrace_getregset = TRIBOOL_TRUE;
547 }
548
549 if (target_auxv_search (this, AT_HWCAP, &arm_hwcap) != 1)
550 {
551 return this->beneath->read_description ();
552 }
553
554 if (arm_hwcap & HWCAP_IWMMXT)
555 return tdesc_arm_with_iwmmxt;
556
557 if (arm_hwcap & HWCAP_VFP)
558 {
559 int pid;
560 char *buf;
561 const struct target_desc * result = NULL;
562
563 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
564 Neon with VFPv3-D32. */
565 if (arm_hwcap & HWCAP_NEON)
566 result = tdesc_arm_with_neon;
567 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
568 result = tdesc_arm_with_vfpv3;
569 else
570 result = tdesc_arm_with_vfpv2;
571
572 /* Now make sure that the kernel supports reading these
573 registers. Support was added in 2.6.30. */
574 pid = ptid_get_lwp (inferior_ptid);
575 errno = 0;
576 buf = (char *) alloca (VFP_REGS_SIZE);
577 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0
578 && errno == EIO)
579 result = NULL;
580
581 return result;
582 }
583
584 return this->beneath->read_description ();
585 }
586
587 /* Information describing the hardware breakpoint capabilities. */
588 struct arm_linux_hwbp_cap
589 {
590 gdb_byte arch;
591 gdb_byte max_wp_length;
592 gdb_byte wp_count;
593 gdb_byte bp_count;
594 };
595
596 /* Since we cannot dynamically allocate subfields of arm_linux_process_info,
597 assume a maximum number of supported break-/watchpoints. */
598 #define MAX_BPTS 16
599 #define MAX_WPTS 16
600
601 /* Get hold of the Hardware Breakpoint information for the target we are
602 attached to. Returns NULL if the kernel doesn't support Hardware
603 breakpoints at all, or a pointer to the information structure. */
604 static const struct arm_linux_hwbp_cap *
605 arm_linux_get_hwbp_cap (void)
606 {
607 /* The info structure we return. */
608 static struct arm_linux_hwbp_cap info;
609
610 /* Is INFO in a good state? -1 means that no attempt has been made to
611 initialize INFO; 0 means an attempt has been made, but it failed; 1
612 means INFO is in an initialized state. */
613 static int available = -1;
614
615 if (available == -1)
616 {
617 int tid;
618 unsigned int val;
619
620 tid = ptid_get_lwp (inferior_ptid);
621 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
622 available = 0;
623 else
624 {
625 info.arch = (gdb_byte)((val >> 24) & 0xff);
626 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
627 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
628 info.bp_count = (gdb_byte)(val & 0xff);
629
630 if (info.wp_count > MAX_WPTS)
631 {
632 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
633 supports %d"), MAX_WPTS, info.wp_count);
634 info.wp_count = MAX_WPTS;
635 }
636
637 if (info.bp_count > MAX_BPTS)
638 {
639 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
640 supports %d"), MAX_BPTS, info.bp_count);
641 info.bp_count = MAX_BPTS;
642 }
643 available = (info.arch != 0);
644 }
645 }
646
647 return available == 1 ? &info : NULL;
648 }
649
650 /* How many hardware breakpoints are available? */
651 static int
652 arm_linux_get_hw_breakpoint_count (void)
653 {
654 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
655 return cap != NULL ? cap->bp_count : 0;
656 }
657
658 /* How many hardware watchpoints are available? */
659 static int
660 arm_linux_get_hw_watchpoint_count (void)
661 {
662 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
663 return cap != NULL ? cap->wp_count : 0;
664 }
665
666 /* Have we got a free break-/watch-point available for use? Returns -1 if
667 there is not an appropriate resource available, otherwise returns 1. */
668 int
669 arm_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
670 int cnt, int ot)
671 {
672 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
673 || type == bp_access_watchpoint || type == bp_watchpoint)
674 {
675 int count = arm_linux_get_hw_watchpoint_count ();
676
677 if (count == 0)
678 return 0;
679 else if (cnt + ot > count)
680 return -1;
681 }
682 else if (type == bp_hardware_breakpoint)
683 {
684 int count = arm_linux_get_hw_breakpoint_count ();
685
686 if (count == 0)
687 return 0;
688 else if (cnt > count)
689 return -1;
690 }
691 else
692 gdb_assert (FALSE);
693
694 return 1;
695 }
696
697 /* Enum describing the different types of ARM hardware break-/watch-points. */
698 typedef enum
699 {
700 arm_hwbp_break = 0,
701 arm_hwbp_load = 1,
702 arm_hwbp_store = 2,
703 arm_hwbp_access = 3
704 } arm_hwbp_type;
705
706 /* Type describing an ARM Hardware Breakpoint Control register value. */
707 typedef unsigned int arm_hwbp_control_t;
708
709 /* Structure used to keep track of hardware break-/watch-points. */
710 struct arm_linux_hw_breakpoint
711 {
712 /* Address to break on, or being watched. */
713 unsigned int address;
714 /* Control register for break-/watch- point. */
715 arm_hwbp_control_t control;
716 };
717
718 /* Structure containing arrays of per process hardware break-/watchpoints
719 for caching address and control information.
720
721 The Linux ptrace interface to hardware break-/watch-points presents the
722 values in a vector centred around 0 (which is used fo generic information).
723 Positive indicies refer to breakpoint addresses/control registers, negative
724 indices to watchpoint addresses/control registers.
725
726 The Linux vector is indexed as follows:
727 -((i << 1) + 2): Control register for watchpoint i.
728 -((i << 1) + 1): Address register for watchpoint i.
729 0: Information register.
730 ((i << 1) + 1): Address register for breakpoint i.
731 ((i << 1) + 2): Control register for breakpoint i.
732
733 This structure is used as a per-thread cache of the state stored by the
734 kernel, so that we don't need to keep calling into the kernel to find a
735 free breakpoint.
736
737 We treat break-/watch-points with their enable bit clear as being deleted.
738 */
739 struct arm_linux_debug_reg_state
740 {
741 /* Hardware breakpoints for this process. */
742 struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
743 /* Hardware watchpoints for this process. */
744 struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
745 };
746
747 /* Per-process arch-specific data we want to keep. */
748 struct arm_linux_process_info
749 {
750 /* Linked list. */
751 struct arm_linux_process_info *next;
752 /* The process identifier. */
753 pid_t pid;
754 /* Hardware break-/watchpoints state information. */
755 struct arm_linux_debug_reg_state state;
756
757 };
758
759 /* Per-thread arch-specific data we want to keep. */
760 struct arch_lwp_info
761 {
762 /* Non-zero if our copy differs from what's recorded in the thread. */
763 char bpts_changed[MAX_BPTS];
764 char wpts_changed[MAX_WPTS];
765 };
766
767 static struct arm_linux_process_info *arm_linux_process_list = NULL;
768
769 /* Find process data for process PID. */
770
771 static struct arm_linux_process_info *
772 arm_linux_find_process_pid (pid_t pid)
773 {
774 struct arm_linux_process_info *proc;
775
776 for (proc = arm_linux_process_list; proc; proc = proc->next)
777 if (proc->pid == pid)
778 return proc;
779
780 return NULL;
781 }
782
783 /* Add process data for process PID. Returns newly allocated info
784 object. */
785
786 static struct arm_linux_process_info *
787 arm_linux_add_process (pid_t pid)
788 {
789 struct arm_linux_process_info *proc;
790
791 proc = XCNEW (struct arm_linux_process_info);
792 proc->pid = pid;
793
794 proc->next = arm_linux_process_list;
795 arm_linux_process_list = proc;
796
797 return proc;
798 }
799
800 /* Get data specific info for process PID, creating it if necessary.
801 Never returns NULL. */
802
803 static struct arm_linux_process_info *
804 arm_linux_process_info_get (pid_t pid)
805 {
806 struct arm_linux_process_info *proc;
807
808 proc = arm_linux_find_process_pid (pid);
809 if (proc == NULL)
810 proc = arm_linux_add_process (pid);
811
812 return proc;
813 }
814
815 /* Called whenever GDB is no longer debugging process PID. It deletes
816 data structures that keep track of debug register state. */
817
818 static void
819 arm_linux_forget_process (pid_t pid)
820 {
821 struct arm_linux_process_info *proc, **proc_link;
822
823 proc = arm_linux_process_list;
824 proc_link = &arm_linux_process_list;
825
826 while (proc != NULL)
827 {
828 if (proc->pid == pid)
829 {
830 *proc_link = proc->next;
831
832 xfree (proc);
833 return;
834 }
835
836 proc_link = &proc->next;
837 proc = *proc_link;
838 }
839 }
840
841 /* Get hardware break-/watchpoint state for process PID. */
842
843 static struct arm_linux_debug_reg_state *
844 arm_linux_get_debug_reg_state (pid_t pid)
845 {
846 return &arm_linux_process_info_get (pid)->state;
847 }
848
849 /* Initialize an ARM hardware break-/watch-point control register value.
850 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
851 type of break-/watch-point; ENABLE indicates whether the point is enabled.
852 */
853 static arm_hwbp_control_t
854 arm_hwbp_control_initialize (unsigned byte_address_select,
855 arm_hwbp_type hwbp_type,
856 int enable)
857 {
858 gdb_assert ((byte_address_select & ~0xffU) == 0);
859 gdb_assert (hwbp_type != arm_hwbp_break
860 || ((byte_address_select & 0xfU) != 0));
861
862 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
863 }
864
865 /* Does the breakpoint control value CONTROL have the enable bit set? */
866 static int
867 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
868 {
869 return control & 0x1;
870 }
871
872 /* Change a breakpoint control word so that it is in the disabled state. */
873 static arm_hwbp_control_t
874 arm_hwbp_control_disable (arm_hwbp_control_t control)
875 {
876 return control & ~0x1;
877 }
878
879 /* Initialise the hardware breakpoint structure P. The breakpoint will be
880 enabled, and will point to the placed address of BP_TGT. */
881 static void
882 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
883 struct bp_target_info *bp_tgt,
884 struct arm_linux_hw_breakpoint *p)
885 {
886 unsigned mask;
887 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
888
889 /* We have to create a mask for the control register which says which bits
890 of the word pointed to by address to break on. */
891 if (arm_pc_is_thumb (gdbarch, address))
892 {
893 mask = 0x3;
894 address &= ~1;
895 }
896 else
897 {
898 mask = 0xf;
899 address &= ~3;
900 }
901
902 p->address = (unsigned int) address;
903 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
904 }
905
906 /* Get the ARM hardware breakpoint type from the TYPE value we're
907 given when asked to set a watchpoint. */
908 static arm_hwbp_type
909 arm_linux_get_hwbp_type (enum target_hw_bp_type type)
910 {
911 if (type == hw_read)
912 return arm_hwbp_load;
913 else if (type == hw_write)
914 return arm_hwbp_store;
915 else
916 return arm_hwbp_access;
917 }
918
919 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
920 to LEN. The type of watchpoint is given in RW. */
921 static void
922 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len,
923 enum target_hw_bp_type type,
924 struct arm_linux_hw_breakpoint *p)
925 {
926 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
927 unsigned mask;
928
929 gdb_assert (cap != NULL);
930 gdb_assert (cap->max_wp_length != 0);
931
932 mask = (1 << len) - 1;
933
934 p->address = (unsigned int) addr;
935 p->control = arm_hwbp_control_initialize (mask,
936 arm_linux_get_hwbp_type (type), 1);
937 }
938
939 /* Are two break-/watch-points equal? */
940 static int
941 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
942 const struct arm_linux_hw_breakpoint *p2)
943 {
944 return p1->address == p2->address && p1->control == p2->control;
945 }
946
947 /* Callback to mark a watch-/breakpoint to be updated in all threads of
948 the current process. */
949
950 struct update_registers_data
951 {
952 int watch;
953 int index;
954 };
955
956 static int
957 update_registers_callback (struct lwp_info *lwp, void *arg)
958 {
959 struct update_registers_data *data = (struct update_registers_data *) arg;
960
961 if (lwp->arch_private == NULL)
962 lwp->arch_private = XCNEW (struct arch_lwp_info);
963
964 /* The actual update is done later just before resuming the lwp,
965 we just mark that the registers need updating. */
966 if (data->watch)
967 lwp->arch_private->wpts_changed[data->index] = 1;
968 else
969 lwp->arch_private->bpts_changed[data->index] = 1;
970
971 /* If the lwp isn't stopped, force it to momentarily pause, so
972 we can update its breakpoint registers. */
973 if (!lwp->stopped)
974 linux_stop_lwp (lwp);
975
976 return 0;
977 }
978
979 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
980 =1) BPT for thread TID. */
981 static void
982 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
983 int watchpoint)
984 {
985 int pid;
986 ptid_t pid_ptid;
987 gdb_byte count, i;
988 struct arm_linux_hw_breakpoint* bpts;
989 struct update_registers_data data;
990
991 pid = ptid_get_pid (inferior_ptid);
992 pid_ptid = pid_to_ptid (pid);
993
994 if (watchpoint)
995 {
996 count = arm_linux_get_hw_watchpoint_count ();
997 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
998 }
999 else
1000 {
1001 count = arm_linux_get_hw_breakpoint_count ();
1002 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1003 }
1004
1005 for (i = 0; i < count; ++i)
1006 if (!arm_hwbp_control_is_enabled (bpts[i].control))
1007 {
1008 data.watch = watchpoint;
1009 data.index = i;
1010 bpts[i] = *bpt;
1011 iterate_over_lwps (pid_ptid, update_registers_callback, &data);
1012 break;
1013 }
1014
1015 gdb_assert (i != count);
1016 }
1017
1018 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1019 (WATCHPOINT = 1) BPT for thread TID. */
1020 static void
1021 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1022 int watchpoint)
1023 {
1024 int pid;
1025 gdb_byte count, i;
1026 ptid_t pid_ptid;
1027 struct arm_linux_hw_breakpoint* bpts;
1028 struct update_registers_data data;
1029
1030 pid = ptid_get_pid (inferior_ptid);
1031 pid_ptid = pid_to_ptid (pid);
1032
1033 if (watchpoint)
1034 {
1035 count = arm_linux_get_hw_watchpoint_count ();
1036 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1037 }
1038 else
1039 {
1040 count = arm_linux_get_hw_breakpoint_count ();
1041 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1042 }
1043
1044 for (i = 0; i < count; ++i)
1045 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1046 {
1047 data.watch = watchpoint;
1048 data.index = i;
1049 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1050 iterate_over_lwps (pid_ptid, update_registers_callback, &data);
1051 break;
1052 }
1053
1054 gdb_assert (i != count);
1055 }
1056
1057 /* Insert a Hardware breakpoint. */
1058 int
1059 arm_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1060 struct bp_target_info *bp_tgt)
1061 {
1062 struct lwp_info *lp;
1063 struct arm_linux_hw_breakpoint p;
1064
1065 if (arm_linux_get_hw_breakpoint_count () == 0)
1066 return -1;
1067
1068 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1069
1070 arm_linux_insert_hw_breakpoint1 (&p, 0);
1071
1072 return 0;
1073 }
1074
1075 /* Remove a hardware breakpoint. */
1076 int
1077 arm_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1078 struct bp_target_info *bp_tgt)
1079 {
1080 struct lwp_info *lp;
1081 struct arm_linux_hw_breakpoint p;
1082
1083 if (arm_linux_get_hw_breakpoint_count () == 0)
1084 return -1;
1085
1086 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1087
1088 arm_linux_remove_hw_breakpoint1 (&p, 0);
1089
1090 return 0;
1091 }
1092
1093 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1094 ADDR? */
1095 int
1096 arm_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1097 {
1098 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1099 CORE_ADDR max_wp_length, aligned_addr;
1100
1101 /* Can not set watchpoints for zero or negative lengths. */
1102 if (len <= 0)
1103 return 0;
1104
1105 /* Need to be able to use the ptrace interface. */
1106 if (cap == NULL || cap->wp_count == 0)
1107 return 0;
1108
1109 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1110 range covered by a watchpoint. */
1111 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1112 aligned_addr = addr & ~(max_wp_length - 1);
1113
1114 if (aligned_addr + max_wp_length < addr + len)
1115 return 0;
1116
1117 /* The current ptrace interface can only handle watchpoints that are a
1118 power of 2. */
1119 if ((len & (len - 1)) != 0)
1120 return 0;
1121
1122 /* All tests passed so we must be able to set a watchpoint. */
1123 return 1;
1124 }
1125
1126 /* Insert a Hardware breakpoint. */
1127 int
1128 arm_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
1129 enum target_hw_bp_type rw,
1130 struct expression *cond)
1131 {
1132 struct lwp_info *lp;
1133 struct arm_linux_hw_breakpoint p;
1134
1135 if (arm_linux_get_hw_watchpoint_count () == 0)
1136 return -1;
1137
1138 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1139
1140 arm_linux_insert_hw_breakpoint1 (&p, 1);
1141
1142 return 0;
1143 }
1144
1145 /* Remove a hardware breakpoint. */
1146 int
1147 arm_linux_nat_target::remove_watchpoint (CORE_ADDR addr,
1148 int len, enum target_hw_bp_type rw,
1149 struct expression *cond)
1150 {
1151 struct lwp_info *lp;
1152 struct arm_linux_hw_breakpoint p;
1153
1154 if (arm_linux_get_hw_watchpoint_count () == 0)
1155 return -1;
1156
1157 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1158
1159 arm_linux_remove_hw_breakpoint1 (&p, 1);
1160
1161 return 0;
1162 }
1163
1164 /* What was the data address the target was stopped on accessing. */
1165 bool
1166 arm_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
1167 {
1168 siginfo_t siginfo;
1169 int slot;
1170
1171 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1172 return false;
1173
1174 /* This must be a hardware breakpoint. */
1175 if (siginfo.si_signo != SIGTRAP
1176 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1177 return false;
1178
1179 /* We must be able to set hardware watchpoints. */
1180 if (arm_linux_get_hw_watchpoint_count () == 0)
1181 return 0;
1182
1183 slot = siginfo.si_errno;
1184
1185 /* If we are in a positive slot then we're looking at a breakpoint and not
1186 a watchpoint. */
1187 if (slot >= 0)
1188 return false;
1189
1190 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1191 return true;
1192 }
1193
1194 /* Has the target been stopped by hitting a watchpoint? */
1195 bool
1196 arm_linux_nat_target::stopped_by_watchpoint ()
1197 {
1198 CORE_ADDR addr;
1199 return stopped_data_address (&addr);
1200 }
1201
1202 bool
1203 arm_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
1204 CORE_ADDR start,
1205 int length)
1206 {
1207 return start <= addr && start + length - 1 >= addr;
1208 }
1209
1210 /* Handle thread creation. We need to copy the breakpoints and watchpoints
1211 in the parent thread to the child thread. */
1212 static void
1213 arm_linux_new_thread (struct lwp_info *lp)
1214 {
1215 int i;
1216 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1217
1218 /* Mark that all the hardware breakpoint/watchpoint register pairs
1219 for this thread need to be initialized. */
1220
1221 for (i = 0; i < MAX_BPTS; i++)
1222 {
1223 info->bpts_changed[i] = 1;
1224 info->wpts_changed[i] = 1;
1225 }
1226
1227 lp->arch_private = info;
1228 }
1229
1230 /* Function to call when a thread is being deleted. */
1231
1232 static void
1233 arm_linux_delete_thread (struct arch_lwp_info *arch_lwp)
1234 {
1235 xfree (arch_lwp);
1236 }
1237
1238 /* Called when resuming a thread.
1239 The hardware debug registers are updated when there is any change. */
1240
1241 static void
1242 arm_linux_prepare_to_resume (struct lwp_info *lwp)
1243 {
1244 int pid, i;
1245 struct arm_linux_hw_breakpoint *bpts, *wpts;
1246 struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1247
1248 pid = ptid_get_lwp (lwp->ptid);
1249 bpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->bpts;
1250 wpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->wpts;
1251
1252 /* NULL means this is the main thread still going through the shell,
1253 or, no watchpoint has been set yet. In that case, there's
1254 nothing to do. */
1255 if (arm_lwp_info == NULL)
1256 return;
1257
1258 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1259 if (arm_lwp_info->bpts_changed[i])
1260 {
1261 errno = 0;
1262 if (arm_hwbp_control_is_enabled (bpts[i].control))
1263 if (ptrace (PTRACE_SETHBPREGS, pid,
1264 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1265 perror_with_name (_("Unexpected error setting breakpoint"));
1266
1267 if (bpts[i].control != 0)
1268 if (ptrace (PTRACE_SETHBPREGS, pid,
1269 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1270 perror_with_name (_("Unexpected error setting breakpoint"));
1271
1272 arm_lwp_info->bpts_changed[i] = 0;
1273 }
1274
1275 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1276 if (arm_lwp_info->wpts_changed[i])
1277 {
1278 errno = 0;
1279 if (arm_hwbp_control_is_enabled (wpts[i].control))
1280 if (ptrace (PTRACE_SETHBPREGS, pid,
1281 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1282 perror_with_name (_("Unexpected error setting watchpoint"));
1283
1284 if (wpts[i].control != 0)
1285 if (ptrace (PTRACE_SETHBPREGS, pid,
1286 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1287 perror_with_name (_("Unexpected error setting watchpoint"));
1288
1289 arm_lwp_info->wpts_changed[i] = 0;
1290 }
1291 }
1292
1293 /* linux_nat_new_fork hook. */
1294
1295 static void
1296 arm_linux_new_fork (struct lwp_info *parent, pid_t child_pid)
1297 {
1298 pid_t parent_pid;
1299 struct arm_linux_debug_reg_state *parent_state;
1300 struct arm_linux_debug_reg_state *child_state;
1301
1302 /* NULL means no watchpoint has ever been set in the parent. In
1303 that case, there's nothing to do. */
1304 if (parent->arch_private == NULL)
1305 return;
1306
1307 /* GDB core assumes the child inherits the watchpoints/hw
1308 breakpoints of the parent, and will remove them all from the
1309 forked off process. Copy the debug registers mirrors into the
1310 new process so that all breakpoints and watchpoints can be
1311 removed together. */
1312
1313 parent_pid = ptid_get_pid (parent->ptid);
1314 parent_state = arm_linux_get_debug_reg_state (parent_pid);
1315 child_state = arm_linux_get_debug_reg_state (child_pid);
1316 *child_state = *parent_state;
1317 }
1318
1319 void
1320 _initialize_arm_linux_nat (void)
1321 {
1322 target_ops *t = &the_arm_linux_nat_target;
1323
1324 /* Register the target. */
1325 linux_target = &the_arm_linux_nat_target;
1326 add_target (t);
1327
1328 /* Handle thread creation and exit. */
1329 linux_nat_set_new_thread (t, arm_linux_new_thread);
1330 linux_nat_set_delete_thread (t, arm_linux_delete_thread);
1331 linux_nat_set_prepare_to_resume (t, arm_linux_prepare_to_resume);
1332
1333 /* Handle process creation and exit. */
1334 linux_nat_set_new_fork (t, arm_linux_new_fork);
1335 linux_nat_set_forget_process (t, arm_linux_forget_process);
1336 }
This page took 0.057686 seconds and 5 git commands to generate.