Arm: Add read_description read funcs and use in GDB
[deliverable/binutils-gdb.git] / gdb / arm-linux-nat.c
1 /* GNU/Linux on ARM native support.
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "inferior.h"
21 #include "gdbcore.h"
22 #include "regcache.h"
23 #include "target.h"
24 #include "linux-nat.h"
25 #include "target-descriptions.h"
26 #include "auxv.h"
27 #include "observable.h"
28 #include "gdbthread.h"
29
30 #include "aarch32-tdep.h"
31 #include "arm-tdep.h"
32 #include "arm-linux-tdep.h"
33 #include "aarch32-linux-nat.h"
34
35 #include <elf/common.h>
36 #include <sys/user.h>
37 #include "nat/gdb_ptrace.h"
38 #include <sys/utsname.h>
39 #include <sys/procfs.h>
40
41 #include "nat/linux-ptrace.h"
42 #include "linux-tdep.h"
43
44 /* Prototypes for supply_gregset etc. */
45 #include "gregset.h"
46
47 /* Defines ps_err_e, struct ps_prochandle. */
48 #include "gdb_proc_service.h"
49
50 #ifndef PTRACE_GET_THREAD_AREA
51 #define PTRACE_GET_THREAD_AREA 22
52 #endif
53
54 #ifndef PTRACE_GETWMMXREGS
55 #define PTRACE_GETWMMXREGS 18
56 #define PTRACE_SETWMMXREGS 19
57 #endif
58
59 #ifndef PTRACE_GETVFPREGS
60 #define PTRACE_GETVFPREGS 27
61 #define PTRACE_SETVFPREGS 28
62 #endif
63
64 #ifndef PTRACE_GETHBPREGS
65 #define PTRACE_GETHBPREGS 29
66 #define PTRACE_SETHBPREGS 30
67 #endif
68
69 extern int arm_apcs_32;
70
71 class arm_linux_nat_target final : public linux_nat_target
72 {
73 public:
74 /* Add our register access methods. */
75 void fetch_registers (struct regcache *, int) override;
76 void store_registers (struct regcache *, int) override;
77
78 /* Add our hardware breakpoint and watchpoint implementation. */
79 int can_use_hw_breakpoint (enum bptype, int, int) override;
80
81 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
82
83 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
84
85 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
86
87 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
88 struct expression *) override;
89
90 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
91 struct expression *) override;
92 bool stopped_by_watchpoint () override;
93
94 bool stopped_data_address (CORE_ADDR *) override;
95
96 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
97
98 const struct target_desc *read_description () override;
99
100 /* Override linux_nat_target low methods. */
101
102 /* Handle thread creation and exit. */
103 void low_new_thread (struct lwp_info *lp) override;
104 void low_delete_thread (struct arch_lwp_info *lp) override;
105 void low_prepare_to_resume (struct lwp_info *lp) override;
106
107 /* Handle process creation and exit. */
108 void low_new_fork (struct lwp_info *parent, pid_t child_pid) override;
109 void low_forget_process (pid_t pid) override;
110 };
111
112 static arm_linux_nat_target the_arm_linux_nat_target;
113
114 /* Get the whole floating point state of the process and store it
115 into regcache. */
116
117 static void
118 fetch_fpregs (struct regcache *regcache)
119 {
120 int ret, regno, tid;
121 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
122
123 /* Get the thread id for the ptrace call. */
124 tid = regcache->ptid ().lwp ();
125
126 /* Read the floating point state. */
127 if (have_ptrace_getregset == TRIBOOL_TRUE)
128 {
129 struct iovec iov;
130
131 iov.iov_base = &fp;
132 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
133
134 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
135 }
136 else
137 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
138
139 if (ret < 0)
140 perror_with_name (_("Unable to fetch the floating point registers."));
141
142 /* Fetch fpsr. */
143 regcache->raw_supply (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
144
145 /* Fetch the floating point registers. */
146 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
147 supply_nwfpe_register (regcache, regno, fp);
148 }
149
150 /* Save the whole floating point state of the process using
151 the contents from regcache. */
152
153 static void
154 store_fpregs (const struct regcache *regcache)
155 {
156 int ret, regno, tid;
157 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE];
158
159 /* Get the thread id for the ptrace call. */
160 tid = regcache->ptid ().lwp ();
161
162 /* Read the floating point state. */
163 if (have_ptrace_getregset == TRIBOOL_TRUE)
164 {
165 elf_fpregset_t fpregs;
166 struct iovec iov;
167
168 iov.iov_base = &fpregs;
169 iov.iov_len = sizeof (fpregs);
170
171 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov);
172 }
173 else
174 ret = ptrace (PT_GETFPREGS, tid, 0, fp);
175
176 if (ret < 0)
177 perror_with_name (_("Unable to fetch the floating point registers."));
178
179 /* Store fpsr. */
180 if (REG_VALID == regcache->get_register_status (ARM_FPS_REGNUM))
181 regcache->raw_collect (ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET);
182
183 /* Store the floating point registers. */
184 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
185 if (REG_VALID == regcache->get_register_status (regno))
186 collect_nwfpe_register (regcache, regno, fp);
187
188 if (have_ptrace_getregset == TRIBOOL_TRUE)
189 {
190 struct iovec iov;
191
192 iov.iov_base = &fp;
193 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE;
194
195 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov);
196 }
197 else
198 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp);
199
200 if (ret < 0)
201 perror_with_name (_("Unable to store floating point registers."));
202 }
203
204 /* Fetch all general registers of the process and store into
205 regcache. */
206
207 static void
208 fetch_regs (struct regcache *regcache)
209 {
210 int ret, tid;
211 elf_gregset_t regs;
212
213 /* Get the thread id for the ptrace call. */
214 tid = regcache->ptid ().lwp ();
215
216 if (have_ptrace_getregset == TRIBOOL_TRUE)
217 {
218 struct iovec iov;
219
220 iov.iov_base = &regs;
221 iov.iov_len = sizeof (regs);
222
223 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
224 }
225 else
226 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
227
228 if (ret < 0)
229 perror_with_name (_("Unable to fetch general registers."));
230
231 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32);
232 }
233
234 static void
235 store_regs (const struct regcache *regcache)
236 {
237 int ret, tid;
238 elf_gregset_t regs;
239
240 /* Get the thread id for the ptrace call. */
241 tid = regcache->ptid ().lwp ();
242
243 /* Fetch the general registers. */
244 if (have_ptrace_getregset == TRIBOOL_TRUE)
245 {
246 struct iovec iov;
247
248 iov.iov_base = &regs;
249 iov.iov_len = sizeof (regs);
250
251 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov);
252 }
253 else
254 ret = ptrace (PTRACE_GETREGS, tid, 0, &regs);
255
256 if (ret < 0)
257 perror_with_name (_("Unable to fetch general registers."));
258
259 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32);
260
261 if (have_ptrace_getregset == TRIBOOL_TRUE)
262 {
263 struct iovec iov;
264
265 iov.iov_base = &regs;
266 iov.iov_len = sizeof (regs);
267
268 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov);
269 }
270 else
271 ret = ptrace (PTRACE_SETREGS, tid, 0, &regs);
272
273 if (ret < 0)
274 perror_with_name (_("Unable to store general registers."));
275 }
276
277 /* Fetch all WMMX registers of the process and store into
278 regcache. */
279
280 static void
281 fetch_wmmx_regs (struct regcache *regcache)
282 {
283 char regbuf[IWMMXT_REGS_SIZE];
284 int ret, regno, tid;
285
286 /* Get the thread id for the ptrace call. */
287 tid = regcache->ptid ().lwp ();
288
289 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
290 if (ret < 0)
291 perror_with_name (_("Unable to fetch WMMX registers."));
292
293 for (regno = 0; regno < 16; regno++)
294 regcache->raw_supply (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
295
296 for (regno = 0; regno < 2; regno++)
297 regcache->raw_supply (regno + ARM_WCSSF_REGNUM,
298 &regbuf[16 * 8 + regno * 4]);
299
300 for (regno = 0; regno < 4; regno++)
301 regcache->raw_supply (regno + ARM_WCGR0_REGNUM,
302 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
303 }
304
305 static void
306 store_wmmx_regs (const struct regcache *regcache)
307 {
308 char regbuf[IWMMXT_REGS_SIZE];
309 int ret, regno, tid;
310
311 /* Get the thread id for the ptrace call. */
312 tid = regcache->ptid ().lwp ();
313
314 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf);
315 if (ret < 0)
316 perror_with_name (_("Unable to fetch WMMX registers."));
317
318 for (regno = 0; regno < 16; regno++)
319 if (REG_VALID == regcache->get_register_status (regno + ARM_WR0_REGNUM))
320 regcache->raw_collect (regno + ARM_WR0_REGNUM, &regbuf[regno * 8]);
321
322 for (regno = 0; regno < 2; regno++)
323 if (REG_VALID == regcache->get_register_status (regno + ARM_WCSSF_REGNUM))
324 regcache->raw_collect (regno + ARM_WCSSF_REGNUM,
325 &regbuf[16 * 8 + regno * 4]);
326
327 for (regno = 0; regno < 4; regno++)
328 if (REG_VALID == regcache->get_register_status (regno + ARM_WCGR0_REGNUM))
329 regcache->raw_collect (regno + ARM_WCGR0_REGNUM,
330 &regbuf[16 * 8 + 2 * 4 + regno * 4]);
331
332 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf);
333
334 if (ret < 0)
335 perror_with_name (_("Unable to store WMMX registers."));
336 }
337
338 static void
339 fetch_vfp_regs (struct regcache *regcache)
340 {
341 gdb_byte regbuf[ARM_VFP3_REGS_SIZE];
342 int ret, tid;
343 struct gdbarch *gdbarch = regcache->arch ();
344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
345
346 /* Get the thread id for the ptrace call. */
347 tid = regcache->ptid ().lwp ();
348
349 if (have_ptrace_getregset == TRIBOOL_TRUE)
350 {
351 struct iovec iov;
352
353 iov.iov_base = regbuf;
354 iov.iov_len = ARM_VFP3_REGS_SIZE;
355 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
356 }
357 else
358 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
359
360 if (ret < 0)
361 perror_with_name (_("Unable to fetch VFP registers."));
362
363 aarch32_vfp_regcache_supply (regcache, regbuf,
364 tdep->vfp_register_count);
365 }
366
367 static void
368 store_vfp_regs (const struct regcache *regcache)
369 {
370 gdb_byte regbuf[ARM_VFP3_REGS_SIZE];
371 int ret, tid;
372 struct gdbarch *gdbarch = regcache->arch ();
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374
375 /* Get the thread id for the ptrace call. */
376 tid = regcache->ptid ().lwp ();
377
378 if (have_ptrace_getregset == TRIBOOL_TRUE)
379 {
380 struct iovec iov;
381
382 iov.iov_base = regbuf;
383 iov.iov_len = ARM_VFP3_REGS_SIZE;
384 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov);
385 }
386 else
387 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf);
388
389 if (ret < 0)
390 perror_with_name (_("Unable to fetch VFP registers (for update)."));
391
392 aarch32_vfp_regcache_collect (regcache, regbuf,
393 tdep->vfp_register_count);
394
395 if (have_ptrace_getregset == TRIBOOL_TRUE)
396 {
397 struct iovec iov;
398
399 iov.iov_base = regbuf;
400 iov.iov_len = ARM_VFP3_REGS_SIZE;
401 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov);
402 }
403 else
404 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf);
405
406 if (ret < 0)
407 perror_with_name (_("Unable to store VFP registers."));
408 }
409
410 /* Fetch registers from the child process. Fetch all registers if
411 regno == -1, otherwise fetch all general registers or all floating
412 point registers depending upon the value of regno. */
413
414 void
415 arm_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
416 {
417 struct gdbarch *gdbarch = regcache->arch ();
418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
419
420 if (-1 == regno)
421 {
422 fetch_regs (regcache);
423 if (tdep->have_wmmx_registers)
424 fetch_wmmx_regs (regcache);
425 if (tdep->vfp_register_count > 0)
426 fetch_vfp_regs (regcache);
427 if (tdep->have_fpa_registers)
428 fetch_fpregs (regcache);
429 }
430 else
431 {
432 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
433 fetch_regs (regcache);
434 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM)
435 fetch_fpregs (regcache);
436 else if (tdep->have_wmmx_registers
437 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
438 fetch_wmmx_regs (regcache);
439 else if (tdep->vfp_register_count > 0
440 && regno >= ARM_D0_REGNUM
441 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
442 || regno == ARM_FPSCR_REGNUM))
443 fetch_vfp_regs (regcache);
444 }
445 }
446
447 /* Store registers back into the inferior. Store all registers if
448 regno == -1, otherwise store all general registers or all floating
449 point registers depending upon the value of regno. */
450
451 void
452 arm_linux_nat_target::store_registers (struct regcache *regcache, int regno)
453 {
454 struct gdbarch *gdbarch = regcache->arch ();
455 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
456
457 if (-1 == regno)
458 {
459 store_regs (regcache);
460 if (tdep->have_wmmx_registers)
461 store_wmmx_regs (regcache);
462 if (tdep->vfp_register_count > 0)
463 store_vfp_regs (regcache);
464 if (tdep->have_fpa_registers)
465 store_fpregs (regcache);
466 }
467 else
468 {
469 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM)
470 store_regs (regcache);
471 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM))
472 store_fpregs (regcache);
473 else if (tdep->have_wmmx_registers
474 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM)
475 store_wmmx_regs (regcache);
476 else if (tdep->vfp_register_count > 0
477 && regno >= ARM_D0_REGNUM
478 && (regno < ARM_D0_REGNUM + tdep->vfp_register_count
479 || regno == ARM_FPSCR_REGNUM))
480 store_vfp_regs (regcache);
481 }
482 }
483
484 /* Wrapper functions for the standard regset handling, used by
485 thread debugging. */
486
487 void
488 fill_gregset (const struct regcache *regcache,
489 gdb_gregset_t *gregsetp, int regno)
490 {
491 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0);
492 }
493
494 void
495 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
496 {
497 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0);
498 }
499
500 void
501 fill_fpregset (const struct regcache *regcache,
502 gdb_fpregset_t *fpregsetp, int regno)
503 {
504 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0);
505 }
506
507 /* Fill GDB's register array with the floating-point register values
508 in *fpregsetp. */
509
510 void
511 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
512 {
513 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0);
514 }
515
516 /* Fetch the thread-local storage pointer for libthread_db. */
517
518 ps_err_e
519 ps_get_thread_area (struct ps_prochandle *ph,
520 lwpid_t lwpid, int idx, void **base)
521 {
522 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
523 return PS_ERR;
524
525 /* IDX is the bias from the thread pointer to the beginning of the
526 thread descriptor. It has to be subtracted due to implementation
527 quirks in libthread_db. */
528 *base = (void *) ((char *)*base - idx);
529
530 return PS_OK;
531 }
532
533 const struct target_desc *
534 arm_linux_nat_target::read_description ()
535 {
536 CORE_ADDR arm_hwcap = linux_get_hwcap (this);
537
538 if (have_ptrace_getregset == TRIBOOL_UNKNOWN)
539 {
540 elf_gregset_t gpregs;
541 struct iovec iov;
542 int tid = inferior_ptid.lwp ();
543
544 iov.iov_base = &gpregs;
545 iov.iov_len = sizeof (gpregs);
546
547 /* Check if PTRACE_GETREGSET works. */
548 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0)
549 have_ptrace_getregset = TRIBOOL_FALSE;
550 else
551 have_ptrace_getregset = TRIBOOL_TRUE;
552 }
553
554 if (arm_hwcap & HWCAP_IWMMXT)
555 return arm_read_description (ARM_FP_TYPE_IWMMXT);
556
557 if (arm_hwcap & HWCAP_VFP)
558 {
559 /* Make sure that the kernel supports reading VFP registers. Support was
560 added in 2.6.30. */
561 int pid = inferior_ptid.lwp ();
562 errno = 0;
563 char *buf = (char *) alloca (ARM_VFP3_REGS_SIZE);
564 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0 && errno == EIO)
565 return nullptr;
566
567 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
568 Neon with VFPv3-D32. */
569 if (arm_hwcap & HWCAP_NEON)
570 return aarch32_read_description ();
571 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
572 return arm_read_description (ARM_FP_TYPE_VFPV3);
573
574 return arm_read_description (ARM_FP_TYPE_VFPV2);
575 }
576
577 return this->beneath ()->read_description ();
578 }
579
580 /* Information describing the hardware breakpoint capabilities. */
581 struct arm_linux_hwbp_cap
582 {
583 gdb_byte arch;
584 gdb_byte max_wp_length;
585 gdb_byte wp_count;
586 gdb_byte bp_count;
587 };
588
589 /* Since we cannot dynamically allocate subfields of arm_linux_process_info,
590 assume a maximum number of supported break-/watchpoints. */
591 #define MAX_BPTS 16
592 #define MAX_WPTS 16
593
594 /* Get hold of the Hardware Breakpoint information for the target we are
595 attached to. Returns NULL if the kernel doesn't support Hardware
596 breakpoints at all, or a pointer to the information structure. */
597 static const struct arm_linux_hwbp_cap *
598 arm_linux_get_hwbp_cap (void)
599 {
600 /* The info structure we return. */
601 static struct arm_linux_hwbp_cap info;
602
603 /* Is INFO in a good state? -1 means that no attempt has been made to
604 initialize INFO; 0 means an attempt has been made, but it failed; 1
605 means INFO is in an initialized state. */
606 static int available = -1;
607
608 if (available == -1)
609 {
610 int tid;
611 unsigned int val;
612
613 tid = inferior_ptid.lwp ();
614 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0)
615 available = 0;
616 else
617 {
618 info.arch = (gdb_byte)((val >> 24) & 0xff);
619 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff);
620 info.wp_count = (gdb_byte)((val >> 8) & 0xff);
621 info.bp_count = (gdb_byte)(val & 0xff);
622
623 if (info.wp_count > MAX_WPTS)
624 {
625 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \
626 supports %d"), MAX_WPTS, info.wp_count);
627 info.wp_count = MAX_WPTS;
628 }
629
630 if (info.bp_count > MAX_BPTS)
631 {
632 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \
633 supports %d"), MAX_BPTS, info.bp_count);
634 info.bp_count = MAX_BPTS;
635 }
636 available = (info.arch != 0);
637 }
638 }
639
640 return available == 1 ? &info : NULL;
641 }
642
643 /* How many hardware breakpoints are available? */
644 static int
645 arm_linux_get_hw_breakpoint_count (void)
646 {
647 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
648 return cap != NULL ? cap->bp_count : 0;
649 }
650
651 /* How many hardware watchpoints are available? */
652 static int
653 arm_linux_get_hw_watchpoint_count (void)
654 {
655 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
656 return cap != NULL ? cap->wp_count : 0;
657 }
658
659 /* Have we got a free break-/watch-point available for use? Returns -1 if
660 there is not an appropriate resource available, otherwise returns 1. */
661 int
662 arm_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
663 int cnt, int ot)
664 {
665 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
666 || type == bp_access_watchpoint || type == bp_watchpoint)
667 {
668 int count = arm_linux_get_hw_watchpoint_count ();
669
670 if (count == 0)
671 return 0;
672 else if (cnt + ot > count)
673 return -1;
674 }
675 else if (type == bp_hardware_breakpoint)
676 {
677 int count = arm_linux_get_hw_breakpoint_count ();
678
679 if (count == 0)
680 return 0;
681 else if (cnt > count)
682 return -1;
683 }
684 else
685 gdb_assert_not_reached ("unknown breakpoint type");
686
687 return 1;
688 }
689
690 /* Enum describing the different types of ARM hardware break-/watch-points. */
691 typedef enum
692 {
693 arm_hwbp_break = 0,
694 arm_hwbp_load = 1,
695 arm_hwbp_store = 2,
696 arm_hwbp_access = 3
697 } arm_hwbp_type;
698
699 /* Type describing an ARM Hardware Breakpoint Control register value. */
700 typedef unsigned int arm_hwbp_control_t;
701
702 /* Structure used to keep track of hardware break-/watch-points. */
703 struct arm_linux_hw_breakpoint
704 {
705 /* Address to break on, or being watched. */
706 unsigned int address;
707 /* Control register for break-/watch- point. */
708 arm_hwbp_control_t control;
709 };
710
711 /* Structure containing arrays of per process hardware break-/watchpoints
712 for caching address and control information.
713
714 The Linux ptrace interface to hardware break-/watch-points presents the
715 values in a vector centred around 0 (which is used fo generic information).
716 Positive indicies refer to breakpoint addresses/control registers, negative
717 indices to watchpoint addresses/control registers.
718
719 The Linux vector is indexed as follows:
720 -((i << 1) + 2): Control register for watchpoint i.
721 -((i << 1) + 1): Address register for watchpoint i.
722 0: Information register.
723 ((i << 1) + 1): Address register for breakpoint i.
724 ((i << 1) + 2): Control register for breakpoint i.
725
726 This structure is used as a per-thread cache of the state stored by the
727 kernel, so that we don't need to keep calling into the kernel to find a
728 free breakpoint.
729
730 We treat break-/watch-points with their enable bit clear as being deleted.
731 */
732 struct arm_linux_debug_reg_state
733 {
734 /* Hardware breakpoints for this process. */
735 struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
736 /* Hardware watchpoints for this process. */
737 struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
738 };
739
740 /* Per-process arch-specific data we want to keep. */
741 struct arm_linux_process_info
742 {
743 /* Linked list. */
744 struct arm_linux_process_info *next;
745 /* The process identifier. */
746 pid_t pid;
747 /* Hardware break-/watchpoints state information. */
748 struct arm_linux_debug_reg_state state;
749
750 };
751
752 /* Per-thread arch-specific data we want to keep. */
753 struct arch_lwp_info
754 {
755 /* Non-zero if our copy differs from what's recorded in the thread. */
756 char bpts_changed[MAX_BPTS];
757 char wpts_changed[MAX_WPTS];
758 };
759
760 static struct arm_linux_process_info *arm_linux_process_list = NULL;
761
762 /* Find process data for process PID. */
763
764 static struct arm_linux_process_info *
765 arm_linux_find_process_pid (pid_t pid)
766 {
767 struct arm_linux_process_info *proc;
768
769 for (proc = arm_linux_process_list; proc; proc = proc->next)
770 if (proc->pid == pid)
771 return proc;
772
773 return NULL;
774 }
775
776 /* Add process data for process PID. Returns newly allocated info
777 object. */
778
779 static struct arm_linux_process_info *
780 arm_linux_add_process (pid_t pid)
781 {
782 struct arm_linux_process_info *proc;
783
784 proc = XCNEW (struct arm_linux_process_info);
785 proc->pid = pid;
786
787 proc->next = arm_linux_process_list;
788 arm_linux_process_list = proc;
789
790 return proc;
791 }
792
793 /* Get data specific info for process PID, creating it if necessary.
794 Never returns NULL. */
795
796 static struct arm_linux_process_info *
797 arm_linux_process_info_get (pid_t pid)
798 {
799 struct arm_linux_process_info *proc;
800
801 proc = arm_linux_find_process_pid (pid);
802 if (proc == NULL)
803 proc = arm_linux_add_process (pid);
804
805 return proc;
806 }
807
808 /* Called whenever GDB is no longer debugging process PID. It deletes
809 data structures that keep track of debug register state. */
810
811 void
812 arm_linux_nat_target::low_forget_process (pid_t pid)
813 {
814 struct arm_linux_process_info *proc, **proc_link;
815
816 proc = arm_linux_process_list;
817 proc_link = &arm_linux_process_list;
818
819 while (proc != NULL)
820 {
821 if (proc->pid == pid)
822 {
823 *proc_link = proc->next;
824
825 xfree (proc);
826 return;
827 }
828
829 proc_link = &proc->next;
830 proc = *proc_link;
831 }
832 }
833
834 /* Get hardware break-/watchpoint state for process PID. */
835
836 static struct arm_linux_debug_reg_state *
837 arm_linux_get_debug_reg_state (pid_t pid)
838 {
839 return &arm_linux_process_info_get (pid)->state;
840 }
841
842 /* Initialize an ARM hardware break-/watch-point control register value.
843 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
844 type of break-/watch-point; ENABLE indicates whether the point is enabled.
845 */
846 static arm_hwbp_control_t
847 arm_hwbp_control_initialize (unsigned byte_address_select,
848 arm_hwbp_type hwbp_type,
849 int enable)
850 {
851 gdb_assert ((byte_address_select & ~0xffU) == 0);
852 gdb_assert (hwbp_type != arm_hwbp_break
853 || ((byte_address_select & 0xfU) != 0));
854
855 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
856 }
857
858 /* Does the breakpoint control value CONTROL have the enable bit set? */
859 static int
860 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
861 {
862 return control & 0x1;
863 }
864
865 /* Change a breakpoint control word so that it is in the disabled state. */
866 static arm_hwbp_control_t
867 arm_hwbp_control_disable (arm_hwbp_control_t control)
868 {
869 return control & ~0x1;
870 }
871
872 /* Initialise the hardware breakpoint structure P. The breakpoint will be
873 enabled, and will point to the placed address of BP_TGT. */
874 static void
875 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch,
876 struct bp_target_info *bp_tgt,
877 struct arm_linux_hw_breakpoint *p)
878 {
879 unsigned mask;
880 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address;
881
882 /* We have to create a mask for the control register which says which bits
883 of the word pointed to by address to break on. */
884 if (arm_pc_is_thumb (gdbarch, address))
885 {
886 mask = 0x3;
887 address &= ~1;
888 }
889 else
890 {
891 mask = 0xf;
892 address &= ~3;
893 }
894
895 p->address = (unsigned int) address;
896 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1);
897 }
898
899 /* Get the ARM hardware breakpoint type from the TYPE value we're
900 given when asked to set a watchpoint. */
901 static arm_hwbp_type
902 arm_linux_get_hwbp_type (enum target_hw_bp_type type)
903 {
904 if (type == hw_read)
905 return arm_hwbp_load;
906 else if (type == hw_write)
907 return arm_hwbp_store;
908 else
909 return arm_hwbp_access;
910 }
911
912 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR
913 to LEN. The type of watchpoint is given in RW. */
914 static void
915 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len,
916 enum target_hw_bp_type type,
917 struct arm_linux_hw_breakpoint *p)
918 {
919 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
920 unsigned mask;
921
922 gdb_assert (cap != NULL);
923 gdb_assert (cap->max_wp_length != 0);
924
925 mask = (1 << len) - 1;
926
927 p->address = (unsigned int) addr;
928 p->control = arm_hwbp_control_initialize (mask,
929 arm_linux_get_hwbp_type (type), 1);
930 }
931
932 /* Are two break-/watch-points equal? */
933 static int
934 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
935 const struct arm_linux_hw_breakpoint *p2)
936 {
937 return p1->address == p2->address && p1->control == p2->control;
938 }
939
940 /* Callback to mark a watch-/breakpoint to be updated in all threads of
941 the current process. */
942
943 static int
944 update_registers_callback (struct lwp_info *lwp, int watch, int index)
945 {
946 if (lwp->arch_private == NULL)
947 lwp->arch_private = XCNEW (struct arch_lwp_info);
948
949 /* The actual update is done later just before resuming the lwp,
950 we just mark that the registers need updating. */
951 if (watch)
952 lwp->arch_private->wpts_changed[index] = 1;
953 else
954 lwp->arch_private->bpts_changed[index] = 1;
955
956 /* If the lwp isn't stopped, force it to momentarily pause, so
957 we can update its breakpoint registers. */
958 if (!lwp->stopped)
959 linux_stop_lwp (lwp);
960
961 return 0;
962 }
963
964 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT
965 =1) BPT for thread TID. */
966 static void
967 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt,
968 int watchpoint)
969 {
970 int pid;
971 ptid_t pid_ptid;
972 gdb_byte count, i;
973 struct arm_linux_hw_breakpoint* bpts;
974
975 pid = inferior_ptid.pid ();
976 pid_ptid = ptid_t (pid);
977
978 if (watchpoint)
979 {
980 count = arm_linux_get_hw_watchpoint_count ();
981 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
982 }
983 else
984 {
985 count = arm_linux_get_hw_breakpoint_count ();
986 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
987 }
988
989 for (i = 0; i < count; ++i)
990 if (!arm_hwbp_control_is_enabled (bpts[i].control))
991 {
992 bpts[i] = *bpt;
993 iterate_over_lwps (pid_ptid,
994 [=] (struct lwp_info *info)
995 {
996 return update_registers_callback (info, watchpoint,
997 i);
998 });
999 break;
1000 }
1001
1002 gdb_assert (i != count);
1003 }
1004
1005 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint
1006 (WATCHPOINT = 1) BPT for thread TID. */
1007 static void
1008 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt,
1009 int watchpoint)
1010 {
1011 int pid;
1012 gdb_byte count, i;
1013 ptid_t pid_ptid;
1014 struct arm_linux_hw_breakpoint* bpts;
1015
1016 pid = inferior_ptid.pid ();
1017 pid_ptid = ptid_t (pid);
1018
1019 if (watchpoint)
1020 {
1021 count = arm_linux_get_hw_watchpoint_count ();
1022 bpts = arm_linux_get_debug_reg_state (pid)->wpts;
1023 }
1024 else
1025 {
1026 count = arm_linux_get_hw_breakpoint_count ();
1027 bpts = arm_linux_get_debug_reg_state (pid)->bpts;
1028 }
1029
1030 for (i = 0; i < count; ++i)
1031 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i))
1032 {
1033 bpts[i].control = arm_hwbp_control_disable (bpts[i].control);
1034 iterate_over_lwps (pid_ptid,
1035 [=] (struct lwp_info *info)
1036 {
1037 return update_registers_callback (info, watchpoint,
1038 i);
1039 });
1040 break;
1041 }
1042
1043 gdb_assert (i != count);
1044 }
1045
1046 /* Insert a Hardware breakpoint. */
1047 int
1048 arm_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
1049 struct bp_target_info *bp_tgt)
1050 {
1051 struct arm_linux_hw_breakpoint p;
1052
1053 if (arm_linux_get_hw_breakpoint_count () == 0)
1054 return -1;
1055
1056 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1057
1058 arm_linux_insert_hw_breakpoint1 (&p, 0);
1059
1060 return 0;
1061 }
1062
1063 /* Remove a hardware breakpoint. */
1064 int
1065 arm_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
1066 struct bp_target_info *bp_tgt)
1067 {
1068 struct arm_linux_hw_breakpoint p;
1069
1070 if (arm_linux_get_hw_breakpoint_count () == 0)
1071 return -1;
1072
1073 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p);
1074
1075 arm_linux_remove_hw_breakpoint1 (&p, 0);
1076
1077 return 0;
1078 }
1079
1080 /* Are we able to use a hardware watchpoint for the LEN bytes starting at
1081 ADDR? */
1082 int
1083 arm_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1084 {
1085 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap ();
1086 CORE_ADDR max_wp_length, aligned_addr;
1087
1088 /* Can not set watchpoints for zero or negative lengths. */
1089 if (len <= 0)
1090 return 0;
1091
1092 /* Need to be able to use the ptrace interface. */
1093 if (cap == NULL || cap->wp_count == 0)
1094 return 0;
1095
1096 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
1097 range covered by a watchpoint. */
1098 max_wp_length = (CORE_ADDR)cap->max_wp_length;
1099 aligned_addr = addr & ~(max_wp_length - 1);
1100
1101 if (aligned_addr + max_wp_length < addr + len)
1102 return 0;
1103
1104 /* The current ptrace interface can only handle watchpoints that are a
1105 power of 2. */
1106 if ((len & (len - 1)) != 0)
1107 return 0;
1108
1109 /* All tests passed so we must be able to set a watchpoint. */
1110 return 1;
1111 }
1112
1113 /* Insert a Hardware breakpoint. */
1114 int
1115 arm_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
1116 enum target_hw_bp_type rw,
1117 struct expression *cond)
1118 {
1119 struct arm_linux_hw_breakpoint p;
1120
1121 if (arm_linux_get_hw_watchpoint_count () == 0)
1122 return -1;
1123
1124 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1125
1126 arm_linux_insert_hw_breakpoint1 (&p, 1);
1127
1128 return 0;
1129 }
1130
1131 /* Remove a hardware breakpoint. */
1132 int
1133 arm_linux_nat_target::remove_watchpoint (CORE_ADDR addr,
1134 int len, enum target_hw_bp_type rw,
1135 struct expression *cond)
1136 {
1137 struct arm_linux_hw_breakpoint p;
1138
1139 if (arm_linux_get_hw_watchpoint_count () == 0)
1140 return -1;
1141
1142 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p);
1143
1144 arm_linux_remove_hw_breakpoint1 (&p, 1);
1145
1146 return 0;
1147 }
1148
1149 /* What was the data address the target was stopped on accessing. */
1150 bool
1151 arm_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
1152 {
1153 siginfo_t siginfo;
1154 int slot;
1155
1156 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
1157 return false;
1158
1159 /* This must be a hardware breakpoint. */
1160 if (siginfo.si_signo != SIGTRAP
1161 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1162 return false;
1163
1164 /* We must be able to set hardware watchpoints. */
1165 if (arm_linux_get_hw_watchpoint_count () == 0)
1166 return 0;
1167
1168 slot = siginfo.si_errno;
1169
1170 /* If we are in a positive slot then we're looking at a breakpoint and not
1171 a watchpoint. */
1172 if (slot >= 0)
1173 return false;
1174
1175 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
1176 return true;
1177 }
1178
1179 /* Has the target been stopped by hitting a watchpoint? */
1180 bool
1181 arm_linux_nat_target::stopped_by_watchpoint ()
1182 {
1183 CORE_ADDR addr;
1184 return stopped_data_address (&addr);
1185 }
1186
1187 bool
1188 arm_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
1189 CORE_ADDR start,
1190 int length)
1191 {
1192 return start <= addr && start + length - 1 >= addr;
1193 }
1194
1195 /* Handle thread creation. We need to copy the breakpoints and watchpoints
1196 in the parent thread to the child thread. */
1197 void
1198 arm_linux_nat_target::low_new_thread (struct lwp_info *lp)
1199 {
1200 int i;
1201 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
1202
1203 /* Mark that all the hardware breakpoint/watchpoint register pairs
1204 for this thread need to be initialized. */
1205
1206 for (i = 0; i < MAX_BPTS; i++)
1207 {
1208 info->bpts_changed[i] = 1;
1209 info->wpts_changed[i] = 1;
1210 }
1211
1212 lp->arch_private = info;
1213 }
1214
1215 /* Function to call when a thread is being deleted. */
1216
1217 void
1218 arm_linux_nat_target::low_delete_thread (struct arch_lwp_info *arch_lwp)
1219 {
1220 xfree (arch_lwp);
1221 }
1222
1223 /* Called when resuming a thread.
1224 The hardware debug registers are updated when there is any change. */
1225
1226 void
1227 arm_linux_nat_target::low_prepare_to_resume (struct lwp_info *lwp)
1228 {
1229 int pid, i;
1230 struct arm_linux_hw_breakpoint *bpts, *wpts;
1231 struct arch_lwp_info *arm_lwp_info = lwp->arch_private;
1232
1233 pid = lwp->ptid.lwp ();
1234 bpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->bpts;
1235 wpts = arm_linux_get_debug_reg_state (lwp->ptid.pid ())->wpts;
1236
1237 /* NULL means this is the main thread still going through the shell,
1238 or, no watchpoint has been set yet. In that case, there's
1239 nothing to do. */
1240 if (arm_lwp_info == NULL)
1241 return;
1242
1243 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
1244 if (arm_lwp_info->bpts_changed[i])
1245 {
1246 errno = 0;
1247 if (arm_hwbp_control_is_enabled (bpts[i].control))
1248 if (ptrace (PTRACE_SETHBPREGS, pid,
1249 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0)
1250 perror_with_name (_("Unexpected error setting breakpoint"));
1251
1252 if (bpts[i].control != 0)
1253 if (ptrace (PTRACE_SETHBPREGS, pid,
1254 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0)
1255 perror_with_name (_("Unexpected error setting breakpoint"));
1256
1257 arm_lwp_info->bpts_changed[i] = 0;
1258 }
1259
1260 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
1261 if (arm_lwp_info->wpts_changed[i])
1262 {
1263 errno = 0;
1264 if (arm_hwbp_control_is_enabled (wpts[i].control))
1265 if (ptrace (PTRACE_SETHBPREGS, pid,
1266 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0)
1267 perror_with_name (_("Unexpected error setting watchpoint"));
1268
1269 if (wpts[i].control != 0)
1270 if (ptrace (PTRACE_SETHBPREGS, pid,
1271 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0)
1272 perror_with_name (_("Unexpected error setting watchpoint"));
1273
1274 arm_lwp_info->wpts_changed[i] = 0;
1275 }
1276 }
1277
1278 /* linux_nat_new_fork hook. */
1279
1280 void
1281 arm_linux_nat_target::low_new_fork (struct lwp_info *parent, pid_t child_pid)
1282 {
1283 pid_t parent_pid;
1284 struct arm_linux_debug_reg_state *parent_state;
1285 struct arm_linux_debug_reg_state *child_state;
1286
1287 /* NULL means no watchpoint has ever been set in the parent. In
1288 that case, there's nothing to do. */
1289 if (parent->arch_private == NULL)
1290 return;
1291
1292 /* GDB core assumes the child inherits the watchpoints/hw
1293 breakpoints of the parent, and will remove them all from the
1294 forked off process. Copy the debug registers mirrors into the
1295 new process so that all breakpoints and watchpoints can be
1296 removed together. */
1297
1298 parent_pid = parent->ptid.pid ();
1299 parent_state = arm_linux_get_debug_reg_state (parent_pid);
1300 child_state = arm_linux_get_debug_reg_state (child_pid);
1301 *child_state = *parent_state;
1302 }
1303
1304 void
1305 _initialize_arm_linux_nat (void)
1306 {
1307 /* Register the target. */
1308 linux_target = &the_arm_linux_nat_target;
1309 add_inf_child_target (&the_arm_linux_nat_target);
1310 }
This page took 0.144655 seconds and 5 git commands to generate.