Add new infrun.h header.
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "gdbtypes.h"
24 #include "floatformat.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "regcache.h"
28 #include "doublest.h"
29 #include "solib-svr4.h"
30 #include "osabi.h"
31 #include "regset.h"
32 #include "trad-frame.h"
33 #include "tramp-frame.h"
34 #include "breakpoint.h"
35 #include "auxv.h"
36 #include "xml-syscall.h"
37
38 #include "arm-tdep.h"
39 #include "arm-linux-tdep.h"
40 #include "linux-tdep.h"
41 #include "glibc-tdep.h"
42 #include "arch-utils.h"
43 #include "inferior.h"
44 #include "infrun.h"
45 #include "gdbthread.h"
46 #include "symfile.h"
47
48 #include "record-full.h"
49 #include "linux-record.h"
50
51 #include "cli/cli-utils.h"
52 #include "stap-probe.h"
53 #include "parser-defs.h"
54 #include "user-regs.h"
55 #include <ctype.h>
56 #include "elf/common.h"
57 #include <string.h>
58
59 extern int arm_apcs_32;
60
61 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
62 is to execute a particular software interrupt, rather than use a
63 particular undefined instruction to provoke a trap. Upon exection
64 of the software interrupt the kernel stops the inferior with a
65 SIGTRAP, and wakes the debugger. */
66
67 static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
68
69 static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
70
71 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
72 the operand of the swi if old-ABI compatibility is disabled. Therefore,
73 use an undefined instruction instead. This is supported as of kernel
74 version 2.5.70 (May 2003), so should be a safe assumption for EABI
75 binaries. */
76
77 static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
78
79 static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
80
81 /* All the kernels which support Thumb support using a specific undefined
82 instruction for the Thumb breakpoint. */
83
84 static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
85
86 static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
87
88 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
89 we must use a length-appropriate breakpoint for 32-bit Thumb
90 instructions. See also thumb_get_next_pc. */
91
92 static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
93
94 static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
95
96 /* Description of the longjmp buffer. The buffer is treated as an array of
97 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
98
99 The location of saved registers in this buffer (in particular the PC
100 to use after longjmp is called) varies depending on the ABI (in
101 particular the FP model) and also (possibly) the C Library.
102
103 For glibc, eglibc, and uclibc the following holds: If the FP model is
104 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
105 buffer. This is also true for the SoftFPA model. However, for the FPA
106 model the PC is at offset 21 in the buffer. */
107 #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
108 #define ARM_LINUX_JB_PC_FPA 21
109 #define ARM_LINUX_JB_PC_EABI 9
110
111 /*
112 Dynamic Linking on ARM GNU/Linux
113 --------------------------------
114
115 Note: PLT = procedure linkage table
116 GOT = global offset table
117
118 As much as possible, ELF dynamic linking defers the resolution of
119 jump/call addresses until the last minute. The technique used is
120 inspired by the i386 ELF design, and is based on the following
121 constraints.
122
123 1) The calling technique should not force a change in the assembly
124 code produced for apps; it MAY cause changes in the way assembly
125 code is produced for position independent code (i.e. shared
126 libraries).
127
128 2) The technique must be such that all executable areas must not be
129 modified; and any modified areas must not be executed.
130
131 To do this, there are three steps involved in a typical jump:
132
133 1) in the code
134 2) through the PLT
135 3) using a pointer from the GOT
136
137 When the executable or library is first loaded, each GOT entry is
138 initialized to point to the code which implements dynamic name
139 resolution and code finding. This is normally a function in the
140 program interpreter (on ARM GNU/Linux this is usually
141 ld-linux.so.2, but it does not have to be). On the first
142 invocation, the function is located and the GOT entry is replaced
143 with the real function address. Subsequent calls go through steps
144 1, 2 and 3 and end up calling the real code.
145
146 1) In the code:
147
148 b function_call
149 bl function_call
150
151 This is typical ARM code using the 26 bit relative branch or branch
152 and link instructions. The target of the instruction
153 (function_call is usually the address of the function to be called.
154 In position independent code, the target of the instruction is
155 actually an entry in the PLT when calling functions in a shared
156 library. Note that this call is identical to a normal function
157 call, only the target differs.
158
159 2) In the PLT:
160
161 The PLT is a synthetic area, created by the linker. It exists in
162 both executables and libraries. It is an array of stubs, one per
163 imported function call. It looks like this:
164
165 PLT[0]:
166 str lr, [sp, #-4]! @push the return address (lr)
167 ldr lr, [pc, #16] @load from 6 words ahead
168 add lr, pc, lr @form an address for GOT[0]
169 ldr pc, [lr, #8]! @jump to the contents of that addr
170
171 The return address (lr) is pushed on the stack and used for
172 calculations. The load on the second line loads the lr with
173 &GOT[3] - . - 20. The addition on the third leaves:
174
175 lr = (&GOT[3] - . - 20) + (. + 8)
176 lr = (&GOT[3] - 12)
177 lr = &GOT[0]
178
179 On the fourth line, the pc and lr are both updated, so that:
180
181 pc = GOT[2]
182 lr = &GOT[0] + 8
183 = &GOT[2]
184
185 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
186 "tight", but allows us to keep all the PLT entries the same size.
187
188 PLT[n+1]:
189 ldr ip, [pc, #4] @load offset from gotoff
190 add ip, pc, ip @add the offset to the pc
191 ldr pc, [ip] @jump to that address
192 gotoff: .word GOT[n+3] - .
193
194 The load on the first line, gets an offset from the fourth word of
195 the PLT entry. The add on the second line makes ip = &GOT[n+3],
196 which contains either a pointer to PLT[0] (the fixup trampoline) or
197 a pointer to the actual code.
198
199 3) In the GOT:
200
201 The GOT contains helper pointers for both code (PLT) fixups and
202 data fixups. The first 3 entries of the GOT are special. The next
203 M entries (where M is the number of entries in the PLT) belong to
204 the PLT fixups. The next D (all remaining) entries belong to
205 various data fixups. The actual size of the GOT is 3 + M + D.
206
207 The GOT is also a synthetic area, created by the linker. It exists
208 in both executables and libraries. When the GOT is first
209 initialized , all the GOT entries relating to PLT fixups are
210 pointing to code back at PLT[0].
211
212 The special entries in the GOT are:
213
214 GOT[0] = linked list pointer used by the dynamic loader
215 GOT[1] = pointer to the reloc table for this module
216 GOT[2] = pointer to the fixup/resolver code
217
218 The first invocation of function call comes through and uses the
219 fixup/resolver code. On the entry to the fixup/resolver code:
220
221 ip = &GOT[n+3]
222 lr = &GOT[2]
223 stack[0] = return address (lr) of the function call
224 [r0, r1, r2, r3] are still the arguments to the function call
225
226 This is enough information for the fixup/resolver code to work
227 with. Before the fixup/resolver code returns, it actually calls
228 the requested function and repairs &GOT[n+3]. */
229
230 /* The constants below were determined by examining the following files
231 in the linux kernel sources:
232
233 arch/arm/kernel/signal.c
234 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
235 include/asm-arm/unistd.h
236 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
237
238 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
239 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
240
241 /* For ARM EABI, the syscall number is not in the SWI instruction
242 (instead it is loaded into r7). We recognize the pattern that
243 glibc uses... alternatively, we could arrange to do this by
244 function name, but they are not always exported. */
245 #define ARM_SET_R7_SIGRETURN 0xe3a07077
246 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
247 #define ARM_EABI_SYSCALL 0xef000000
248
249 /* OABI syscall restart trampoline, used for EABI executables too
250 whenever OABI support has been enabled in the kernel. */
251 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
252 #define ARM_LDR_PC_SP_12 0xe49df00c
253 #define ARM_LDR_PC_SP_4 0xe49df004
254
255 static void
256 arm_linux_sigtramp_cache (struct frame_info *this_frame,
257 struct trad_frame_cache *this_cache,
258 CORE_ADDR func, int regs_offset)
259 {
260 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
261 CORE_ADDR base = sp + regs_offset;
262 int i;
263
264 for (i = 0; i < 16; i++)
265 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
266
267 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
268
269 /* The VFP or iWMMXt registers may be saved on the stack, but there's
270 no reliable way to restore them (yet). */
271
272 /* Save a frame ID. */
273 trad_frame_set_id (this_cache, frame_id_build (sp, func));
274 }
275
276 /* There are a couple of different possible stack layouts that
277 we need to support.
278
279 Before version 2.6.18, the kernel used completely independent
280 layouts for non-RT and RT signals. For non-RT signals the stack
281 began directly with a struct sigcontext. For RT signals the stack
282 began with two redundant pointers (to the siginfo and ucontext),
283 and then the siginfo and ucontext.
284
285 As of version 2.6.18, the non-RT signal frame layout starts with
286 a ucontext and the RT signal frame starts with a siginfo and then
287 a ucontext. Also, the ucontext now has a designated save area
288 for coprocessor registers.
289
290 For RT signals, it's easy to tell the difference: we look for
291 pinfo, the pointer to the siginfo. If it has the expected
292 value, we have an old layout. If it doesn't, we have the new
293 layout.
294
295 For non-RT signals, it's a bit harder. We need something in one
296 layout or the other with a recognizable offset and value. We can't
297 use the return trampoline, because ARM usually uses SA_RESTORER,
298 in which case the stack return trampoline is not filled in.
299 We can't use the saved stack pointer, because sigaltstack might
300 be in use. So for now we guess the new layout... */
301
302 /* There are three words (trap_no, error_code, oldmask) in
303 struct sigcontext before r0. */
304 #define ARM_SIGCONTEXT_R0 0xc
305
306 /* There are five words (uc_flags, uc_link, and three for uc_stack)
307 in the ucontext_t before the sigcontext. */
308 #define ARM_UCONTEXT_SIGCONTEXT 0x14
309
310 /* There are three elements in an rt_sigframe before the ucontext:
311 pinfo, puc, and info. The first two are pointers and the third
312 is a struct siginfo, with size 128 bytes. We could follow puc
313 to the ucontext, but it's simpler to skip the whole thing. */
314 #define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
315 #define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
316
317 #define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
318
319 #define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
320
321 static void
322 arm_linux_sigreturn_init (const struct tramp_frame *self,
323 struct frame_info *this_frame,
324 struct trad_frame_cache *this_cache,
325 CORE_ADDR func)
326 {
327 struct gdbarch *gdbarch = get_frame_arch (this_frame);
328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
329 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
330 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
331
332 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
333 arm_linux_sigtramp_cache (this_frame, this_cache, func,
334 ARM_UCONTEXT_SIGCONTEXT
335 + ARM_SIGCONTEXT_R0);
336 else
337 arm_linux_sigtramp_cache (this_frame, this_cache, func,
338 ARM_SIGCONTEXT_R0);
339 }
340
341 static void
342 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
343 struct frame_info *this_frame,
344 struct trad_frame_cache *this_cache,
345 CORE_ADDR func)
346 {
347 struct gdbarch *gdbarch = get_frame_arch (this_frame);
348 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
349 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
350 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
351
352 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
353 arm_linux_sigtramp_cache (this_frame, this_cache, func,
354 ARM_OLD_RT_SIGFRAME_UCONTEXT
355 + ARM_UCONTEXT_SIGCONTEXT
356 + ARM_SIGCONTEXT_R0);
357 else
358 arm_linux_sigtramp_cache (this_frame, this_cache, func,
359 ARM_NEW_RT_SIGFRAME_UCONTEXT
360 + ARM_UCONTEXT_SIGCONTEXT
361 + ARM_SIGCONTEXT_R0);
362 }
363
364 static void
365 arm_linux_restart_syscall_init (const struct tramp_frame *self,
366 struct frame_info *this_frame,
367 struct trad_frame_cache *this_cache,
368 CORE_ADDR func)
369 {
370 struct gdbarch *gdbarch = get_frame_arch (this_frame);
371 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
372 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
373 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
374 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
375 int sp_offset;
376
377 /* There are two variants of this trampoline; with older kernels, the
378 stub is placed on the stack, while newer kernels use the stub from
379 the vector page. They are identical except that the older version
380 increments SP by 12 (to skip stored PC and the stub itself), while
381 the newer version increments SP only by 4 (just the stored PC). */
382 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
383 sp_offset = 4;
384 else
385 sp_offset = 12;
386
387 /* Update Thumb bit in CPSR. */
388 if (pc & 1)
389 cpsr |= t_bit;
390 else
391 cpsr &= ~t_bit;
392
393 /* Remove Thumb bit from PC. */
394 pc = gdbarch_addr_bits_remove (gdbarch, pc);
395
396 /* Save previous register values. */
397 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
398 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
399 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
400
401 /* Save a frame ID. */
402 trad_frame_set_id (this_cache, frame_id_build (sp, func));
403 }
404
405 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
406 SIGTRAMP_FRAME,
407 4,
408 {
409 { ARM_LINUX_SIGRETURN_INSTR, -1 },
410 { TRAMP_SENTINEL_INSN }
411 },
412 arm_linux_sigreturn_init
413 };
414
415 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
416 SIGTRAMP_FRAME,
417 4,
418 {
419 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
420 { TRAMP_SENTINEL_INSN }
421 },
422 arm_linux_rt_sigreturn_init
423 };
424
425 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
426 SIGTRAMP_FRAME,
427 4,
428 {
429 { ARM_SET_R7_SIGRETURN, -1 },
430 { ARM_EABI_SYSCALL, -1 },
431 { TRAMP_SENTINEL_INSN }
432 },
433 arm_linux_sigreturn_init
434 };
435
436 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
437 SIGTRAMP_FRAME,
438 4,
439 {
440 { ARM_SET_R7_RT_SIGRETURN, -1 },
441 { ARM_EABI_SYSCALL, -1 },
442 { TRAMP_SENTINEL_INSN }
443 },
444 arm_linux_rt_sigreturn_init
445 };
446
447 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
448 NORMAL_FRAME,
449 4,
450 {
451 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
452 { ARM_LDR_PC_SP_12, -1 },
453 { TRAMP_SENTINEL_INSN }
454 },
455 arm_linux_restart_syscall_init
456 };
457
458 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
459 NORMAL_FRAME,
460 4,
461 {
462 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
463 { ARM_LDR_PC_SP_4, -1 },
464 { TRAMP_SENTINEL_INSN }
465 },
466 arm_linux_restart_syscall_init
467 };
468
469 /* Core file and register set support. */
470
471 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
472
473 void
474 arm_linux_supply_gregset (const struct regset *regset,
475 struct regcache *regcache,
476 int regnum, const void *gregs_buf, size_t len)
477 {
478 struct gdbarch *gdbarch = get_regcache_arch (regcache);
479 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
480 const gdb_byte *gregs = gregs_buf;
481 int regno;
482 CORE_ADDR reg_pc;
483 gdb_byte pc_buf[INT_REGISTER_SIZE];
484
485 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
486 if (regnum == -1 || regnum == regno)
487 regcache_raw_supply (regcache, regno,
488 gregs + INT_REGISTER_SIZE * regno);
489
490 if (regnum == ARM_PS_REGNUM || regnum == -1)
491 {
492 if (arm_apcs_32)
493 regcache_raw_supply (regcache, ARM_PS_REGNUM,
494 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
495 else
496 regcache_raw_supply (regcache, ARM_PS_REGNUM,
497 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
498 }
499
500 if (regnum == ARM_PC_REGNUM || regnum == -1)
501 {
502 reg_pc = extract_unsigned_integer (gregs
503 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
504 INT_REGISTER_SIZE, byte_order);
505 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
506 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
507 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
508 }
509 }
510
511 void
512 arm_linux_collect_gregset (const struct regset *regset,
513 const struct regcache *regcache,
514 int regnum, void *gregs_buf, size_t len)
515 {
516 gdb_byte *gregs = gregs_buf;
517 int regno;
518
519 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
520 if (regnum == -1 || regnum == regno)
521 regcache_raw_collect (regcache, regno,
522 gregs + INT_REGISTER_SIZE * regno);
523
524 if (regnum == ARM_PS_REGNUM || regnum == -1)
525 {
526 if (arm_apcs_32)
527 regcache_raw_collect (regcache, ARM_PS_REGNUM,
528 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
529 else
530 regcache_raw_collect (regcache, ARM_PS_REGNUM,
531 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
532 }
533
534 if (regnum == ARM_PC_REGNUM || regnum == -1)
535 regcache_raw_collect (regcache, ARM_PC_REGNUM,
536 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
537 }
538
539 /* Support for register format used by the NWFPE FPA emulator. */
540
541 #define typeNone 0x00
542 #define typeSingle 0x01
543 #define typeDouble 0x02
544 #define typeExtended 0x03
545
546 void
547 supply_nwfpe_register (struct regcache *regcache, int regno,
548 const gdb_byte *regs)
549 {
550 const gdb_byte *reg_data;
551 gdb_byte reg_tag;
552 gdb_byte buf[FP_REGISTER_SIZE];
553
554 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
555 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
556 memset (buf, 0, FP_REGISTER_SIZE);
557
558 switch (reg_tag)
559 {
560 case typeSingle:
561 memcpy (buf, reg_data, 4);
562 break;
563 case typeDouble:
564 memcpy (buf, reg_data + 4, 4);
565 memcpy (buf + 4, reg_data, 4);
566 break;
567 case typeExtended:
568 /* We want sign and exponent, then least significant bits,
569 then most significant. NWFPE does sign, most, least. */
570 memcpy (buf, reg_data, 4);
571 memcpy (buf + 4, reg_data + 8, 4);
572 memcpy (buf + 8, reg_data + 4, 4);
573 break;
574 default:
575 break;
576 }
577
578 regcache_raw_supply (regcache, regno, buf);
579 }
580
581 void
582 collect_nwfpe_register (const struct regcache *regcache, int regno,
583 gdb_byte *regs)
584 {
585 gdb_byte *reg_data;
586 gdb_byte reg_tag;
587 gdb_byte buf[FP_REGISTER_SIZE];
588
589 regcache_raw_collect (regcache, regno, buf);
590
591 /* NOTE drow/2006-06-07: This code uses the tag already in the
592 register buffer. I've preserved that when moving the code
593 from the native file to the target file. But this doesn't
594 always make sense. */
595
596 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
597 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
598
599 switch (reg_tag)
600 {
601 case typeSingle:
602 memcpy (reg_data, buf, 4);
603 break;
604 case typeDouble:
605 memcpy (reg_data, buf + 4, 4);
606 memcpy (reg_data + 4, buf, 4);
607 break;
608 case typeExtended:
609 memcpy (reg_data, buf, 4);
610 memcpy (reg_data + 4, buf + 8, 4);
611 memcpy (reg_data + 8, buf + 4, 4);
612 break;
613 default:
614 break;
615 }
616 }
617
618 void
619 arm_linux_supply_nwfpe (const struct regset *regset,
620 struct regcache *regcache,
621 int regnum, const void *regs_buf, size_t len)
622 {
623 const gdb_byte *regs = regs_buf;
624 int regno;
625
626 if (regnum == ARM_FPS_REGNUM || regnum == -1)
627 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
628 regs + NWFPE_FPSR_OFFSET);
629
630 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
631 if (regnum == -1 || regnum == regno)
632 supply_nwfpe_register (regcache, regno, regs);
633 }
634
635 void
636 arm_linux_collect_nwfpe (const struct regset *regset,
637 const struct regcache *regcache,
638 int regnum, void *regs_buf, size_t len)
639 {
640 gdb_byte *regs = regs_buf;
641 int regno;
642
643 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
644 if (regnum == -1 || regnum == regno)
645 collect_nwfpe_register (regcache, regno, regs);
646
647 if (regnum == ARM_FPS_REGNUM || regnum == -1)
648 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
649 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
650 }
651
652 /* Support VFP register format. */
653
654 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
655
656 static void
657 arm_linux_supply_vfp (const struct regset *regset,
658 struct regcache *regcache,
659 int regnum, const void *regs_buf, size_t len)
660 {
661 const gdb_byte *regs = regs_buf;
662 int regno;
663
664 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
665 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
666
667 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
668 if (regnum == -1 || regnum == regno)
669 regcache_raw_supply (regcache, regno,
670 regs + (regno - ARM_D0_REGNUM) * 8);
671 }
672
673 static void
674 arm_linux_collect_vfp (const struct regset *regset,
675 const struct regcache *regcache,
676 int regnum, void *regs_buf, size_t len)
677 {
678 gdb_byte *regs = regs_buf;
679 int regno;
680
681 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
682 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
683
684 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
685 if (regnum == -1 || regnum == regno)
686 regcache_raw_collect (regcache, regno,
687 regs + (regno - ARM_D0_REGNUM) * 8);
688 }
689
690 static const struct regset arm_linux_gregset =
691 {
692 NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
693 };
694
695 static const struct regset arm_linux_fpregset =
696 {
697 NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
698 };
699
700 static const struct regset arm_linux_vfpregset =
701 {
702 NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
703 };
704
705 /* Return the appropriate register set for the core section identified
706 by SECT_NAME and SECT_SIZE. */
707
708 static const struct regset *
709 arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
710 const char *sect_name, size_t sect_size)
711 {
712 if (strcmp (sect_name, ".reg") == 0
713 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
714 return &arm_linux_gregset;
715
716 if (strcmp (sect_name, ".reg2") == 0
717 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
718 return &arm_linux_fpregset;
719
720 if (strcmp (sect_name, ".reg-arm-vfp") == 0
721 && sect_size == ARM_LINUX_SIZEOF_VFP)
722 return &arm_linux_vfpregset;
723
724 return NULL;
725 }
726
727 /* Core file register set sections. */
728
729 static struct core_regset_section arm_linux_fpa_regset_sections[] =
730 {
731 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
732 { ".reg2", ARM_LINUX_SIZEOF_NWFPE, "FPA floating-point" },
733 { NULL, 0}
734 };
735
736 static struct core_regset_section arm_linux_vfp_regset_sections[] =
737 {
738 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
739 { ".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, "VFP floating-point" },
740 { NULL, 0}
741 };
742
743 /* Determine target description from core file. */
744
745 static const struct target_desc *
746 arm_linux_core_read_description (struct gdbarch *gdbarch,
747 struct target_ops *target,
748 bfd *abfd)
749 {
750 CORE_ADDR arm_hwcap = 0;
751
752 if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
753 return NULL;
754
755 if (arm_hwcap & HWCAP_VFP)
756 {
757 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
758 Neon with VFPv3-D32. */
759 if (arm_hwcap & HWCAP_NEON)
760 return tdesc_arm_with_neon;
761 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
762 return tdesc_arm_with_vfpv3;
763 else
764 return tdesc_arm_with_vfpv2;
765 }
766
767 return NULL;
768 }
769
770
771 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
772 return 1. In addition, set IS_THUMB depending on whether we
773 will return to ARM or Thumb code. Return 0 if it is not a
774 rt_sigreturn/sigreturn syscall. */
775 static int
776 arm_linux_sigreturn_return_addr (struct frame_info *frame,
777 unsigned long svc_number,
778 CORE_ADDR *pc, int *is_thumb)
779 {
780 /* Is this a sigreturn or rt_sigreturn syscall? */
781 if (svc_number == 119 || svc_number == 173)
782 {
783 if (get_frame_type (frame) == SIGTRAMP_FRAME)
784 {
785 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
786 CORE_ADDR cpsr
787 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
788
789 *is_thumb = (cpsr & t_bit) != 0;
790 *pc = frame_unwind_caller_pc (frame);
791 return 1;
792 }
793 }
794 return 0;
795 }
796
797 /* At a ptrace syscall-stop, return the syscall number. This either
798 comes from the SWI instruction (OABI) or from r7 (EABI).
799
800 When the function fails, it should return -1. */
801
802 static LONGEST
803 arm_linux_get_syscall_number (struct gdbarch *gdbarch,
804 ptid_t ptid)
805 {
806 struct regcache *regs = get_thread_regcache (ptid);
807 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
808
809 ULONGEST pc;
810 ULONGEST cpsr;
811 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
812 int is_thumb;
813 ULONGEST svc_number = -1;
814
815 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
816 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
817 is_thumb = (cpsr & t_bit) != 0;
818
819 if (is_thumb)
820 {
821 regcache_cooked_read_unsigned (regs, 7, &svc_number);
822 }
823 else
824 {
825 enum bfd_endian byte_order_for_code =
826 gdbarch_byte_order_for_code (gdbarch);
827
828 /* PC gets incremented before the syscall-stop, so read the
829 previous instruction. */
830 unsigned long this_instr =
831 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
832
833 unsigned long svc_operand = (0x00ffffff & this_instr);
834
835 if (svc_operand)
836 {
837 /* OABI */
838 svc_number = svc_operand - 0x900000;
839 }
840 else
841 {
842 /* EABI */
843 regcache_cooked_read_unsigned (regs, 7, &svc_number);
844 }
845 }
846
847 return svc_number;
848 }
849
850 /* When FRAME is at a syscall instruction, return the PC of the next
851 instruction to be executed. */
852
853 static CORE_ADDR
854 arm_linux_syscall_next_pc (struct frame_info *frame)
855 {
856 CORE_ADDR pc = get_frame_pc (frame);
857 CORE_ADDR return_addr = 0;
858 int is_thumb = arm_frame_is_thumb (frame);
859 ULONGEST svc_number = 0;
860
861 if (is_thumb)
862 {
863 svc_number = get_frame_register_unsigned (frame, 7);
864 return_addr = pc + 2;
865 }
866 else
867 {
868 struct gdbarch *gdbarch = get_frame_arch (frame);
869 enum bfd_endian byte_order_for_code =
870 gdbarch_byte_order_for_code (gdbarch);
871 unsigned long this_instr =
872 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
873
874 unsigned long svc_operand = (0x00ffffff & this_instr);
875 if (svc_operand) /* OABI. */
876 {
877 svc_number = svc_operand - 0x900000;
878 }
879 else /* EABI. */
880 {
881 svc_number = get_frame_register_unsigned (frame, 7);
882 }
883
884 return_addr = pc + 4;
885 }
886
887 arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
888
889 /* Addresses for calling Thumb functions have the bit 0 set. */
890 if (is_thumb)
891 return_addr |= 1;
892
893 return return_addr;
894 }
895
896
897 /* Insert a single step breakpoint at the next executed instruction. */
898
899 static int
900 arm_linux_software_single_step (struct frame_info *frame)
901 {
902 struct gdbarch *gdbarch = get_frame_arch (frame);
903 struct address_space *aspace = get_frame_address_space (frame);
904 CORE_ADDR next_pc;
905
906 if (arm_deal_with_atomic_sequence (frame))
907 return 1;
908
909 next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
910
911 /* The Linux kernel offers some user-mode helpers in a high page. We can
912 not read this page (as of 2.6.23), and even if we could then we couldn't
913 set breakpoints in it, and even if we could then the atomic operations
914 would fail when interrupted. They are all called as functions and return
915 to the address in LR, so step to there instead. */
916 if (next_pc > 0xffff0000)
917 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
918
919 arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
920
921 return 1;
922 }
923
924 /* Support for displaced stepping of Linux SVC instructions. */
925
926 static void
927 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
928 struct regcache *regs,
929 struct displaced_step_closure *dsc)
930 {
931 CORE_ADDR from = dsc->insn_addr;
932 ULONGEST apparent_pc;
933 int within_scratch;
934
935 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
936
937 within_scratch = (apparent_pc >= dsc->scratch_base
938 && apparent_pc < (dsc->scratch_base
939 + DISPLACED_MODIFIED_INSNS * 4 + 4));
940
941 if (debug_displaced)
942 {
943 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
944 "SVC step ", (unsigned long) apparent_pc);
945 if (within_scratch)
946 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
947 else
948 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
949 }
950
951 if (within_scratch)
952 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
953 }
954
955 static int
956 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
957 struct displaced_step_closure *dsc)
958 {
959 CORE_ADDR return_to = 0;
960
961 struct frame_info *frame;
962 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
963 int is_sigreturn = 0;
964 int is_thumb;
965
966 frame = get_current_frame ();
967
968 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
969 &return_to, &is_thumb);
970 if (is_sigreturn)
971 {
972 struct symtab_and_line sal;
973
974 if (debug_displaced)
975 fprintf_unfiltered (gdb_stdlog, "displaced: found "
976 "sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
977 (unsigned long) get_frame_pc (frame));
978
979 if (debug_displaced)
980 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
981 "Setting momentary breakpoint.\n", (unsigned long) return_to);
982
983 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
984 == NULL);
985
986 sal = find_pc_line (return_to, 0);
987 sal.pc = return_to;
988 sal.section = find_pc_overlay (return_to);
989 sal.explicit_pc = 1;
990
991 frame = get_prev_frame (frame);
992
993 if (frame)
994 {
995 inferior_thread ()->control.step_resume_breakpoint
996 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
997 bp_step_resume);
998
999 /* set_momentary_breakpoint invalidates FRAME. */
1000 frame = NULL;
1001
1002 /* We need to make sure we actually insert the momentary
1003 breakpoint set above. */
1004 insert_breakpoints ();
1005 }
1006 else if (debug_displaced)
1007 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1008 "frame to set momentary breakpoint for "
1009 "sigreturn/rt_sigreturn\n");
1010 }
1011 else if (debug_displaced)
1012 fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
1013 "SVC call not in signal trampoline frame\n");
1014
1015
1016 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1017 location, else nothing.
1018 Insn: unmodified svc.
1019 Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
1020 else leave pc alone. */
1021
1022
1023 dsc->cleanup = &arm_linux_cleanup_svc;
1024 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1025 instruction. */
1026 dsc->wrote_to_pc = 1;
1027
1028 return 0;
1029 }
1030
1031
1032 /* The following two functions implement single-stepping over calls to Linux
1033 kernel helper routines, which perform e.g. atomic operations on architecture
1034 variants which don't support them natively.
1035
1036 When this function is called, the PC will be pointing at the kernel helper
1037 (at an address inaccessible to GDB), and r14 will point to the return
1038 address. Displaced stepping always executes code in the copy area:
1039 so, make the copy-area instruction branch back to the kernel helper (the
1040 "from" address), and make r14 point to the breakpoint in the copy area. In
1041 that way, we regain control once the kernel helper returns, and can clean
1042 up appropriately (as if we had just returned from the kernel helper as it
1043 would have been called from the non-displaced location). */
1044
1045 static void
1046 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
1047 struct regcache *regs,
1048 struct displaced_step_closure *dsc)
1049 {
1050 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1051 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1052 }
1053
1054 static void
1055 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1056 CORE_ADDR to, struct regcache *regs,
1057 struct displaced_step_closure *dsc)
1058 {
1059 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1060
1061 dsc->numinsns = 1;
1062 dsc->insn_addr = from;
1063 dsc->cleanup = &cleanup_kernel_helper_return;
1064 /* Say we wrote to the PC, else cleanup will set PC to the next
1065 instruction in the helper, which isn't helpful. */
1066 dsc->wrote_to_pc = 1;
1067
1068 /* Preparation: tmp[0] <- r14
1069 r14 <- <scratch space>+4
1070 *(<scratch space>+8) <- from
1071 Insn: ldr pc, [r14, #4]
1072 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1073
1074 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1075 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1076 CANNOT_WRITE_PC);
1077 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1078
1079 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1080 }
1081
1082 /* Linux-specific displaced step instruction copying function. Detects when
1083 the program has stepped into a Linux kernel helper routine (which must be
1084 handled as a special case), falling back to arm_displaced_step_copy_insn()
1085 if it hasn't. */
1086
1087 static struct displaced_step_closure *
1088 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1089 CORE_ADDR from, CORE_ADDR to,
1090 struct regcache *regs)
1091 {
1092 struct displaced_step_closure *dsc
1093 = xmalloc (sizeof (struct displaced_step_closure));
1094
1095 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1096 stop at the return location. */
1097 if (from > 0xffff0000)
1098 {
1099 if (debug_displaced)
1100 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1101 "at %.8lx\n", (unsigned long) from);
1102
1103 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1104 }
1105 else
1106 {
1107 /* Override the default handling of SVC instructions. */
1108 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1109
1110 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
1111 }
1112
1113 arm_displaced_init_closure (gdbarch, from, to, dsc);
1114
1115 return dsc;
1116 }
1117
1118 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1119 gdbarch.h. */
1120
1121 static int
1122 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1123 {
1124 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
1125 || *s == '[' /* Register indirection or
1126 displacement. */
1127 || isalpha (*s)); /* Register value. */
1128 }
1129
1130 /* This routine is used to parse a special token in ARM's assembly.
1131
1132 The special tokens parsed by it are:
1133
1134 - Register displacement (e.g, [fp, #-8])
1135
1136 It returns one if the special token has been parsed successfully,
1137 or zero if the current token is not considered special. */
1138
1139 static int
1140 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1141 struct stap_parse_info *p)
1142 {
1143 if (*p->arg == '[')
1144 {
1145 /* Temporary holder for lookahead. */
1146 const char *tmp = p->arg;
1147 char *endp;
1148 /* Used to save the register name. */
1149 const char *start;
1150 char *regname;
1151 int len, offset;
1152 int got_minus = 0;
1153 long displacement;
1154 struct stoken str;
1155
1156 ++tmp;
1157 start = tmp;
1158
1159 /* Register name. */
1160 while (isalnum (*tmp))
1161 ++tmp;
1162
1163 if (*tmp != ',')
1164 return 0;
1165
1166 len = tmp - start;
1167 regname = alloca (len + 2);
1168
1169 offset = 0;
1170 if (isdigit (*start))
1171 {
1172 /* If we are dealing with a register whose name begins with a
1173 digit, it means we should prefix the name with the letter
1174 `r', because GDB expects this name pattern. Otherwise (e.g.,
1175 we are dealing with the register `fp'), we don't need to
1176 add such a prefix. */
1177 regname[0] = 'r';
1178 offset = 1;
1179 }
1180
1181 strncpy (regname + offset, start, len);
1182 len += offset;
1183 regname[len] = '\0';
1184
1185 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1186 error (_("Invalid register name `%s' on expression `%s'."),
1187 regname, p->saved_arg);
1188
1189 ++tmp;
1190 tmp = skip_spaces_const (tmp);
1191 if (*tmp == '#' || *tmp == '$')
1192 ++tmp;
1193
1194 if (*tmp == '-')
1195 {
1196 ++tmp;
1197 got_minus = 1;
1198 }
1199
1200 displacement = strtol (tmp, &endp, 10);
1201 tmp = endp;
1202
1203 /* Skipping last `]'. */
1204 if (*tmp++ != ']')
1205 return 0;
1206
1207 /* The displacement. */
1208 write_exp_elt_opcode (&p->pstate, OP_LONG);
1209 write_exp_elt_type (&p->pstate, builtin_type (gdbarch)->builtin_long);
1210 write_exp_elt_longcst (&p->pstate, displacement);
1211 write_exp_elt_opcode (&p->pstate, OP_LONG);
1212 if (got_minus)
1213 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
1214
1215 /* The register name. */
1216 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1217 str.ptr = regname;
1218 str.length = len;
1219 write_exp_string (&p->pstate, str);
1220 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
1221
1222 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
1223
1224 /* Casting to the expected type. */
1225 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1226 write_exp_elt_type (&p->pstate, lookup_pointer_type (p->arg_type));
1227 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
1228
1229 write_exp_elt_opcode (&p->pstate, UNOP_IND);
1230
1231 p->arg = tmp;
1232 }
1233 else
1234 return 0;
1235
1236 return 1;
1237 }
1238
1239 /* ARM process record-replay constructs: syscall, signal etc. */
1240
1241 struct linux_record_tdep arm_linux_record_tdep;
1242
1243 /* arm_canonicalize_syscall maps from the native arm Linux set
1244 of syscall ids into a canonical set of syscall ids used by
1245 process record. */
1246
1247 static enum gdb_syscall
1248 arm_canonicalize_syscall (int syscall)
1249 {
1250 enum { sys_process_vm_writev = 377 };
1251
1252 if (syscall <= gdb_sys_sched_getaffinity)
1253 return syscall;
1254 else if (syscall >= 243 && syscall <= 247)
1255 return syscall + 2;
1256 else if (syscall >= 248 && syscall <= 253)
1257 return syscall + 4;
1258
1259 return -1;
1260 }
1261
1262 /* Record all registers but PC register for process-record. */
1263
1264 static int
1265 arm_all_but_pc_registers_record (struct regcache *regcache)
1266 {
1267 int i;
1268
1269 for (i = 0; i < ARM_PC_REGNUM; i++)
1270 {
1271 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1272 return -1;
1273 }
1274
1275 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1276 return -1;
1277
1278 return 0;
1279 }
1280
1281 /* Handler for arm system call instruction recording. */
1282
1283 static int
1284 arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1285 {
1286 int ret = 0;
1287 enum gdb_syscall syscall_gdb;
1288
1289 syscall_gdb = arm_canonicalize_syscall (svc_number);
1290
1291 if (syscall_gdb < 0)
1292 {
1293 printf_unfiltered (_("Process record and replay target doesn't "
1294 "support syscall number %s\n"),
1295 plongest (svc_number));
1296 return -1;
1297 }
1298
1299 if (syscall_gdb == gdb_sys_sigreturn
1300 || syscall_gdb == gdb_sys_rt_sigreturn)
1301 {
1302 if (arm_all_but_pc_registers_record (regcache))
1303 return -1;
1304 return 0;
1305 }
1306
1307 ret = record_linux_system_call (syscall_gdb, regcache,
1308 &arm_linux_record_tdep);
1309 if (ret != 0)
1310 return ret;
1311
1312 /* Record the return value of the system call. */
1313 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1314 return -1;
1315 /* Record LR. */
1316 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1317 return -1;
1318 /* Record CPSR. */
1319 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1320 return -1;
1321
1322 return 0;
1323 }
1324
1325 static void
1326 arm_linux_init_abi (struct gdbarch_info info,
1327 struct gdbarch *gdbarch)
1328 {
1329 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
1330 static const char *const stap_register_prefixes[] = { "r", NULL };
1331 static const char *const stap_register_indirection_prefixes[] = { "[",
1332 NULL };
1333 static const char *const stap_register_indirection_suffixes[] = { "]",
1334 NULL };
1335 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1336
1337 linux_init_abi (info, gdbarch);
1338
1339 tdep->lowest_pc = 0x8000;
1340 if (info.byte_order == BFD_ENDIAN_BIG)
1341 {
1342 if (tdep->arm_abi == ARM_ABI_AAPCS)
1343 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1344 else
1345 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1346 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1347 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1348 }
1349 else
1350 {
1351 if (tdep->arm_abi == ARM_ABI_AAPCS)
1352 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1353 else
1354 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1355 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1356 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1357 }
1358 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1359 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1360 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1361
1362 if (tdep->fp_model == ARM_FLOAT_AUTO)
1363 tdep->fp_model = ARM_FLOAT_FPA;
1364
1365 switch (tdep->fp_model)
1366 {
1367 case ARM_FLOAT_FPA:
1368 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1369 break;
1370 case ARM_FLOAT_SOFT_FPA:
1371 case ARM_FLOAT_SOFT_VFP:
1372 case ARM_FLOAT_VFP:
1373 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1374 break;
1375 default:
1376 internal_error
1377 (__FILE__, __LINE__,
1378 _("arm_linux_init_abi: Floating point model not supported"));
1379 break;
1380 }
1381 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1382
1383 set_solib_svr4_fetch_link_map_offsets
1384 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1385
1386 /* Single stepping. */
1387 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1388
1389 /* Shared library handling. */
1390 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1391 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1392
1393 /* Enable TLS support. */
1394 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1395 svr4_fetch_objfile_link_map);
1396
1397 tramp_frame_prepend_unwinder (gdbarch,
1398 &arm_linux_sigreturn_tramp_frame);
1399 tramp_frame_prepend_unwinder (gdbarch,
1400 &arm_linux_rt_sigreturn_tramp_frame);
1401 tramp_frame_prepend_unwinder (gdbarch,
1402 &arm_eabi_linux_sigreturn_tramp_frame);
1403 tramp_frame_prepend_unwinder (gdbarch,
1404 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1405 tramp_frame_prepend_unwinder (gdbarch,
1406 &arm_linux_restart_syscall_tramp_frame);
1407 tramp_frame_prepend_unwinder (gdbarch,
1408 &arm_kernel_linux_restart_syscall_tramp_frame);
1409
1410 /* Core file support. */
1411 set_gdbarch_regset_from_core_section (gdbarch,
1412 arm_linux_regset_from_core_section);
1413 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1414
1415 if (tdep->have_vfp_registers)
1416 set_gdbarch_core_regset_sections (gdbarch, arm_linux_vfp_regset_sections);
1417 else if (tdep->have_fpa_registers)
1418 set_gdbarch_core_regset_sections (gdbarch, arm_linux_fpa_regset_sections);
1419
1420 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
1421
1422 /* Displaced stepping. */
1423 set_gdbarch_displaced_step_copy_insn (gdbarch,
1424 arm_linux_displaced_step_copy_insn);
1425 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1426 set_gdbarch_displaced_step_free_closure (gdbarch,
1427 simple_displaced_step_free_closure);
1428 set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
1429
1430 /* Reversible debugging, process record. */
1431 set_gdbarch_process_record (gdbarch, arm_process_record);
1432
1433 /* SystemTap functions. */
1434 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1435 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1436 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1437 stap_register_indirection_prefixes);
1438 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1439 stap_register_indirection_suffixes);
1440 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1441 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1442 set_gdbarch_stap_parse_special_token (gdbarch,
1443 arm_stap_parse_special_token);
1444
1445 tdep->syscall_next_pc = arm_linux_syscall_next_pc;
1446
1447 /* `catch syscall' */
1448 set_xml_syscall_file_name ("syscalls/arm-linux.xml");
1449 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1450
1451 /* Syscall record. */
1452 tdep->arm_syscall_record = arm_linux_syscall_record;
1453
1454 /* Initialize the arm_linux_record_tdep. */
1455 /* These values are the size of the type that will be used in a system
1456 call. They are obtained from Linux Kernel source. */
1457 arm_linux_record_tdep.size_pointer
1458 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1459 arm_linux_record_tdep.size__old_kernel_stat = 32;
1460 arm_linux_record_tdep.size_tms = 16;
1461 arm_linux_record_tdep.size_loff_t = 8;
1462 arm_linux_record_tdep.size_flock = 16;
1463 arm_linux_record_tdep.size_oldold_utsname = 45;
1464 arm_linux_record_tdep.size_ustat = 20;
1465 arm_linux_record_tdep.size_old_sigaction = 140;
1466 arm_linux_record_tdep.size_old_sigset_t = 128;
1467 arm_linux_record_tdep.size_rlimit = 8;
1468 arm_linux_record_tdep.size_rusage = 72;
1469 arm_linux_record_tdep.size_timeval = 8;
1470 arm_linux_record_tdep.size_timezone = 8;
1471 arm_linux_record_tdep.size_old_gid_t = 2;
1472 arm_linux_record_tdep.size_old_uid_t = 2;
1473 arm_linux_record_tdep.size_fd_set = 128;
1474 arm_linux_record_tdep.size_dirent = 268;
1475 arm_linux_record_tdep.size_dirent64 = 276;
1476 arm_linux_record_tdep.size_statfs = 64;
1477 arm_linux_record_tdep.size_statfs64 = 84;
1478 arm_linux_record_tdep.size_sockaddr = 16;
1479 arm_linux_record_tdep.size_int
1480 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1481 arm_linux_record_tdep.size_long
1482 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1483 arm_linux_record_tdep.size_ulong
1484 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1485 arm_linux_record_tdep.size_msghdr = 28;
1486 arm_linux_record_tdep.size_itimerval = 16;
1487 arm_linux_record_tdep.size_stat = 88;
1488 arm_linux_record_tdep.size_old_utsname = 325;
1489 arm_linux_record_tdep.size_sysinfo = 64;
1490 arm_linux_record_tdep.size_msqid_ds = 88;
1491 arm_linux_record_tdep.size_shmid_ds = 84;
1492 arm_linux_record_tdep.size_new_utsname = 390;
1493 arm_linux_record_tdep.size_timex = 128;
1494 arm_linux_record_tdep.size_mem_dqinfo = 24;
1495 arm_linux_record_tdep.size_if_dqblk = 68;
1496 arm_linux_record_tdep.size_fs_quota_stat = 68;
1497 arm_linux_record_tdep.size_timespec = 8;
1498 arm_linux_record_tdep.size_pollfd = 8;
1499 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1500 arm_linux_record_tdep.size_knfsd_fh = 132;
1501 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1502 arm_linux_record_tdep.size_sigaction = 140;
1503 arm_linux_record_tdep.size_sigset_t = 8;
1504 arm_linux_record_tdep.size_siginfo_t = 128;
1505 arm_linux_record_tdep.size_cap_user_data_t = 12;
1506 arm_linux_record_tdep.size_stack_t = 12;
1507 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1508 arm_linux_record_tdep.size_stat64 = 96;
1509 arm_linux_record_tdep.size_gid_t = 2;
1510 arm_linux_record_tdep.size_uid_t = 2;
1511 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1512 arm_linux_record_tdep.size_flock64 = 24;
1513 arm_linux_record_tdep.size_user_desc = 16;
1514 arm_linux_record_tdep.size_io_event = 32;
1515 arm_linux_record_tdep.size_iocb = 64;
1516 arm_linux_record_tdep.size_epoll_event = 12;
1517 arm_linux_record_tdep.size_itimerspec
1518 = arm_linux_record_tdep.size_timespec * 2;
1519 arm_linux_record_tdep.size_mq_attr = 32;
1520 arm_linux_record_tdep.size_siginfo = 128;
1521 arm_linux_record_tdep.size_termios = 36;
1522 arm_linux_record_tdep.size_termios2 = 44;
1523 arm_linux_record_tdep.size_pid_t = 4;
1524 arm_linux_record_tdep.size_winsize = 8;
1525 arm_linux_record_tdep.size_serial_struct = 60;
1526 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1527 arm_linux_record_tdep.size_hayes_esp_config = 12;
1528 arm_linux_record_tdep.size_size_t = 4;
1529 arm_linux_record_tdep.size_iovec = 8;
1530
1531 /* These values are the second argument of system call "sys_ioctl".
1532 They are obtained from Linux Kernel source. */
1533 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1534 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1535 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1536 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1537 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1538 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1539 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1540 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1541 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1542 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1543 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1544 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1545 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1546 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1547 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1548 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1549 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1550 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1551 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1552 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1553 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1554 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1555 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1556 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1557 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1558 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1559 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1560 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1561 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1562 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1563 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1564 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1565 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1566 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1567 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1568 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1569 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1570 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1571 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1572 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1573 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1574 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1575 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1576 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1577 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1578 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1579 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1580 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1581 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1582 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1583 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1584 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1585 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1586 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1587 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1588 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1589 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1590 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1591 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1592 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1593 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1594 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1595 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1596 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1597 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1598
1599 /* These values are the second argument of system call "sys_fcntl"
1600 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1601 arm_linux_record_tdep.fcntl_F_GETLK = 5;
1602 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1603 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1604 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1605
1606 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM + 1;
1607 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 2;
1608 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 3;
1609 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
1610 }
1611
1612 /* Provide a prototype to silence -Wmissing-prototypes. */
1613 extern initialize_file_ftype _initialize_arm_linux_tdep;
1614
1615 void
1616 _initialize_arm_linux_tdep (void)
1617 {
1618 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1619 arm_linux_init_abi);
1620 }
This page took 0.061389 seconds and 5 git commands to generate.