Convert lvalue reference type check to general reference type check
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <ctype.h> /* XXX for isupper (). */
23
24 #include "frame.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "dis-asm.h" /* For register styles. */
30 #include "disasm.h"
31 #include "regcache.h"
32 #include "reggroups.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "trad-frame.h"
40 #include "objfiles.h"
41 #include "dwarf2-frame.h"
42 #include "gdbtypes.h"
43 #include "prologue-value.h"
44 #include "remote.h"
45 #include "target-descriptions.h"
46 #include "user-regs.h"
47 #include "observer.h"
48
49 #include "arch/arm.h"
50 #include "arch/arm-get-next-pcs.h"
51 #include "arm-tdep.h"
52 #include "gdb/sim-arm.h"
53
54 #include "elf-bfd.h"
55 #include "coff/internal.h"
56 #include "elf/arm.h"
57
58 #include "vec.h"
59
60 #include "record.h"
61 #include "record-full.h"
62 #include <algorithm>
63
64 #include "features/arm/arm-with-m.c"
65 #include "features/arm/arm-with-m-fpa-layout.c"
66 #include "features/arm/arm-with-m-vfp-d16.c"
67 #include "features/arm/arm-with-iwmmxt.c"
68 #include "features/arm/arm-with-vfpv2.c"
69 #include "features/arm/arm-with-vfpv3.c"
70 #include "features/arm/arm-with-neon.c"
71
72 #if GDB_SELF_TEST
73 #include "selftest.h"
74 #endif
75
76 static int arm_debug;
77
78 /* Macros for setting and testing a bit in a minimal symbol that marks
79 it as Thumb function. The MSB of the minimal symbol's "info" field
80 is used for this purpose.
81
82 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
83 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
84
85 #define MSYMBOL_SET_SPECIAL(msym) \
86 MSYMBOL_TARGET_FLAG_1 (msym) = 1
87
88 #define MSYMBOL_IS_SPECIAL(msym) \
89 MSYMBOL_TARGET_FLAG_1 (msym)
90
91 /* Per-objfile data used for mapping symbols. */
92 static const struct objfile_data *arm_objfile_data_key;
93
94 struct arm_mapping_symbol
95 {
96 bfd_vma value;
97 char type;
98 };
99 typedef struct arm_mapping_symbol arm_mapping_symbol_s;
100 DEF_VEC_O(arm_mapping_symbol_s);
101
102 struct arm_per_objfile
103 {
104 VEC(arm_mapping_symbol_s) **section_maps;
105 };
106
107 /* The list of available "set arm ..." and "show arm ..." commands. */
108 static struct cmd_list_element *setarmcmdlist = NULL;
109 static struct cmd_list_element *showarmcmdlist = NULL;
110
111 /* The type of floating-point to use. Keep this in sync with enum
112 arm_float_model, and the help string in _initialize_arm_tdep. */
113 static const char *const fp_model_strings[] =
114 {
115 "auto",
116 "softfpa",
117 "fpa",
118 "softvfp",
119 "vfp",
120 NULL
121 };
122
123 /* A variable that can be configured by the user. */
124 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
125 static const char *current_fp_model = "auto";
126
127 /* The ABI to use. Keep this in sync with arm_abi_kind. */
128 static const char *const arm_abi_strings[] =
129 {
130 "auto",
131 "APCS",
132 "AAPCS",
133 NULL
134 };
135
136 /* A variable that can be configured by the user. */
137 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
138 static const char *arm_abi_string = "auto";
139
140 /* The execution mode to assume. */
141 static const char *const arm_mode_strings[] =
142 {
143 "auto",
144 "arm",
145 "thumb",
146 NULL
147 };
148
149 static const char *arm_fallback_mode_string = "auto";
150 static const char *arm_force_mode_string = "auto";
151
152 /* The standard register names, and all the valid aliases for them. Note
153 that `fp', `sp' and `pc' are not added in this alias list, because they
154 have been added as builtin user registers in
155 std-regs.c:_initialize_frame_reg. */
156 static const struct
157 {
158 const char *name;
159 int regnum;
160 } arm_register_aliases[] = {
161 /* Basic register numbers. */
162 { "r0", 0 },
163 { "r1", 1 },
164 { "r2", 2 },
165 { "r3", 3 },
166 { "r4", 4 },
167 { "r5", 5 },
168 { "r6", 6 },
169 { "r7", 7 },
170 { "r8", 8 },
171 { "r9", 9 },
172 { "r10", 10 },
173 { "r11", 11 },
174 { "r12", 12 },
175 { "r13", 13 },
176 { "r14", 14 },
177 { "r15", 15 },
178 /* Synonyms (argument and variable registers). */
179 { "a1", 0 },
180 { "a2", 1 },
181 { "a3", 2 },
182 { "a4", 3 },
183 { "v1", 4 },
184 { "v2", 5 },
185 { "v3", 6 },
186 { "v4", 7 },
187 { "v5", 8 },
188 { "v6", 9 },
189 { "v7", 10 },
190 { "v8", 11 },
191 /* Other platform-specific names for r9. */
192 { "sb", 9 },
193 { "tr", 9 },
194 /* Special names. */
195 { "ip", 12 },
196 { "lr", 14 },
197 /* Names used by GCC (not listed in the ARM EABI). */
198 { "sl", 10 },
199 /* A special name from the older ATPCS. */
200 { "wr", 7 },
201 };
202
203 static const char *const arm_register_names[] =
204 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
205 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
206 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
207 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
208 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
209 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
210 "fps", "cpsr" }; /* 24 25 */
211
212 /* Holds the current set of options to be passed to the disassembler. */
213 static char *arm_disassembler_options;
214
215 /* Valid register name styles. */
216 static const char **valid_disassembly_styles;
217
218 /* Disassembly style to use. Default to "std" register names. */
219 static const char *disassembly_style;
220
221 /* This is used to keep the bfd arch_info in sync with the disassembly
222 style. */
223 static void set_disassembly_style_sfunc(char *, int,
224 struct cmd_list_element *);
225 static void show_disassembly_style_sfunc (struct ui_file *, int,
226 struct cmd_list_element *,
227 const char *);
228
229 static void convert_from_extended (const struct floatformat *, const void *,
230 void *, int);
231 static void convert_to_extended (const struct floatformat *, void *,
232 const void *, int);
233
234 static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
235 struct regcache *regcache,
236 int regnum, gdb_byte *buf);
237 static void arm_neon_quad_write (struct gdbarch *gdbarch,
238 struct regcache *regcache,
239 int regnum, const gdb_byte *buf);
240
241 static CORE_ADDR
242 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
243
244
245 /* get_next_pcs operations. */
246 static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
247 arm_get_next_pcs_read_memory_unsigned_integer,
248 arm_get_next_pcs_syscall_next_pc,
249 arm_get_next_pcs_addr_bits_remove,
250 arm_get_next_pcs_is_thumb,
251 NULL,
252 };
253
254 struct arm_prologue_cache
255 {
256 /* The stack pointer at the time this frame was created; i.e. the
257 caller's stack pointer when this function was called. It is used
258 to identify this frame. */
259 CORE_ADDR prev_sp;
260
261 /* The frame base for this frame is just prev_sp - frame size.
262 FRAMESIZE is the distance from the frame pointer to the
263 initial stack pointer. */
264
265 int framesize;
266
267 /* The register used to hold the frame pointer for this frame. */
268 int framereg;
269
270 /* Saved register offsets. */
271 struct trad_frame_saved_reg *saved_regs;
272 };
273
274 static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
275 CORE_ADDR prologue_start,
276 CORE_ADDR prologue_end,
277 struct arm_prologue_cache *cache);
278
279 /* Architecture version for displaced stepping. This effects the behaviour of
280 certain instructions, and really should not be hard-wired. */
281
282 #define DISPLACED_STEPPING_ARCH_VERSION 5
283
284 /* Set to true if the 32-bit mode is in use. */
285
286 int arm_apcs_32 = 1;
287
288 /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
289
290 int
291 arm_psr_thumb_bit (struct gdbarch *gdbarch)
292 {
293 if (gdbarch_tdep (gdbarch)->is_m)
294 return XPSR_T;
295 else
296 return CPSR_T;
297 }
298
299 /* Determine if the processor is currently executing in Thumb mode. */
300
301 int
302 arm_is_thumb (struct regcache *regcache)
303 {
304 ULONGEST cpsr;
305 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regcache));
306
307 cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
308
309 return (cpsr & t_bit) != 0;
310 }
311
312 /* Determine if FRAME is executing in Thumb mode. */
313
314 int
315 arm_frame_is_thumb (struct frame_info *frame)
316 {
317 CORE_ADDR cpsr;
318 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
319
320 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
321 directly (from a signal frame or dummy frame) or by interpreting
322 the saved LR (from a prologue or DWARF frame). So consult it and
323 trust the unwinders. */
324 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
325
326 return (cpsr & t_bit) != 0;
327 }
328
329 /* Callback for VEC_lower_bound. */
330
331 static inline int
332 arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
333 const struct arm_mapping_symbol *rhs)
334 {
335 return lhs->value < rhs->value;
336 }
337
338 /* Search for the mapping symbol covering MEMADDR. If one is found,
339 return its type. Otherwise, return 0. If START is non-NULL,
340 set *START to the location of the mapping symbol. */
341
342 static char
343 arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
344 {
345 struct obj_section *sec;
346
347 /* If there are mapping symbols, consult them. */
348 sec = find_pc_section (memaddr);
349 if (sec != NULL)
350 {
351 struct arm_per_objfile *data;
352 VEC(arm_mapping_symbol_s) *map;
353 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
354 0 };
355 unsigned int idx;
356
357 data = (struct arm_per_objfile *) objfile_data (sec->objfile,
358 arm_objfile_data_key);
359 if (data != NULL)
360 {
361 map = data->section_maps[sec->the_bfd_section->index];
362 if (!VEC_empty (arm_mapping_symbol_s, map))
363 {
364 struct arm_mapping_symbol *map_sym;
365
366 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
367 arm_compare_mapping_symbols);
368
369 /* VEC_lower_bound finds the earliest ordered insertion
370 point. If the following symbol starts at this exact
371 address, we use that; otherwise, the preceding
372 mapping symbol covers this address. */
373 if (idx < VEC_length (arm_mapping_symbol_s, map))
374 {
375 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
376 if (map_sym->value == map_key.value)
377 {
378 if (start)
379 *start = map_sym->value + obj_section_addr (sec);
380 return map_sym->type;
381 }
382 }
383
384 if (idx > 0)
385 {
386 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
387 if (start)
388 *start = map_sym->value + obj_section_addr (sec);
389 return map_sym->type;
390 }
391 }
392 }
393 }
394
395 return 0;
396 }
397
398 /* Determine if the program counter specified in MEMADDR is in a Thumb
399 function. This function should be called for addresses unrelated to
400 any executing frame; otherwise, prefer arm_frame_is_thumb. */
401
402 int
403 arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
404 {
405 struct bound_minimal_symbol sym;
406 char type;
407 struct displaced_step_closure* dsc
408 = get_displaced_step_closure_by_addr(memaddr);
409
410 /* If checking the mode of displaced instruction in copy area, the mode
411 should be determined by instruction on the original address. */
412 if (dsc)
413 {
414 if (debug_displaced)
415 fprintf_unfiltered (gdb_stdlog,
416 "displaced: check mode of %.8lx instead of %.8lx\n",
417 (unsigned long) dsc->insn_addr,
418 (unsigned long) memaddr);
419 memaddr = dsc->insn_addr;
420 }
421
422 /* If bit 0 of the address is set, assume this is a Thumb address. */
423 if (IS_THUMB_ADDR (memaddr))
424 return 1;
425
426 /* If the user wants to override the symbol table, let him. */
427 if (strcmp (arm_force_mode_string, "arm") == 0)
428 return 0;
429 if (strcmp (arm_force_mode_string, "thumb") == 0)
430 return 1;
431
432 /* ARM v6-M and v7-M are always in Thumb mode. */
433 if (gdbarch_tdep (gdbarch)->is_m)
434 return 1;
435
436 /* If there are mapping symbols, consult them. */
437 type = arm_find_mapping_symbol (memaddr, NULL);
438 if (type)
439 return type == 't';
440
441 /* Thumb functions have a "special" bit set in minimal symbols. */
442 sym = lookup_minimal_symbol_by_pc (memaddr);
443 if (sym.minsym)
444 return (MSYMBOL_IS_SPECIAL (sym.minsym));
445
446 /* If the user wants to override the fallback mode, let them. */
447 if (strcmp (arm_fallback_mode_string, "arm") == 0)
448 return 0;
449 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
450 return 1;
451
452 /* If we couldn't find any symbol, but we're talking to a running
453 target, then trust the current value of $cpsr. This lets
454 "display/i $pc" always show the correct mode (though if there is
455 a symbol table we will not reach here, so it still may not be
456 displayed in the mode it will be executed). */
457 if (target_has_registers)
458 return arm_frame_is_thumb (get_current_frame ());
459
460 /* Otherwise we're out of luck; we assume ARM. */
461 return 0;
462 }
463
464 /* Determine if the address specified equals any of these magic return
465 values, called EXC_RETURN, defined by the ARM v6-M and v7-M
466 architectures.
467
468 From ARMv6-M Reference Manual B1.5.8
469 Table B1-5 Exception return behavior
470
471 EXC_RETURN Return To Return Stack
472 0xFFFFFFF1 Handler mode Main
473 0xFFFFFFF9 Thread mode Main
474 0xFFFFFFFD Thread mode Process
475
476 From ARMv7-M Reference Manual B1.5.8
477 Table B1-8 EXC_RETURN definition of exception return behavior, no FP
478
479 EXC_RETURN Return To Return Stack
480 0xFFFFFFF1 Handler mode Main
481 0xFFFFFFF9 Thread mode Main
482 0xFFFFFFFD Thread mode Process
483
484 Table B1-9 EXC_RETURN definition of exception return behavior, with
485 FP
486
487 EXC_RETURN Return To Return Stack Frame Type
488 0xFFFFFFE1 Handler mode Main Extended
489 0xFFFFFFE9 Thread mode Main Extended
490 0xFFFFFFED Thread mode Process Extended
491 0xFFFFFFF1 Handler mode Main Basic
492 0xFFFFFFF9 Thread mode Main Basic
493 0xFFFFFFFD Thread mode Process Basic
494
495 For more details see "B1.5.8 Exception return behavior"
496 in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */
497
498 static int
499 arm_m_addr_is_magic (CORE_ADDR addr)
500 {
501 switch (addr)
502 {
503 /* Values from Tables in B1.5.8 the EXC_RETURN definitions of
504 the exception return behavior. */
505 case 0xffffffe1:
506 case 0xffffffe9:
507 case 0xffffffed:
508 case 0xfffffff1:
509 case 0xfffffff9:
510 case 0xfffffffd:
511 /* Address is magic. */
512 return 1;
513
514 default:
515 /* Address is not magic. */
516 return 0;
517 }
518 }
519
520 /* Remove useless bits from addresses in a running program. */
521 static CORE_ADDR
522 arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
523 {
524 /* On M-profile devices, do not strip the low bit from EXC_RETURN
525 (the magic exception return address). */
526 if (gdbarch_tdep (gdbarch)->is_m
527 && arm_m_addr_is_magic (val))
528 return val;
529
530 if (arm_apcs_32)
531 return UNMAKE_THUMB_ADDR (val);
532 else
533 return (val & 0x03fffffc);
534 }
535
536 /* Return 1 if PC is the start of a compiler helper function which
537 can be safely ignored during prologue skipping. IS_THUMB is true
538 if the function is known to be a Thumb function due to the way it
539 is being called. */
540 static int
541 skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
542 {
543 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
544 struct bound_minimal_symbol msym;
545
546 msym = lookup_minimal_symbol_by_pc (pc);
547 if (msym.minsym != NULL
548 && BMSYMBOL_VALUE_ADDRESS (msym) == pc
549 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL)
550 {
551 const char *name = MSYMBOL_LINKAGE_NAME (msym.minsym);
552
553 /* The GNU linker's Thumb call stub to foo is named
554 __foo_from_thumb. */
555 if (strstr (name, "_from_thumb") != NULL)
556 name += 2;
557
558 /* On soft-float targets, __truncdfsf2 is called to convert promoted
559 arguments to their argument types in non-prototyped
560 functions. */
561 if (startswith (name, "__truncdfsf2"))
562 return 1;
563 if (startswith (name, "__aeabi_d2f"))
564 return 1;
565
566 /* Internal functions related to thread-local storage. */
567 if (startswith (name, "__tls_get_addr"))
568 return 1;
569 if (startswith (name, "__aeabi_read_tp"))
570 return 1;
571 }
572 else
573 {
574 /* If we run against a stripped glibc, we may be unable to identify
575 special functions by name. Check for one important case,
576 __aeabi_read_tp, by comparing the *code* against the default
577 implementation (this is hand-written ARM assembler in glibc). */
578
579 if (!is_thumb
580 && read_code_unsigned_integer (pc, 4, byte_order_for_code)
581 == 0xe3e00a0f /* mov r0, #0xffff0fff */
582 && read_code_unsigned_integer (pc + 4, 4, byte_order_for_code)
583 == 0xe240f01f) /* sub pc, r0, #31 */
584 return 1;
585 }
586
587 return 0;
588 }
589
590 /* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
591 the first 16-bit of instruction, and INSN2 is the second 16-bit of
592 instruction. */
593 #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
594 ((bits ((insn1), 0, 3) << 12) \
595 | (bits ((insn1), 10, 10) << 11) \
596 | (bits ((insn2), 12, 14) << 8) \
597 | bits ((insn2), 0, 7))
598
599 /* Extract the immediate from instruction movw/movt of encoding A. INSN is
600 the 32-bit instruction. */
601 #define EXTRACT_MOVW_MOVT_IMM_A(insn) \
602 ((bits ((insn), 16, 19) << 12) \
603 | bits ((insn), 0, 11))
604
605 /* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
606
607 static unsigned int
608 thumb_expand_immediate (unsigned int imm)
609 {
610 unsigned int count = imm >> 7;
611
612 if (count < 8)
613 switch (count / 2)
614 {
615 case 0:
616 return imm & 0xff;
617 case 1:
618 return (imm & 0xff) | ((imm & 0xff) << 16);
619 case 2:
620 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
621 case 3:
622 return (imm & 0xff) | ((imm & 0xff) << 8)
623 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
624 }
625
626 return (0x80 | (imm & 0x7f)) << (32 - count);
627 }
628
629 /* Return 1 if the 16-bit Thumb instruction INSN restores SP in
630 epilogue, 0 otherwise. */
631
632 static int
633 thumb_instruction_restores_sp (unsigned short insn)
634 {
635 return (insn == 0x46bd /* mov sp, r7 */
636 || (insn & 0xff80) == 0xb000 /* add sp, imm */
637 || (insn & 0xfe00) == 0xbc00); /* pop <registers> */
638 }
639
640 /* Analyze a Thumb prologue, looking for a recognizable stack frame
641 and frame pointer. Scan until we encounter a store that could
642 clobber the stack frame unexpectedly, or an unknown instruction.
643 Return the last address which is definitely safe to skip for an
644 initial breakpoint. */
645
646 static CORE_ADDR
647 thumb_analyze_prologue (struct gdbarch *gdbarch,
648 CORE_ADDR start, CORE_ADDR limit,
649 struct arm_prologue_cache *cache)
650 {
651 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
652 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
653 int i;
654 pv_t regs[16];
655 struct pv_area *stack;
656 struct cleanup *back_to;
657 CORE_ADDR offset;
658 CORE_ADDR unrecognized_pc = 0;
659
660 for (i = 0; i < 16; i++)
661 regs[i] = pv_register (i, 0);
662 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
663 back_to = make_cleanup_free_pv_area (stack);
664
665 while (start < limit)
666 {
667 unsigned short insn;
668
669 insn = read_code_unsigned_integer (start, 2, byte_order_for_code);
670
671 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
672 {
673 int regno;
674 int mask;
675
676 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
677 break;
678
679 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
680 whether to save LR (R14). */
681 mask = (insn & 0xff) | ((insn & 0x100) << 6);
682
683 /* Calculate offsets of saved R0-R7 and LR. */
684 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
685 if (mask & (1 << regno))
686 {
687 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
688 -4);
689 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
690 }
691 }
692 else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */
693 {
694 offset = (insn & 0x7f) << 2; /* get scaled offset */
695 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
696 -offset);
697 }
698 else if (thumb_instruction_restores_sp (insn))
699 {
700 /* Don't scan past the epilogue. */
701 break;
702 }
703 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
704 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
705 (insn & 0xff) << 2);
706 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
707 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
708 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
709 bits (insn, 6, 8));
710 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
711 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
712 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
713 bits (insn, 0, 7));
714 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
715 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
716 && pv_is_constant (regs[bits (insn, 3, 5)]))
717 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
718 regs[bits (insn, 6, 8)]);
719 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
720 && pv_is_constant (regs[bits (insn, 3, 6)]))
721 {
722 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
723 int rm = bits (insn, 3, 6);
724 regs[rd] = pv_add (regs[rd], regs[rm]);
725 }
726 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
727 {
728 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
729 int src_reg = (insn & 0x78) >> 3;
730 regs[dst_reg] = regs[src_reg];
731 }
732 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
733 {
734 /* Handle stores to the stack. Normally pushes are used,
735 but with GCC -mtpcs-frame, there may be other stores
736 in the prologue to create the frame. */
737 int regno = (insn >> 8) & 0x7;
738 pv_t addr;
739
740 offset = (insn & 0xff) << 2;
741 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
742
743 if (pv_area_store_would_trash (stack, addr))
744 break;
745
746 pv_area_store (stack, addr, 4, regs[regno]);
747 }
748 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
749 {
750 int rd = bits (insn, 0, 2);
751 int rn = bits (insn, 3, 5);
752 pv_t addr;
753
754 offset = bits (insn, 6, 10) << 2;
755 addr = pv_add_constant (regs[rn], offset);
756
757 if (pv_area_store_would_trash (stack, addr))
758 break;
759
760 pv_area_store (stack, addr, 4, regs[rd]);
761 }
762 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
763 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
764 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
765 /* Ignore stores of argument registers to the stack. */
766 ;
767 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
768 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
769 /* Ignore block loads from the stack, potentially copying
770 parameters from memory. */
771 ;
772 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
773 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
774 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
775 /* Similarly ignore single loads from the stack. */
776 ;
777 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
778 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
779 /* Skip register copies, i.e. saves to another register
780 instead of the stack. */
781 ;
782 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
783 /* Recognize constant loads; even with small stacks these are necessary
784 on Thumb. */
785 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
786 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
787 {
788 /* Constant pool loads, for the same reason. */
789 unsigned int constant;
790 CORE_ADDR loc;
791
792 loc = start + 4 + bits (insn, 0, 7) * 4;
793 constant = read_memory_unsigned_integer (loc, 4, byte_order);
794 regs[bits (insn, 8, 10)] = pv_constant (constant);
795 }
796 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
797 {
798 unsigned short inst2;
799
800 inst2 = read_code_unsigned_integer (start + 2, 2,
801 byte_order_for_code);
802
803 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
804 {
805 /* BL, BLX. Allow some special function calls when
806 skipping the prologue; GCC generates these before
807 storing arguments to the stack. */
808 CORE_ADDR nextpc;
809 int j1, j2, imm1, imm2;
810
811 imm1 = sbits (insn, 0, 10);
812 imm2 = bits (inst2, 0, 10);
813 j1 = bit (inst2, 13);
814 j2 = bit (inst2, 11);
815
816 offset = ((imm1 << 12) + (imm2 << 1));
817 offset ^= ((!j2) << 22) | ((!j1) << 23);
818
819 nextpc = start + 4 + offset;
820 /* For BLX make sure to clear the low bits. */
821 if (bit (inst2, 12) == 0)
822 nextpc = nextpc & 0xfffffffc;
823
824 if (!skip_prologue_function (gdbarch, nextpc,
825 bit (inst2, 12) != 0))
826 break;
827 }
828
829 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
830 { registers } */
831 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
832 {
833 pv_t addr = regs[bits (insn, 0, 3)];
834 int regno;
835
836 if (pv_area_store_would_trash (stack, addr))
837 break;
838
839 /* Calculate offsets of saved registers. */
840 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
841 if (inst2 & (1 << regno))
842 {
843 addr = pv_add_constant (addr, -4);
844 pv_area_store (stack, addr, 4, regs[regno]);
845 }
846
847 if (insn & 0x0020)
848 regs[bits (insn, 0, 3)] = addr;
849 }
850
851 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
852 [Rn, #+/-imm]{!} */
853 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
854 {
855 int regno1 = bits (inst2, 12, 15);
856 int regno2 = bits (inst2, 8, 11);
857 pv_t addr = regs[bits (insn, 0, 3)];
858
859 offset = inst2 & 0xff;
860 if (insn & 0x0080)
861 addr = pv_add_constant (addr, offset);
862 else
863 addr = pv_add_constant (addr, -offset);
864
865 if (pv_area_store_would_trash (stack, addr))
866 break;
867
868 pv_area_store (stack, addr, 4, regs[regno1]);
869 pv_area_store (stack, pv_add_constant (addr, 4),
870 4, regs[regno2]);
871
872 if (insn & 0x0020)
873 regs[bits (insn, 0, 3)] = addr;
874 }
875
876 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
877 && (inst2 & 0x0c00) == 0x0c00
878 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
879 {
880 int regno = bits (inst2, 12, 15);
881 pv_t addr = regs[bits (insn, 0, 3)];
882
883 offset = inst2 & 0xff;
884 if (inst2 & 0x0200)
885 addr = pv_add_constant (addr, offset);
886 else
887 addr = pv_add_constant (addr, -offset);
888
889 if (pv_area_store_would_trash (stack, addr))
890 break;
891
892 pv_area_store (stack, addr, 4, regs[regno]);
893
894 if (inst2 & 0x0100)
895 regs[bits (insn, 0, 3)] = addr;
896 }
897
898 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
899 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
900 {
901 int regno = bits (inst2, 12, 15);
902 pv_t addr;
903
904 offset = inst2 & 0xfff;
905 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
906
907 if (pv_area_store_would_trash (stack, addr))
908 break;
909
910 pv_area_store (stack, addr, 4, regs[regno]);
911 }
912
913 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
914 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
915 /* Ignore stores of argument registers to the stack. */
916 ;
917
918 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
919 && (inst2 & 0x0d00) == 0x0c00
920 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
921 /* Ignore stores of argument registers to the stack. */
922 ;
923
924 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
925 { registers } */
926 && (inst2 & 0x8000) == 0x0000
927 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
928 /* Ignore block loads from the stack, potentially copying
929 parameters from memory. */
930 ;
931
932 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
933 [Rn, #+/-imm] */
934 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
935 /* Similarly ignore dual loads from the stack. */
936 ;
937
938 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
939 && (inst2 & 0x0d00) == 0x0c00
940 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
941 /* Similarly ignore single loads from the stack. */
942 ;
943
944 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
945 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
946 /* Similarly ignore single loads from the stack. */
947 ;
948
949 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
950 && (inst2 & 0x8000) == 0x0000)
951 {
952 unsigned int imm = ((bits (insn, 10, 10) << 11)
953 | (bits (inst2, 12, 14) << 8)
954 | bits (inst2, 0, 7));
955
956 regs[bits (inst2, 8, 11)]
957 = pv_add_constant (regs[bits (insn, 0, 3)],
958 thumb_expand_immediate (imm));
959 }
960
961 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
962 && (inst2 & 0x8000) == 0x0000)
963 {
964 unsigned int imm = ((bits (insn, 10, 10) << 11)
965 | (bits (inst2, 12, 14) << 8)
966 | bits (inst2, 0, 7));
967
968 regs[bits (inst2, 8, 11)]
969 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
970 }
971
972 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
973 && (inst2 & 0x8000) == 0x0000)
974 {
975 unsigned int imm = ((bits (insn, 10, 10) << 11)
976 | (bits (inst2, 12, 14) << 8)
977 | bits (inst2, 0, 7));
978
979 regs[bits (inst2, 8, 11)]
980 = pv_add_constant (regs[bits (insn, 0, 3)],
981 - (CORE_ADDR) thumb_expand_immediate (imm));
982 }
983
984 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
985 && (inst2 & 0x8000) == 0x0000)
986 {
987 unsigned int imm = ((bits (insn, 10, 10) << 11)
988 | (bits (inst2, 12, 14) << 8)
989 | bits (inst2, 0, 7));
990
991 regs[bits (inst2, 8, 11)]
992 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
993 }
994
995 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
996 {
997 unsigned int imm = ((bits (insn, 10, 10) << 11)
998 | (bits (inst2, 12, 14) << 8)
999 | bits (inst2, 0, 7));
1000
1001 regs[bits (inst2, 8, 11)]
1002 = pv_constant (thumb_expand_immediate (imm));
1003 }
1004
1005 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1006 {
1007 unsigned int imm
1008 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
1009
1010 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1011 }
1012
1013 else if (insn == 0xea5f /* mov.w Rd,Rm */
1014 && (inst2 & 0xf0f0) == 0)
1015 {
1016 int dst_reg = (inst2 & 0x0f00) >> 8;
1017 int src_reg = inst2 & 0xf;
1018 regs[dst_reg] = regs[src_reg];
1019 }
1020
1021 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1022 {
1023 /* Constant pool loads. */
1024 unsigned int constant;
1025 CORE_ADDR loc;
1026
1027 offset = bits (inst2, 0, 11);
1028 if (insn & 0x0080)
1029 loc = start + 4 + offset;
1030 else
1031 loc = start + 4 - offset;
1032
1033 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1034 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1035 }
1036
1037 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1038 {
1039 /* Constant pool loads. */
1040 unsigned int constant;
1041 CORE_ADDR loc;
1042
1043 offset = bits (inst2, 0, 7) << 2;
1044 if (insn & 0x0080)
1045 loc = start + 4 + offset;
1046 else
1047 loc = start + 4 - offset;
1048
1049 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1050 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1051
1052 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1053 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1054 }
1055
1056 else if (thumb2_instruction_changes_pc (insn, inst2))
1057 {
1058 /* Don't scan past anything that might change control flow. */
1059 break;
1060 }
1061 else
1062 {
1063 /* The optimizer might shove anything into the prologue,
1064 so we just skip what we don't recognize. */
1065 unrecognized_pc = start;
1066 }
1067
1068 start += 2;
1069 }
1070 else if (thumb_instruction_changes_pc (insn))
1071 {
1072 /* Don't scan past anything that might change control flow. */
1073 break;
1074 }
1075 else
1076 {
1077 /* The optimizer might shove anything into the prologue,
1078 so we just skip what we don't recognize. */
1079 unrecognized_pc = start;
1080 }
1081
1082 start += 2;
1083 }
1084
1085 if (arm_debug)
1086 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1087 paddress (gdbarch, start));
1088
1089 if (unrecognized_pc == 0)
1090 unrecognized_pc = start;
1091
1092 if (cache == NULL)
1093 {
1094 do_cleanups (back_to);
1095 return unrecognized_pc;
1096 }
1097
1098 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1099 {
1100 /* Frame pointer is fp. Frame size is constant. */
1101 cache->framereg = ARM_FP_REGNUM;
1102 cache->framesize = -regs[ARM_FP_REGNUM].k;
1103 }
1104 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1105 {
1106 /* Frame pointer is r7. Frame size is constant. */
1107 cache->framereg = THUMB_FP_REGNUM;
1108 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1109 }
1110 else
1111 {
1112 /* Try the stack pointer... this is a bit desperate. */
1113 cache->framereg = ARM_SP_REGNUM;
1114 cache->framesize = -regs[ARM_SP_REGNUM].k;
1115 }
1116
1117 for (i = 0; i < 16; i++)
1118 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1119 cache->saved_regs[i].addr = offset;
1120
1121 do_cleanups (back_to);
1122 return unrecognized_pc;
1123 }
1124
1125
1126 /* Try to analyze the instructions starting from PC, which load symbol
1127 __stack_chk_guard. Return the address of instruction after loading this
1128 symbol, set the dest register number to *BASEREG, and set the size of
1129 instructions for loading symbol in OFFSET. Return 0 if instructions are
1130 not recognized. */
1131
1132 static CORE_ADDR
1133 arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1134 unsigned int *destreg, int *offset)
1135 {
1136 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1137 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1138 unsigned int low, high, address;
1139
1140 address = 0;
1141 if (is_thumb)
1142 {
1143 unsigned short insn1
1144 = read_code_unsigned_integer (pc, 2, byte_order_for_code);
1145
1146 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1147 {
1148 *destreg = bits (insn1, 8, 10);
1149 *offset = 2;
1150 address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2);
1151 address = read_memory_unsigned_integer (address, 4,
1152 byte_order_for_code);
1153 }
1154 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1155 {
1156 unsigned short insn2
1157 = read_code_unsigned_integer (pc + 2, 2, byte_order_for_code);
1158
1159 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1160
1161 insn1
1162 = read_code_unsigned_integer (pc + 4, 2, byte_order_for_code);
1163 insn2
1164 = read_code_unsigned_integer (pc + 6, 2, byte_order_for_code);
1165
1166 /* movt Rd, #const */
1167 if ((insn1 & 0xfbc0) == 0xf2c0)
1168 {
1169 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1170 *destreg = bits (insn2, 8, 11);
1171 *offset = 8;
1172 address = (high << 16 | low);
1173 }
1174 }
1175 }
1176 else
1177 {
1178 unsigned int insn
1179 = read_code_unsigned_integer (pc, 4, byte_order_for_code);
1180
1181 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */
1182 {
1183 address = bits (insn, 0, 11) + pc + 8;
1184 address = read_memory_unsigned_integer (address, 4,
1185 byte_order_for_code);
1186
1187 *destreg = bits (insn, 12, 15);
1188 *offset = 4;
1189 }
1190 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1191 {
1192 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1193
1194 insn
1195 = read_code_unsigned_integer (pc + 4, 4, byte_order_for_code);
1196
1197 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1198 {
1199 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1200 *destreg = bits (insn, 12, 15);
1201 *offset = 8;
1202 address = (high << 16 | low);
1203 }
1204 }
1205 }
1206
1207 return address;
1208 }
1209
1210 /* Try to skip a sequence of instructions used for stack protector. If PC
1211 points to the first instruction of this sequence, return the address of
1212 first instruction after this sequence, otherwise, return original PC.
1213
1214 On arm, this sequence of instructions is composed of mainly three steps,
1215 Step 1: load symbol __stack_chk_guard,
1216 Step 2: load from address of __stack_chk_guard,
1217 Step 3: store it to somewhere else.
1218
1219 Usually, instructions on step 2 and step 3 are the same on various ARM
1220 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1221 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1222 instructions in step 1 vary from different ARM architectures. On ARMv7,
1223 they are,
1224
1225 movw Rn, #:lower16:__stack_chk_guard
1226 movt Rn, #:upper16:__stack_chk_guard
1227
1228 On ARMv5t, it is,
1229
1230 ldr Rn, .Label
1231 ....
1232 .Lable:
1233 .word __stack_chk_guard
1234
1235 Since ldr/str is a very popular instruction, we can't use them as
1236 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1237 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1238 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1239
1240 static CORE_ADDR
1241 arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1242 {
1243 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1244 unsigned int basereg;
1245 struct bound_minimal_symbol stack_chk_guard;
1246 int offset;
1247 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1248 CORE_ADDR addr;
1249
1250 /* Try to parse the instructions in Step 1. */
1251 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1252 &basereg, &offset);
1253 if (!addr)
1254 return pc;
1255
1256 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
1257 /* ADDR must correspond to a symbol whose name is __stack_chk_guard.
1258 Otherwise, this sequence cannot be for stack protector. */
1259 if (stack_chk_guard.minsym == NULL
1260 || !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard"))
1261 return pc;
1262
1263 if (is_thumb)
1264 {
1265 unsigned int destreg;
1266 unsigned short insn
1267 = read_code_unsigned_integer (pc + offset, 2, byte_order_for_code);
1268
1269 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1270 if ((insn & 0xf800) != 0x6800)
1271 return pc;
1272 if (bits (insn, 3, 5) != basereg)
1273 return pc;
1274 destreg = bits (insn, 0, 2);
1275
1276 insn = read_code_unsigned_integer (pc + offset + 2, 2,
1277 byte_order_for_code);
1278 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1279 if ((insn & 0xf800) != 0x6000)
1280 return pc;
1281 if (destreg != bits (insn, 0, 2))
1282 return pc;
1283 }
1284 else
1285 {
1286 unsigned int destreg;
1287 unsigned int insn
1288 = read_code_unsigned_integer (pc + offset, 4, byte_order_for_code);
1289
1290 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1291 if ((insn & 0x0e500000) != 0x04100000)
1292 return pc;
1293 if (bits (insn, 16, 19) != basereg)
1294 return pc;
1295 destreg = bits (insn, 12, 15);
1296 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1297 insn = read_code_unsigned_integer (pc + offset + 4,
1298 4, byte_order_for_code);
1299 if ((insn & 0x0e500000) != 0x04000000)
1300 return pc;
1301 if (bits (insn, 12, 15) != destreg)
1302 return pc;
1303 }
1304 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1305 on arm. */
1306 if (is_thumb)
1307 return pc + offset + 4;
1308 else
1309 return pc + offset + 8;
1310 }
1311
1312 /* Advance the PC across any function entry prologue instructions to
1313 reach some "real" code.
1314
1315 The APCS (ARM Procedure Call Standard) defines the following
1316 prologue:
1317
1318 mov ip, sp
1319 [stmfd sp!, {a1,a2,a3,a4}]
1320 stmfd sp!, {...,fp,ip,lr,pc}
1321 [stfe f7, [sp, #-12]!]
1322 [stfe f6, [sp, #-12]!]
1323 [stfe f5, [sp, #-12]!]
1324 [stfe f4, [sp, #-12]!]
1325 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
1326
1327 static CORE_ADDR
1328 arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1329 {
1330 CORE_ADDR func_addr, limit_pc;
1331
1332 /* See if we can determine the end of the prologue via the symbol table.
1333 If so, then return either PC, or the PC after the prologue, whichever
1334 is greater. */
1335 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1336 {
1337 CORE_ADDR post_prologue_pc
1338 = skip_prologue_using_sal (gdbarch, func_addr);
1339 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1340
1341 if (post_prologue_pc)
1342 post_prologue_pc
1343 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1344
1345
1346 /* GCC always emits a line note before the prologue and another
1347 one after, even if the two are at the same address or on the
1348 same line. Take advantage of this so that we do not need to
1349 know every instruction that might appear in the prologue. We
1350 will have producer information for most binaries; if it is
1351 missing (e.g. for -gstabs), assuming the GNU tools. */
1352 if (post_prologue_pc
1353 && (cust == NULL
1354 || COMPUNIT_PRODUCER (cust) == NULL
1355 || startswith (COMPUNIT_PRODUCER (cust), "GNU ")
1356 || startswith (COMPUNIT_PRODUCER (cust), "clang ")))
1357 return post_prologue_pc;
1358
1359 if (post_prologue_pc != 0)
1360 {
1361 CORE_ADDR analyzed_limit;
1362
1363 /* For non-GCC compilers, make sure the entire line is an
1364 acceptable prologue; GDB will round this function's
1365 return value up to the end of the following line so we
1366 can not skip just part of a line (and we do not want to).
1367
1368 RealView does not treat the prologue specially, but does
1369 associate prologue code with the opening brace; so this
1370 lets us skip the first line if we think it is the opening
1371 brace. */
1372 if (arm_pc_is_thumb (gdbarch, func_addr))
1373 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1374 post_prologue_pc, NULL);
1375 else
1376 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1377 post_prologue_pc, NULL);
1378
1379 if (analyzed_limit != post_prologue_pc)
1380 return func_addr;
1381
1382 return post_prologue_pc;
1383 }
1384 }
1385
1386 /* Can't determine prologue from the symbol table, need to examine
1387 instructions. */
1388
1389 /* Find an upper limit on the function prologue using the debug
1390 information. If the debug information could not be used to provide
1391 that bound, then use an arbitrary large number as the upper bound. */
1392 /* Like arm_scan_prologue, stop no later than pc + 64. */
1393 limit_pc = skip_prologue_using_sal (gdbarch, pc);
1394 if (limit_pc == 0)
1395 limit_pc = pc + 64; /* Magic. */
1396
1397
1398 /* Check if this is Thumb code. */
1399 if (arm_pc_is_thumb (gdbarch, pc))
1400 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1401 else
1402 return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1403 }
1404
1405 /* *INDENT-OFF* */
1406 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1407 This function decodes a Thumb function prologue to determine:
1408 1) the size of the stack frame
1409 2) which registers are saved on it
1410 3) the offsets of saved regs
1411 4) the offset from the stack pointer to the frame pointer
1412
1413 A typical Thumb function prologue would create this stack frame
1414 (offsets relative to FP)
1415 old SP -> 24 stack parameters
1416 20 LR
1417 16 R7
1418 R7 -> 0 local variables (16 bytes)
1419 SP -> -12 additional stack space (12 bytes)
1420 The frame size would thus be 36 bytes, and the frame offset would be
1421 12 bytes. The frame register is R7.
1422
1423 The comments for thumb_skip_prolog() describe the algorithm we use
1424 to detect the end of the prolog. */
1425 /* *INDENT-ON* */
1426
1427 static void
1428 thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
1429 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
1430 {
1431 CORE_ADDR prologue_start;
1432 CORE_ADDR prologue_end;
1433
1434 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1435 &prologue_end))
1436 {
1437 /* See comment in arm_scan_prologue for an explanation of
1438 this heuristics. */
1439 if (prologue_end > prologue_start + 64)
1440 {
1441 prologue_end = prologue_start + 64;
1442 }
1443 }
1444 else
1445 /* We're in the boondocks: we have no idea where the start of the
1446 function is. */
1447 return;
1448
1449 prologue_end = std::min (prologue_end, prev_pc);
1450
1451 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1452 }
1453
1454 /* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
1455 otherwise. */
1456
1457 static int
1458 arm_instruction_restores_sp (unsigned int insn)
1459 {
1460 if (bits (insn, 28, 31) != INST_NV)
1461 {
1462 if ((insn & 0x0df0f000) == 0x0080d000
1463 /* ADD SP (register or immediate). */
1464 || (insn & 0x0df0f000) == 0x0040d000
1465 /* SUB SP (register or immediate). */
1466 || (insn & 0x0ffffff0) == 0x01a0d000
1467 /* MOV SP. */
1468 || (insn & 0x0fff0000) == 0x08bd0000
1469 /* POP (LDMIA). */
1470 || (insn & 0x0fff0000) == 0x049d0000)
1471 /* POP of a single register. */
1472 return 1;
1473 }
1474
1475 return 0;
1476 }
1477
1478 /* Analyze an ARM mode prologue starting at PROLOGUE_START and
1479 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1480 fill it in. Return the first address not recognized as a prologue
1481 instruction.
1482
1483 We recognize all the instructions typically found in ARM prologues,
1484 plus harmless instructions which can be skipped (either for analysis
1485 purposes, or a more restrictive set that can be skipped when finding
1486 the end of the prologue). */
1487
1488 static CORE_ADDR
1489 arm_analyze_prologue (struct gdbarch *gdbarch,
1490 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1491 struct arm_prologue_cache *cache)
1492 {
1493 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1494 int regno;
1495 CORE_ADDR offset, current_pc;
1496 pv_t regs[ARM_FPS_REGNUM];
1497 struct pv_area *stack;
1498 struct cleanup *back_to;
1499 CORE_ADDR unrecognized_pc = 0;
1500
1501 /* Search the prologue looking for instructions that set up the
1502 frame pointer, adjust the stack pointer, and save registers.
1503
1504 Be careful, however, and if it doesn't look like a prologue,
1505 don't try to scan it. If, for instance, a frameless function
1506 begins with stmfd sp!, then we will tell ourselves there is
1507 a frame, which will confuse stack traceback, as well as "finish"
1508 and other operations that rely on a knowledge of the stack
1509 traceback. */
1510
1511 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1512 regs[regno] = pv_register (regno, 0);
1513 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1514 back_to = make_cleanup_free_pv_area (stack);
1515
1516 for (current_pc = prologue_start;
1517 current_pc < prologue_end;
1518 current_pc += 4)
1519 {
1520 unsigned int insn
1521 = read_code_unsigned_integer (current_pc, 4, byte_order_for_code);
1522
1523 if (insn == 0xe1a0c00d) /* mov ip, sp */
1524 {
1525 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
1526 continue;
1527 }
1528 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1529 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1530 {
1531 unsigned imm = insn & 0xff; /* immediate value */
1532 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1533 int rd = bits (insn, 12, 15);
1534 imm = (imm >> rot) | (imm << (32 - rot));
1535 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
1536 continue;
1537 }
1538 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1539 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1540 {
1541 unsigned imm = insn & 0xff; /* immediate value */
1542 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1543 int rd = bits (insn, 12, 15);
1544 imm = (imm >> rot) | (imm << (32 - rot));
1545 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
1546 continue;
1547 }
1548 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1549 [sp, #-4]! */
1550 {
1551 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1552 break;
1553 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1554 pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
1555 regs[bits (insn, 12, 15)]);
1556 continue;
1557 }
1558 else if ((insn & 0xffff0000) == 0xe92d0000)
1559 /* stmfd sp!, {..., fp, ip, lr, pc}
1560 or
1561 stmfd sp!, {a1, a2, a3, a4} */
1562 {
1563 int mask = insn & 0xffff;
1564
1565 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1566 break;
1567
1568 /* Calculate offsets of saved registers. */
1569 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
1570 if (mask & (1 << regno))
1571 {
1572 regs[ARM_SP_REGNUM]
1573 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
1574 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
1575 }
1576 }
1577 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1578 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
1579 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
1580 {
1581 /* No need to add this to saved_regs -- it's just an arg reg. */
1582 continue;
1583 }
1584 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1585 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
1586 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
1587 {
1588 /* No need to add this to saved_regs -- it's just an arg reg. */
1589 continue;
1590 }
1591 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1592 { registers } */
1593 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1594 {
1595 /* No need to add this to saved_regs -- it's just arg regs. */
1596 continue;
1597 }
1598 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1599 {
1600 unsigned imm = insn & 0xff; /* immediate value */
1601 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1602 imm = (imm >> rot) | (imm << (32 - rot));
1603 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
1604 }
1605 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1606 {
1607 unsigned imm = insn & 0xff; /* immediate value */
1608 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
1609 imm = (imm >> rot) | (imm << (32 - rot));
1610 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
1611 }
1612 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1613 [sp, -#c]! */
1614 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1615 {
1616 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1617 break;
1618
1619 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1620 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
1621 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
1622 }
1623 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1624 [sp!] */
1625 && gdbarch_tdep (gdbarch)->have_fpa_registers)
1626 {
1627 int n_saved_fp_regs;
1628 unsigned int fp_start_reg, fp_bound_reg;
1629
1630 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1631 break;
1632
1633 if ((insn & 0x800) == 0x800) /* N0 is set */
1634 {
1635 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1636 n_saved_fp_regs = 3;
1637 else
1638 n_saved_fp_regs = 1;
1639 }
1640 else
1641 {
1642 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1643 n_saved_fp_regs = 2;
1644 else
1645 n_saved_fp_regs = 4;
1646 }
1647
1648 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
1649 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1650 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
1651 {
1652 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1653 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
1654 regs[fp_start_reg++]);
1655 }
1656 }
1657 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1658 {
1659 /* Allow some special function calls when skipping the
1660 prologue; GCC generates these before storing arguments to
1661 the stack. */
1662 CORE_ADDR dest = BranchDest (current_pc, insn);
1663
1664 if (skip_prologue_function (gdbarch, dest, 0))
1665 continue;
1666 else
1667 break;
1668 }
1669 else if ((insn & 0xf0000000) != 0xe0000000)
1670 break; /* Condition not true, exit early. */
1671 else if (arm_instruction_changes_pc (insn))
1672 /* Don't scan past anything that might change control flow. */
1673 break;
1674 else if (arm_instruction_restores_sp (insn))
1675 {
1676 /* Don't scan past the epilogue. */
1677 break;
1678 }
1679 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
1680 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1681 /* Ignore block loads from the stack, potentially copying
1682 parameters from memory. */
1683 continue;
1684 else if ((insn & 0xfc500000) == 0xe4100000
1685 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1686 /* Similarly ignore single loads from the stack. */
1687 continue;
1688 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1689 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1690 register instead of the stack. */
1691 continue;
1692 else
1693 {
1694 /* The optimizer might shove anything into the prologue, if
1695 we build up cache (cache != NULL) from scanning prologue,
1696 we just skip what we don't recognize and scan further to
1697 make cache as complete as possible. However, if we skip
1698 prologue, we'll stop immediately on unrecognized
1699 instruction. */
1700 unrecognized_pc = current_pc;
1701 if (cache != NULL)
1702 continue;
1703 else
1704 break;
1705 }
1706 }
1707
1708 if (unrecognized_pc == 0)
1709 unrecognized_pc = current_pc;
1710
1711 if (cache)
1712 {
1713 int framereg, framesize;
1714
1715 /* The frame size is just the distance from the frame register
1716 to the original stack pointer. */
1717 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1718 {
1719 /* Frame pointer is fp. */
1720 framereg = ARM_FP_REGNUM;
1721 framesize = -regs[ARM_FP_REGNUM].k;
1722 }
1723 else
1724 {
1725 /* Try the stack pointer... this is a bit desperate. */
1726 framereg = ARM_SP_REGNUM;
1727 framesize = -regs[ARM_SP_REGNUM].k;
1728 }
1729
1730 cache->framereg = framereg;
1731 cache->framesize = framesize;
1732
1733 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1734 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1735 cache->saved_regs[regno].addr = offset;
1736 }
1737
1738 if (arm_debug)
1739 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1740 paddress (gdbarch, unrecognized_pc));
1741
1742 do_cleanups (back_to);
1743 return unrecognized_pc;
1744 }
1745
1746 static void
1747 arm_scan_prologue (struct frame_info *this_frame,
1748 struct arm_prologue_cache *cache)
1749 {
1750 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1751 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1752 CORE_ADDR prologue_start, prologue_end;
1753 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1754 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1755
1756 /* Assume there is no frame until proven otherwise. */
1757 cache->framereg = ARM_SP_REGNUM;
1758 cache->framesize = 0;
1759
1760 /* Check for Thumb prologue. */
1761 if (arm_frame_is_thumb (this_frame))
1762 {
1763 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1764 return;
1765 }
1766
1767 /* Find the function prologue. If we can't find the function in
1768 the symbol table, peek in the stack frame to find the PC. */
1769 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1770 &prologue_end))
1771 {
1772 /* One way to find the end of the prologue (which works well
1773 for unoptimized code) is to do the following:
1774
1775 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1776
1777 if (sal.line == 0)
1778 prologue_end = prev_pc;
1779 else if (sal.end < prologue_end)
1780 prologue_end = sal.end;
1781
1782 This mechanism is very accurate so long as the optimizer
1783 doesn't move any instructions from the function body into the
1784 prologue. If this happens, sal.end will be the last
1785 instruction in the first hunk of prologue code just before
1786 the first instruction that the scheduler has moved from
1787 the body to the prologue.
1788
1789 In order to make sure that we scan all of the prologue
1790 instructions, we use a slightly less accurate mechanism which
1791 may scan more than necessary. To help compensate for this
1792 lack of accuracy, the prologue scanning loop below contains
1793 several clauses which'll cause the loop to terminate early if
1794 an implausible prologue instruction is encountered.
1795
1796 The expression
1797
1798 prologue_start + 64
1799
1800 is a suitable endpoint since it accounts for the largest
1801 possible prologue plus up to five instructions inserted by
1802 the scheduler. */
1803
1804 if (prologue_end > prologue_start + 64)
1805 {
1806 prologue_end = prologue_start + 64; /* See above. */
1807 }
1808 }
1809 else
1810 {
1811 /* We have no symbol information. Our only option is to assume this
1812 function has a standard stack frame and the normal frame register.
1813 Then, we can find the value of our frame pointer on entrance to
1814 the callee (or at the present moment if this is the innermost frame).
1815 The value stored there should be the address of the stmfd + 8. */
1816 CORE_ADDR frame_loc;
1817 ULONGEST return_value;
1818
1819 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
1820 if (!safe_read_memory_unsigned_integer (frame_loc, 4, byte_order,
1821 &return_value))
1822 return;
1823 else
1824 {
1825 prologue_start = gdbarch_addr_bits_remove
1826 (gdbarch, return_value) - 8;
1827 prologue_end = prologue_start + 64; /* See above. */
1828 }
1829 }
1830
1831 if (prev_pc < prologue_end)
1832 prologue_end = prev_pc;
1833
1834 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
1835 }
1836
1837 static struct arm_prologue_cache *
1838 arm_make_prologue_cache (struct frame_info *this_frame)
1839 {
1840 int reg;
1841 struct arm_prologue_cache *cache;
1842 CORE_ADDR unwound_fp;
1843
1844 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1845 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1846
1847 arm_scan_prologue (this_frame, cache);
1848
1849 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
1850 if (unwound_fp == 0)
1851 return cache;
1852
1853 cache->prev_sp = unwound_fp + cache->framesize;
1854
1855 /* Calculate actual addresses of saved registers using offsets
1856 determined by arm_scan_prologue. */
1857 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
1858 if (trad_frame_addr_p (cache->saved_regs, reg))
1859 cache->saved_regs[reg].addr += cache->prev_sp;
1860
1861 return cache;
1862 }
1863
1864 /* Implementation of the stop_reason hook for arm_prologue frames. */
1865
1866 static enum unwind_stop_reason
1867 arm_prologue_unwind_stop_reason (struct frame_info *this_frame,
1868 void **this_cache)
1869 {
1870 struct arm_prologue_cache *cache;
1871 CORE_ADDR pc;
1872
1873 if (*this_cache == NULL)
1874 *this_cache = arm_make_prologue_cache (this_frame);
1875 cache = (struct arm_prologue_cache *) *this_cache;
1876
1877 /* This is meant to halt the backtrace at "_start". */
1878 pc = get_frame_pc (this_frame);
1879 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1880 return UNWIND_OUTERMOST;
1881
1882 /* If we've hit a wall, stop. */
1883 if (cache->prev_sp == 0)
1884 return UNWIND_OUTERMOST;
1885
1886 return UNWIND_NO_REASON;
1887 }
1888
1889 /* Our frame ID for a normal frame is the current function's starting PC
1890 and the caller's SP when we were called. */
1891
1892 static void
1893 arm_prologue_this_id (struct frame_info *this_frame,
1894 void **this_cache,
1895 struct frame_id *this_id)
1896 {
1897 struct arm_prologue_cache *cache;
1898 struct frame_id id;
1899 CORE_ADDR pc, func;
1900
1901 if (*this_cache == NULL)
1902 *this_cache = arm_make_prologue_cache (this_frame);
1903 cache = (struct arm_prologue_cache *) *this_cache;
1904
1905 /* Use function start address as part of the frame ID. If we cannot
1906 identify the start address (due to missing symbol information),
1907 fall back to just using the current PC. */
1908 pc = get_frame_pc (this_frame);
1909 func = get_frame_func (this_frame);
1910 if (!func)
1911 func = pc;
1912
1913 id = frame_id_build (cache->prev_sp, func);
1914 *this_id = id;
1915 }
1916
1917 static struct value *
1918 arm_prologue_prev_register (struct frame_info *this_frame,
1919 void **this_cache,
1920 int prev_regnum)
1921 {
1922 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1923 struct arm_prologue_cache *cache;
1924
1925 if (*this_cache == NULL)
1926 *this_cache = arm_make_prologue_cache (this_frame);
1927 cache = (struct arm_prologue_cache *) *this_cache;
1928
1929 /* If we are asked to unwind the PC, then we need to return the LR
1930 instead. The prologue may save PC, but it will point into this
1931 frame's prologue, not the next frame's resume location. Also
1932 strip the saved T bit. A valid LR may have the low bit set, but
1933 a valid PC never does. */
1934 if (prev_regnum == ARM_PC_REGNUM)
1935 {
1936 CORE_ADDR lr;
1937
1938 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1939 return frame_unwind_got_constant (this_frame, prev_regnum,
1940 arm_addr_bits_remove (gdbarch, lr));
1941 }
1942
1943 /* SP is generally not saved to the stack, but this frame is
1944 identified by the next frame's stack pointer at the time of the call.
1945 The value was already reconstructed into PREV_SP. */
1946 if (prev_regnum == ARM_SP_REGNUM)
1947 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
1948
1949 /* The CPSR may have been changed by the call instruction and by the
1950 called function. The only bit we can reconstruct is the T bit,
1951 by checking the low bit of LR as of the call. This is a reliable
1952 indicator of Thumb-ness except for some ARM v4T pre-interworking
1953 Thumb code, which could get away with a clear low bit as long as
1954 the called function did not use bx. Guess that all other
1955 bits are unchanged; the condition flags are presumably lost,
1956 but the processor status is likely valid. */
1957 if (prev_regnum == ARM_PS_REGNUM)
1958 {
1959 CORE_ADDR lr, cpsr;
1960 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
1961
1962 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
1963 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1964 if (IS_THUMB_ADDR (lr))
1965 cpsr |= t_bit;
1966 else
1967 cpsr &= ~t_bit;
1968 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
1969 }
1970
1971 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1972 prev_regnum);
1973 }
1974
1975 struct frame_unwind arm_prologue_unwind = {
1976 NORMAL_FRAME,
1977 arm_prologue_unwind_stop_reason,
1978 arm_prologue_this_id,
1979 arm_prologue_prev_register,
1980 NULL,
1981 default_frame_sniffer
1982 };
1983
1984 /* Maintain a list of ARM exception table entries per objfile, similar to the
1985 list of mapping symbols. We only cache entries for standard ARM-defined
1986 personality routines; the cache will contain only the frame unwinding
1987 instructions associated with the entry (not the descriptors). */
1988
1989 static const struct objfile_data *arm_exidx_data_key;
1990
1991 struct arm_exidx_entry
1992 {
1993 bfd_vma addr;
1994 gdb_byte *entry;
1995 };
1996 typedef struct arm_exidx_entry arm_exidx_entry_s;
1997 DEF_VEC_O(arm_exidx_entry_s);
1998
1999 struct arm_exidx_data
2000 {
2001 VEC(arm_exidx_entry_s) **section_maps;
2002 };
2003
2004 static void
2005 arm_exidx_data_free (struct objfile *objfile, void *arg)
2006 {
2007 struct arm_exidx_data *data = (struct arm_exidx_data *) arg;
2008 unsigned int i;
2009
2010 for (i = 0; i < objfile->obfd->section_count; i++)
2011 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2012 }
2013
2014 static inline int
2015 arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2016 const struct arm_exidx_entry *rhs)
2017 {
2018 return lhs->addr < rhs->addr;
2019 }
2020
2021 static struct obj_section *
2022 arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2023 {
2024 struct obj_section *osect;
2025
2026 ALL_OBJFILE_OSECTIONS (objfile, osect)
2027 if (bfd_get_section_flags (objfile->obfd,
2028 osect->the_bfd_section) & SEC_ALLOC)
2029 {
2030 bfd_vma start, size;
2031 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2032 size = bfd_get_section_size (osect->the_bfd_section);
2033
2034 if (start <= vma && vma < start + size)
2035 return osect;
2036 }
2037
2038 return NULL;
2039 }
2040
2041 /* Parse contents of exception table and exception index sections
2042 of OBJFILE, and fill in the exception table entry cache.
2043
2044 For each entry that refers to a standard ARM-defined personality
2045 routine, extract the frame unwinding instructions (from either
2046 the index or the table section). The unwinding instructions
2047 are normalized by:
2048 - extracting them from the rest of the table data
2049 - converting to host endianness
2050 - appending the implicit 0xb0 ("Finish") code
2051
2052 The extracted and normalized instructions are stored for later
2053 retrieval by the arm_find_exidx_entry routine. */
2054
2055 static void
2056 arm_exidx_new_objfile (struct objfile *objfile)
2057 {
2058 struct cleanup *cleanups;
2059 struct arm_exidx_data *data;
2060 asection *exidx, *extab;
2061 bfd_vma exidx_vma = 0, extab_vma = 0;
2062 bfd_size_type exidx_size = 0, extab_size = 0;
2063 gdb_byte *exidx_data = NULL, *extab_data = NULL;
2064 LONGEST i;
2065
2066 /* If we've already touched this file, do nothing. */
2067 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2068 return;
2069 cleanups = make_cleanup (null_cleanup, NULL);
2070
2071 /* Read contents of exception table and index. */
2072 exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind);
2073 if (exidx)
2074 {
2075 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2076 exidx_size = bfd_get_section_size (exidx);
2077 exidx_data = (gdb_byte *) xmalloc (exidx_size);
2078 make_cleanup (xfree, exidx_data);
2079
2080 if (!bfd_get_section_contents (objfile->obfd, exidx,
2081 exidx_data, 0, exidx_size))
2082 {
2083 do_cleanups (cleanups);
2084 return;
2085 }
2086 }
2087
2088 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2089 if (extab)
2090 {
2091 extab_vma = bfd_section_vma (objfile->obfd, extab);
2092 extab_size = bfd_get_section_size (extab);
2093 extab_data = (gdb_byte *) xmalloc (extab_size);
2094 make_cleanup (xfree, extab_data);
2095
2096 if (!bfd_get_section_contents (objfile->obfd, extab,
2097 extab_data, 0, extab_size))
2098 {
2099 do_cleanups (cleanups);
2100 return;
2101 }
2102 }
2103
2104 /* Allocate exception table data structure. */
2105 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2106 set_objfile_data (objfile, arm_exidx_data_key, data);
2107 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2108 objfile->obfd->section_count,
2109 VEC(arm_exidx_entry_s) *);
2110
2111 /* Fill in exception table. */
2112 for (i = 0; i < exidx_size / 8; i++)
2113 {
2114 struct arm_exidx_entry new_exidx_entry;
2115 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
2116 bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
2117 bfd_vma addr = 0, word = 0;
2118 int n_bytes = 0, n_words = 0;
2119 struct obj_section *sec;
2120 gdb_byte *entry = NULL;
2121
2122 /* Extract address of start of function. */
2123 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2124 idx += exidx_vma + i * 8;
2125
2126 /* Find section containing function and compute section offset. */
2127 sec = arm_obj_section_from_vma (objfile, idx);
2128 if (sec == NULL)
2129 continue;
2130 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2131
2132 /* Determine address of exception table entry. */
2133 if (val == 1)
2134 {
2135 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2136 }
2137 else if ((val & 0xff000000) == 0x80000000)
2138 {
2139 /* Exception table entry embedded in .ARM.exidx
2140 -- must be short form. */
2141 word = val;
2142 n_bytes = 3;
2143 }
2144 else if (!(val & 0x80000000))
2145 {
2146 /* Exception table entry in .ARM.extab. */
2147 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2148 addr += exidx_vma + i * 8 + 4;
2149
2150 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
2151 {
2152 word = bfd_h_get_32 (objfile->obfd,
2153 extab_data + addr - extab_vma);
2154 addr += 4;
2155
2156 if ((word & 0xff000000) == 0x80000000)
2157 {
2158 /* Short form. */
2159 n_bytes = 3;
2160 }
2161 else if ((word & 0xff000000) == 0x81000000
2162 || (word & 0xff000000) == 0x82000000)
2163 {
2164 /* Long form. */
2165 n_bytes = 2;
2166 n_words = ((word >> 16) & 0xff);
2167 }
2168 else if (!(word & 0x80000000))
2169 {
2170 bfd_vma pers;
2171 struct obj_section *pers_sec;
2172 int gnu_personality = 0;
2173
2174 /* Custom personality routine. */
2175 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2176 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2177
2178 /* Check whether we've got one of the variants of the
2179 GNU personality routines. */
2180 pers_sec = arm_obj_section_from_vma (objfile, pers);
2181 if (pers_sec)
2182 {
2183 static const char *personality[] =
2184 {
2185 "__gcc_personality_v0",
2186 "__gxx_personality_v0",
2187 "__gcj_personality_v0",
2188 "__gnu_objc_personality_v0",
2189 NULL
2190 };
2191
2192 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2193 int k;
2194
2195 for (k = 0; personality[k]; k++)
2196 if (lookup_minimal_symbol_by_pc_name
2197 (pc, personality[k], objfile))
2198 {
2199 gnu_personality = 1;
2200 break;
2201 }
2202 }
2203
2204 /* If so, the next word contains a word count in the high
2205 byte, followed by the same unwind instructions as the
2206 pre-defined forms. */
2207 if (gnu_personality
2208 && addr + 4 <= extab_vma + extab_size)
2209 {
2210 word = bfd_h_get_32 (objfile->obfd,
2211 extab_data + addr - extab_vma);
2212 addr += 4;
2213 n_bytes = 3;
2214 n_words = ((word >> 24) & 0xff);
2215 }
2216 }
2217 }
2218 }
2219
2220 /* Sanity check address. */
2221 if (n_words)
2222 if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
2223 n_words = n_bytes = 0;
2224
2225 /* The unwind instructions reside in WORD (only the N_BYTES least
2226 significant bytes are valid), followed by N_WORDS words in the
2227 extab section starting at ADDR. */
2228 if (n_bytes || n_words)
2229 {
2230 gdb_byte *p = entry
2231 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
2232 n_bytes + n_words * 4 + 1);
2233
2234 while (n_bytes--)
2235 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2236
2237 while (n_words--)
2238 {
2239 word = bfd_h_get_32 (objfile->obfd,
2240 extab_data + addr - extab_vma);
2241 addr += 4;
2242
2243 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2244 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2245 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2246 *p++ = (gdb_byte) (word & 0xff);
2247 }
2248
2249 /* Implied "Finish" to terminate the list. */
2250 *p++ = 0xb0;
2251 }
2252
2253 /* Push entry onto vector. They are guaranteed to always
2254 appear in order of increasing addresses. */
2255 new_exidx_entry.addr = idx;
2256 new_exidx_entry.entry = entry;
2257 VEC_safe_push (arm_exidx_entry_s,
2258 data->section_maps[sec->the_bfd_section->index],
2259 &new_exidx_entry);
2260 }
2261
2262 do_cleanups (cleanups);
2263 }
2264
2265 /* Search for the exception table entry covering MEMADDR. If one is found,
2266 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2267 set *START to the start of the region covered by this entry. */
2268
2269 static gdb_byte *
2270 arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2271 {
2272 struct obj_section *sec;
2273
2274 sec = find_pc_section (memaddr);
2275 if (sec != NULL)
2276 {
2277 struct arm_exidx_data *data;
2278 VEC(arm_exidx_entry_s) *map;
2279 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2280 unsigned int idx;
2281
2282 data = ((struct arm_exidx_data *)
2283 objfile_data (sec->objfile, arm_exidx_data_key));
2284 if (data != NULL)
2285 {
2286 map = data->section_maps[sec->the_bfd_section->index];
2287 if (!VEC_empty (arm_exidx_entry_s, map))
2288 {
2289 struct arm_exidx_entry *map_sym;
2290
2291 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2292 arm_compare_exidx_entries);
2293
2294 /* VEC_lower_bound finds the earliest ordered insertion
2295 point. If the following symbol starts at this exact
2296 address, we use that; otherwise, the preceding
2297 exception table entry covers this address. */
2298 if (idx < VEC_length (arm_exidx_entry_s, map))
2299 {
2300 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2301 if (map_sym->addr == map_key.addr)
2302 {
2303 if (start)
2304 *start = map_sym->addr + obj_section_addr (sec);
2305 return map_sym->entry;
2306 }
2307 }
2308
2309 if (idx > 0)
2310 {
2311 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2312 if (start)
2313 *start = map_sym->addr + obj_section_addr (sec);
2314 return map_sym->entry;
2315 }
2316 }
2317 }
2318 }
2319
2320 return NULL;
2321 }
2322
2323 /* Given the current frame THIS_FRAME, and its associated frame unwinding
2324 instruction list from the ARM exception table entry ENTRY, allocate and
2325 return a prologue cache structure describing how to unwind this frame.
2326
2327 Return NULL if the unwinding instruction list contains a "spare",
2328 "reserved" or "refuse to unwind" instruction as defined in section
2329 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2330 for the ARM Architecture" document. */
2331
2332 static struct arm_prologue_cache *
2333 arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2334 {
2335 CORE_ADDR vsp = 0;
2336 int vsp_valid = 0;
2337
2338 struct arm_prologue_cache *cache;
2339 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2340 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2341
2342 for (;;)
2343 {
2344 gdb_byte insn;
2345
2346 /* Whenever we reload SP, we actually have to retrieve its
2347 actual value in the current frame. */
2348 if (!vsp_valid)
2349 {
2350 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2351 {
2352 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2353 vsp = get_frame_register_unsigned (this_frame, reg);
2354 }
2355 else
2356 {
2357 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2358 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2359 }
2360
2361 vsp_valid = 1;
2362 }
2363
2364 /* Decode next unwind instruction. */
2365 insn = *entry++;
2366
2367 if ((insn & 0xc0) == 0)
2368 {
2369 int offset = insn & 0x3f;
2370 vsp += (offset << 2) + 4;
2371 }
2372 else if ((insn & 0xc0) == 0x40)
2373 {
2374 int offset = insn & 0x3f;
2375 vsp -= (offset << 2) + 4;
2376 }
2377 else if ((insn & 0xf0) == 0x80)
2378 {
2379 int mask = ((insn & 0xf) << 8) | *entry++;
2380 int i;
2381
2382 /* The special case of an all-zero mask identifies
2383 "Refuse to unwind". We return NULL to fall back
2384 to the prologue analyzer. */
2385 if (mask == 0)
2386 return NULL;
2387
2388 /* Pop registers r4..r15 under mask. */
2389 for (i = 0; i < 12; i++)
2390 if (mask & (1 << i))
2391 {
2392 cache->saved_regs[4 + i].addr = vsp;
2393 vsp += 4;
2394 }
2395
2396 /* Special-case popping SP -- we need to reload vsp. */
2397 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2398 vsp_valid = 0;
2399 }
2400 else if ((insn & 0xf0) == 0x90)
2401 {
2402 int reg = insn & 0xf;
2403
2404 /* Reserved cases. */
2405 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2406 return NULL;
2407
2408 /* Set SP from another register and mark VSP for reload. */
2409 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2410 vsp_valid = 0;
2411 }
2412 else if ((insn & 0xf0) == 0xa0)
2413 {
2414 int count = insn & 0x7;
2415 int pop_lr = (insn & 0x8) != 0;
2416 int i;
2417
2418 /* Pop r4..r[4+count]. */
2419 for (i = 0; i <= count; i++)
2420 {
2421 cache->saved_regs[4 + i].addr = vsp;
2422 vsp += 4;
2423 }
2424
2425 /* If indicated by flag, pop LR as well. */
2426 if (pop_lr)
2427 {
2428 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2429 vsp += 4;
2430 }
2431 }
2432 else if (insn == 0xb0)
2433 {
2434 /* We could only have updated PC by popping into it; if so, it
2435 will show up as address. Otherwise, copy LR into PC. */
2436 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2437 cache->saved_regs[ARM_PC_REGNUM]
2438 = cache->saved_regs[ARM_LR_REGNUM];
2439
2440 /* We're done. */
2441 break;
2442 }
2443 else if (insn == 0xb1)
2444 {
2445 int mask = *entry++;
2446 int i;
2447
2448 /* All-zero mask and mask >= 16 is "spare". */
2449 if (mask == 0 || mask >= 16)
2450 return NULL;
2451
2452 /* Pop r0..r3 under mask. */
2453 for (i = 0; i < 4; i++)
2454 if (mask & (1 << i))
2455 {
2456 cache->saved_regs[i].addr = vsp;
2457 vsp += 4;
2458 }
2459 }
2460 else if (insn == 0xb2)
2461 {
2462 ULONGEST offset = 0;
2463 unsigned shift = 0;
2464
2465 do
2466 {
2467 offset |= (*entry & 0x7f) << shift;
2468 shift += 7;
2469 }
2470 while (*entry++ & 0x80);
2471
2472 vsp += 0x204 + (offset << 2);
2473 }
2474 else if (insn == 0xb3)
2475 {
2476 int start = *entry >> 4;
2477 int count = (*entry++) & 0xf;
2478 int i;
2479
2480 /* Only registers D0..D15 are valid here. */
2481 if (start + count >= 16)
2482 return NULL;
2483
2484 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2485 for (i = 0; i <= count; i++)
2486 {
2487 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2488 vsp += 8;
2489 }
2490
2491 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2492 vsp += 4;
2493 }
2494 else if ((insn & 0xf8) == 0xb8)
2495 {
2496 int count = insn & 0x7;
2497 int i;
2498
2499 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2500 for (i = 0; i <= count; i++)
2501 {
2502 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2503 vsp += 8;
2504 }
2505
2506 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2507 vsp += 4;
2508 }
2509 else if (insn == 0xc6)
2510 {
2511 int start = *entry >> 4;
2512 int count = (*entry++) & 0xf;
2513 int i;
2514
2515 /* Only registers WR0..WR15 are valid. */
2516 if (start + count >= 16)
2517 return NULL;
2518
2519 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2520 for (i = 0; i <= count; i++)
2521 {
2522 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2523 vsp += 8;
2524 }
2525 }
2526 else if (insn == 0xc7)
2527 {
2528 int mask = *entry++;
2529 int i;
2530
2531 /* All-zero mask and mask >= 16 is "spare". */
2532 if (mask == 0 || mask >= 16)
2533 return NULL;
2534
2535 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2536 for (i = 0; i < 4; i++)
2537 if (mask & (1 << i))
2538 {
2539 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2540 vsp += 4;
2541 }
2542 }
2543 else if ((insn & 0xf8) == 0xc0)
2544 {
2545 int count = insn & 0x7;
2546 int i;
2547
2548 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2549 for (i = 0; i <= count; i++)
2550 {
2551 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2552 vsp += 8;
2553 }
2554 }
2555 else if (insn == 0xc8)
2556 {
2557 int start = *entry >> 4;
2558 int count = (*entry++) & 0xf;
2559 int i;
2560
2561 /* Only registers D0..D31 are valid. */
2562 if (start + count >= 16)
2563 return NULL;
2564
2565 /* Pop VFP double-precision registers
2566 D[16+start]..D[16+start+count]. */
2567 for (i = 0; i <= count; i++)
2568 {
2569 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2570 vsp += 8;
2571 }
2572 }
2573 else if (insn == 0xc9)
2574 {
2575 int start = *entry >> 4;
2576 int count = (*entry++) & 0xf;
2577 int i;
2578
2579 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2580 for (i = 0; i <= count; i++)
2581 {
2582 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2583 vsp += 8;
2584 }
2585 }
2586 else if ((insn & 0xf8) == 0xd0)
2587 {
2588 int count = insn & 0x7;
2589 int i;
2590
2591 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2592 for (i = 0; i <= count; i++)
2593 {
2594 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2595 vsp += 8;
2596 }
2597 }
2598 else
2599 {
2600 /* Everything else is "spare". */
2601 return NULL;
2602 }
2603 }
2604
2605 /* If we restore SP from a register, assume this was the frame register.
2606 Otherwise just fall back to SP as frame register. */
2607 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2608 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2609 else
2610 cache->framereg = ARM_SP_REGNUM;
2611
2612 /* Determine offset to previous frame. */
2613 cache->framesize
2614 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2615
2616 /* We already got the previous SP. */
2617 cache->prev_sp = vsp;
2618
2619 return cache;
2620 }
2621
2622 /* Unwinding via ARM exception table entries. Note that the sniffer
2623 already computes a filled-in prologue cache, which is then used
2624 with the same arm_prologue_this_id and arm_prologue_prev_register
2625 routines also used for prologue-parsing based unwinding. */
2626
2627 static int
2628 arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2629 struct frame_info *this_frame,
2630 void **this_prologue_cache)
2631 {
2632 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2633 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2634 CORE_ADDR addr_in_block, exidx_region, func_start;
2635 struct arm_prologue_cache *cache;
2636 gdb_byte *entry;
2637
2638 /* See if we have an ARM exception table entry covering this address. */
2639 addr_in_block = get_frame_address_in_block (this_frame);
2640 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2641 if (!entry)
2642 return 0;
2643
2644 /* The ARM exception table does not describe unwind information
2645 for arbitrary PC values, but is guaranteed to be correct only
2646 at call sites. We have to decide here whether we want to use
2647 ARM exception table information for this frame, or fall back
2648 to using prologue parsing. (Note that if we have DWARF CFI,
2649 this sniffer isn't even called -- CFI is always preferred.)
2650
2651 Before we make this decision, however, we check whether we
2652 actually have *symbol* information for the current frame.
2653 If not, prologue parsing would not work anyway, so we might
2654 as well use the exception table and hope for the best. */
2655 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2656 {
2657 int exc_valid = 0;
2658
2659 /* If the next frame is "normal", we are at a call site in this
2660 frame, so exception information is guaranteed to be valid. */
2661 if (get_next_frame (this_frame)
2662 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2663 exc_valid = 1;
2664
2665 /* We also assume exception information is valid if we're currently
2666 blocked in a system call. The system library is supposed to
2667 ensure this, so that e.g. pthread cancellation works. */
2668 if (arm_frame_is_thumb (this_frame))
2669 {
2670 ULONGEST insn;
2671
2672 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 2,
2673 2, byte_order_for_code, &insn)
2674 && (insn & 0xff00) == 0xdf00 /* svc */)
2675 exc_valid = 1;
2676 }
2677 else
2678 {
2679 ULONGEST insn;
2680
2681 if (safe_read_memory_unsigned_integer (get_frame_pc (this_frame) - 4,
2682 4, byte_order_for_code, &insn)
2683 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2684 exc_valid = 1;
2685 }
2686
2687 /* Bail out if we don't know that exception information is valid. */
2688 if (!exc_valid)
2689 return 0;
2690
2691 /* The ARM exception index does not mark the *end* of the region
2692 covered by the entry, and some functions will not have any entry.
2693 To correctly recognize the end of the covered region, the linker
2694 should have inserted dummy records with a CANTUNWIND marker.
2695
2696 Unfortunately, current versions of GNU ld do not reliably do
2697 this, and thus we may have found an incorrect entry above.
2698 As a (temporary) sanity check, we only use the entry if it
2699 lies *within* the bounds of the function. Note that this check
2700 might reject perfectly valid entries that just happen to cover
2701 multiple functions; therefore this check ought to be removed
2702 once the linker is fixed. */
2703 if (func_start > exidx_region)
2704 return 0;
2705 }
2706
2707 /* Decode the list of unwinding instructions into a prologue cache.
2708 Note that this may fail due to e.g. a "refuse to unwind" code. */
2709 cache = arm_exidx_fill_cache (this_frame, entry);
2710 if (!cache)
2711 return 0;
2712
2713 *this_prologue_cache = cache;
2714 return 1;
2715 }
2716
2717 struct frame_unwind arm_exidx_unwind = {
2718 NORMAL_FRAME,
2719 default_frame_unwind_stop_reason,
2720 arm_prologue_this_id,
2721 arm_prologue_prev_register,
2722 NULL,
2723 arm_exidx_unwind_sniffer
2724 };
2725
2726 static struct arm_prologue_cache *
2727 arm_make_epilogue_frame_cache (struct frame_info *this_frame)
2728 {
2729 struct arm_prologue_cache *cache;
2730 int reg;
2731
2732 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2733 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2734
2735 /* Still rely on the offset calculated from prologue. */
2736 arm_scan_prologue (this_frame, cache);
2737
2738 /* Since we are in epilogue, the SP has been restored. */
2739 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2740
2741 /* Calculate actual addresses of saved registers using offsets
2742 determined by arm_scan_prologue. */
2743 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
2744 if (trad_frame_addr_p (cache->saved_regs, reg))
2745 cache->saved_regs[reg].addr += cache->prev_sp;
2746
2747 return cache;
2748 }
2749
2750 /* Implementation of function hook 'this_id' in
2751 'struct frame_uwnind' for epilogue unwinder. */
2752
2753 static void
2754 arm_epilogue_frame_this_id (struct frame_info *this_frame,
2755 void **this_cache,
2756 struct frame_id *this_id)
2757 {
2758 struct arm_prologue_cache *cache;
2759 CORE_ADDR pc, func;
2760
2761 if (*this_cache == NULL)
2762 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2763 cache = (struct arm_prologue_cache *) *this_cache;
2764
2765 /* Use function start address as part of the frame ID. If we cannot
2766 identify the start address (due to missing symbol information),
2767 fall back to just using the current PC. */
2768 pc = get_frame_pc (this_frame);
2769 func = get_frame_func (this_frame);
2770 if (func == 0)
2771 func = pc;
2772
2773 (*this_id) = frame_id_build (cache->prev_sp, pc);
2774 }
2775
2776 /* Implementation of function hook 'prev_register' in
2777 'struct frame_uwnind' for epilogue unwinder. */
2778
2779 static struct value *
2780 arm_epilogue_frame_prev_register (struct frame_info *this_frame,
2781 void **this_cache, int regnum)
2782 {
2783 if (*this_cache == NULL)
2784 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2785
2786 return arm_prologue_prev_register (this_frame, this_cache, regnum);
2787 }
2788
2789 static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch,
2790 CORE_ADDR pc);
2791 static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch,
2792 CORE_ADDR pc);
2793
2794 /* Implementation of function hook 'sniffer' in
2795 'struct frame_uwnind' for epilogue unwinder. */
2796
2797 static int
2798 arm_epilogue_frame_sniffer (const struct frame_unwind *self,
2799 struct frame_info *this_frame,
2800 void **this_prologue_cache)
2801 {
2802 if (frame_relative_level (this_frame) == 0)
2803 {
2804 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2805 CORE_ADDR pc = get_frame_pc (this_frame);
2806
2807 if (arm_frame_is_thumb (this_frame))
2808 return thumb_stack_frame_destroyed_p (gdbarch, pc);
2809 else
2810 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
2811 }
2812 else
2813 return 0;
2814 }
2815
2816 /* Frame unwinder from epilogue. */
2817
2818 static const struct frame_unwind arm_epilogue_frame_unwind =
2819 {
2820 NORMAL_FRAME,
2821 default_frame_unwind_stop_reason,
2822 arm_epilogue_frame_this_id,
2823 arm_epilogue_frame_prev_register,
2824 NULL,
2825 arm_epilogue_frame_sniffer,
2826 };
2827
2828 /* Recognize GCC's trampoline for thumb call-indirect. If we are in a
2829 trampoline, return the target PC. Otherwise return 0.
2830
2831 void call0a (char c, short s, int i, long l) {}
2832
2833 int main (void)
2834 {
2835 (*pointer_to_call0a) (c, s, i, l);
2836 }
2837
2838 Instead of calling a stub library function _call_via_xx (xx is
2839 the register name), GCC may inline the trampoline in the object
2840 file as below (register r2 has the address of call0a).
2841
2842 .global main
2843 .type main, %function
2844 ...
2845 bl .L1
2846 ...
2847 .size main, .-main
2848
2849 .L1:
2850 bx r2
2851
2852 The trampoline 'bx r2' doesn't belong to main. */
2853
2854 static CORE_ADDR
2855 arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc)
2856 {
2857 /* The heuristics of recognizing such trampoline is that FRAME is
2858 executing in Thumb mode and the instruction on PC is 'bx Rm'. */
2859 if (arm_frame_is_thumb (frame))
2860 {
2861 gdb_byte buf[2];
2862
2863 if (target_read_memory (pc, buf, 2) == 0)
2864 {
2865 struct gdbarch *gdbarch = get_frame_arch (frame);
2866 enum bfd_endian byte_order_for_code
2867 = gdbarch_byte_order_for_code (gdbarch);
2868 uint16_t insn
2869 = extract_unsigned_integer (buf, 2, byte_order_for_code);
2870
2871 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
2872 {
2873 CORE_ADDR dest
2874 = get_frame_register_unsigned (frame, bits (insn, 3, 6));
2875
2876 /* Clear the LSB so that gdb core sets step-resume
2877 breakpoint at the right address. */
2878 return UNMAKE_THUMB_ADDR (dest);
2879 }
2880 }
2881 }
2882
2883 return 0;
2884 }
2885
2886 static struct arm_prologue_cache *
2887 arm_make_stub_cache (struct frame_info *this_frame)
2888 {
2889 struct arm_prologue_cache *cache;
2890
2891 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2892 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2893
2894 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2895
2896 return cache;
2897 }
2898
2899 /* Our frame ID for a stub frame is the current SP and LR. */
2900
2901 static void
2902 arm_stub_this_id (struct frame_info *this_frame,
2903 void **this_cache,
2904 struct frame_id *this_id)
2905 {
2906 struct arm_prologue_cache *cache;
2907
2908 if (*this_cache == NULL)
2909 *this_cache = arm_make_stub_cache (this_frame);
2910 cache = (struct arm_prologue_cache *) *this_cache;
2911
2912 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
2913 }
2914
2915 static int
2916 arm_stub_unwind_sniffer (const struct frame_unwind *self,
2917 struct frame_info *this_frame,
2918 void **this_prologue_cache)
2919 {
2920 CORE_ADDR addr_in_block;
2921 gdb_byte dummy[4];
2922 CORE_ADDR pc, start_addr;
2923 const char *name;
2924
2925 addr_in_block = get_frame_address_in_block (this_frame);
2926 pc = get_frame_pc (this_frame);
2927 if (in_plt_section (addr_in_block)
2928 /* We also use the stub winder if the target memory is unreadable
2929 to avoid having the prologue unwinder trying to read it. */
2930 || target_read_memory (pc, dummy, 4) != 0)
2931 return 1;
2932
2933 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0
2934 && arm_skip_bx_reg (this_frame, pc) != 0)
2935 return 1;
2936
2937 return 0;
2938 }
2939
2940 struct frame_unwind arm_stub_unwind = {
2941 NORMAL_FRAME,
2942 default_frame_unwind_stop_reason,
2943 arm_stub_this_id,
2944 arm_prologue_prev_register,
2945 NULL,
2946 arm_stub_unwind_sniffer
2947 };
2948
2949 /* Put here the code to store, into CACHE->saved_regs, the addresses
2950 of the saved registers of frame described by THIS_FRAME. CACHE is
2951 returned. */
2952
2953 static struct arm_prologue_cache *
2954 arm_m_exception_cache (struct frame_info *this_frame)
2955 {
2956 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2958 struct arm_prologue_cache *cache;
2959 CORE_ADDR unwound_sp;
2960 LONGEST xpsr;
2961
2962 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2963 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2964
2965 unwound_sp = get_frame_register_unsigned (this_frame,
2966 ARM_SP_REGNUM);
2967
2968 /* The hardware saves eight 32-bit words, comprising xPSR,
2969 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
2970 "B1.5.6 Exception entry behavior" in
2971 "ARMv7-M Architecture Reference Manual". */
2972 cache->saved_regs[0].addr = unwound_sp;
2973 cache->saved_regs[1].addr = unwound_sp + 4;
2974 cache->saved_regs[2].addr = unwound_sp + 8;
2975 cache->saved_regs[3].addr = unwound_sp + 12;
2976 cache->saved_regs[12].addr = unwound_sp + 16;
2977 cache->saved_regs[14].addr = unwound_sp + 20;
2978 cache->saved_regs[15].addr = unwound_sp + 24;
2979 cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28;
2980
2981 /* If bit 9 of the saved xPSR is set, then there is a four-byte
2982 aligner between the top of the 32-byte stack frame and the
2983 previous context's stack pointer. */
2984 cache->prev_sp = unwound_sp + 32;
2985 if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr)
2986 && (xpsr & (1 << 9)) != 0)
2987 cache->prev_sp += 4;
2988
2989 return cache;
2990 }
2991
2992 /* Implementation of function hook 'this_id' in
2993 'struct frame_uwnind'. */
2994
2995 static void
2996 arm_m_exception_this_id (struct frame_info *this_frame,
2997 void **this_cache,
2998 struct frame_id *this_id)
2999 {
3000 struct arm_prologue_cache *cache;
3001
3002 if (*this_cache == NULL)
3003 *this_cache = arm_m_exception_cache (this_frame);
3004 cache = (struct arm_prologue_cache *) *this_cache;
3005
3006 /* Our frame ID for a stub frame is the current SP and LR. */
3007 *this_id = frame_id_build (cache->prev_sp,
3008 get_frame_pc (this_frame));
3009 }
3010
3011 /* Implementation of function hook 'prev_register' in
3012 'struct frame_uwnind'. */
3013
3014 static struct value *
3015 arm_m_exception_prev_register (struct frame_info *this_frame,
3016 void **this_cache,
3017 int prev_regnum)
3018 {
3019 struct arm_prologue_cache *cache;
3020
3021 if (*this_cache == NULL)
3022 *this_cache = arm_m_exception_cache (this_frame);
3023 cache = (struct arm_prologue_cache *) *this_cache;
3024
3025 /* The value was already reconstructed into PREV_SP. */
3026 if (prev_regnum == ARM_SP_REGNUM)
3027 return frame_unwind_got_constant (this_frame, prev_regnum,
3028 cache->prev_sp);
3029
3030 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
3031 prev_regnum);
3032 }
3033
3034 /* Implementation of function hook 'sniffer' in
3035 'struct frame_uwnind'. */
3036
3037 static int
3038 arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
3039 struct frame_info *this_frame,
3040 void **this_prologue_cache)
3041 {
3042 CORE_ADDR this_pc = get_frame_pc (this_frame);
3043
3044 /* No need to check is_m; this sniffer is only registered for
3045 M-profile architectures. */
3046
3047 /* Check if exception frame returns to a magic PC value. */
3048 return arm_m_addr_is_magic (this_pc);
3049 }
3050
3051 /* Frame unwinder for M-profile exceptions. */
3052
3053 struct frame_unwind arm_m_exception_unwind =
3054 {
3055 SIGTRAMP_FRAME,
3056 default_frame_unwind_stop_reason,
3057 arm_m_exception_this_id,
3058 arm_m_exception_prev_register,
3059 NULL,
3060 arm_m_exception_unwind_sniffer
3061 };
3062
3063 static CORE_ADDR
3064 arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
3065 {
3066 struct arm_prologue_cache *cache;
3067
3068 if (*this_cache == NULL)
3069 *this_cache = arm_make_prologue_cache (this_frame);
3070 cache = (struct arm_prologue_cache *) *this_cache;
3071
3072 return cache->prev_sp - cache->framesize;
3073 }
3074
3075 struct frame_base arm_normal_base = {
3076 &arm_prologue_unwind,
3077 arm_normal_frame_base,
3078 arm_normal_frame_base,
3079 arm_normal_frame_base
3080 };
3081
3082 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
3083 dummy frame. The frame ID's base needs to match the TOS value
3084 saved by save_dummy_frame_tos() and returned from
3085 arm_push_dummy_call, and the PC needs to match the dummy frame's
3086 breakpoint. */
3087
3088 static struct frame_id
3089 arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3090 {
3091 return frame_id_build (get_frame_register_unsigned (this_frame,
3092 ARM_SP_REGNUM),
3093 get_frame_pc (this_frame));
3094 }
3095
3096 /* Given THIS_FRAME, find the previous frame's resume PC (which will
3097 be used to construct the previous frame's ID, after looking up the
3098 containing function). */
3099
3100 static CORE_ADDR
3101 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
3102 {
3103 CORE_ADDR pc;
3104 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
3105 return arm_addr_bits_remove (gdbarch, pc);
3106 }
3107
3108 static CORE_ADDR
3109 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
3110 {
3111 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
3112 }
3113
3114 static struct value *
3115 arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3116 int regnum)
3117 {
3118 struct gdbarch * gdbarch = get_frame_arch (this_frame);
3119 CORE_ADDR lr, cpsr;
3120 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
3121
3122 switch (regnum)
3123 {
3124 case ARM_PC_REGNUM:
3125 /* The PC is normally copied from the return column, which
3126 describes saves of LR. However, that version may have an
3127 extra bit set to indicate Thumb state. The bit is not
3128 part of the PC. */
3129 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3130 return frame_unwind_got_constant (this_frame, regnum,
3131 arm_addr_bits_remove (gdbarch, lr));
3132
3133 case ARM_PS_REGNUM:
3134 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
3135 cpsr = get_frame_register_unsigned (this_frame, regnum);
3136 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3137 if (IS_THUMB_ADDR (lr))
3138 cpsr |= t_bit;
3139 else
3140 cpsr &= ~t_bit;
3141 return frame_unwind_got_constant (this_frame, regnum, cpsr);
3142
3143 default:
3144 internal_error (__FILE__, __LINE__,
3145 _("Unexpected register %d"), regnum);
3146 }
3147 }
3148
3149 static void
3150 arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3151 struct dwarf2_frame_state_reg *reg,
3152 struct frame_info *this_frame)
3153 {
3154 switch (regnum)
3155 {
3156 case ARM_PC_REGNUM:
3157 case ARM_PS_REGNUM:
3158 reg->how = DWARF2_FRAME_REG_FN;
3159 reg->loc.fn = arm_dwarf2_prev_register;
3160 break;
3161 case ARM_SP_REGNUM:
3162 reg->how = DWARF2_FRAME_REG_CFA;
3163 break;
3164 }
3165 }
3166
3167 /* Implement the stack_frame_destroyed_p gdbarch method. */
3168
3169 static int
3170 thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3171 {
3172 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3173 unsigned int insn, insn2;
3174 int found_return = 0, found_stack_adjust = 0;
3175 CORE_ADDR func_start, func_end;
3176 CORE_ADDR scan_pc;
3177 gdb_byte buf[4];
3178
3179 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3180 return 0;
3181
3182 /* The epilogue is a sequence of instructions along the following lines:
3183
3184 - add stack frame size to SP or FP
3185 - [if frame pointer used] restore SP from FP
3186 - restore registers from SP [may include PC]
3187 - a return-type instruction [if PC wasn't already restored]
3188
3189 In a first pass, we scan forward from the current PC and verify the
3190 instructions we find as compatible with this sequence, ending in a
3191 return instruction.
3192
3193 However, this is not sufficient to distinguish indirect function calls
3194 within a function from indirect tail calls in the epilogue in some cases.
3195 Therefore, if we didn't already find any SP-changing instruction during
3196 forward scan, we add a backward scanning heuristic to ensure we actually
3197 are in the epilogue. */
3198
3199 scan_pc = pc;
3200 while (scan_pc < func_end && !found_return)
3201 {
3202 if (target_read_memory (scan_pc, buf, 2))
3203 break;
3204
3205 scan_pc += 2;
3206 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3207
3208 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3209 found_return = 1;
3210 else if (insn == 0x46f7) /* mov pc, lr */
3211 found_return = 1;
3212 else if (thumb_instruction_restores_sp (insn))
3213 {
3214 if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */
3215 found_return = 1;
3216 }
3217 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
3218 {
3219 if (target_read_memory (scan_pc, buf, 2))
3220 break;
3221
3222 scan_pc += 2;
3223 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3224
3225 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3226 {
3227 if (insn2 & 0x8000) /* <registers> include PC. */
3228 found_return = 1;
3229 }
3230 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3231 && (insn2 & 0x0fff) == 0x0b04)
3232 {
3233 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3234 found_return = 1;
3235 }
3236 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3237 && (insn2 & 0x0e00) == 0x0a00)
3238 ;
3239 else
3240 break;
3241 }
3242 else
3243 break;
3244 }
3245
3246 if (!found_return)
3247 return 0;
3248
3249 /* Since any instruction in the epilogue sequence, with the possible
3250 exception of return itself, updates the stack pointer, we need to
3251 scan backwards for at most one instruction. Try either a 16-bit or
3252 a 32-bit instruction. This is just a heuristic, so we do not worry
3253 too much about false positives. */
3254
3255 if (pc - 4 < func_start)
3256 return 0;
3257 if (target_read_memory (pc - 4, buf, 4))
3258 return 0;
3259
3260 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3261 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3262
3263 if (thumb_instruction_restores_sp (insn2))
3264 found_stack_adjust = 1;
3265 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3266 found_stack_adjust = 1;
3267 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3268 && (insn2 & 0x0fff) == 0x0b04)
3269 found_stack_adjust = 1;
3270 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3271 && (insn2 & 0x0e00) == 0x0a00)
3272 found_stack_adjust = 1;
3273
3274 return found_stack_adjust;
3275 }
3276
3277 static int
3278 arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
3279 {
3280 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3281 unsigned int insn;
3282 int found_return;
3283 CORE_ADDR func_start, func_end;
3284
3285 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3286 return 0;
3287
3288 /* We are in the epilogue if the previous instruction was a stack
3289 adjustment and the next instruction is a possible return (bx, mov
3290 pc, or pop). We could have to scan backwards to find the stack
3291 adjustment, or forwards to find the return, but this is a decent
3292 approximation. First scan forwards. */
3293
3294 found_return = 0;
3295 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3296 if (bits (insn, 28, 31) != INST_NV)
3297 {
3298 if ((insn & 0x0ffffff0) == 0x012fff10)
3299 /* BX. */
3300 found_return = 1;
3301 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3302 /* MOV PC. */
3303 found_return = 1;
3304 else if ((insn & 0x0fff0000) == 0x08bd0000
3305 && (insn & 0x0000c000) != 0)
3306 /* POP (LDMIA), including PC or LR. */
3307 found_return = 1;
3308 }
3309
3310 if (!found_return)
3311 return 0;
3312
3313 /* Scan backwards. This is just a heuristic, so do not worry about
3314 false positives from mode changes. */
3315
3316 if (pc < func_start + 4)
3317 return 0;
3318
3319 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
3320 if (arm_instruction_restores_sp (insn))
3321 return 1;
3322
3323 return 0;
3324 }
3325
3326 /* Implement the stack_frame_destroyed_p gdbarch method. */
3327
3328 static int
3329 arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3330 {
3331 if (arm_pc_is_thumb (gdbarch, pc))
3332 return thumb_stack_frame_destroyed_p (gdbarch, pc);
3333 else
3334 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
3335 }
3336
3337 /* When arguments must be pushed onto the stack, they go on in reverse
3338 order. The code below implements a FILO (stack) to do this. */
3339
3340 struct stack_item
3341 {
3342 int len;
3343 struct stack_item *prev;
3344 gdb_byte *data;
3345 };
3346
3347 static struct stack_item *
3348 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
3349 {
3350 struct stack_item *si;
3351 si = XNEW (struct stack_item);
3352 si->data = (gdb_byte *) xmalloc (len);
3353 si->len = len;
3354 si->prev = prev;
3355 memcpy (si->data, contents, len);
3356 return si;
3357 }
3358
3359 static struct stack_item *
3360 pop_stack_item (struct stack_item *si)
3361 {
3362 struct stack_item *dead = si;
3363 si = si->prev;
3364 xfree (dead->data);
3365 xfree (dead);
3366 return si;
3367 }
3368
3369
3370 /* Return the alignment (in bytes) of the given type. */
3371
3372 static int
3373 arm_type_align (struct type *t)
3374 {
3375 int n;
3376 int align;
3377 int falign;
3378
3379 t = check_typedef (t);
3380 switch (TYPE_CODE (t))
3381 {
3382 default:
3383 /* Should never happen. */
3384 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3385 return 4;
3386
3387 case TYPE_CODE_PTR:
3388 case TYPE_CODE_ENUM:
3389 case TYPE_CODE_INT:
3390 case TYPE_CODE_FLT:
3391 case TYPE_CODE_SET:
3392 case TYPE_CODE_RANGE:
3393 case TYPE_CODE_REF:
3394 case TYPE_CODE_RVALUE_REF:
3395 case TYPE_CODE_CHAR:
3396 case TYPE_CODE_BOOL:
3397 return TYPE_LENGTH (t);
3398
3399 case TYPE_CODE_ARRAY:
3400 if (TYPE_VECTOR (t))
3401 {
3402 /* Use the natural alignment for vector types (the same for
3403 scalar type), but the maximum alignment is 64-bit. */
3404 if (TYPE_LENGTH (t) > 8)
3405 return 8;
3406 else
3407 return TYPE_LENGTH (t);
3408 }
3409 else
3410 return arm_type_align (TYPE_TARGET_TYPE (t));
3411 case TYPE_CODE_COMPLEX:
3412 return arm_type_align (TYPE_TARGET_TYPE (t));
3413
3414 case TYPE_CODE_STRUCT:
3415 case TYPE_CODE_UNION:
3416 align = 1;
3417 for (n = 0; n < TYPE_NFIELDS (t); n++)
3418 {
3419 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3420 if (falign > align)
3421 align = falign;
3422 }
3423 return align;
3424 }
3425 }
3426
3427 /* Possible base types for a candidate for passing and returning in
3428 VFP registers. */
3429
3430 enum arm_vfp_cprc_base_type
3431 {
3432 VFP_CPRC_UNKNOWN,
3433 VFP_CPRC_SINGLE,
3434 VFP_CPRC_DOUBLE,
3435 VFP_CPRC_VEC64,
3436 VFP_CPRC_VEC128
3437 };
3438
3439 /* The length of one element of base type B. */
3440
3441 static unsigned
3442 arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3443 {
3444 switch (b)
3445 {
3446 case VFP_CPRC_SINGLE:
3447 return 4;
3448 case VFP_CPRC_DOUBLE:
3449 return 8;
3450 case VFP_CPRC_VEC64:
3451 return 8;
3452 case VFP_CPRC_VEC128:
3453 return 16;
3454 default:
3455 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3456 (int) b);
3457 }
3458 }
3459
3460 /* The character ('s', 'd' or 'q') for the type of VFP register used
3461 for passing base type B. */
3462
3463 static int
3464 arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3465 {
3466 switch (b)
3467 {
3468 case VFP_CPRC_SINGLE:
3469 return 's';
3470 case VFP_CPRC_DOUBLE:
3471 return 'd';
3472 case VFP_CPRC_VEC64:
3473 return 'd';
3474 case VFP_CPRC_VEC128:
3475 return 'q';
3476 default:
3477 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3478 (int) b);
3479 }
3480 }
3481
3482 /* Determine whether T may be part of a candidate for passing and
3483 returning in VFP registers, ignoring the limit on the total number
3484 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3485 classification of the first valid component found; if it is not
3486 VFP_CPRC_UNKNOWN, all components must have the same classification
3487 as *BASE_TYPE. If it is found that T contains a type not permitted
3488 for passing and returning in VFP registers, a type differently
3489 classified from *BASE_TYPE, or two types differently classified
3490 from each other, return -1, otherwise return the total number of
3491 base-type elements found (possibly 0 in an empty structure or
3492 array). Vector types are not currently supported, matching the
3493 generic AAPCS support. */
3494
3495 static int
3496 arm_vfp_cprc_sub_candidate (struct type *t,
3497 enum arm_vfp_cprc_base_type *base_type)
3498 {
3499 t = check_typedef (t);
3500 switch (TYPE_CODE (t))
3501 {
3502 case TYPE_CODE_FLT:
3503 switch (TYPE_LENGTH (t))
3504 {
3505 case 4:
3506 if (*base_type == VFP_CPRC_UNKNOWN)
3507 *base_type = VFP_CPRC_SINGLE;
3508 else if (*base_type != VFP_CPRC_SINGLE)
3509 return -1;
3510 return 1;
3511
3512 case 8:
3513 if (*base_type == VFP_CPRC_UNKNOWN)
3514 *base_type = VFP_CPRC_DOUBLE;
3515 else if (*base_type != VFP_CPRC_DOUBLE)
3516 return -1;
3517 return 1;
3518
3519 default:
3520 return -1;
3521 }
3522 break;
3523
3524 case TYPE_CODE_COMPLEX:
3525 /* Arguments of complex T where T is one of the types float or
3526 double get treated as if they are implemented as:
3527
3528 struct complexT
3529 {
3530 T real;
3531 T imag;
3532 };
3533
3534 */
3535 switch (TYPE_LENGTH (t))
3536 {
3537 case 8:
3538 if (*base_type == VFP_CPRC_UNKNOWN)
3539 *base_type = VFP_CPRC_SINGLE;
3540 else if (*base_type != VFP_CPRC_SINGLE)
3541 return -1;
3542 return 2;
3543
3544 case 16:
3545 if (*base_type == VFP_CPRC_UNKNOWN)
3546 *base_type = VFP_CPRC_DOUBLE;
3547 else if (*base_type != VFP_CPRC_DOUBLE)
3548 return -1;
3549 return 2;
3550
3551 default:
3552 return -1;
3553 }
3554 break;
3555
3556 case TYPE_CODE_ARRAY:
3557 {
3558 if (TYPE_VECTOR (t))
3559 {
3560 /* A 64-bit or 128-bit containerized vector type are VFP
3561 CPRCs. */
3562 switch (TYPE_LENGTH (t))
3563 {
3564 case 8:
3565 if (*base_type == VFP_CPRC_UNKNOWN)
3566 *base_type = VFP_CPRC_VEC64;
3567 return 1;
3568 case 16:
3569 if (*base_type == VFP_CPRC_UNKNOWN)
3570 *base_type = VFP_CPRC_VEC128;
3571 return 1;
3572 default:
3573 return -1;
3574 }
3575 }
3576 else
3577 {
3578 int count;
3579 unsigned unitlen;
3580
3581 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t),
3582 base_type);
3583 if (count == -1)
3584 return -1;
3585 if (TYPE_LENGTH (t) == 0)
3586 {
3587 gdb_assert (count == 0);
3588 return 0;
3589 }
3590 else if (count == 0)
3591 return -1;
3592 unitlen = arm_vfp_cprc_unit_length (*base_type);
3593 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3594 return TYPE_LENGTH (t) / unitlen;
3595 }
3596 }
3597 break;
3598
3599 case TYPE_CODE_STRUCT:
3600 {
3601 int count = 0;
3602 unsigned unitlen;
3603 int i;
3604 for (i = 0; i < TYPE_NFIELDS (t); i++)
3605 {
3606 int sub_count = 0;
3607
3608 if (!field_is_static (&TYPE_FIELD (t, i)))
3609 sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3610 base_type);
3611 if (sub_count == -1)
3612 return -1;
3613 count += sub_count;
3614 }
3615 if (TYPE_LENGTH (t) == 0)
3616 {
3617 gdb_assert (count == 0);
3618 return 0;
3619 }
3620 else if (count == 0)
3621 return -1;
3622 unitlen = arm_vfp_cprc_unit_length (*base_type);
3623 if (TYPE_LENGTH (t) != unitlen * count)
3624 return -1;
3625 return count;
3626 }
3627
3628 case TYPE_CODE_UNION:
3629 {
3630 int count = 0;
3631 unsigned unitlen;
3632 int i;
3633 for (i = 0; i < TYPE_NFIELDS (t); i++)
3634 {
3635 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3636 base_type);
3637 if (sub_count == -1)
3638 return -1;
3639 count = (count > sub_count ? count : sub_count);
3640 }
3641 if (TYPE_LENGTH (t) == 0)
3642 {
3643 gdb_assert (count == 0);
3644 return 0;
3645 }
3646 else if (count == 0)
3647 return -1;
3648 unitlen = arm_vfp_cprc_unit_length (*base_type);
3649 if (TYPE_LENGTH (t) != unitlen * count)
3650 return -1;
3651 return count;
3652 }
3653
3654 default:
3655 break;
3656 }
3657
3658 return -1;
3659 }
3660
3661 /* Determine whether T is a VFP co-processor register candidate (CPRC)
3662 if passed to or returned from a non-variadic function with the VFP
3663 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3664 *BASE_TYPE to the base type for T and *COUNT to the number of
3665 elements of that base type before returning. */
3666
3667 static int
3668 arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3669 int *count)
3670 {
3671 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3672 int c = arm_vfp_cprc_sub_candidate (t, &b);
3673 if (c <= 0 || c > 4)
3674 return 0;
3675 *base_type = b;
3676 *count = c;
3677 return 1;
3678 }
3679
3680 /* Return 1 if the VFP ABI should be used for passing arguments to and
3681 returning values from a function of type FUNC_TYPE, 0
3682 otherwise. */
3683
3684 static int
3685 arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3686 {
3687 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3688 /* Variadic functions always use the base ABI. Assume that functions
3689 without debug info are not variadic. */
3690 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3691 return 0;
3692 /* The VFP ABI is only supported as a variant of AAPCS. */
3693 if (tdep->arm_abi != ARM_ABI_AAPCS)
3694 return 0;
3695 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3696 }
3697
3698 /* We currently only support passing parameters in integer registers, which
3699 conforms with GCC's default model, and VFP argument passing following
3700 the VFP variant of AAPCS. Several other variants exist and
3701 we should probably support some of them based on the selected ABI. */
3702
3703 static CORE_ADDR
3704 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3705 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3706 struct value **args, CORE_ADDR sp, int struct_return,
3707 CORE_ADDR struct_addr)
3708 {
3709 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3710 int argnum;
3711 int argreg;
3712 int nstack;
3713 struct stack_item *si = NULL;
3714 int use_vfp_abi;
3715 struct type *ftype;
3716 unsigned vfp_regs_free = (1 << 16) - 1;
3717
3718 /* Determine the type of this function and whether the VFP ABI
3719 applies. */
3720 ftype = check_typedef (value_type (function));
3721 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3722 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3723 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
3724
3725 /* Set the return address. For the ARM, the return breakpoint is
3726 always at BP_ADDR. */
3727 if (arm_pc_is_thumb (gdbarch, bp_addr))
3728 bp_addr |= 1;
3729 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
3730
3731 /* Walk through the list of args and determine how large a temporary
3732 stack is required. Need to take care here as structs may be
3733 passed on the stack, and we have to push them. */
3734 nstack = 0;
3735
3736 argreg = ARM_A1_REGNUM;
3737 nstack = 0;
3738
3739 /* The struct_return pointer occupies the first parameter
3740 passing register. */
3741 if (struct_return)
3742 {
3743 if (arm_debug)
3744 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
3745 gdbarch_register_name (gdbarch, argreg),
3746 paddress (gdbarch, struct_addr));
3747 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3748 argreg++;
3749 }
3750
3751 for (argnum = 0; argnum < nargs; argnum++)
3752 {
3753 int len;
3754 struct type *arg_type;
3755 struct type *target_type;
3756 enum type_code typecode;
3757 const bfd_byte *val;
3758 int align;
3759 enum arm_vfp_cprc_base_type vfp_base_type;
3760 int vfp_base_count;
3761 int may_use_core_reg = 1;
3762
3763 arg_type = check_typedef (value_type (args[argnum]));
3764 len = TYPE_LENGTH (arg_type);
3765 target_type = TYPE_TARGET_TYPE (arg_type);
3766 typecode = TYPE_CODE (arg_type);
3767 val = value_contents (args[argnum]);
3768
3769 align = arm_type_align (arg_type);
3770 /* Round alignment up to a whole number of words. */
3771 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3772 /* Different ABIs have different maximum alignments. */
3773 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3774 {
3775 /* The APCS ABI only requires word alignment. */
3776 align = INT_REGISTER_SIZE;
3777 }
3778 else
3779 {
3780 /* The AAPCS requires at most doubleword alignment. */
3781 if (align > INT_REGISTER_SIZE * 2)
3782 align = INT_REGISTER_SIZE * 2;
3783 }
3784
3785 if (use_vfp_abi
3786 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3787 &vfp_base_count))
3788 {
3789 int regno;
3790 int unit_length;
3791 int shift;
3792 unsigned mask;
3793
3794 /* Because this is a CPRC it cannot go in a core register or
3795 cause a core register to be skipped for alignment.
3796 Either it goes in VFP registers and the rest of this loop
3797 iteration is skipped for this argument, or it goes on the
3798 stack (and the stack alignment code is correct for this
3799 case). */
3800 may_use_core_reg = 0;
3801
3802 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3803 shift = unit_length / 4;
3804 mask = (1 << (shift * vfp_base_count)) - 1;
3805 for (regno = 0; regno < 16; regno += shift)
3806 if (((vfp_regs_free >> regno) & mask) == mask)
3807 break;
3808
3809 if (regno < 16)
3810 {
3811 int reg_char;
3812 int reg_scaled;
3813 int i;
3814
3815 vfp_regs_free &= ~(mask << regno);
3816 reg_scaled = regno / shift;
3817 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3818 for (i = 0; i < vfp_base_count; i++)
3819 {
3820 char name_buf[4];
3821 int regnum;
3822 if (reg_char == 'q')
3823 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
3824 val + i * unit_length);
3825 else
3826 {
3827 xsnprintf (name_buf, sizeof (name_buf), "%c%d",
3828 reg_char, reg_scaled + i);
3829 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3830 strlen (name_buf));
3831 regcache_cooked_write (regcache, regnum,
3832 val + i * unit_length);
3833 }
3834 }
3835 continue;
3836 }
3837 else
3838 {
3839 /* This CPRC could not go in VFP registers, so all VFP
3840 registers are now marked as used. */
3841 vfp_regs_free = 0;
3842 }
3843 }
3844
3845 /* Push stack padding for dowubleword alignment. */
3846 if (nstack & (align - 1))
3847 {
3848 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3849 nstack += INT_REGISTER_SIZE;
3850 }
3851
3852 /* Doubleword aligned quantities must go in even register pairs. */
3853 if (may_use_core_reg
3854 && argreg <= ARM_LAST_ARG_REGNUM
3855 && align > INT_REGISTER_SIZE
3856 && argreg & 1)
3857 argreg++;
3858
3859 /* If the argument is a pointer to a function, and it is a
3860 Thumb function, create a LOCAL copy of the value and set
3861 the THUMB bit in it. */
3862 if (TYPE_CODE_PTR == typecode
3863 && target_type != NULL
3864 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
3865 {
3866 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
3867 if (arm_pc_is_thumb (gdbarch, regval))
3868 {
3869 bfd_byte *copy = (bfd_byte *) alloca (len);
3870 store_unsigned_integer (copy, len, byte_order,
3871 MAKE_THUMB_ADDR (regval));
3872 val = copy;
3873 }
3874 }
3875
3876 /* Copy the argument to general registers or the stack in
3877 register-sized pieces. Large arguments are split between
3878 registers and stack. */
3879 while (len > 0)
3880 {
3881 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
3882 CORE_ADDR regval
3883 = extract_unsigned_integer (val, partial_len, byte_order);
3884
3885 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
3886 {
3887 /* The argument is being passed in a general purpose
3888 register. */
3889 if (byte_order == BFD_ENDIAN_BIG)
3890 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
3891 if (arm_debug)
3892 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
3893 argnum,
3894 gdbarch_register_name
3895 (gdbarch, argreg),
3896 phex (regval, INT_REGISTER_SIZE));
3897 regcache_cooked_write_unsigned (regcache, argreg, regval);
3898 argreg++;
3899 }
3900 else
3901 {
3902 gdb_byte buf[INT_REGISTER_SIZE];
3903
3904 memset (buf, 0, sizeof (buf));
3905 store_unsigned_integer (buf, partial_len, byte_order, regval);
3906
3907 /* Push the arguments onto the stack. */
3908 if (arm_debug)
3909 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3910 argnum, nstack);
3911 si = push_stack_item (si, buf, INT_REGISTER_SIZE);
3912 nstack += INT_REGISTER_SIZE;
3913 }
3914
3915 len -= partial_len;
3916 val += partial_len;
3917 }
3918 }
3919 /* If we have an odd number of words to push, then decrement the stack
3920 by one word now, so first stack argument will be dword aligned. */
3921 if (nstack & 4)
3922 sp -= 4;
3923
3924 while (si)
3925 {
3926 sp -= si->len;
3927 write_memory (sp, si->data, si->len);
3928 si = pop_stack_item (si);
3929 }
3930
3931 /* Finally, update teh SP register. */
3932 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3933
3934 return sp;
3935 }
3936
3937
3938 /* Always align the frame to an 8-byte boundary. This is required on
3939 some platforms and harmless on the rest. */
3940
3941 static CORE_ADDR
3942 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3943 {
3944 /* Align the stack to eight bytes. */
3945 return sp & ~ (CORE_ADDR) 7;
3946 }
3947
3948 static void
3949 print_fpu_flags (struct ui_file *file, int flags)
3950 {
3951 if (flags & (1 << 0))
3952 fputs_filtered ("IVO ", file);
3953 if (flags & (1 << 1))
3954 fputs_filtered ("DVZ ", file);
3955 if (flags & (1 << 2))
3956 fputs_filtered ("OFL ", file);
3957 if (flags & (1 << 3))
3958 fputs_filtered ("UFL ", file);
3959 if (flags & (1 << 4))
3960 fputs_filtered ("INX ", file);
3961 fputc_filtered ('\n', file);
3962 }
3963
3964 /* Print interesting information about the floating point processor
3965 (if present) or emulator. */
3966 static void
3967 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
3968 struct frame_info *frame, const char *args)
3969 {
3970 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
3971 int type;
3972
3973 type = (status >> 24) & 127;
3974 if (status & (1 << 31))
3975 fprintf_filtered (file, _("Hardware FPU type %d\n"), type);
3976 else
3977 fprintf_filtered (file, _("Software FPU type %d\n"), type);
3978 /* i18n: [floating point unit] mask */
3979 fputs_filtered (_("mask: "), file);
3980 print_fpu_flags (file, status >> 16);
3981 /* i18n: [floating point unit] flags */
3982 fputs_filtered (_("flags: "), file);
3983 print_fpu_flags (file, status);
3984 }
3985
3986 /* Construct the ARM extended floating point type. */
3987 static struct type *
3988 arm_ext_type (struct gdbarch *gdbarch)
3989 {
3990 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3991
3992 if (!tdep->arm_ext_type)
3993 tdep->arm_ext_type
3994 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
3995 floatformats_arm_ext);
3996
3997 return tdep->arm_ext_type;
3998 }
3999
4000 static struct type *
4001 arm_neon_double_type (struct gdbarch *gdbarch)
4002 {
4003 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4004
4005 if (tdep->neon_double_type == NULL)
4006 {
4007 struct type *t, *elem;
4008
4009 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
4010 TYPE_CODE_UNION);
4011 elem = builtin_type (gdbarch)->builtin_uint8;
4012 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
4013 elem = builtin_type (gdbarch)->builtin_uint16;
4014 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
4015 elem = builtin_type (gdbarch)->builtin_uint32;
4016 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
4017 elem = builtin_type (gdbarch)->builtin_uint64;
4018 append_composite_type_field (t, "u64", elem);
4019 elem = builtin_type (gdbarch)->builtin_float;
4020 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
4021 elem = builtin_type (gdbarch)->builtin_double;
4022 append_composite_type_field (t, "f64", elem);
4023
4024 TYPE_VECTOR (t) = 1;
4025 TYPE_NAME (t) = "neon_d";
4026 tdep->neon_double_type = t;
4027 }
4028
4029 return tdep->neon_double_type;
4030 }
4031
4032 /* FIXME: The vector types are not correctly ordered on big-endian
4033 targets. Just as s0 is the low bits of d0, d0[0] is also the low
4034 bits of d0 - regardless of what unit size is being held in d0. So
4035 the offset of the first uint8 in d0 is 7, but the offset of the
4036 first float is 4. This code works as-is for little-endian
4037 targets. */
4038
4039 static struct type *
4040 arm_neon_quad_type (struct gdbarch *gdbarch)
4041 {
4042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4043
4044 if (tdep->neon_quad_type == NULL)
4045 {
4046 struct type *t, *elem;
4047
4048 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
4049 TYPE_CODE_UNION);
4050 elem = builtin_type (gdbarch)->builtin_uint8;
4051 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
4052 elem = builtin_type (gdbarch)->builtin_uint16;
4053 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
4054 elem = builtin_type (gdbarch)->builtin_uint32;
4055 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
4056 elem = builtin_type (gdbarch)->builtin_uint64;
4057 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
4058 elem = builtin_type (gdbarch)->builtin_float;
4059 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
4060 elem = builtin_type (gdbarch)->builtin_double;
4061 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
4062
4063 TYPE_VECTOR (t) = 1;
4064 TYPE_NAME (t) = "neon_q";
4065 tdep->neon_quad_type = t;
4066 }
4067
4068 return tdep->neon_quad_type;
4069 }
4070
4071 /* Return the GDB type object for the "standard" data type of data in
4072 register N. */
4073
4074 static struct type *
4075 arm_register_type (struct gdbarch *gdbarch, int regnum)
4076 {
4077 int num_regs = gdbarch_num_regs (gdbarch);
4078
4079 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
4080 && regnum >= num_regs && regnum < num_regs + 32)
4081 return builtin_type (gdbarch)->builtin_float;
4082
4083 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
4084 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
4085 return arm_neon_quad_type (gdbarch);
4086
4087 /* If the target description has register information, we are only
4088 in this function so that we can override the types of
4089 double-precision registers for NEON. */
4090 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
4091 {
4092 struct type *t = tdesc_register_type (gdbarch, regnum);
4093
4094 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
4095 && TYPE_CODE (t) == TYPE_CODE_FLT
4096 && gdbarch_tdep (gdbarch)->have_neon)
4097 return arm_neon_double_type (gdbarch);
4098 else
4099 return t;
4100 }
4101
4102 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
4103 {
4104 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
4105 return builtin_type (gdbarch)->builtin_void;
4106
4107 return arm_ext_type (gdbarch);
4108 }
4109 else if (regnum == ARM_SP_REGNUM)
4110 return builtin_type (gdbarch)->builtin_data_ptr;
4111 else if (regnum == ARM_PC_REGNUM)
4112 return builtin_type (gdbarch)->builtin_func_ptr;
4113 else if (regnum >= ARRAY_SIZE (arm_register_names))
4114 /* These registers are only supported on targets which supply
4115 an XML description. */
4116 return builtin_type (gdbarch)->builtin_int0;
4117 else
4118 return builtin_type (gdbarch)->builtin_uint32;
4119 }
4120
4121 /* Map a DWARF register REGNUM onto the appropriate GDB register
4122 number. */
4123
4124 static int
4125 arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
4126 {
4127 /* Core integer regs. */
4128 if (reg >= 0 && reg <= 15)
4129 return reg;
4130
4131 /* Legacy FPA encoding. These were once used in a way which
4132 overlapped with VFP register numbering, so their use is
4133 discouraged, but GDB doesn't support the ARM toolchain
4134 which used them for VFP. */
4135 if (reg >= 16 && reg <= 23)
4136 return ARM_F0_REGNUM + reg - 16;
4137
4138 /* New assignments for the FPA registers. */
4139 if (reg >= 96 && reg <= 103)
4140 return ARM_F0_REGNUM + reg - 96;
4141
4142 /* WMMX register assignments. */
4143 if (reg >= 104 && reg <= 111)
4144 return ARM_WCGR0_REGNUM + reg - 104;
4145
4146 if (reg >= 112 && reg <= 127)
4147 return ARM_WR0_REGNUM + reg - 112;
4148
4149 if (reg >= 192 && reg <= 199)
4150 return ARM_WC0_REGNUM + reg - 192;
4151
4152 /* VFP v2 registers. A double precision value is actually
4153 in d1 rather than s2, but the ABI only defines numbering
4154 for the single precision registers. This will "just work"
4155 in GDB for little endian targets (we'll read eight bytes,
4156 starting in s0 and then progressing to s1), but will be
4157 reversed on big endian targets with VFP. This won't
4158 be a problem for the new Neon quad registers; you're supposed
4159 to use DW_OP_piece for those. */
4160 if (reg >= 64 && reg <= 95)
4161 {
4162 char name_buf[4];
4163
4164 xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
4165 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4166 strlen (name_buf));
4167 }
4168
4169 /* VFP v3 / Neon registers. This range is also used for VFP v2
4170 registers, except that it now describes d0 instead of s0. */
4171 if (reg >= 256 && reg <= 287)
4172 {
4173 char name_buf[4];
4174
4175 xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
4176 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4177 strlen (name_buf));
4178 }
4179
4180 return -1;
4181 }
4182
4183 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4184 static int
4185 arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
4186 {
4187 int reg = regnum;
4188 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
4189
4190 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4191 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4192
4193 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4194 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4195
4196 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4197 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4198
4199 if (reg < NUM_GREGS)
4200 return SIM_ARM_R0_REGNUM + reg;
4201 reg -= NUM_GREGS;
4202
4203 if (reg < NUM_FREGS)
4204 return SIM_ARM_FP0_REGNUM + reg;
4205 reg -= NUM_FREGS;
4206
4207 if (reg < NUM_SREGS)
4208 return SIM_ARM_FPS_REGNUM + reg;
4209 reg -= NUM_SREGS;
4210
4211 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
4212 }
4213
4214 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4215 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4216 It is thought that this is is the floating-point register format on
4217 little-endian systems. */
4218
4219 static void
4220 convert_from_extended (const struct floatformat *fmt, const void *ptr,
4221 void *dbl, int endianess)
4222 {
4223 DOUBLEST d;
4224
4225 if (endianess == BFD_ENDIAN_BIG)
4226 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
4227 else
4228 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
4229 ptr, &d);
4230 floatformat_from_doublest (fmt, &d, dbl);
4231 }
4232
4233 static void
4234 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
4235 int endianess)
4236 {
4237 DOUBLEST d;
4238
4239 floatformat_to_doublest (fmt, ptr, &d);
4240 if (endianess == BFD_ENDIAN_BIG)
4241 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
4242 else
4243 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
4244 &d, dbl);
4245 }
4246
4247 /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4248 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4249 NULL if an error occurs. BUF is freed. */
4250
4251 static gdb_byte *
4252 extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4253 int old_len, int new_len)
4254 {
4255 gdb_byte *new_buf;
4256 int bytes_to_read = new_len - old_len;
4257
4258 new_buf = (gdb_byte *) xmalloc (new_len);
4259 memcpy (new_buf + bytes_to_read, buf, old_len);
4260 xfree (buf);
4261 if (target_read_code (endaddr - new_len, new_buf, bytes_to_read) != 0)
4262 {
4263 xfree (new_buf);
4264 return NULL;
4265 }
4266 return new_buf;
4267 }
4268
4269 /* An IT block is at most the 2-byte IT instruction followed by
4270 four 4-byte instructions. The furthest back we must search to
4271 find an IT block that affects the current instruction is thus
4272 2 + 3 * 4 == 14 bytes. */
4273 #define MAX_IT_BLOCK_PREFIX 14
4274
4275 /* Use a quick scan if there are more than this many bytes of
4276 code. */
4277 #define IT_SCAN_THRESHOLD 32
4278
4279 /* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4280 A breakpoint in an IT block may not be hit, depending on the
4281 condition flags. */
4282 static CORE_ADDR
4283 arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
4284 {
4285 gdb_byte *buf;
4286 char map_type;
4287 CORE_ADDR boundary, func_start;
4288 int buf_len;
4289 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4290 int i, any, last_it, last_it_count;
4291
4292 /* If we are using BKPT breakpoints, none of this is necessary. */
4293 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4294 return bpaddr;
4295
4296 /* ARM mode does not have this problem. */
4297 if (!arm_pc_is_thumb (gdbarch, bpaddr))
4298 return bpaddr;
4299
4300 /* We are setting a breakpoint in Thumb code that could potentially
4301 contain an IT block. The first step is to find how much Thumb
4302 code there is; we do not need to read outside of known Thumb
4303 sequences. */
4304 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4305 if (map_type == 0)
4306 /* Thumb-2 code must have mapping symbols to have a chance. */
4307 return bpaddr;
4308
4309 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
4310
4311 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4312 && func_start > boundary)
4313 boundary = func_start;
4314
4315 /* Search for a candidate IT instruction. We have to do some fancy
4316 footwork to distinguish a real IT instruction from the second
4317 half of a 32-bit instruction, but there is no need for that if
4318 there's no candidate. */
4319 buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX);
4320 if (buf_len == 0)
4321 /* No room for an IT instruction. */
4322 return bpaddr;
4323
4324 buf = (gdb_byte *) xmalloc (buf_len);
4325 if (target_read_code (bpaddr - buf_len, buf, buf_len) != 0)
4326 return bpaddr;
4327 any = 0;
4328 for (i = 0; i < buf_len; i += 2)
4329 {
4330 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4331 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4332 {
4333 any = 1;
4334 break;
4335 }
4336 }
4337
4338 if (any == 0)
4339 {
4340 xfree (buf);
4341 return bpaddr;
4342 }
4343
4344 /* OK, the code bytes before this instruction contain at least one
4345 halfword which resembles an IT instruction. We know that it's
4346 Thumb code, but there are still two possibilities. Either the
4347 halfword really is an IT instruction, or it is the second half of
4348 a 32-bit Thumb instruction. The only way we can tell is to
4349 scan forwards from a known instruction boundary. */
4350 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
4351 {
4352 int definite;
4353
4354 /* There's a lot of code before this instruction. Start with an
4355 optimistic search; it's easy to recognize halfwords that can
4356 not be the start of a 32-bit instruction, and use that to
4357 lock on to the instruction boundaries. */
4358 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
4359 if (buf == NULL)
4360 return bpaddr;
4361 buf_len = IT_SCAN_THRESHOLD;
4362
4363 definite = 0;
4364 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
4365 {
4366 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4367 if (thumb_insn_size (inst1) == 2)
4368 {
4369 definite = 1;
4370 break;
4371 }
4372 }
4373
4374 /* At this point, if DEFINITE, BUF[I] is the first place we
4375 are sure that we know the instruction boundaries, and it is far
4376 enough from BPADDR that we could not miss an IT instruction
4377 affecting BPADDR. If ! DEFINITE, give up - start from a
4378 known boundary. */
4379 if (! definite)
4380 {
4381 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
4382 bpaddr - boundary);
4383 if (buf == NULL)
4384 return bpaddr;
4385 buf_len = bpaddr - boundary;
4386 i = 0;
4387 }
4388 }
4389 else
4390 {
4391 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
4392 if (buf == NULL)
4393 return bpaddr;
4394 buf_len = bpaddr - boundary;
4395 i = 0;
4396 }
4397
4398 /* Scan forwards. Find the last IT instruction before BPADDR. */
4399 last_it = -1;
4400 last_it_count = 0;
4401 while (i < buf_len)
4402 {
4403 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4404 last_it_count--;
4405 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4406 {
4407 last_it = i;
4408 if (inst1 & 0x0001)
4409 last_it_count = 4;
4410 else if (inst1 & 0x0002)
4411 last_it_count = 3;
4412 else if (inst1 & 0x0004)
4413 last_it_count = 2;
4414 else
4415 last_it_count = 1;
4416 }
4417 i += thumb_insn_size (inst1);
4418 }
4419
4420 xfree (buf);
4421
4422 if (last_it == -1)
4423 /* There wasn't really an IT instruction after all. */
4424 return bpaddr;
4425
4426 if (last_it_count < 1)
4427 /* It was too far away. */
4428 return bpaddr;
4429
4430 /* This really is a trouble spot. Move the breakpoint to the IT
4431 instruction. */
4432 return bpaddr - buf_len + last_it;
4433 }
4434
4435 /* ARM displaced stepping support.
4436
4437 Generally ARM displaced stepping works as follows:
4438
4439 1. When an instruction is to be single-stepped, it is first decoded by
4440 arm_process_displaced_insn. Depending on the type of instruction, it is
4441 then copied to a scratch location, possibly in a modified form. The
4442 copy_* set of functions performs such modification, as necessary. A
4443 breakpoint is placed after the modified instruction in the scratch space
4444 to return control to GDB. Note in particular that instructions which
4445 modify the PC will no longer do so after modification.
4446
4447 2. The instruction is single-stepped, by setting the PC to the scratch
4448 location address, and resuming. Control returns to GDB when the
4449 breakpoint is hit.
4450
4451 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
4452 function used for the current instruction. This function's job is to
4453 put the CPU/memory state back to what it would have been if the
4454 instruction had been executed unmodified in its original location. */
4455
4456 /* NOP instruction (mov r0, r0). */
4457 #define ARM_NOP 0xe1a00000
4458 #define THUMB_NOP 0x4600
4459
4460 /* Helper for register reads for displaced stepping. In particular, this
4461 returns the PC as it would be seen by the instruction at its original
4462 location. */
4463
4464 ULONGEST
4465 displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4466 int regno)
4467 {
4468 ULONGEST ret;
4469 CORE_ADDR from = dsc->insn_addr;
4470
4471 if (regno == ARM_PC_REGNUM)
4472 {
4473 /* Compute pipeline offset:
4474 - When executing an ARM instruction, PC reads as the address of the
4475 current instruction plus 8.
4476 - When executing a Thumb instruction, PC reads as the address of the
4477 current instruction plus 4. */
4478
4479 if (!dsc->is_thumb)
4480 from += 8;
4481 else
4482 from += 4;
4483
4484 if (debug_displaced)
4485 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4486 (unsigned long) from);
4487 return (ULONGEST) from;
4488 }
4489 else
4490 {
4491 regcache_cooked_read_unsigned (regs, regno, &ret);
4492 if (debug_displaced)
4493 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
4494 regno, (unsigned long) ret);
4495 return ret;
4496 }
4497 }
4498
4499 static int
4500 displaced_in_arm_mode (struct regcache *regs)
4501 {
4502 ULONGEST ps;
4503 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
4504
4505 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4506
4507 return (ps & t_bit) == 0;
4508 }
4509
4510 /* Write to the PC as from a branch instruction. */
4511
4512 static void
4513 branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4514 ULONGEST val)
4515 {
4516 if (!dsc->is_thumb)
4517 /* Note: If bits 0/1 are set, this branch would be unpredictable for
4518 architecture versions < 6. */
4519 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4520 val & ~(ULONGEST) 0x3);
4521 else
4522 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4523 val & ~(ULONGEST) 0x1);
4524 }
4525
4526 /* Write to the PC as from a branch-exchange instruction. */
4527
4528 static void
4529 bx_write_pc (struct regcache *regs, ULONGEST val)
4530 {
4531 ULONGEST ps;
4532 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
4533
4534 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4535
4536 if ((val & 1) == 1)
4537 {
4538 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
4539 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
4540 }
4541 else if ((val & 2) == 0)
4542 {
4543 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4544 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
4545 }
4546 else
4547 {
4548 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
4549 mode, align dest to 4 bytes). */
4550 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
4551 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
4552 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
4553 }
4554 }
4555
4556 /* Write to the PC as if from a load instruction. */
4557
4558 static void
4559 load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4560 ULONGEST val)
4561 {
4562 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
4563 bx_write_pc (regs, val);
4564 else
4565 branch_write_pc (regs, dsc, val);
4566 }
4567
4568 /* Write to the PC as if from an ALU instruction. */
4569
4570 static void
4571 alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4572 ULONGEST val)
4573 {
4574 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
4575 bx_write_pc (regs, val);
4576 else
4577 branch_write_pc (regs, dsc, val);
4578 }
4579
4580 /* Helper for writing to registers for displaced stepping. Writing to the PC
4581 has a varying effects depending on the instruction which does the write:
4582 this is controlled by the WRITE_PC argument. */
4583
4584 void
4585 displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4586 int regno, ULONGEST val, enum pc_write_style write_pc)
4587 {
4588 if (regno == ARM_PC_REGNUM)
4589 {
4590 if (debug_displaced)
4591 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
4592 (unsigned long) val);
4593 switch (write_pc)
4594 {
4595 case BRANCH_WRITE_PC:
4596 branch_write_pc (regs, dsc, val);
4597 break;
4598
4599 case BX_WRITE_PC:
4600 bx_write_pc (regs, val);
4601 break;
4602
4603 case LOAD_WRITE_PC:
4604 load_write_pc (regs, dsc, val);
4605 break;
4606
4607 case ALU_WRITE_PC:
4608 alu_write_pc (regs, dsc, val);
4609 break;
4610
4611 case CANNOT_WRITE_PC:
4612 warning (_("Instruction wrote to PC in an unexpected way when "
4613 "single-stepping"));
4614 break;
4615
4616 default:
4617 internal_error (__FILE__, __LINE__,
4618 _("Invalid argument to displaced_write_reg"));
4619 }
4620
4621 dsc->wrote_to_pc = 1;
4622 }
4623 else
4624 {
4625 if (debug_displaced)
4626 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
4627 regno, (unsigned long) val);
4628 regcache_cooked_write_unsigned (regs, regno, val);
4629 }
4630 }
4631
4632 /* This function is used to concisely determine if an instruction INSN
4633 references PC. Register fields of interest in INSN should have the
4634 corresponding fields of BITMASK set to 0b1111. The function
4635 returns return 1 if any of these fields in INSN reference the PC
4636 (also 0b1111, r15), else it returns 0. */
4637
4638 static int
4639 insn_references_pc (uint32_t insn, uint32_t bitmask)
4640 {
4641 uint32_t lowbit = 1;
4642
4643 while (bitmask != 0)
4644 {
4645 uint32_t mask;
4646
4647 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
4648 ;
4649
4650 if (!lowbit)
4651 break;
4652
4653 mask = lowbit * 0xf;
4654
4655 if ((insn & mask) == mask)
4656 return 1;
4657
4658 bitmask &= ~mask;
4659 }
4660
4661 return 0;
4662 }
4663
4664 /* The simplest copy function. Many instructions have the same effect no
4665 matter what address they are executed at: in those cases, use this. */
4666
4667 static int
4668 arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
4669 const char *iname, struct displaced_step_closure *dsc)
4670 {
4671 if (debug_displaced)
4672 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
4673 "opcode/class '%s' unmodified\n", (unsigned long) insn,
4674 iname);
4675
4676 dsc->modinsn[0] = insn;
4677
4678 return 0;
4679 }
4680
4681 static int
4682 thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
4683 uint16_t insn2, const char *iname,
4684 struct displaced_step_closure *dsc)
4685 {
4686 if (debug_displaced)
4687 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
4688 "opcode/class '%s' unmodified\n", insn1, insn2,
4689 iname);
4690
4691 dsc->modinsn[0] = insn1;
4692 dsc->modinsn[1] = insn2;
4693 dsc->numinsns = 2;
4694
4695 return 0;
4696 }
4697
4698 /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
4699 modification. */
4700 static int
4701 thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn,
4702 const char *iname,
4703 struct displaced_step_closure *dsc)
4704 {
4705 if (debug_displaced)
4706 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
4707 "opcode/class '%s' unmodified\n", insn,
4708 iname);
4709
4710 dsc->modinsn[0] = insn;
4711
4712 return 0;
4713 }
4714
4715 /* Preload instructions with immediate offset. */
4716
4717 static void
4718 cleanup_preload (struct gdbarch *gdbarch,
4719 struct regcache *regs, struct displaced_step_closure *dsc)
4720 {
4721 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4722 if (!dsc->u.preload.immed)
4723 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
4724 }
4725
4726 static void
4727 install_preload (struct gdbarch *gdbarch, struct regcache *regs,
4728 struct displaced_step_closure *dsc, unsigned int rn)
4729 {
4730 ULONGEST rn_val;
4731 /* Preload instructions:
4732
4733 {pli/pld} [rn, #+/-imm]
4734 ->
4735 {pli/pld} [r0, #+/-imm]. */
4736
4737 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4738 rn_val = displaced_read_reg (regs, dsc, rn);
4739 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4740 dsc->u.preload.immed = 1;
4741
4742 dsc->cleanup = &cleanup_preload;
4743 }
4744
4745 static int
4746 arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
4747 struct displaced_step_closure *dsc)
4748 {
4749 unsigned int rn = bits (insn, 16, 19);
4750
4751 if (!insn_references_pc (insn, 0x000f0000ul))
4752 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
4753
4754 if (debug_displaced)
4755 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4756 (unsigned long) insn);
4757
4758 dsc->modinsn[0] = insn & 0xfff0ffff;
4759
4760 install_preload (gdbarch, regs, dsc, rn);
4761
4762 return 0;
4763 }
4764
4765 static int
4766 thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
4767 struct regcache *regs, struct displaced_step_closure *dsc)
4768 {
4769 unsigned int rn = bits (insn1, 0, 3);
4770 unsigned int u_bit = bit (insn1, 7);
4771 int imm12 = bits (insn2, 0, 11);
4772 ULONGEST pc_val;
4773
4774 if (rn != ARM_PC_REGNUM)
4775 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
4776
4777 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
4778 PLD (literal) Encoding T1. */
4779 if (debug_displaced)
4780 fprintf_unfiltered (gdb_stdlog,
4781 "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
4782 (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
4783 imm12);
4784
4785 if (!u_bit)
4786 imm12 = -1 * imm12;
4787
4788 /* Rewrite instruction {pli/pld} PC imm12 into:
4789 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
4790
4791 {pli/pld} [r0, r1]
4792
4793 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
4794
4795 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4796 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4797
4798 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
4799
4800 displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
4801 displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
4802 dsc->u.preload.immed = 0;
4803
4804 /* {pli/pld} [r0, r1] */
4805 dsc->modinsn[0] = insn1 & 0xfff0;
4806 dsc->modinsn[1] = 0xf001;
4807 dsc->numinsns = 2;
4808
4809 dsc->cleanup = &cleanup_preload;
4810 return 0;
4811 }
4812
4813 /* Preload instructions with register offset. */
4814
4815 static void
4816 install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
4817 struct displaced_step_closure *dsc, unsigned int rn,
4818 unsigned int rm)
4819 {
4820 ULONGEST rn_val, rm_val;
4821
4822 /* Preload register-offset instructions:
4823
4824 {pli/pld} [rn, rm {, shift}]
4825 ->
4826 {pli/pld} [r0, r1 {, shift}]. */
4827
4828 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4829 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4830 rn_val = displaced_read_reg (regs, dsc, rn);
4831 rm_val = displaced_read_reg (regs, dsc, rm);
4832 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4833 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
4834 dsc->u.preload.immed = 0;
4835
4836 dsc->cleanup = &cleanup_preload;
4837 }
4838
4839 static int
4840 arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
4841 struct regcache *regs,
4842 struct displaced_step_closure *dsc)
4843 {
4844 unsigned int rn = bits (insn, 16, 19);
4845 unsigned int rm = bits (insn, 0, 3);
4846
4847
4848 if (!insn_references_pc (insn, 0x000f000ful))
4849 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
4850
4851 if (debug_displaced)
4852 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4853 (unsigned long) insn);
4854
4855 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
4856
4857 install_preload_reg (gdbarch, regs, dsc, rn, rm);
4858 return 0;
4859 }
4860
4861 /* Copy/cleanup coprocessor load and store instructions. */
4862
4863 static void
4864 cleanup_copro_load_store (struct gdbarch *gdbarch,
4865 struct regcache *regs,
4866 struct displaced_step_closure *dsc)
4867 {
4868 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
4869
4870 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4871
4872 if (dsc->u.ldst.writeback)
4873 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
4874 }
4875
4876 static void
4877 install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
4878 struct displaced_step_closure *dsc,
4879 int writeback, unsigned int rn)
4880 {
4881 ULONGEST rn_val;
4882
4883 /* Coprocessor load/store instructions:
4884
4885 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
4886 ->
4887 {stc/stc2} [r0, #+/-imm].
4888
4889 ldc/ldc2 are handled identically. */
4890
4891 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4892 rn_val = displaced_read_reg (regs, dsc, rn);
4893 /* PC should be 4-byte aligned. */
4894 rn_val = rn_val & 0xfffffffc;
4895 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4896
4897 dsc->u.ldst.writeback = writeback;
4898 dsc->u.ldst.rn = rn;
4899
4900 dsc->cleanup = &cleanup_copro_load_store;
4901 }
4902
4903 static int
4904 arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
4905 struct regcache *regs,
4906 struct displaced_step_closure *dsc)
4907 {
4908 unsigned int rn = bits (insn, 16, 19);
4909
4910 if (!insn_references_pc (insn, 0x000f0000ul))
4911 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
4912
4913 if (debug_displaced)
4914 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4915 "load/store insn %.8lx\n", (unsigned long) insn);
4916
4917 dsc->modinsn[0] = insn & 0xfff0ffff;
4918
4919 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
4920
4921 return 0;
4922 }
4923
4924 static int
4925 thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
4926 uint16_t insn2, struct regcache *regs,
4927 struct displaced_step_closure *dsc)
4928 {
4929 unsigned int rn = bits (insn1, 0, 3);
4930
4931 if (rn != ARM_PC_REGNUM)
4932 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
4933 "copro load/store", dsc);
4934
4935 if (debug_displaced)
4936 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4937 "load/store insn %.4x%.4x\n", insn1, insn2);
4938
4939 dsc->modinsn[0] = insn1 & 0xfff0;
4940 dsc->modinsn[1] = insn2;
4941 dsc->numinsns = 2;
4942
4943 /* This function is called for copying instruction LDC/LDC2/VLDR, which
4944 doesn't support writeback, so pass 0. */
4945 install_copro_load_store (gdbarch, regs, dsc, 0, rn);
4946
4947 return 0;
4948 }
4949
4950 /* Clean up branch instructions (actually perform the branch, by setting
4951 PC). */
4952
4953 static void
4954 cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
4955 struct displaced_step_closure *dsc)
4956 {
4957 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
4958 int branch_taken = condition_true (dsc->u.branch.cond, status);
4959 enum pc_write_style write_pc = dsc->u.branch.exchange
4960 ? BX_WRITE_PC : BRANCH_WRITE_PC;
4961
4962 if (!branch_taken)
4963 return;
4964
4965 if (dsc->u.branch.link)
4966 {
4967 /* The value of LR should be the next insn of current one. In order
4968 not to confuse logic hanlding later insn `bx lr', if current insn mode
4969 is Thumb, the bit 0 of LR value should be set to 1. */
4970 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
4971
4972 if (dsc->is_thumb)
4973 next_insn_addr |= 0x1;
4974
4975 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
4976 CANNOT_WRITE_PC);
4977 }
4978
4979 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
4980 }
4981
4982 /* Copy B/BL/BLX instructions with immediate destinations. */
4983
4984 static void
4985 install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
4986 struct displaced_step_closure *dsc,
4987 unsigned int cond, int exchange, int link, long offset)
4988 {
4989 /* Implement "BL<cond> <label>" as:
4990
4991 Preparation: cond <- instruction condition
4992 Insn: mov r0, r0 (nop)
4993 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
4994
4995 B<cond> similar, but don't set r14 in cleanup. */
4996
4997 dsc->u.branch.cond = cond;
4998 dsc->u.branch.link = link;
4999 dsc->u.branch.exchange = exchange;
5000
5001 dsc->u.branch.dest = dsc->insn_addr;
5002 if (link && exchange)
5003 /* For BLX, offset is computed from the Align (PC, 4). */
5004 dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
5005
5006 if (dsc->is_thumb)
5007 dsc->u.branch.dest += 4 + offset;
5008 else
5009 dsc->u.branch.dest += 8 + offset;
5010
5011 dsc->cleanup = &cleanup_branch;
5012 }
5013 static int
5014 arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
5015 struct regcache *regs, struct displaced_step_closure *dsc)
5016 {
5017 unsigned int cond = bits (insn, 28, 31);
5018 int exchange = (cond == 0xf);
5019 int link = exchange || bit (insn, 24);
5020 long offset;
5021
5022 if (debug_displaced)
5023 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
5024 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
5025 (unsigned long) insn);
5026 if (exchange)
5027 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
5028 then arrange the switch into Thumb mode. */
5029 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
5030 else
5031 offset = bits (insn, 0, 23) << 2;
5032
5033 if (bit (offset, 25))
5034 offset = offset | ~0x3ffffff;
5035
5036 dsc->modinsn[0] = ARM_NOP;
5037
5038 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5039 return 0;
5040 }
5041
5042 static int
5043 thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
5044 uint16_t insn2, struct regcache *regs,
5045 struct displaced_step_closure *dsc)
5046 {
5047 int link = bit (insn2, 14);
5048 int exchange = link && !bit (insn2, 12);
5049 int cond = INST_AL;
5050 long offset = 0;
5051 int j1 = bit (insn2, 13);
5052 int j2 = bit (insn2, 11);
5053 int s = sbits (insn1, 10, 10);
5054 int i1 = !(j1 ^ bit (insn1, 10));
5055 int i2 = !(j2 ^ bit (insn1, 10));
5056
5057 if (!link && !exchange) /* B */
5058 {
5059 offset = (bits (insn2, 0, 10) << 1);
5060 if (bit (insn2, 12)) /* Encoding T4 */
5061 {
5062 offset |= (bits (insn1, 0, 9) << 12)
5063 | (i2 << 22)
5064 | (i1 << 23)
5065 | (s << 24);
5066 cond = INST_AL;
5067 }
5068 else /* Encoding T3 */
5069 {
5070 offset |= (bits (insn1, 0, 5) << 12)
5071 | (j1 << 18)
5072 | (j2 << 19)
5073 | (s << 20);
5074 cond = bits (insn1, 6, 9);
5075 }
5076 }
5077 else
5078 {
5079 offset = (bits (insn1, 0, 9) << 12);
5080 offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
5081 offset |= exchange ?
5082 (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
5083 }
5084
5085 if (debug_displaced)
5086 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
5087 "%.4x %.4x with offset %.8lx\n",
5088 link ? (exchange) ? "blx" : "bl" : "b",
5089 insn1, insn2, offset);
5090
5091 dsc->modinsn[0] = THUMB_NOP;
5092
5093 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5094 return 0;
5095 }
5096
5097 /* Copy B Thumb instructions. */
5098 static int
5099 thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn,
5100 struct displaced_step_closure *dsc)
5101 {
5102 unsigned int cond = 0;
5103 int offset = 0;
5104 unsigned short bit_12_15 = bits (insn, 12, 15);
5105 CORE_ADDR from = dsc->insn_addr;
5106
5107 if (bit_12_15 == 0xd)
5108 {
5109 /* offset = SignExtend (imm8:0, 32) */
5110 offset = sbits ((insn << 1), 0, 8);
5111 cond = bits (insn, 8, 11);
5112 }
5113 else if (bit_12_15 == 0xe) /* Encoding T2 */
5114 {
5115 offset = sbits ((insn << 1), 0, 11);
5116 cond = INST_AL;
5117 }
5118
5119 if (debug_displaced)
5120 fprintf_unfiltered (gdb_stdlog,
5121 "displaced: copying b immediate insn %.4x "
5122 "with offset %d\n", insn, offset);
5123
5124 dsc->u.branch.cond = cond;
5125 dsc->u.branch.link = 0;
5126 dsc->u.branch.exchange = 0;
5127 dsc->u.branch.dest = from + 4 + offset;
5128
5129 dsc->modinsn[0] = THUMB_NOP;
5130
5131 dsc->cleanup = &cleanup_branch;
5132
5133 return 0;
5134 }
5135
5136 /* Copy BX/BLX with register-specified destinations. */
5137
5138 static void
5139 install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
5140 struct displaced_step_closure *dsc, int link,
5141 unsigned int cond, unsigned int rm)
5142 {
5143 /* Implement {BX,BLX}<cond> <reg>" as:
5144
5145 Preparation: cond <- instruction condition
5146 Insn: mov r0, r0 (nop)
5147 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5148
5149 Don't set r14 in cleanup for BX. */
5150
5151 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
5152
5153 dsc->u.branch.cond = cond;
5154 dsc->u.branch.link = link;
5155
5156 dsc->u.branch.exchange = 1;
5157
5158 dsc->cleanup = &cleanup_branch;
5159 }
5160
5161 static int
5162 arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
5163 struct regcache *regs, struct displaced_step_closure *dsc)
5164 {
5165 unsigned int cond = bits (insn, 28, 31);
5166 /* BX: x12xxx1x
5167 BLX: x12xxx3x. */
5168 int link = bit (insn, 5);
5169 unsigned int rm = bits (insn, 0, 3);
5170
5171 if (debug_displaced)
5172 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
5173 (unsigned long) insn);
5174
5175 dsc->modinsn[0] = ARM_NOP;
5176
5177 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
5178 return 0;
5179 }
5180
5181 static int
5182 thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
5183 struct regcache *regs,
5184 struct displaced_step_closure *dsc)
5185 {
5186 int link = bit (insn, 7);
5187 unsigned int rm = bits (insn, 3, 6);
5188
5189 if (debug_displaced)
5190 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
5191 (unsigned short) insn);
5192
5193 dsc->modinsn[0] = THUMB_NOP;
5194
5195 install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
5196
5197 return 0;
5198 }
5199
5200
5201 /* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
5202
5203 static void
5204 cleanup_alu_imm (struct gdbarch *gdbarch,
5205 struct regcache *regs, struct displaced_step_closure *dsc)
5206 {
5207 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5208 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5209 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5210 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5211 }
5212
5213 static int
5214 arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5215 struct displaced_step_closure *dsc)
5216 {
5217 unsigned int rn = bits (insn, 16, 19);
5218 unsigned int rd = bits (insn, 12, 15);
5219 unsigned int op = bits (insn, 21, 24);
5220 int is_mov = (op == 0xd);
5221 ULONGEST rd_val, rn_val;
5222
5223 if (!insn_references_pc (insn, 0x000ff000ul))
5224 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
5225
5226 if (debug_displaced)
5227 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5228 "%.8lx\n", is_mov ? "move" : "ALU",
5229 (unsigned long) insn);
5230
5231 /* Instruction is of form:
5232
5233 <op><cond> rd, [rn,] #imm
5234
5235 Rewrite as:
5236
5237 Preparation: tmp1, tmp2 <- r0, r1;
5238 r0, r1 <- rd, rn
5239 Insn: <op><cond> r0, r1, #imm
5240 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5241 */
5242
5243 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5244 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5245 rn_val = displaced_read_reg (regs, dsc, rn);
5246 rd_val = displaced_read_reg (regs, dsc, rd);
5247 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5248 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5249 dsc->rd = rd;
5250
5251 if (is_mov)
5252 dsc->modinsn[0] = insn & 0xfff00fff;
5253 else
5254 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5255
5256 dsc->cleanup = &cleanup_alu_imm;
5257
5258 return 0;
5259 }
5260
5261 static int
5262 thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
5263 uint16_t insn2, struct regcache *regs,
5264 struct displaced_step_closure *dsc)
5265 {
5266 unsigned int op = bits (insn1, 5, 8);
5267 unsigned int rn, rm, rd;
5268 ULONGEST rd_val, rn_val;
5269
5270 rn = bits (insn1, 0, 3); /* Rn */
5271 rm = bits (insn2, 0, 3); /* Rm */
5272 rd = bits (insn2, 8, 11); /* Rd */
5273
5274 /* This routine is only called for instruction MOV. */
5275 gdb_assert (op == 0x2 && rn == 0xf);
5276
5277 if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
5278 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
5279
5280 if (debug_displaced)
5281 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
5282 "ALU", insn1, insn2);
5283
5284 /* Instruction is of form:
5285
5286 <op><cond> rd, [rn,] #imm
5287
5288 Rewrite as:
5289
5290 Preparation: tmp1, tmp2 <- r0, r1;
5291 r0, r1 <- rd, rn
5292 Insn: <op><cond> r0, r1, #imm
5293 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5294 */
5295
5296 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5297 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5298 rn_val = displaced_read_reg (regs, dsc, rn);
5299 rd_val = displaced_read_reg (regs, dsc, rd);
5300 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5301 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5302 dsc->rd = rd;
5303
5304 dsc->modinsn[0] = insn1;
5305 dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
5306 dsc->numinsns = 2;
5307
5308 dsc->cleanup = &cleanup_alu_imm;
5309
5310 return 0;
5311 }
5312
5313 /* Copy/cleanup arithmetic/logic insns with register RHS. */
5314
5315 static void
5316 cleanup_alu_reg (struct gdbarch *gdbarch,
5317 struct regcache *regs, struct displaced_step_closure *dsc)
5318 {
5319 ULONGEST rd_val;
5320 int i;
5321
5322 rd_val = displaced_read_reg (regs, dsc, 0);
5323
5324 for (i = 0; i < 3; i++)
5325 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5326
5327 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5328 }
5329
5330 static void
5331 install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
5332 struct displaced_step_closure *dsc,
5333 unsigned int rd, unsigned int rn, unsigned int rm)
5334 {
5335 ULONGEST rd_val, rn_val, rm_val;
5336
5337 /* Instruction is of form:
5338
5339 <op><cond> rd, [rn,] rm [, <shift>]
5340
5341 Rewrite as:
5342
5343 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5344 r0, r1, r2 <- rd, rn, rm
5345 Insn: <op><cond> r0, [r1,] r2 [, <shift>]
5346 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5347 */
5348
5349 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5350 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5351 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5352 rd_val = displaced_read_reg (regs, dsc, rd);
5353 rn_val = displaced_read_reg (regs, dsc, rn);
5354 rm_val = displaced_read_reg (regs, dsc, rm);
5355 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5356 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5357 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5358 dsc->rd = rd;
5359
5360 dsc->cleanup = &cleanup_alu_reg;
5361 }
5362
5363 static int
5364 arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5365 struct displaced_step_closure *dsc)
5366 {
5367 unsigned int op = bits (insn, 21, 24);
5368 int is_mov = (op == 0xd);
5369
5370 if (!insn_references_pc (insn, 0x000ff00ful))
5371 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5372
5373 if (debug_displaced)
5374 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5375 is_mov ? "move" : "ALU", (unsigned long) insn);
5376
5377 if (is_mov)
5378 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5379 else
5380 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5381
5382 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
5383 bits (insn, 0, 3));
5384 return 0;
5385 }
5386
5387 static int
5388 thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
5389 struct regcache *regs,
5390 struct displaced_step_closure *dsc)
5391 {
5392 unsigned rm, rd;
5393
5394 rm = bits (insn, 3, 6);
5395 rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
5396
5397 if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
5398 return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
5399
5400 if (debug_displaced)
5401 fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n",
5402 (unsigned short) insn);
5403
5404 dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
5405
5406 install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
5407
5408 return 0;
5409 }
5410
5411 /* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5412
5413 static void
5414 cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
5415 struct regcache *regs,
5416 struct displaced_step_closure *dsc)
5417 {
5418 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
5419 int i;
5420
5421 for (i = 0; i < 4; i++)
5422 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5423
5424 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5425 }
5426
5427 static void
5428 install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
5429 struct displaced_step_closure *dsc,
5430 unsigned int rd, unsigned int rn, unsigned int rm,
5431 unsigned rs)
5432 {
5433 int i;
5434 ULONGEST rd_val, rn_val, rm_val, rs_val;
5435
5436 /* Instruction is of form:
5437
5438 <op><cond> rd, [rn,] rm, <shift> rs
5439
5440 Rewrite as:
5441
5442 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5443 r0, r1, r2, r3 <- rd, rn, rm, rs
5444 Insn: <op><cond> r0, r1, r2, <shift> r3
5445 Cleanup: tmp5 <- r0
5446 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5447 rd <- tmp5
5448 */
5449
5450 for (i = 0; i < 4; i++)
5451 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
5452
5453 rd_val = displaced_read_reg (regs, dsc, rd);
5454 rn_val = displaced_read_reg (regs, dsc, rn);
5455 rm_val = displaced_read_reg (regs, dsc, rm);
5456 rs_val = displaced_read_reg (regs, dsc, rs);
5457 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5458 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5459 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5460 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5461 dsc->rd = rd;
5462 dsc->cleanup = &cleanup_alu_shifted_reg;
5463 }
5464
5465 static int
5466 arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
5467 struct regcache *regs,
5468 struct displaced_step_closure *dsc)
5469 {
5470 unsigned int op = bits (insn, 21, 24);
5471 int is_mov = (op == 0xd);
5472 unsigned int rd, rn, rm, rs;
5473
5474 if (!insn_references_pc (insn, 0x000fff0ful))
5475 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5476
5477 if (debug_displaced)
5478 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5479 "%.8lx\n", is_mov ? "move" : "ALU",
5480 (unsigned long) insn);
5481
5482 rn = bits (insn, 16, 19);
5483 rm = bits (insn, 0, 3);
5484 rs = bits (insn, 8, 11);
5485 rd = bits (insn, 12, 15);
5486
5487 if (is_mov)
5488 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5489 else
5490 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5491
5492 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
5493
5494 return 0;
5495 }
5496
5497 /* Clean up load instructions. */
5498
5499 static void
5500 cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
5501 struct displaced_step_closure *dsc)
5502 {
5503 ULONGEST rt_val, rt_val2 = 0, rn_val;
5504
5505 rt_val = displaced_read_reg (regs, dsc, 0);
5506 if (dsc->u.ldst.xfersize == 8)
5507 rt_val2 = displaced_read_reg (regs, dsc, 1);
5508 rn_val = displaced_read_reg (regs, dsc, 2);
5509
5510 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5511 if (dsc->u.ldst.xfersize > 4)
5512 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5513 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5514 if (!dsc->u.ldst.immed)
5515 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5516
5517 /* Handle register writeback. */
5518 if (dsc->u.ldst.writeback)
5519 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5520 /* Put result in right place. */
5521 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5522 if (dsc->u.ldst.xfersize == 8)
5523 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5524 }
5525
5526 /* Clean up store instructions. */
5527
5528 static void
5529 cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
5530 struct displaced_step_closure *dsc)
5531 {
5532 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
5533
5534 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5535 if (dsc->u.ldst.xfersize > 4)
5536 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5537 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5538 if (!dsc->u.ldst.immed)
5539 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5540 if (!dsc->u.ldst.restore_r4)
5541 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5542
5543 /* Writeback. */
5544 if (dsc->u.ldst.writeback)
5545 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5546 }
5547
5548 /* Copy "extra" load/store instructions. These are halfword/doubleword
5549 transfers, which have a different encoding to byte/word transfers. */
5550
5551 static int
5552 arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged,
5553 struct regcache *regs, struct displaced_step_closure *dsc)
5554 {
5555 unsigned int op1 = bits (insn, 20, 24);
5556 unsigned int op2 = bits (insn, 5, 6);
5557 unsigned int rt = bits (insn, 12, 15);
5558 unsigned int rn = bits (insn, 16, 19);
5559 unsigned int rm = bits (insn, 0, 3);
5560 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5561 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5562 int immed = (op1 & 0x4) != 0;
5563 int opcode;
5564 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
5565
5566 if (!insn_references_pc (insn, 0x000ff00ful))
5567 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
5568
5569 if (debug_displaced)
5570 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
5571 "insn %.8lx\n", unprivileged ? "unprivileged " : "",
5572 (unsigned long) insn);
5573
5574 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5575
5576 if (opcode < 0)
5577 internal_error (__FILE__, __LINE__,
5578 _("copy_extra_ld_st: instruction decode error"));
5579
5580 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5581 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5582 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5583 if (!immed)
5584 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5585
5586 rt_val = displaced_read_reg (regs, dsc, rt);
5587 if (bytesize[opcode] == 8)
5588 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
5589 rn_val = displaced_read_reg (regs, dsc, rn);
5590 if (!immed)
5591 rm_val = displaced_read_reg (regs, dsc, rm);
5592
5593 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5594 if (bytesize[opcode] == 8)
5595 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5596 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5597 if (!immed)
5598 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5599
5600 dsc->rd = rt;
5601 dsc->u.ldst.xfersize = bytesize[opcode];
5602 dsc->u.ldst.rn = rn;
5603 dsc->u.ldst.immed = immed;
5604 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5605 dsc->u.ldst.restore_r4 = 0;
5606
5607 if (immed)
5608 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5609 ->
5610 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5611 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5612 else
5613 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5614 ->
5615 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5616 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5617
5618 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5619
5620 return 0;
5621 }
5622
5623 /* Copy byte/half word/word loads and stores. */
5624
5625 static void
5626 install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
5627 struct displaced_step_closure *dsc, int load,
5628 int immed, int writeback, int size, int usermode,
5629 int rt, int rm, int rn)
5630 {
5631 ULONGEST rt_val, rn_val, rm_val = 0;
5632
5633 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5634 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5635 if (!immed)
5636 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5637 if (!load)
5638 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
5639
5640 rt_val = displaced_read_reg (regs, dsc, rt);
5641 rn_val = displaced_read_reg (regs, dsc, rn);
5642 if (!immed)
5643 rm_val = displaced_read_reg (regs, dsc, rm);
5644
5645 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5646 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5647 if (!immed)
5648 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5649 dsc->rd = rt;
5650 dsc->u.ldst.xfersize = size;
5651 dsc->u.ldst.rn = rn;
5652 dsc->u.ldst.immed = immed;
5653 dsc->u.ldst.writeback = writeback;
5654
5655 /* To write PC we can do:
5656
5657 Before this sequence of instructions:
5658 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
5659 r2 is the Rn value got from dispalced_read_reg.
5660
5661 Insn1: push {pc} Write address of STR instruction + offset on stack
5662 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
5663 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
5664 = addr(Insn1) + offset - addr(Insn3) - 8
5665 = offset - 16
5666 Insn4: add r4, r4, #8 r4 = offset - 8
5667 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
5668 = from + offset
5669 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
5670
5671 Otherwise we don't know what value to write for PC, since the offset is
5672 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
5673 of this can be found in Section "Saving from r15" in
5674 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
5675
5676 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5677 }
5678
5679
5680 static int
5681 thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
5682 uint16_t insn2, struct regcache *regs,
5683 struct displaced_step_closure *dsc, int size)
5684 {
5685 unsigned int u_bit = bit (insn1, 7);
5686 unsigned int rt = bits (insn2, 12, 15);
5687 int imm12 = bits (insn2, 0, 11);
5688 ULONGEST pc_val;
5689
5690 if (debug_displaced)
5691 fprintf_unfiltered (gdb_stdlog,
5692 "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
5693 (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
5694 imm12);
5695
5696 if (!u_bit)
5697 imm12 = -1 * imm12;
5698
5699 /* Rewrite instruction LDR Rt imm12 into:
5700
5701 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
5702
5703 LDR R0, R2, R3,
5704
5705 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
5706
5707
5708 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5709 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5710 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5711
5712 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
5713
5714 pc_val = pc_val & 0xfffffffc;
5715
5716 displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
5717 displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
5718
5719 dsc->rd = rt;
5720
5721 dsc->u.ldst.xfersize = size;
5722 dsc->u.ldst.immed = 0;
5723 dsc->u.ldst.writeback = 0;
5724 dsc->u.ldst.restore_r4 = 0;
5725
5726 /* LDR R0, R2, R3 */
5727 dsc->modinsn[0] = 0xf852;
5728 dsc->modinsn[1] = 0x3;
5729 dsc->numinsns = 2;
5730
5731 dsc->cleanup = &cleanup_load;
5732
5733 return 0;
5734 }
5735
5736 static int
5737 thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
5738 uint16_t insn2, struct regcache *regs,
5739 struct displaced_step_closure *dsc,
5740 int writeback, int immed)
5741 {
5742 unsigned int rt = bits (insn2, 12, 15);
5743 unsigned int rn = bits (insn1, 0, 3);
5744 unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
5745 /* In LDR (register), there is also a register Rm, which is not allowed to
5746 be PC, so we don't have to check it. */
5747
5748 if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
5749 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
5750 dsc);
5751
5752 if (debug_displaced)
5753 fprintf_unfiltered (gdb_stdlog,
5754 "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
5755 rt, rn, insn1, insn2);
5756
5757 install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
5758 0, rt, rm, rn);
5759
5760 dsc->u.ldst.restore_r4 = 0;
5761
5762 if (immed)
5763 /* ldr[b]<cond> rt, [rn, #imm], etc.
5764 ->
5765 ldr[b]<cond> r0, [r2, #imm]. */
5766 {
5767 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5768 dsc->modinsn[1] = insn2 & 0x0fff;
5769 }
5770 else
5771 /* ldr[b]<cond> rt, [rn, rm], etc.
5772 ->
5773 ldr[b]<cond> r0, [r2, r3]. */
5774 {
5775 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5776 dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
5777 }
5778
5779 dsc->numinsns = 2;
5780
5781 return 0;
5782 }
5783
5784
5785 static int
5786 arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
5787 struct regcache *regs,
5788 struct displaced_step_closure *dsc,
5789 int load, int size, int usermode)
5790 {
5791 int immed = !bit (insn, 25);
5792 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
5793 unsigned int rt = bits (insn, 12, 15);
5794 unsigned int rn = bits (insn, 16, 19);
5795 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
5796
5797 if (!insn_references_pc (insn, 0x000ff00ful))
5798 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
5799
5800 if (debug_displaced)
5801 fprintf_unfiltered (gdb_stdlog,
5802 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
5803 load ? (size == 1 ? "ldrb" : "ldr")
5804 : (size == 1 ? "strb" : "str"), usermode ? "t" : "",
5805 rt, rn,
5806 (unsigned long) insn);
5807
5808 install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
5809 usermode, rt, rm, rn);
5810
5811 if (load || rt != ARM_PC_REGNUM)
5812 {
5813 dsc->u.ldst.restore_r4 = 0;
5814
5815 if (immed)
5816 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
5817 ->
5818 {ldr,str}[b]<cond> r0, [r2, #imm]. */
5819 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5820 else
5821 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
5822 ->
5823 {ldr,str}[b]<cond> r0, [r2, r3]. */
5824 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5825 }
5826 else
5827 {
5828 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
5829 dsc->u.ldst.restore_r4 = 1;
5830 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
5831 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
5832 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
5833 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
5834 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
5835
5836 /* As above. */
5837 if (immed)
5838 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
5839 else
5840 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
5841
5842 dsc->numinsns = 6;
5843 }
5844
5845 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5846
5847 return 0;
5848 }
5849
5850 /* Cleanup LDM instructions with fully-populated register list. This is an
5851 unfortunate corner case: it's impossible to implement correctly by modifying
5852 the instruction. The issue is as follows: we have an instruction,
5853
5854 ldm rN, {r0-r15}
5855
5856 which we must rewrite to avoid loading PC. A possible solution would be to
5857 do the load in two halves, something like (with suitable cleanup
5858 afterwards):
5859
5860 mov r8, rN
5861 ldm[id][ab] r8!, {r0-r7}
5862 str r7, <temp>
5863 ldm[id][ab] r8, {r7-r14}
5864 <bkpt>
5865
5866 but at present there's no suitable place for <temp>, since the scratch space
5867 is overwritten before the cleanup routine is called. For now, we simply
5868 emulate the instruction. */
5869
5870 static void
5871 cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
5872 struct displaced_step_closure *dsc)
5873 {
5874 int inc = dsc->u.block.increment;
5875 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
5876 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
5877 uint32_t regmask = dsc->u.block.regmask;
5878 int regno = inc ? 0 : 15;
5879 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
5880 int exception_return = dsc->u.block.load && dsc->u.block.user
5881 && (regmask & 0x8000) != 0;
5882 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5883 int do_transfer = condition_true (dsc->u.block.cond, status);
5884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5885
5886 if (!do_transfer)
5887 return;
5888
5889 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
5890 sensible we can do here. Complain loudly. */
5891 if (exception_return)
5892 error (_("Cannot single-step exception return"));
5893
5894 /* We don't handle any stores here for now. */
5895 gdb_assert (dsc->u.block.load != 0);
5896
5897 if (debug_displaced)
5898 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
5899 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
5900 dsc->u.block.increment ? "inc" : "dec",
5901 dsc->u.block.before ? "before" : "after");
5902
5903 while (regmask)
5904 {
5905 uint32_t memword;
5906
5907 if (inc)
5908 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
5909 regno++;
5910 else
5911 while (regno >= 0 && (regmask & (1 << regno)) == 0)
5912 regno--;
5913
5914 xfer_addr += bump_before;
5915
5916 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
5917 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
5918
5919 xfer_addr += bump_after;
5920
5921 regmask &= ~(1 << regno);
5922 }
5923
5924 if (dsc->u.block.writeback)
5925 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
5926 CANNOT_WRITE_PC);
5927 }
5928
5929 /* Clean up an STM which included the PC in the register list. */
5930
5931 static void
5932 cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
5933 struct displaced_step_closure *dsc)
5934 {
5935 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5936 int store_executed = condition_true (dsc->u.block.cond, status);
5937 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
5938 CORE_ADDR stm_insn_addr;
5939 uint32_t pc_val;
5940 long offset;
5941 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5942
5943 /* If condition code fails, there's nothing else to do. */
5944 if (!store_executed)
5945 return;
5946
5947 if (dsc->u.block.increment)
5948 {
5949 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
5950
5951 if (dsc->u.block.before)
5952 pc_stored_at += 4;
5953 }
5954 else
5955 {
5956 pc_stored_at = dsc->u.block.xfer_addr;
5957
5958 if (dsc->u.block.before)
5959 pc_stored_at -= 4;
5960 }
5961
5962 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
5963 stm_insn_addr = dsc->scratch_base;
5964 offset = pc_val - stm_insn_addr;
5965
5966 if (debug_displaced)
5967 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
5968 "STM instruction\n", offset);
5969
5970 /* Rewrite the stored PC to the proper value for the non-displaced original
5971 instruction. */
5972 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
5973 dsc->insn_addr + offset);
5974 }
5975
5976 /* Clean up an LDM which includes the PC in the register list. We clumped all
5977 the registers in the transferred list into a contiguous range r0...rX (to
5978 avoid loading PC directly and losing control of the debugged program), so we
5979 must undo that here. */
5980
5981 static void
5982 cleanup_block_load_pc (struct gdbarch *gdbarch,
5983 struct regcache *regs,
5984 struct displaced_step_closure *dsc)
5985 {
5986 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
5987 int load_executed = condition_true (dsc->u.block.cond, status);
5988 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
5989 unsigned int regs_loaded = bitcount (mask);
5990 unsigned int num_to_shuffle = regs_loaded, clobbered;
5991
5992 /* The method employed here will fail if the register list is fully populated
5993 (we need to avoid loading PC directly). */
5994 gdb_assert (num_to_shuffle < 16);
5995
5996 if (!load_executed)
5997 return;
5998
5999 clobbered = (1 << num_to_shuffle) - 1;
6000
6001 while (num_to_shuffle > 0)
6002 {
6003 if ((mask & (1 << write_reg)) != 0)
6004 {
6005 unsigned int read_reg = num_to_shuffle - 1;
6006
6007 if (read_reg != write_reg)
6008 {
6009 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
6010 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
6011 if (debug_displaced)
6012 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
6013 "loaded register r%d to r%d\n"), read_reg,
6014 write_reg);
6015 }
6016 else if (debug_displaced)
6017 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
6018 "r%d already in the right place\n"),
6019 write_reg);
6020
6021 clobbered &= ~(1 << write_reg);
6022
6023 num_to_shuffle--;
6024 }
6025
6026 write_reg--;
6027 }
6028
6029 /* Restore any registers we scribbled over. */
6030 for (write_reg = 0; clobbered != 0; write_reg++)
6031 {
6032 if ((clobbered & (1 << write_reg)) != 0)
6033 {
6034 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
6035 CANNOT_WRITE_PC);
6036 if (debug_displaced)
6037 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
6038 "clobbered register r%d\n"), write_reg);
6039 clobbered &= ~(1 << write_reg);
6040 }
6041 }
6042
6043 /* Perform register writeback manually. */
6044 if (dsc->u.block.writeback)
6045 {
6046 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
6047
6048 if (dsc->u.block.increment)
6049 new_rn_val += regs_loaded * 4;
6050 else
6051 new_rn_val -= regs_loaded * 4;
6052
6053 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
6054 CANNOT_WRITE_PC);
6055 }
6056 }
6057
6058 /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
6059 in user-level code (in particular exception return, ldm rn, {...pc}^). */
6060
6061 static int
6062 arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
6063 struct regcache *regs,
6064 struct displaced_step_closure *dsc)
6065 {
6066 int load = bit (insn, 20);
6067 int user = bit (insn, 22);
6068 int increment = bit (insn, 23);
6069 int before = bit (insn, 24);
6070 int writeback = bit (insn, 21);
6071 int rn = bits (insn, 16, 19);
6072
6073 /* Block transfers which don't mention PC can be run directly
6074 out-of-line. */
6075 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
6076 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
6077
6078 if (rn == ARM_PC_REGNUM)
6079 {
6080 warning (_("displaced: Unpredictable LDM or STM with "
6081 "base register r15"));
6082 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
6083 }
6084
6085 if (debug_displaced)
6086 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6087 "%.8lx\n", (unsigned long) insn);
6088
6089 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6090 dsc->u.block.rn = rn;
6091
6092 dsc->u.block.load = load;
6093 dsc->u.block.user = user;
6094 dsc->u.block.increment = increment;
6095 dsc->u.block.before = before;
6096 dsc->u.block.writeback = writeback;
6097 dsc->u.block.cond = bits (insn, 28, 31);
6098
6099 dsc->u.block.regmask = insn & 0xffff;
6100
6101 if (load)
6102 {
6103 if ((insn & 0xffff) == 0xffff)
6104 {
6105 /* LDM with a fully-populated register list. This case is
6106 particularly tricky. Implement for now by fully emulating the
6107 instruction (which might not behave perfectly in all cases, but
6108 these instructions should be rare enough for that not to matter
6109 too much). */
6110 dsc->modinsn[0] = ARM_NOP;
6111
6112 dsc->cleanup = &cleanup_block_load_all;
6113 }
6114 else
6115 {
6116 /* LDM of a list of registers which includes PC. Implement by
6117 rewriting the list of registers to be transferred into a
6118 contiguous chunk r0...rX before doing the transfer, then shuffling
6119 registers into the correct places in the cleanup routine. */
6120 unsigned int regmask = insn & 0xffff;
6121 unsigned int num_in_list = bitcount (regmask), new_regmask;
6122 unsigned int i;
6123
6124 for (i = 0; i < num_in_list; i++)
6125 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6126
6127 /* Writeback makes things complicated. We need to avoid clobbering
6128 the base register with one of the registers in our modified
6129 register list, but just using a different register can't work in
6130 all cases, e.g.:
6131
6132 ldm r14!, {r0-r13,pc}
6133
6134 which would need to be rewritten as:
6135
6136 ldm rN!, {r0-r14}
6137
6138 but that can't work, because there's no free register for N.
6139
6140 Solve this by turning off the writeback bit, and emulating
6141 writeback manually in the cleanup routine. */
6142
6143 if (writeback)
6144 insn &= ~(1 << 21);
6145
6146 new_regmask = (1 << num_in_list) - 1;
6147
6148 if (debug_displaced)
6149 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6150 "{..., pc}: original reg list %.4x, modified "
6151 "list %.4x\n"), rn, writeback ? "!" : "",
6152 (int) insn & 0xffff, new_regmask);
6153
6154 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6155
6156 dsc->cleanup = &cleanup_block_load_pc;
6157 }
6158 }
6159 else
6160 {
6161 /* STM of a list of registers which includes PC. Run the instruction
6162 as-is, but out of line: this will store the wrong value for the PC,
6163 so we must manually fix up the memory in the cleanup routine.
6164 Doing things this way has the advantage that we can auto-detect
6165 the offset of the PC write (which is architecture-dependent) in
6166 the cleanup routine. */
6167 dsc->modinsn[0] = insn;
6168
6169 dsc->cleanup = &cleanup_block_store_pc;
6170 }
6171
6172 return 0;
6173 }
6174
6175 static int
6176 thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6177 struct regcache *regs,
6178 struct displaced_step_closure *dsc)
6179 {
6180 int rn = bits (insn1, 0, 3);
6181 int load = bit (insn1, 4);
6182 int writeback = bit (insn1, 5);
6183
6184 /* Block transfers which don't mention PC can be run directly
6185 out-of-line. */
6186 if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
6187 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
6188
6189 if (rn == ARM_PC_REGNUM)
6190 {
6191 warning (_("displaced: Unpredictable LDM or STM with "
6192 "base register r15"));
6193 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6194 "unpredictable ldm/stm", dsc);
6195 }
6196
6197 if (debug_displaced)
6198 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6199 "%.4x%.4x\n", insn1, insn2);
6200
6201 /* Clear bit 13, since it should be always zero. */
6202 dsc->u.block.regmask = (insn2 & 0xdfff);
6203 dsc->u.block.rn = rn;
6204
6205 dsc->u.block.load = load;
6206 dsc->u.block.user = 0;
6207 dsc->u.block.increment = bit (insn1, 7);
6208 dsc->u.block.before = bit (insn1, 8);
6209 dsc->u.block.writeback = writeback;
6210 dsc->u.block.cond = INST_AL;
6211 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
6212
6213 if (load)
6214 {
6215 if (dsc->u.block.regmask == 0xffff)
6216 {
6217 /* This branch is impossible to happen. */
6218 gdb_assert (0);
6219 }
6220 else
6221 {
6222 unsigned int regmask = dsc->u.block.regmask;
6223 unsigned int num_in_list = bitcount (regmask), new_regmask;
6224 unsigned int i;
6225
6226 for (i = 0; i < num_in_list; i++)
6227 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6228
6229 if (writeback)
6230 insn1 &= ~(1 << 5);
6231
6232 new_regmask = (1 << num_in_list) - 1;
6233
6234 if (debug_displaced)
6235 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6236 "{..., pc}: original reg list %.4x, modified "
6237 "list %.4x\n"), rn, writeback ? "!" : "",
6238 (int) dsc->u.block.regmask, new_regmask);
6239
6240 dsc->modinsn[0] = insn1;
6241 dsc->modinsn[1] = (new_regmask & 0xffff);
6242 dsc->numinsns = 2;
6243
6244 dsc->cleanup = &cleanup_block_load_pc;
6245 }
6246 }
6247 else
6248 {
6249 dsc->modinsn[0] = insn1;
6250 dsc->modinsn[1] = insn2;
6251 dsc->numinsns = 2;
6252 dsc->cleanup = &cleanup_block_store_pc;
6253 }
6254 return 0;
6255 }
6256
6257 /* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
6258 This is used to avoid a dependency on BFD's bfd_endian enum. */
6259
6260 ULONGEST
6261 arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
6262 int byte_order)
6263 {
6264 return read_memory_unsigned_integer (memaddr, len,
6265 (enum bfd_endian) byte_order);
6266 }
6267
6268 /* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */
6269
6270 CORE_ADDR
6271 arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
6272 CORE_ADDR val)
6273 {
6274 return gdbarch_addr_bits_remove (get_regcache_arch (self->regcache), val);
6275 }
6276
6277 /* Wrapper over syscall_next_pc for use in get_next_pcs. */
6278
6279 static CORE_ADDR
6280 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
6281 {
6282 return 0;
6283 }
6284
6285 /* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */
6286
6287 int
6288 arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
6289 {
6290 return arm_is_thumb (self->regcache);
6291 }
6292
6293 /* single_step() is called just before we want to resume the inferior,
6294 if we want to single-step it but there is no hardware or kernel
6295 single-step support. We find the target of the coming instructions
6296 and breakpoint them. */
6297
6298 VEC (CORE_ADDR) *
6299 arm_software_single_step (struct regcache *regcache)
6300 {
6301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6302 struct arm_get_next_pcs next_pcs_ctx;
6303 CORE_ADDR pc;
6304 int i;
6305 VEC (CORE_ADDR) *next_pcs = NULL;
6306 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
6307
6308 arm_get_next_pcs_ctor (&next_pcs_ctx,
6309 &arm_get_next_pcs_ops,
6310 gdbarch_byte_order (gdbarch),
6311 gdbarch_byte_order_for_code (gdbarch),
6312 0,
6313 regcache);
6314
6315 next_pcs = arm_get_next_pcs (&next_pcs_ctx);
6316
6317 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
6318 {
6319 pc = gdbarch_addr_bits_remove (gdbarch, pc);
6320 VEC_replace (CORE_ADDR, next_pcs, i, pc);
6321 }
6322
6323 discard_cleanups (old_chain);
6324
6325 return next_pcs;
6326 }
6327
6328 /* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6329 for Linux, where some SVC instructions must be treated specially. */
6330
6331 static void
6332 cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
6333 struct displaced_step_closure *dsc)
6334 {
6335 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
6336
6337 if (debug_displaced)
6338 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6339 "%.8lx\n", (unsigned long) resume_addr);
6340
6341 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6342 }
6343
6344
6345 /* Common copy routine for svc instruciton. */
6346
6347 static int
6348 install_svc (struct gdbarch *gdbarch, struct regcache *regs,
6349 struct displaced_step_closure *dsc)
6350 {
6351 /* Preparation: none.
6352 Insn: unmodified svc.
6353 Cleanup: pc <- insn_addr + insn_size. */
6354
6355 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6356 instruction. */
6357 dsc->wrote_to_pc = 1;
6358
6359 /* Allow OS-specific code to override SVC handling. */
6360 if (dsc->u.svc.copy_svc_os)
6361 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
6362 else
6363 {
6364 dsc->cleanup = &cleanup_svc;
6365 return 0;
6366 }
6367 }
6368
6369 static int
6370 arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
6371 struct regcache *regs, struct displaced_step_closure *dsc)
6372 {
6373
6374 if (debug_displaced)
6375 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6376 (unsigned long) insn);
6377
6378 dsc->modinsn[0] = insn;
6379
6380 return install_svc (gdbarch, regs, dsc);
6381 }
6382
6383 static int
6384 thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
6385 struct regcache *regs, struct displaced_step_closure *dsc)
6386 {
6387
6388 if (debug_displaced)
6389 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
6390 insn);
6391
6392 dsc->modinsn[0] = insn;
6393
6394 return install_svc (gdbarch, regs, dsc);
6395 }
6396
6397 /* Copy undefined instructions. */
6398
6399 static int
6400 arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
6401 struct displaced_step_closure *dsc)
6402 {
6403 if (debug_displaced)
6404 fprintf_unfiltered (gdb_stdlog,
6405 "displaced: copying undefined insn %.8lx\n",
6406 (unsigned long) insn);
6407
6408 dsc->modinsn[0] = insn;
6409
6410 return 0;
6411 }
6412
6413 static int
6414 thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6415 struct displaced_step_closure *dsc)
6416 {
6417
6418 if (debug_displaced)
6419 fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
6420 "%.4x %.4x\n", (unsigned short) insn1,
6421 (unsigned short) insn2);
6422
6423 dsc->modinsn[0] = insn1;
6424 dsc->modinsn[1] = insn2;
6425 dsc->numinsns = 2;
6426
6427 return 0;
6428 }
6429
6430 /* Copy unpredictable instructions. */
6431
6432 static int
6433 arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
6434 struct displaced_step_closure *dsc)
6435 {
6436 if (debug_displaced)
6437 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6438 "%.8lx\n", (unsigned long) insn);
6439
6440 dsc->modinsn[0] = insn;
6441
6442 return 0;
6443 }
6444
6445 /* The decode_* functions are instruction decoding helpers. They mostly follow
6446 the presentation in the ARM ARM. */
6447
6448 static int
6449 arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6450 struct regcache *regs,
6451 struct displaced_step_closure *dsc)
6452 {
6453 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6454 unsigned int rn = bits (insn, 16, 19);
6455
6456 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
6457 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
6458 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
6459 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
6460 else if ((op1 & 0x60) == 0x20)
6461 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
6462 else if ((op1 & 0x71) == 0x40)
6463 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
6464 dsc);
6465 else if ((op1 & 0x77) == 0x41)
6466 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6467 else if ((op1 & 0x77) == 0x45)
6468 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
6469 else if ((op1 & 0x77) == 0x51)
6470 {
6471 if (rn != 0xf)
6472 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6473 else
6474 return arm_copy_unpred (gdbarch, insn, dsc);
6475 }
6476 else if ((op1 & 0x77) == 0x55)
6477 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6478 else if (op1 == 0x57)
6479 switch (op2)
6480 {
6481 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
6482 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
6483 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
6484 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
6485 default: return arm_copy_unpred (gdbarch, insn, dsc);
6486 }
6487 else if ((op1 & 0x63) == 0x43)
6488 return arm_copy_unpred (gdbarch, insn, dsc);
6489 else if ((op2 & 0x1) == 0x0)
6490 switch (op1 & ~0x80)
6491 {
6492 case 0x61:
6493 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6494 case 0x65:
6495 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
6496 case 0x71: case 0x75:
6497 /* pld/pldw reg. */
6498 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
6499 case 0x63: case 0x67: case 0x73: case 0x77:
6500 return arm_copy_unpred (gdbarch, insn, dsc);
6501 default:
6502 return arm_copy_undef (gdbarch, insn, dsc);
6503 }
6504 else
6505 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
6506 }
6507
6508 static int
6509 arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
6510 struct regcache *regs,
6511 struct displaced_step_closure *dsc)
6512 {
6513 if (bit (insn, 27) == 0)
6514 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
6515 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6516 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6517 {
6518 case 0x0: case 0x2:
6519 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
6520
6521 case 0x1: case 0x3:
6522 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
6523
6524 case 0x4: case 0x5: case 0x6: case 0x7:
6525 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6526
6527 case 0x8:
6528 switch ((insn & 0xe00000) >> 21)
6529 {
6530 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6531 /* stc/stc2. */
6532 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6533
6534 case 0x2:
6535 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6536
6537 default:
6538 return arm_copy_undef (gdbarch, insn, dsc);
6539 }
6540
6541 case 0x9:
6542 {
6543 int rn_f = (bits (insn, 16, 19) == 0xf);
6544 switch ((insn & 0xe00000) >> 21)
6545 {
6546 case 0x1: case 0x3:
6547 /* ldc/ldc2 imm (undefined for rn == pc). */
6548 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
6549 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6550
6551 case 0x2:
6552 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6553
6554 case 0x4: case 0x5: case 0x6: case 0x7:
6555 /* ldc/ldc2 lit (undefined for rn != pc). */
6556 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
6557 : arm_copy_undef (gdbarch, insn, dsc);
6558
6559 default:
6560 return arm_copy_undef (gdbarch, insn, dsc);
6561 }
6562 }
6563
6564 case 0xa:
6565 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
6566
6567 case 0xb:
6568 if (bits (insn, 16, 19) == 0xf)
6569 /* ldc/ldc2 lit. */
6570 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6571 else
6572 return arm_copy_undef (gdbarch, insn, dsc);
6573
6574 case 0xc:
6575 if (bit (insn, 4))
6576 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6577 else
6578 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6579
6580 case 0xd:
6581 if (bit (insn, 4))
6582 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6583 else
6584 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6585
6586 default:
6587 return arm_copy_undef (gdbarch, insn, dsc);
6588 }
6589 }
6590
6591 /* Decode miscellaneous instructions in dp/misc encoding space. */
6592
6593 static int
6594 arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
6595 struct regcache *regs,
6596 struct displaced_step_closure *dsc)
6597 {
6598 unsigned int op2 = bits (insn, 4, 6);
6599 unsigned int op = bits (insn, 21, 22);
6600
6601 switch (op2)
6602 {
6603 case 0x0:
6604 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
6605
6606 case 0x1:
6607 if (op == 0x1) /* bx. */
6608 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
6609 else if (op == 0x3)
6610 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
6611 else
6612 return arm_copy_undef (gdbarch, insn, dsc);
6613
6614 case 0x2:
6615 if (op == 0x1)
6616 /* Not really supported. */
6617 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
6618 else
6619 return arm_copy_undef (gdbarch, insn, dsc);
6620
6621 case 0x3:
6622 if (op == 0x1)
6623 return arm_copy_bx_blx_reg (gdbarch, insn,
6624 regs, dsc); /* blx register. */
6625 else
6626 return arm_copy_undef (gdbarch, insn, dsc);
6627
6628 case 0x5:
6629 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
6630
6631 case 0x7:
6632 if (op == 0x1)
6633 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
6634 else if (op == 0x3)
6635 /* Not really supported. */
6636 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
6637
6638 default:
6639 return arm_copy_undef (gdbarch, insn, dsc);
6640 }
6641 }
6642
6643 static int
6644 arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
6645 struct regcache *regs,
6646 struct displaced_step_closure *dsc)
6647 {
6648 if (bit (insn, 25))
6649 switch (bits (insn, 20, 24))
6650 {
6651 case 0x10:
6652 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
6653
6654 case 0x14:
6655 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
6656
6657 case 0x12: case 0x16:
6658 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
6659
6660 default:
6661 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
6662 }
6663 else
6664 {
6665 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6666
6667 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
6668 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
6669 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
6670 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
6671 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
6672 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
6673 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
6674 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
6675 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
6676 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
6677 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
6678 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
6679 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
6680 /* 2nd arg means "unprivileged". */
6681 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6682 dsc);
6683 }
6684
6685 /* Should be unreachable. */
6686 return 1;
6687 }
6688
6689 static int
6690 arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6691 struct regcache *regs,
6692 struct displaced_step_closure *dsc)
6693 {
6694 int a = bit (insn, 25), b = bit (insn, 4);
6695 uint32_t op1 = bits (insn, 20, 24);
6696
6697 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6698 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
6699 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
6700 else if ((!a && (op1 & 0x17) == 0x02)
6701 || (a && (op1 & 0x17) == 0x02 && !b))
6702 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
6703 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6704 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
6705 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
6706 else if ((!a && (op1 & 0x17) == 0x03)
6707 || (a && (op1 & 0x17) == 0x03 && !b))
6708 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
6709 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6710 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
6711 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
6712 else if ((!a && (op1 & 0x17) == 0x06)
6713 || (a && (op1 & 0x17) == 0x06 && !b))
6714 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
6715 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6716 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
6717 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
6718 else if ((!a && (op1 & 0x17) == 0x07)
6719 || (a && (op1 & 0x17) == 0x07 && !b))
6720 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
6721
6722 /* Should be unreachable. */
6723 return 1;
6724 }
6725
6726 static int
6727 arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
6728 struct displaced_step_closure *dsc)
6729 {
6730 switch (bits (insn, 20, 24))
6731 {
6732 case 0x00: case 0x01: case 0x02: case 0x03:
6733 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
6734
6735 case 0x04: case 0x05: case 0x06: case 0x07:
6736 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
6737
6738 case 0x08: case 0x09: case 0x0a: case 0x0b:
6739 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
6740 return arm_copy_unmodified (gdbarch, insn,
6741 "decode/pack/unpack/saturate/reverse", dsc);
6742
6743 case 0x18:
6744 if (bits (insn, 5, 7) == 0) /* op2. */
6745 {
6746 if (bits (insn, 12, 15) == 0xf)
6747 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
6748 else
6749 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
6750 }
6751 else
6752 return arm_copy_undef (gdbarch, insn, dsc);
6753
6754 case 0x1a: case 0x1b:
6755 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6756 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
6757 else
6758 return arm_copy_undef (gdbarch, insn, dsc);
6759
6760 case 0x1c: case 0x1d:
6761 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6762 {
6763 if (bits (insn, 0, 3) == 0xf)
6764 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
6765 else
6766 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
6767 }
6768 else
6769 return arm_copy_undef (gdbarch, insn, dsc);
6770
6771 case 0x1e: case 0x1f:
6772 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6773 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
6774 else
6775 return arm_copy_undef (gdbarch, insn, dsc);
6776 }
6777
6778 /* Should be unreachable. */
6779 return 1;
6780 }
6781
6782 static int
6783 arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn,
6784 struct regcache *regs,
6785 struct displaced_step_closure *dsc)
6786 {
6787 if (bit (insn, 25))
6788 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
6789 else
6790 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
6791 }
6792
6793 static int
6794 arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
6795 struct regcache *regs,
6796 struct displaced_step_closure *dsc)
6797 {
6798 unsigned int opcode = bits (insn, 20, 24);
6799
6800 switch (opcode)
6801 {
6802 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
6803 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
6804
6805 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6806 case 0x12: case 0x16:
6807 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
6808
6809 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6810 case 0x13: case 0x17:
6811 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
6812
6813 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6814 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6815 /* Note: no writeback for these instructions. Bit 25 will always be
6816 zero though (via caller), so the following works OK. */
6817 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6818 }
6819
6820 /* Should be unreachable. */
6821 return 1;
6822 }
6823
6824 /* Decode shifted register instructions. */
6825
6826 static int
6827 thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
6828 uint16_t insn2, struct regcache *regs,
6829 struct displaced_step_closure *dsc)
6830 {
6831 /* PC is only allowed to be used in instruction MOV. */
6832
6833 unsigned int op = bits (insn1, 5, 8);
6834 unsigned int rn = bits (insn1, 0, 3);
6835
6836 if (op == 0x2 && rn == 0xf) /* MOV */
6837 return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
6838 else
6839 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6840 "dp (shift reg)", dsc);
6841 }
6842
6843
6844 /* Decode extension register load/store. Exactly the same as
6845 arm_decode_ext_reg_ld_st. */
6846
6847 static int
6848 thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
6849 uint16_t insn2, struct regcache *regs,
6850 struct displaced_step_closure *dsc)
6851 {
6852 unsigned int opcode = bits (insn1, 4, 8);
6853
6854 switch (opcode)
6855 {
6856 case 0x04: case 0x05:
6857 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6858 "vfp/neon vmov", dsc);
6859
6860 case 0x08: case 0x0c: /* 01x00 */
6861 case 0x0a: case 0x0e: /* 01x10 */
6862 case 0x12: case 0x16: /* 10x10 */
6863 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6864 "vfp/neon vstm/vpush", dsc);
6865
6866 case 0x09: case 0x0d: /* 01x01 */
6867 case 0x0b: case 0x0f: /* 01x11 */
6868 case 0x13: case 0x17: /* 10x11 */
6869 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6870 "vfp/neon vldm/vpop", dsc);
6871
6872 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6873 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6874 "vstr", dsc);
6875 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6876 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
6877 }
6878
6879 /* Should be unreachable. */
6880 return 1;
6881 }
6882
6883 static int
6884 arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn,
6885 struct regcache *regs, struct displaced_step_closure *dsc)
6886 {
6887 unsigned int op1 = bits (insn, 20, 25);
6888 int op = bit (insn, 4);
6889 unsigned int coproc = bits (insn, 8, 11);
6890
6891 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
6892 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
6893 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6894 && (coproc & 0xe) != 0xa)
6895 /* stc/stc2. */
6896 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6897 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6898 && (coproc & 0xe) != 0xa)
6899 /* ldc/ldc2 imm/lit. */
6900 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
6901 else if ((op1 & 0x3e) == 0x00)
6902 return arm_copy_undef (gdbarch, insn, dsc);
6903 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
6904 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
6905 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
6906 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6907 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
6908 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6909 else if ((op1 & 0x30) == 0x20 && !op)
6910 {
6911 if ((coproc & 0xe) == 0xa)
6912 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
6913 else
6914 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6915 }
6916 else if ((op1 & 0x30) == 0x20 && op)
6917 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
6918 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
6919 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6920 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
6921 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6922 else if ((op1 & 0x30) == 0x30)
6923 return arm_copy_svc (gdbarch, insn, regs, dsc);
6924 else
6925 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
6926 }
6927
6928 static int
6929 thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
6930 uint16_t insn2, struct regcache *regs,
6931 struct displaced_step_closure *dsc)
6932 {
6933 unsigned int coproc = bits (insn2, 8, 11);
6934 unsigned int bit_5_8 = bits (insn1, 5, 8);
6935 unsigned int bit_9 = bit (insn1, 9);
6936 unsigned int bit_4 = bit (insn1, 4);
6937
6938 if (bit_9 == 0)
6939 {
6940 if (bit_5_8 == 2)
6941 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6942 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
6943 dsc);
6944 else if (bit_5_8 == 0) /* UNDEFINED. */
6945 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
6946 else
6947 {
6948 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
6949 if ((coproc & 0xe) == 0xa)
6950 return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
6951 dsc);
6952 else /* coproc is not 101x. */
6953 {
6954 if (bit_4 == 0) /* STC/STC2. */
6955 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6956 "stc/stc2", dsc);
6957 else /* LDC/LDC2 {literal, immeidate}. */
6958 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
6959 regs, dsc);
6960 }
6961 }
6962 }
6963 else
6964 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
6965
6966 return 0;
6967 }
6968
6969 static void
6970 install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
6971 struct displaced_step_closure *dsc, int rd)
6972 {
6973 /* ADR Rd, #imm
6974
6975 Rewrite as:
6976
6977 Preparation: Rd <- PC
6978 Insn: ADD Rd, #imm
6979 Cleanup: Null.
6980 */
6981
6982 /* Rd <- PC */
6983 int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
6984 displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
6985 }
6986
6987 static int
6988 thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
6989 struct displaced_step_closure *dsc,
6990 int rd, unsigned int imm)
6991 {
6992
6993 /* Encoding T2: ADDS Rd, #imm */
6994 dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
6995
6996 install_pc_relative (gdbarch, regs, dsc, rd);
6997
6998 return 0;
6999 }
7000
7001 static int
7002 thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
7003 struct regcache *regs,
7004 struct displaced_step_closure *dsc)
7005 {
7006 unsigned int rd = bits (insn, 8, 10);
7007 unsigned int imm8 = bits (insn, 0, 7);
7008
7009 if (debug_displaced)
7010 fprintf_unfiltered (gdb_stdlog,
7011 "displaced: copying thumb adr r%d, #%d insn %.4x\n",
7012 rd, imm8, insn);
7013
7014 return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
7015 }
7016
7017 static int
7018 thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
7019 uint16_t insn2, struct regcache *regs,
7020 struct displaced_step_closure *dsc)
7021 {
7022 unsigned int rd = bits (insn2, 8, 11);
7023 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
7024 extract raw immediate encoding rather than computing immediate. When
7025 generating ADD or SUB instruction, we can simply perform OR operation to
7026 set immediate into ADD. */
7027 unsigned int imm_3_8 = insn2 & 0x70ff;
7028 unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
7029
7030 if (debug_displaced)
7031 fprintf_unfiltered (gdb_stdlog,
7032 "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
7033 rd, imm_i, imm_3_8, insn1, insn2);
7034
7035 if (bit (insn1, 7)) /* Encoding T2 */
7036 {
7037 /* Encoding T3: SUB Rd, Rd, #imm */
7038 dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
7039 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7040 }
7041 else /* Encoding T3 */
7042 {
7043 /* Encoding T3: ADD Rd, Rd, #imm */
7044 dsc->modinsn[0] = (0xf100 | rd | imm_i);
7045 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7046 }
7047 dsc->numinsns = 2;
7048
7049 install_pc_relative (gdbarch, regs, dsc, rd);
7050
7051 return 0;
7052 }
7053
7054 static int
7055 thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1,
7056 struct regcache *regs,
7057 struct displaced_step_closure *dsc)
7058 {
7059 unsigned int rt = bits (insn1, 8, 10);
7060 unsigned int pc;
7061 int imm8 = (bits (insn1, 0, 7) << 2);
7062
7063 /* LDR Rd, #imm8
7064
7065 Rwrite as:
7066
7067 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
7068
7069 Insn: LDR R0, [R2, R3];
7070 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
7071
7072 if (debug_displaced)
7073 fprintf_unfiltered (gdb_stdlog,
7074 "displaced: copying thumb ldr r%d [pc #%d]\n"
7075 , rt, imm8);
7076
7077 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
7078 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
7079 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
7080 pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7081 /* The assembler calculates the required value of the offset from the
7082 Align(PC,4) value of this instruction to the label. */
7083 pc = pc & 0xfffffffc;
7084
7085 displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
7086 displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
7087
7088 dsc->rd = rt;
7089 dsc->u.ldst.xfersize = 4;
7090 dsc->u.ldst.rn = 0;
7091 dsc->u.ldst.immed = 0;
7092 dsc->u.ldst.writeback = 0;
7093 dsc->u.ldst.restore_r4 = 0;
7094
7095 dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
7096
7097 dsc->cleanup = &cleanup_load;
7098
7099 return 0;
7100 }
7101
7102 /* Copy Thumb cbnz/cbz insruction. */
7103
7104 static int
7105 thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
7106 struct regcache *regs,
7107 struct displaced_step_closure *dsc)
7108 {
7109 int non_zero = bit (insn1, 11);
7110 unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
7111 CORE_ADDR from = dsc->insn_addr;
7112 int rn = bits (insn1, 0, 2);
7113 int rn_val = displaced_read_reg (regs, dsc, rn);
7114
7115 dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
7116 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
7117 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
7118 condition is false, let it be, cleanup_branch will do nothing. */
7119 if (dsc->u.branch.cond)
7120 {
7121 dsc->u.branch.cond = INST_AL;
7122 dsc->u.branch.dest = from + 4 + imm5;
7123 }
7124 else
7125 dsc->u.branch.dest = from + 2;
7126
7127 dsc->u.branch.link = 0;
7128 dsc->u.branch.exchange = 0;
7129
7130 if (debug_displaced)
7131 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
7132 " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
7133 rn, rn_val, insn1, dsc->u.branch.dest);
7134
7135 dsc->modinsn[0] = THUMB_NOP;
7136
7137 dsc->cleanup = &cleanup_branch;
7138 return 0;
7139 }
7140
7141 /* Copy Table Branch Byte/Halfword */
7142 static int
7143 thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
7144 uint16_t insn2, struct regcache *regs,
7145 struct displaced_step_closure *dsc)
7146 {
7147 ULONGEST rn_val, rm_val;
7148 int is_tbh = bit (insn2, 4);
7149 CORE_ADDR halfwords = 0;
7150 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7151
7152 rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
7153 rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
7154
7155 if (is_tbh)
7156 {
7157 gdb_byte buf[2];
7158
7159 target_read_memory (rn_val + 2 * rm_val, buf, 2);
7160 halfwords = extract_unsigned_integer (buf, 2, byte_order);
7161 }
7162 else
7163 {
7164 gdb_byte buf[1];
7165
7166 target_read_memory (rn_val + rm_val, buf, 1);
7167 halfwords = extract_unsigned_integer (buf, 1, byte_order);
7168 }
7169
7170 if (debug_displaced)
7171 fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
7172 " offset 0x%x\n", is_tbh ? "tbh" : "tbb",
7173 (unsigned int) rn_val, (unsigned int) rm_val,
7174 (unsigned int) halfwords);
7175
7176 dsc->u.branch.cond = INST_AL;
7177 dsc->u.branch.link = 0;
7178 dsc->u.branch.exchange = 0;
7179 dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
7180
7181 dsc->cleanup = &cleanup_branch;
7182
7183 return 0;
7184 }
7185
7186 static void
7187 cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
7188 struct displaced_step_closure *dsc)
7189 {
7190 /* PC <- r7 */
7191 int val = displaced_read_reg (regs, dsc, 7);
7192 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
7193
7194 /* r7 <- r8 */
7195 val = displaced_read_reg (regs, dsc, 8);
7196 displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
7197
7198 /* r8 <- tmp[0] */
7199 displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
7200
7201 }
7202
7203 static int
7204 thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1,
7205 struct regcache *regs,
7206 struct displaced_step_closure *dsc)
7207 {
7208 dsc->u.block.regmask = insn1 & 0x00ff;
7209
7210 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
7211 to :
7212
7213 (1) register list is full, that is, r0-r7 are used.
7214 Prepare: tmp[0] <- r8
7215
7216 POP {r0, r1, ...., r6, r7}; remove PC from reglist
7217 MOV r8, r7; Move value of r7 to r8;
7218 POP {r7}; Store PC value into r7.
7219
7220 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
7221
7222 (2) register list is not full, supposing there are N registers in
7223 register list (except PC, 0 <= N <= 7).
7224 Prepare: for each i, 0 - N, tmp[i] <- ri.
7225
7226 POP {r0, r1, ...., rN};
7227
7228 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
7229 from tmp[] properly.
7230 */
7231 if (debug_displaced)
7232 fprintf_unfiltered (gdb_stdlog,
7233 "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
7234 dsc->u.block.regmask, insn1);
7235
7236 if (dsc->u.block.regmask == 0xff)
7237 {
7238 dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
7239
7240 dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
7241 dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
7242 dsc->modinsn[2] = 0xbc80; /* POP {r7} */
7243
7244 dsc->numinsns = 3;
7245 dsc->cleanup = &cleanup_pop_pc_16bit_all;
7246 }
7247 else
7248 {
7249 unsigned int num_in_list = bitcount (dsc->u.block.regmask);
7250 unsigned int i;
7251 unsigned int new_regmask;
7252
7253 for (i = 0; i < num_in_list + 1; i++)
7254 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
7255
7256 new_regmask = (1 << (num_in_list + 1)) - 1;
7257
7258 if (debug_displaced)
7259 fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
7260 "{..., pc}: original reg list %.4x,"
7261 " modified list %.4x\n"),
7262 (int) dsc->u.block.regmask, new_regmask);
7263
7264 dsc->u.block.regmask |= 0x8000;
7265 dsc->u.block.writeback = 0;
7266 dsc->u.block.cond = INST_AL;
7267
7268 dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
7269
7270 dsc->cleanup = &cleanup_block_load_pc;
7271 }
7272
7273 return 0;
7274 }
7275
7276 static void
7277 thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7278 struct regcache *regs,
7279 struct displaced_step_closure *dsc)
7280 {
7281 unsigned short op_bit_12_15 = bits (insn1, 12, 15);
7282 unsigned short op_bit_10_11 = bits (insn1, 10, 11);
7283 int err = 0;
7284
7285 /* 16-bit thumb instructions. */
7286 switch (op_bit_12_15)
7287 {
7288 /* Shift (imme), add, subtract, move and compare. */
7289 case 0: case 1: case 2: case 3:
7290 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7291 "shift/add/sub/mov/cmp",
7292 dsc);
7293 break;
7294 case 4:
7295 switch (op_bit_10_11)
7296 {
7297 case 0: /* Data-processing */
7298 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7299 "data-processing",
7300 dsc);
7301 break;
7302 case 1: /* Special data instructions and branch and exchange. */
7303 {
7304 unsigned short op = bits (insn1, 7, 9);
7305 if (op == 6 || op == 7) /* BX or BLX */
7306 err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
7307 else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
7308 err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
7309 else
7310 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
7311 dsc);
7312 }
7313 break;
7314 default: /* LDR (literal) */
7315 err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
7316 }
7317 break;
7318 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
7319 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
7320 break;
7321 case 10:
7322 if (op_bit_10_11 < 2) /* Generate PC-relative address */
7323 err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
7324 else /* Generate SP-relative address */
7325 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
7326 break;
7327 case 11: /* Misc 16-bit instructions */
7328 {
7329 switch (bits (insn1, 8, 11))
7330 {
7331 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
7332 err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
7333 break;
7334 case 12: case 13: /* POP */
7335 if (bit (insn1, 8)) /* PC is in register list. */
7336 err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
7337 else
7338 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
7339 break;
7340 case 15: /* If-Then, and hints */
7341 if (bits (insn1, 0, 3))
7342 /* If-Then makes up to four following instructions conditional.
7343 IT instruction itself is not conditional, so handle it as a
7344 common unmodified instruction. */
7345 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
7346 dsc);
7347 else
7348 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
7349 break;
7350 default:
7351 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
7352 }
7353 }
7354 break;
7355 case 12:
7356 if (op_bit_10_11 < 2) /* Store multiple registers */
7357 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
7358 else /* Load multiple registers */
7359 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
7360 break;
7361 case 13: /* Conditional branch and supervisor call */
7362 if (bits (insn1, 9, 11) != 7) /* conditional branch */
7363 err = thumb_copy_b (gdbarch, insn1, dsc);
7364 else
7365 err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
7366 break;
7367 case 14: /* Unconditional branch */
7368 err = thumb_copy_b (gdbarch, insn1, dsc);
7369 break;
7370 default:
7371 err = 1;
7372 }
7373
7374 if (err)
7375 internal_error (__FILE__, __LINE__,
7376 _("thumb_process_displaced_16bit_insn: Instruction decode error"));
7377 }
7378
7379 static int
7380 decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
7381 uint16_t insn1, uint16_t insn2,
7382 struct regcache *regs,
7383 struct displaced_step_closure *dsc)
7384 {
7385 int rt = bits (insn2, 12, 15);
7386 int rn = bits (insn1, 0, 3);
7387 int op1 = bits (insn1, 7, 8);
7388
7389 switch (bits (insn1, 5, 6))
7390 {
7391 case 0: /* Load byte and memory hints */
7392 if (rt == 0xf) /* PLD/PLI */
7393 {
7394 if (rn == 0xf)
7395 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
7396 return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
7397 else
7398 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7399 "pli/pld", dsc);
7400 }
7401 else
7402 {
7403 if (rn == 0xf) /* LDRB/LDRSB (literal) */
7404 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7405 1);
7406 else
7407 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7408 "ldrb{reg, immediate}/ldrbt",
7409 dsc);
7410 }
7411
7412 break;
7413 case 1: /* Load halfword and memory hints. */
7414 if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
7415 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7416 "pld/unalloc memhint", dsc);
7417 else
7418 {
7419 if (rn == 0xf)
7420 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7421 2);
7422 else
7423 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7424 "ldrh/ldrht", dsc);
7425 }
7426 break;
7427 case 2: /* Load word */
7428 {
7429 int insn2_bit_8_11 = bits (insn2, 8, 11);
7430
7431 if (rn == 0xf)
7432 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
7433 else if (op1 == 0x1) /* Encoding T3 */
7434 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
7435 0, 1);
7436 else /* op1 == 0x0 */
7437 {
7438 if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
7439 /* LDR (immediate) */
7440 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7441 dsc, bit (insn2, 8), 1);
7442 else if (insn2_bit_8_11 == 0xe) /* LDRT */
7443 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7444 "ldrt", dsc);
7445 else
7446 /* LDR (register) */
7447 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7448 dsc, 0, 0);
7449 }
7450 break;
7451 }
7452 default:
7453 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
7454 break;
7455 }
7456 return 0;
7457 }
7458
7459 static void
7460 thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7461 uint16_t insn2, struct regcache *regs,
7462 struct displaced_step_closure *dsc)
7463 {
7464 int err = 0;
7465 unsigned short op = bit (insn2, 15);
7466 unsigned int op1 = bits (insn1, 11, 12);
7467
7468 switch (op1)
7469 {
7470 case 1:
7471 {
7472 switch (bits (insn1, 9, 10))
7473 {
7474 case 0:
7475 if (bit (insn1, 6))
7476 {
7477 /* Load/store {dual, execlusive}, table branch. */
7478 if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
7479 && bits (insn2, 5, 7) == 0)
7480 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
7481 dsc);
7482 else
7483 /* PC is not allowed to use in load/store {dual, exclusive}
7484 instructions. */
7485 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7486 "load/store dual/ex", dsc);
7487 }
7488 else /* load/store multiple */
7489 {
7490 switch (bits (insn1, 7, 8))
7491 {
7492 case 0: case 3: /* SRS, RFE */
7493 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7494 "srs/rfe", dsc);
7495 break;
7496 case 1: case 2: /* LDM/STM/PUSH/POP */
7497 err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
7498 break;
7499 }
7500 }
7501 break;
7502
7503 case 1:
7504 /* Data-processing (shift register). */
7505 err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
7506 dsc);
7507 break;
7508 default: /* Coprocessor instructions. */
7509 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7510 break;
7511 }
7512 break;
7513 }
7514 case 2: /* op1 = 2 */
7515 if (op) /* Branch and misc control. */
7516 {
7517 if (bit (insn2, 14) /* BLX/BL */
7518 || bit (insn2, 12) /* Unconditional branch */
7519 || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
7520 err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
7521 else
7522 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7523 "misc ctrl", dsc);
7524 }
7525 else
7526 {
7527 if (bit (insn1, 9)) /* Data processing (plain binary imm). */
7528 {
7529 int op = bits (insn1, 4, 8);
7530 int rn = bits (insn1, 0, 3);
7531 if ((op == 0 || op == 0xa) && rn == 0xf)
7532 err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
7533 regs, dsc);
7534 else
7535 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7536 "dp/pb", dsc);
7537 }
7538 else /* Data processing (modified immeidate) */
7539 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7540 "dp/mi", dsc);
7541 }
7542 break;
7543 case 3: /* op1 = 3 */
7544 switch (bits (insn1, 9, 10))
7545 {
7546 case 0:
7547 if (bit (insn1, 4))
7548 err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
7549 regs, dsc);
7550 else /* NEON Load/Store and Store single data item */
7551 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7552 "neon elt/struct load/store",
7553 dsc);
7554 break;
7555 case 1: /* op1 = 3, bits (9, 10) == 1 */
7556 switch (bits (insn1, 7, 8))
7557 {
7558 case 0: case 1: /* Data processing (register) */
7559 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7560 "dp(reg)", dsc);
7561 break;
7562 case 2: /* Multiply and absolute difference */
7563 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7564 "mul/mua/diff", dsc);
7565 break;
7566 case 3: /* Long multiply and divide */
7567 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7568 "lmul/lmua", dsc);
7569 break;
7570 }
7571 break;
7572 default: /* Coprocessor instructions */
7573 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7574 break;
7575 }
7576 break;
7577 default:
7578 err = 1;
7579 }
7580
7581 if (err)
7582 internal_error (__FILE__, __LINE__,
7583 _("thumb_process_displaced_32bit_insn: Instruction decode error"));
7584
7585 }
7586
7587 static void
7588 thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7589 struct regcache *regs,
7590 struct displaced_step_closure *dsc)
7591 {
7592 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7593 uint16_t insn1
7594 = read_memory_unsigned_integer (from, 2, byte_order_for_code);
7595
7596 if (debug_displaced)
7597 fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
7598 "at %.8lx\n", insn1, (unsigned long) from);
7599
7600 dsc->is_thumb = 1;
7601 dsc->insn_size = thumb_insn_size (insn1);
7602 if (thumb_insn_size (insn1) == 4)
7603 {
7604 uint16_t insn2
7605 = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
7606 thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
7607 }
7608 else
7609 thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
7610 }
7611
7612 void
7613 arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7614 CORE_ADDR to, struct regcache *regs,
7615 struct displaced_step_closure *dsc)
7616 {
7617 int err = 0;
7618 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7619 uint32_t insn;
7620
7621 /* Most displaced instructions use a 1-instruction scratch space, so set this
7622 here and override below if/when necessary. */
7623 dsc->numinsns = 1;
7624 dsc->insn_addr = from;
7625 dsc->scratch_base = to;
7626 dsc->cleanup = NULL;
7627 dsc->wrote_to_pc = 0;
7628
7629 if (!displaced_in_arm_mode (regs))
7630 return thumb_process_displaced_insn (gdbarch, from, regs, dsc);
7631
7632 dsc->is_thumb = 0;
7633 dsc->insn_size = 4;
7634 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
7635 if (debug_displaced)
7636 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
7637 "at %.8lx\n", (unsigned long) insn,
7638 (unsigned long) from);
7639
7640 if ((insn & 0xf0000000) == 0xf0000000)
7641 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
7642 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
7643 {
7644 case 0x0: case 0x1: case 0x2: case 0x3:
7645 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
7646 break;
7647
7648 case 0x4: case 0x5: case 0x6:
7649 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
7650 break;
7651
7652 case 0x7:
7653 err = arm_decode_media (gdbarch, insn, dsc);
7654 break;
7655
7656 case 0x8: case 0x9: case 0xa: case 0xb:
7657 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
7658 break;
7659
7660 case 0xc: case 0xd: case 0xe: case 0xf:
7661 err = arm_decode_svc_copro (gdbarch, insn, regs, dsc);
7662 break;
7663 }
7664
7665 if (err)
7666 internal_error (__FILE__, __LINE__,
7667 _("arm_process_displaced_insn: Instruction decode error"));
7668 }
7669
7670 /* Actually set up the scratch space for a displaced instruction. */
7671
7672 void
7673 arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
7674 CORE_ADDR to, struct displaced_step_closure *dsc)
7675 {
7676 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7677 unsigned int i, len, offset;
7678 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7679 int size = dsc->is_thumb? 2 : 4;
7680 const gdb_byte *bkp_insn;
7681
7682 offset = 0;
7683 /* Poke modified instruction(s). */
7684 for (i = 0; i < dsc->numinsns; i++)
7685 {
7686 if (debug_displaced)
7687 {
7688 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
7689 if (size == 4)
7690 fprintf_unfiltered (gdb_stdlog, "%.8lx",
7691 dsc->modinsn[i]);
7692 else if (size == 2)
7693 fprintf_unfiltered (gdb_stdlog, "%.4x",
7694 (unsigned short)dsc->modinsn[i]);
7695
7696 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
7697 (unsigned long) to + offset);
7698
7699 }
7700 write_memory_unsigned_integer (to + offset, size,
7701 byte_order_for_code,
7702 dsc->modinsn[i]);
7703 offset += size;
7704 }
7705
7706 /* Choose the correct breakpoint instruction. */
7707 if (dsc->is_thumb)
7708 {
7709 bkp_insn = tdep->thumb_breakpoint;
7710 len = tdep->thumb_breakpoint_size;
7711 }
7712 else
7713 {
7714 bkp_insn = tdep->arm_breakpoint;
7715 len = tdep->arm_breakpoint_size;
7716 }
7717
7718 /* Put breakpoint afterwards. */
7719 write_memory (to + offset, bkp_insn, len);
7720
7721 if (debug_displaced)
7722 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
7723 paddress (gdbarch, from), paddress (gdbarch, to));
7724 }
7725
7726 /* Entry point for cleaning things up after a displaced instruction has been
7727 single-stepped. */
7728
7729 void
7730 arm_displaced_step_fixup (struct gdbarch *gdbarch,
7731 struct displaced_step_closure *dsc,
7732 CORE_ADDR from, CORE_ADDR to,
7733 struct regcache *regs)
7734 {
7735 if (dsc->cleanup)
7736 dsc->cleanup (gdbarch, regs, dsc);
7737
7738 if (!dsc->wrote_to_pc)
7739 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
7740 dsc->insn_addr + dsc->insn_size);
7741
7742 }
7743
7744 #include "bfd-in2.h"
7745 #include "libcoff.h"
7746
7747 static int
7748 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
7749 {
7750 gdb_disassembler *di
7751 = static_cast<gdb_disassembler *>(info->application_data);
7752 struct gdbarch *gdbarch = di->arch ();
7753
7754 if (arm_pc_is_thumb (gdbarch, memaddr))
7755 {
7756 static asymbol *asym;
7757 static combined_entry_type ce;
7758 static struct coff_symbol_struct csym;
7759 static struct bfd fake_bfd;
7760 static bfd_target fake_target;
7761
7762 if (csym.native == NULL)
7763 {
7764 /* Create a fake symbol vector containing a Thumb symbol.
7765 This is solely so that the code in print_insn_little_arm()
7766 and print_insn_big_arm() in opcodes/arm-dis.c will detect
7767 the presence of a Thumb symbol and switch to decoding
7768 Thumb instructions. */
7769
7770 fake_target.flavour = bfd_target_coff_flavour;
7771 fake_bfd.xvec = &fake_target;
7772 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
7773 csym.native = &ce;
7774 csym.symbol.the_bfd = &fake_bfd;
7775 csym.symbol.name = "fake";
7776 asym = (asymbol *) & csym;
7777 }
7778
7779 memaddr = UNMAKE_THUMB_ADDR (memaddr);
7780 info->symbols = &asym;
7781 }
7782 else
7783 info->symbols = NULL;
7784
7785 if (info->endian == BFD_ENDIAN_BIG)
7786 return print_insn_big_arm (memaddr, info);
7787 else
7788 return print_insn_little_arm (memaddr, info);
7789 }
7790
7791 /* The following define instruction sequences that will cause ARM
7792 cpu's to take an undefined instruction trap. These are used to
7793 signal a breakpoint to GDB.
7794
7795 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7796 modes. A different instruction is required for each mode. The ARM
7797 cpu's can also be big or little endian. Thus four different
7798 instructions are needed to support all cases.
7799
7800 Note: ARMv4 defines several new instructions that will take the
7801 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7802 not in fact add the new instructions. The new undefined
7803 instructions in ARMv4 are all instructions that had no defined
7804 behaviour in earlier chips. There is no guarantee that they will
7805 raise an exception, but may be treated as NOP's. In practice, it
7806 may only safe to rely on instructions matching:
7807
7808 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7809 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7810 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7811
7812 Even this may only true if the condition predicate is true. The
7813 following use a condition predicate of ALWAYS so it is always TRUE.
7814
7815 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7816 and NetBSD all use a software interrupt rather than an undefined
7817 instruction to force a trap. This can be handled by by the
7818 abi-specific code during establishment of the gdbarch vector. */
7819
7820 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7821 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7822 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7823 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7824
7825 static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7826 static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7827 static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7828 static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
7829
7830 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7831
7832 static int
7833 arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7834 {
7835 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7836 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7837
7838 if (arm_pc_is_thumb (gdbarch, *pcptr))
7839 {
7840 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
7841
7842 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7843 check whether we are replacing a 32-bit instruction. */
7844 if (tdep->thumb2_breakpoint != NULL)
7845 {
7846 gdb_byte buf[2];
7847
7848 if (target_read_memory (*pcptr, buf, 2) == 0)
7849 {
7850 unsigned short inst1;
7851
7852 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
7853 if (thumb_insn_size (inst1) == 4)
7854 return ARM_BP_KIND_THUMB2;
7855 }
7856 }
7857
7858 return ARM_BP_KIND_THUMB;
7859 }
7860 else
7861 return ARM_BP_KIND_ARM;
7862
7863 }
7864
7865 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7866
7867 static const gdb_byte *
7868 arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7869 {
7870 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7871
7872 switch (kind)
7873 {
7874 case ARM_BP_KIND_ARM:
7875 *size = tdep->arm_breakpoint_size;
7876 return tdep->arm_breakpoint;
7877 case ARM_BP_KIND_THUMB:
7878 *size = tdep->thumb_breakpoint_size;
7879 return tdep->thumb_breakpoint;
7880 case ARM_BP_KIND_THUMB2:
7881 *size = tdep->thumb2_breakpoint_size;
7882 return tdep->thumb2_breakpoint;
7883 default:
7884 gdb_assert_not_reached ("unexpected arm breakpoint kind");
7885 }
7886 }
7887
7888 /* Implement the breakpoint_kind_from_current_state gdbarch method. */
7889
7890 static int
7891 arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
7892 struct regcache *regcache,
7893 CORE_ADDR *pcptr)
7894 {
7895 gdb_byte buf[4];
7896
7897 /* Check the memory pointed by PC is readable. */
7898 if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0)
7899 {
7900 struct arm_get_next_pcs next_pcs_ctx;
7901 CORE_ADDR pc;
7902 int i;
7903 VEC (CORE_ADDR) *next_pcs = NULL;
7904 struct cleanup *old_chain
7905 = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
7906
7907 arm_get_next_pcs_ctor (&next_pcs_ctx,
7908 &arm_get_next_pcs_ops,
7909 gdbarch_byte_order (gdbarch),
7910 gdbarch_byte_order_for_code (gdbarch),
7911 0,
7912 regcache);
7913
7914 next_pcs = arm_get_next_pcs (&next_pcs_ctx);
7915
7916 /* If MEMADDR is the next instruction of current pc, do the
7917 software single step computation, and get the thumb mode by
7918 the destination address. */
7919 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
7920 {
7921 if (UNMAKE_THUMB_ADDR (pc) == *pcptr)
7922 {
7923 do_cleanups (old_chain);
7924
7925 if (IS_THUMB_ADDR (pc))
7926 {
7927 *pcptr = MAKE_THUMB_ADDR (*pcptr);
7928 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7929 }
7930 else
7931 return ARM_BP_KIND_ARM;
7932 }
7933 }
7934
7935 do_cleanups (old_chain);
7936 }
7937
7938 return arm_breakpoint_kind_from_pc (gdbarch, pcptr);
7939 }
7940
7941 /* Extract from an array REGBUF containing the (raw) register state a
7942 function return value of type TYPE, and copy that, in virtual
7943 format, into VALBUF. */
7944
7945 static void
7946 arm_extract_return_value (struct type *type, struct regcache *regs,
7947 gdb_byte *valbuf)
7948 {
7949 struct gdbarch *gdbarch = get_regcache_arch (regs);
7950 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7951
7952 if (TYPE_CODE_FLT == TYPE_CODE (type))
7953 {
7954 switch (gdbarch_tdep (gdbarch)->fp_model)
7955 {
7956 case ARM_FLOAT_FPA:
7957 {
7958 /* The value is in register F0 in internal format. We need to
7959 extract the raw value and then convert it to the desired
7960 internal type. */
7961 bfd_byte tmpbuf[FP_REGISTER_SIZE];
7962
7963 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
7964 convert_from_extended (floatformat_from_type (type), tmpbuf,
7965 valbuf, gdbarch_byte_order (gdbarch));
7966 }
7967 break;
7968
7969 case ARM_FLOAT_SOFT_FPA:
7970 case ARM_FLOAT_SOFT_VFP:
7971 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7972 not using the VFP ABI code. */
7973 case ARM_FLOAT_VFP:
7974 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
7975 if (TYPE_LENGTH (type) > 4)
7976 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7977 valbuf + INT_REGISTER_SIZE);
7978 break;
7979
7980 default:
7981 internal_error (__FILE__, __LINE__,
7982 _("arm_extract_return_value: "
7983 "Floating point model not supported"));
7984 break;
7985 }
7986 }
7987 else if (TYPE_CODE (type) == TYPE_CODE_INT
7988 || TYPE_CODE (type) == TYPE_CODE_CHAR
7989 || TYPE_CODE (type) == TYPE_CODE_BOOL
7990 || TYPE_CODE (type) == TYPE_CODE_PTR
7991 || TYPE_IS_REFERENCE (type)
7992 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7993 {
7994 /* If the type is a plain integer, then the access is
7995 straight-forward. Otherwise we have to play around a bit
7996 more. */
7997 int len = TYPE_LENGTH (type);
7998 int regno = ARM_A1_REGNUM;
7999 ULONGEST tmp;
8000
8001 while (len > 0)
8002 {
8003 /* By using store_unsigned_integer we avoid having to do
8004 anything special for small big-endian values. */
8005 regcache_cooked_read_unsigned (regs, regno++, &tmp);
8006 store_unsigned_integer (valbuf,
8007 (len > INT_REGISTER_SIZE
8008 ? INT_REGISTER_SIZE : len),
8009 byte_order, tmp);
8010 len -= INT_REGISTER_SIZE;
8011 valbuf += INT_REGISTER_SIZE;
8012 }
8013 }
8014 else
8015 {
8016 /* For a structure or union the behaviour is as if the value had
8017 been stored to word-aligned memory and then loaded into
8018 registers with 32-bit load instruction(s). */
8019 int len = TYPE_LENGTH (type);
8020 int regno = ARM_A1_REGNUM;
8021 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8022
8023 while (len > 0)
8024 {
8025 regcache_cooked_read (regs, regno++, tmpbuf);
8026 memcpy (valbuf, tmpbuf,
8027 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8028 len -= INT_REGISTER_SIZE;
8029 valbuf += INT_REGISTER_SIZE;
8030 }
8031 }
8032 }
8033
8034
8035 /* Will a function return an aggregate type in memory or in a
8036 register? Return 0 if an aggregate type can be returned in a
8037 register, 1 if it must be returned in memory. */
8038
8039 static int
8040 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
8041 {
8042 enum type_code code;
8043
8044 type = check_typedef (type);
8045
8046 /* Simple, non-aggregate types (ie not including vectors and
8047 complex) are always returned in a register (or registers). */
8048 code = TYPE_CODE (type);
8049 if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
8050 && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
8051 return 0;
8052
8053 if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type))
8054 {
8055 /* Vector values should be returned using ARM registers if they
8056 are not over 16 bytes. */
8057 return (TYPE_LENGTH (type) > 16);
8058 }
8059
8060 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
8061 {
8062 /* The AAPCS says all aggregates not larger than a word are returned
8063 in a register. */
8064 if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE)
8065 return 0;
8066
8067 return 1;
8068 }
8069 else
8070 {
8071 int nRc;
8072
8073 /* All aggregate types that won't fit in a register must be returned
8074 in memory. */
8075 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
8076 return 1;
8077
8078 /* In the ARM ABI, "integer" like aggregate types are returned in
8079 registers. For an aggregate type to be integer like, its size
8080 must be less than or equal to INT_REGISTER_SIZE and the
8081 offset of each addressable subfield must be zero. Note that bit
8082 fields are not addressable, and all addressable subfields of
8083 unions always start at offset zero.
8084
8085 This function is based on the behaviour of GCC 2.95.1.
8086 See: gcc/arm.c: arm_return_in_memory() for details.
8087
8088 Note: All versions of GCC before GCC 2.95.2 do not set up the
8089 parameters correctly for a function returning the following
8090 structure: struct { float f;}; This should be returned in memory,
8091 not a register. Richard Earnshaw sent me a patch, but I do not
8092 know of any way to detect if a function like the above has been
8093 compiled with the correct calling convention. */
8094
8095 /* Assume all other aggregate types can be returned in a register.
8096 Run a check for structures, unions and arrays. */
8097 nRc = 0;
8098
8099 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
8100 {
8101 int i;
8102 /* Need to check if this struct/union is "integer" like. For
8103 this to be true, its size must be less than or equal to
8104 INT_REGISTER_SIZE and the offset of each addressable
8105 subfield must be zero. Note that bit fields are not
8106 addressable, and unions always start at offset zero. If any
8107 of the subfields is a floating point type, the struct/union
8108 cannot be an integer type. */
8109
8110 /* For each field in the object, check:
8111 1) Is it FP? --> yes, nRc = 1;
8112 2) Is it addressable (bitpos != 0) and
8113 not packed (bitsize == 0)?
8114 --> yes, nRc = 1
8115 */
8116
8117 for (i = 0; i < TYPE_NFIELDS (type); i++)
8118 {
8119 enum type_code field_type_code;
8120
8121 field_type_code
8122 = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
8123 i)));
8124
8125 /* Is it a floating point type field? */
8126 if (field_type_code == TYPE_CODE_FLT)
8127 {
8128 nRc = 1;
8129 break;
8130 }
8131
8132 /* If bitpos != 0, then we have to care about it. */
8133 if (TYPE_FIELD_BITPOS (type, i) != 0)
8134 {
8135 /* Bitfields are not addressable. If the field bitsize is
8136 zero, then the field is not packed. Hence it cannot be
8137 a bitfield or any other packed type. */
8138 if (TYPE_FIELD_BITSIZE (type, i) == 0)
8139 {
8140 nRc = 1;
8141 break;
8142 }
8143 }
8144 }
8145 }
8146
8147 return nRc;
8148 }
8149 }
8150
8151 /* Write into appropriate registers a function return value of type
8152 TYPE, given in virtual format. */
8153
8154 static void
8155 arm_store_return_value (struct type *type, struct regcache *regs,
8156 const gdb_byte *valbuf)
8157 {
8158 struct gdbarch *gdbarch = get_regcache_arch (regs);
8159 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8160
8161 if (TYPE_CODE (type) == TYPE_CODE_FLT)
8162 {
8163 gdb_byte buf[MAX_REGISTER_SIZE];
8164
8165 switch (gdbarch_tdep (gdbarch)->fp_model)
8166 {
8167 case ARM_FLOAT_FPA:
8168
8169 convert_to_extended (floatformat_from_type (type), buf, valbuf,
8170 gdbarch_byte_order (gdbarch));
8171 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
8172 break;
8173
8174 case ARM_FLOAT_SOFT_FPA:
8175 case ARM_FLOAT_SOFT_VFP:
8176 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8177 not using the VFP ABI code. */
8178 case ARM_FLOAT_VFP:
8179 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
8180 if (TYPE_LENGTH (type) > 4)
8181 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
8182 valbuf + INT_REGISTER_SIZE);
8183 break;
8184
8185 default:
8186 internal_error (__FILE__, __LINE__,
8187 _("arm_store_return_value: Floating "
8188 "point model not supported"));
8189 break;
8190 }
8191 }
8192 else if (TYPE_CODE (type) == TYPE_CODE_INT
8193 || TYPE_CODE (type) == TYPE_CODE_CHAR
8194 || TYPE_CODE (type) == TYPE_CODE_BOOL
8195 || TYPE_CODE (type) == TYPE_CODE_PTR
8196 || TYPE_IS_REFERENCE (type)
8197 || TYPE_CODE (type) == TYPE_CODE_ENUM)
8198 {
8199 if (TYPE_LENGTH (type) <= 4)
8200 {
8201 /* Values of one word or less are zero/sign-extended and
8202 returned in r0. */
8203 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8204 LONGEST val = unpack_long (type, valbuf);
8205
8206 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
8207 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
8208 }
8209 else
8210 {
8211 /* Integral values greater than one word are stored in consecutive
8212 registers starting with r0. This will always be a multiple of
8213 the regiser size. */
8214 int len = TYPE_LENGTH (type);
8215 int regno = ARM_A1_REGNUM;
8216
8217 while (len > 0)
8218 {
8219 regcache_cooked_write (regs, regno++, valbuf);
8220 len -= INT_REGISTER_SIZE;
8221 valbuf += INT_REGISTER_SIZE;
8222 }
8223 }
8224 }
8225 else
8226 {
8227 /* For a structure or union the behaviour is as if the value had
8228 been stored to word-aligned memory and then loaded into
8229 registers with 32-bit load instruction(s). */
8230 int len = TYPE_LENGTH (type);
8231 int regno = ARM_A1_REGNUM;
8232 bfd_byte tmpbuf[INT_REGISTER_SIZE];
8233
8234 while (len > 0)
8235 {
8236 memcpy (tmpbuf, valbuf,
8237 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8238 regcache_cooked_write (regs, regno++, tmpbuf);
8239 len -= INT_REGISTER_SIZE;
8240 valbuf += INT_REGISTER_SIZE;
8241 }
8242 }
8243 }
8244
8245
8246 /* Handle function return values. */
8247
8248 static enum return_value_convention
8249 arm_return_value (struct gdbarch *gdbarch, struct value *function,
8250 struct type *valtype, struct regcache *regcache,
8251 gdb_byte *readbuf, const gdb_byte *writebuf)
8252 {
8253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8254 struct type *func_type = function ? value_type (function) : NULL;
8255 enum arm_vfp_cprc_base_type vfp_base_type;
8256 int vfp_base_count;
8257
8258 if (arm_vfp_abi_for_function (gdbarch, func_type)
8259 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
8260 {
8261 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
8262 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
8263 int i;
8264 for (i = 0; i < vfp_base_count; i++)
8265 {
8266 if (reg_char == 'q')
8267 {
8268 if (writebuf)
8269 arm_neon_quad_write (gdbarch, regcache, i,
8270 writebuf + i * unit_length);
8271
8272 if (readbuf)
8273 arm_neon_quad_read (gdbarch, regcache, i,
8274 readbuf + i * unit_length);
8275 }
8276 else
8277 {
8278 char name_buf[4];
8279 int regnum;
8280
8281 xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
8282 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8283 strlen (name_buf));
8284 if (writebuf)
8285 regcache_cooked_write (regcache, regnum,
8286 writebuf + i * unit_length);
8287 if (readbuf)
8288 regcache_cooked_read (regcache, regnum,
8289 readbuf + i * unit_length);
8290 }
8291 }
8292 return RETURN_VALUE_REGISTER_CONVENTION;
8293 }
8294
8295 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
8296 || TYPE_CODE (valtype) == TYPE_CODE_UNION
8297 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
8298 {
8299 if (tdep->struct_return == pcc_struct_return
8300 || arm_return_in_memory (gdbarch, valtype))
8301 return RETURN_VALUE_STRUCT_CONVENTION;
8302 }
8303 else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
8304 {
8305 if (arm_return_in_memory (gdbarch, valtype))
8306 return RETURN_VALUE_STRUCT_CONVENTION;
8307 }
8308
8309 if (writebuf)
8310 arm_store_return_value (valtype, regcache, writebuf);
8311
8312 if (readbuf)
8313 arm_extract_return_value (valtype, regcache, readbuf);
8314
8315 return RETURN_VALUE_REGISTER_CONVENTION;
8316 }
8317
8318
8319 static int
8320 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
8321 {
8322 struct gdbarch *gdbarch = get_frame_arch (frame);
8323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8325 CORE_ADDR jb_addr;
8326 gdb_byte buf[INT_REGISTER_SIZE];
8327
8328 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
8329
8330 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
8331 INT_REGISTER_SIZE))
8332 return 0;
8333
8334 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
8335 return 1;
8336 }
8337
8338 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
8339 return the target PC. Otherwise return 0. */
8340
8341 CORE_ADDR
8342 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
8343 {
8344 const char *name;
8345 int namelen;
8346 CORE_ADDR start_addr;
8347
8348 /* Find the starting address and name of the function containing the PC. */
8349 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
8350 {
8351 /* Trampoline 'bx reg' doesn't belong to any functions. Do the
8352 check here. */
8353 start_addr = arm_skip_bx_reg (frame, pc);
8354 if (start_addr != 0)
8355 return start_addr;
8356
8357 return 0;
8358 }
8359
8360 /* If PC is in a Thumb call or return stub, return the address of the
8361 target PC, which is in a register. The thunk functions are called
8362 _call_via_xx, where x is the register name. The possible names
8363 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
8364 functions, named __ARM_call_via_r[0-7]. */
8365 if (startswith (name, "_call_via_")
8366 || startswith (name, "__ARM_call_via_"))
8367 {
8368 /* Use the name suffix to determine which register contains the
8369 target PC. */
8370 static char *table[15] =
8371 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8372 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
8373 };
8374 int regno;
8375 int offset = strlen (name) - 2;
8376
8377 for (regno = 0; regno <= 14; regno++)
8378 if (strcmp (&name[offset], table[regno]) == 0)
8379 return get_frame_register_unsigned (frame, regno);
8380 }
8381
8382 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
8383 non-interworking calls to foo. We could decode the stubs
8384 to find the target but it's easier to use the symbol table. */
8385 namelen = strlen (name);
8386 if (name[0] == '_' && name[1] == '_'
8387 && ((namelen > 2 + strlen ("_from_thumb")
8388 && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
8389 || (namelen > 2 + strlen ("_from_arm")
8390 && startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
8391 {
8392 char *target_name;
8393 int target_len = namelen - 2;
8394 struct bound_minimal_symbol minsym;
8395 struct objfile *objfile;
8396 struct obj_section *sec;
8397
8398 if (name[namelen - 1] == 'b')
8399 target_len -= strlen ("_from_thumb");
8400 else
8401 target_len -= strlen ("_from_arm");
8402
8403 target_name = (char *) alloca (target_len + 1);
8404 memcpy (target_name, name + 2, target_len);
8405 target_name[target_len] = '\0';
8406
8407 sec = find_pc_section (pc);
8408 objfile = (sec == NULL) ? NULL : sec->objfile;
8409 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
8410 if (minsym.minsym != NULL)
8411 return BMSYMBOL_VALUE_ADDRESS (minsym);
8412 else
8413 return 0;
8414 }
8415
8416 return 0; /* not a stub */
8417 }
8418
8419 static void
8420 set_arm_command (char *args, int from_tty)
8421 {
8422 printf_unfiltered (_("\
8423 \"set arm\" must be followed by an apporpriate subcommand.\n"));
8424 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
8425 }
8426
8427 static void
8428 show_arm_command (char *args, int from_tty)
8429 {
8430 cmd_show_list (showarmcmdlist, from_tty, "");
8431 }
8432
8433 static void
8434 arm_update_current_architecture (void)
8435 {
8436 struct gdbarch_info info;
8437
8438 /* If the current architecture is not ARM, we have nothing to do. */
8439 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm)
8440 return;
8441
8442 /* Update the architecture. */
8443 gdbarch_info_init (&info);
8444
8445 if (!gdbarch_update_p (info))
8446 internal_error (__FILE__, __LINE__, _("could not update architecture"));
8447 }
8448
8449 static void
8450 set_fp_model_sfunc (char *args, int from_tty,
8451 struct cmd_list_element *c)
8452 {
8453 int fp_model;
8454
8455 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
8456 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
8457 {
8458 arm_fp_model = (enum arm_float_model) fp_model;
8459 break;
8460 }
8461
8462 if (fp_model == ARM_FLOAT_LAST)
8463 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
8464 current_fp_model);
8465
8466 arm_update_current_architecture ();
8467 }
8468
8469 static void
8470 show_fp_model (struct ui_file *file, int from_tty,
8471 struct cmd_list_element *c, const char *value)
8472 {
8473 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8474
8475 if (arm_fp_model == ARM_FLOAT_AUTO
8476 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8477 fprintf_filtered (file, _("\
8478 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
8479 fp_model_strings[tdep->fp_model]);
8480 else
8481 fprintf_filtered (file, _("\
8482 The current ARM floating point model is \"%s\".\n"),
8483 fp_model_strings[arm_fp_model]);
8484 }
8485
8486 static void
8487 arm_set_abi (char *args, int from_tty,
8488 struct cmd_list_element *c)
8489 {
8490 int arm_abi;
8491
8492 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
8493 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
8494 {
8495 arm_abi_global = (enum arm_abi_kind) arm_abi;
8496 break;
8497 }
8498
8499 if (arm_abi == ARM_ABI_LAST)
8500 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
8501 arm_abi_string);
8502
8503 arm_update_current_architecture ();
8504 }
8505
8506 static void
8507 arm_show_abi (struct ui_file *file, int from_tty,
8508 struct cmd_list_element *c, const char *value)
8509 {
8510 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
8511
8512 if (arm_abi_global == ARM_ABI_AUTO
8513 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
8514 fprintf_filtered (file, _("\
8515 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
8516 arm_abi_strings[tdep->arm_abi]);
8517 else
8518 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
8519 arm_abi_string);
8520 }
8521
8522 static void
8523 arm_show_fallback_mode (struct ui_file *file, int from_tty,
8524 struct cmd_list_element *c, const char *value)
8525 {
8526 fprintf_filtered (file,
8527 _("The current execution mode assumed "
8528 "(when symbols are unavailable) is \"%s\".\n"),
8529 arm_fallback_mode_string);
8530 }
8531
8532 static void
8533 arm_show_force_mode (struct ui_file *file, int from_tty,
8534 struct cmd_list_element *c, const char *value)
8535 {
8536 fprintf_filtered (file,
8537 _("The current execution mode assumed "
8538 "(even when symbols are available) is \"%s\".\n"),
8539 arm_force_mode_string);
8540 }
8541
8542 /* If the user changes the register disassembly style used for info
8543 register and other commands, we have to also switch the style used
8544 in opcodes for disassembly output. This function is run in the "set
8545 arm disassembly" command, and does that. */
8546
8547 static void
8548 set_disassembly_style_sfunc (char *args, int from_tty,
8549 struct cmd_list_element *c)
8550 {
8551 /* Convert the short style name into the long style name (eg, reg-names-*)
8552 before calling the generic set_disassembler_options() function. */
8553 std::string long_name = std::string ("reg-names-") + disassembly_style;
8554 set_disassembler_options (&long_name[0]);
8555 }
8556
8557 static void
8558 show_disassembly_style_sfunc (struct ui_file *file, int from_tty,
8559 struct cmd_list_element *c, const char *value)
8560 {
8561 struct gdbarch *gdbarch = get_current_arch ();
8562 char *options = get_disassembler_options (gdbarch);
8563 const char *style = "";
8564 int len = 0;
8565 char *opt;
8566
8567 FOR_EACH_DISASSEMBLER_OPTION (opt, options)
8568 if (CONST_STRNEQ (opt, "reg-names-"))
8569 {
8570 style = &opt[strlen ("reg-names-")];
8571 len = strcspn (style, ",");
8572 }
8573
8574 fprintf_unfiltered (file, "The disassembly style is \"%.*s\".\n", len, style);
8575 }
8576 \f
8577 /* Return the ARM register name corresponding to register I. */
8578 static const char *
8579 arm_register_name (struct gdbarch *gdbarch, int i)
8580 {
8581 const int num_regs = gdbarch_num_regs (gdbarch);
8582
8583 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
8584 && i >= num_regs && i < num_regs + 32)
8585 {
8586 static const char *const vfp_pseudo_names[] = {
8587 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
8588 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
8589 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
8590 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
8591 };
8592
8593 return vfp_pseudo_names[i - num_regs];
8594 }
8595
8596 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
8597 && i >= num_regs + 32 && i < num_regs + 32 + 16)
8598 {
8599 static const char *const neon_pseudo_names[] = {
8600 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
8601 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
8602 };
8603
8604 return neon_pseudo_names[i - num_regs - 32];
8605 }
8606
8607 if (i >= ARRAY_SIZE (arm_register_names))
8608 /* These registers are only supported on targets which supply
8609 an XML description. */
8610 return "";
8611
8612 return arm_register_names[i];
8613 }
8614
8615 /* Test whether the coff symbol specific value corresponds to a Thumb
8616 function. */
8617
8618 static int
8619 coff_sym_is_thumb (int val)
8620 {
8621 return (val == C_THUMBEXT
8622 || val == C_THUMBSTAT
8623 || val == C_THUMBEXTFUNC
8624 || val == C_THUMBSTATFUNC
8625 || val == C_THUMBLABEL);
8626 }
8627
8628 /* arm_coff_make_msymbol_special()
8629 arm_elf_make_msymbol_special()
8630
8631 These functions test whether the COFF or ELF symbol corresponds to
8632 an address in thumb code, and set a "special" bit in a minimal
8633 symbol to indicate that it does. */
8634
8635 static void
8636 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
8637 {
8638 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
8639
8640 if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal)
8641 == ST_BRANCH_TO_THUMB)
8642 MSYMBOL_SET_SPECIAL (msym);
8643 }
8644
8645 static void
8646 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
8647 {
8648 if (coff_sym_is_thumb (val))
8649 MSYMBOL_SET_SPECIAL (msym);
8650 }
8651
8652 static void
8653 arm_objfile_data_free (struct objfile *objfile, void *arg)
8654 {
8655 struct arm_per_objfile *data = (struct arm_per_objfile *) arg;
8656 unsigned int i;
8657
8658 for (i = 0; i < objfile->obfd->section_count; i++)
8659 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
8660 }
8661
8662 static void
8663 arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
8664 asymbol *sym)
8665 {
8666 const char *name = bfd_asymbol_name (sym);
8667 struct arm_per_objfile *data;
8668 VEC(arm_mapping_symbol_s) **map_p;
8669 struct arm_mapping_symbol new_map_sym;
8670
8671 gdb_assert (name[0] == '$');
8672 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
8673 return;
8674
8675 data = (struct arm_per_objfile *) objfile_data (objfile,
8676 arm_objfile_data_key);
8677 if (data == NULL)
8678 {
8679 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8680 struct arm_per_objfile);
8681 set_objfile_data (objfile, arm_objfile_data_key, data);
8682 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
8683 objfile->obfd->section_count,
8684 VEC(arm_mapping_symbol_s) *);
8685 }
8686 map_p = &data->section_maps[bfd_get_section (sym)->index];
8687
8688 new_map_sym.value = sym->value;
8689 new_map_sym.type = name[1];
8690
8691 /* Assume that most mapping symbols appear in order of increasing
8692 value. If they were randomly distributed, it would be faster to
8693 always push here and then sort at first use. */
8694 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
8695 {
8696 struct arm_mapping_symbol *prev_map_sym;
8697
8698 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
8699 if (prev_map_sym->value >= sym->value)
8700 {
8701 unsigned int idx;
8702 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
8703 arm_compare_mapping_symbols);
8704 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
8705 return;
8706 }
8707 }
8708
8709 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
8710 }
8711
8712 static void
8713 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
8714 {
8715 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8716 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
8717
8718 /* If necessary, set the T bit. */
8719 if (arm_apcs_32)
8720 {
8721 ULONGEST val, t_bit;
8722 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
8723 t_bit = arm_psr_thumb_bit (gdbarch);
8724 if (arm_pc_is_thumb (gdbarch, pc))
8725 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8726 val | t_bit);
8727 else
8728 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8729 val & ~t_bit);
8730 }
8731 }
8732
8733 /* Read the contents of a NEON quad register, by reading from two
8734 double registers. This is used to implement the quad pseudo
8735 registers, and for argument passing in case the quad registers are
8736 missing; vectors are passed in quad registers when using the VFP
8737 ABI, even if a NEON unit is not present. REGNUM is the index of
8738 the quad register, in [0, 15]. */
8739
8740 static enum register_status
8741 arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
8742 int regnum, gdb_byte *buf)
8743 {
8744 char name_buf[4];
8745 gdb_byte reg_buf[8];
8746 int offset, double_regnum;
8747 enum register_status status;
8748
8749 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8750 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8751 strlen (name_buf));
8752
8753 /* d0 is always the least significant half of q0. */
8754 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8755 offset = 8;
8756 else
8757 offset = 0;
8758
8759 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8760 if (status != REG_VALID)
8761 return status;
8762 memcpy (buf + offset, reg_buf, 8);
8763
8764 offset = 8 - offset;
8765 status = regcache_raw_read (regcache, double_regnum + 1, reg_buf);
8766 if (status != REG_VALID)
8767 return status;
8768 memcpy (buf + offset, reg_buf, 8);
8769
8770 return REG_VALID;
8771 }
8772
8773 static enum register_status
8774 arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
8775 int regnum, gdb_byte *buf)
8776 {
8777 const int num_regs = gdbarch_num_regs (gdbarch);
8778 char name_buf[4];
8779 gdb_byte reg_buf[8];
8780 int offset, double_regnum;
8781
8782 gdb_assert (regnum >= num_regs);
8783 regnum -= num_regs;
8784
8785 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8786 /* Quad-precision register. */
8787 return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
8788 else
8789 {
8790 enum register_status status;
8791
8792 /* Single-precision register. */
8793 gdb_assert (regnum < 32);
8794
8795 /* s0 is always the least significant half of d0. */
8796 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8797 offset = (regnum & 1) ? 0 : 4;
8798 else
8799 offset = (regnum & 1) ? 4 : 0;
8800
8801 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8802 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8803 strlen (name_buf));
8804
8805 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8806 if (status == REG_VALID)
8807 memcpy (buf, reg_buf + offset, 4);
8808 return status;
8809 }
8810 }
8811
8812 /* Store the contents of BUF to a NEON quad register, by writing to
8813 two double registers. This is used to implement the quad pseudo
8814 registers, and for argument passing in case the quad registers are
8815 missing; vectors are passed in quad registers when using the VFP
8816 ABI, even if a NEON unit is not present. REGNUM is the index
8817 of the quad register, in [0, 15]. */
8818
8819 static void
8820 arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
8821 int regnum, const gdb_byte *buf)
8822 {
8823 char name_buf[4];
8824 int offset, double_regnum;
8825
8826 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
8827 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8828 strlen (name_buf));
8829
8830 /* d0 is always the least significant half of q0. */
8831 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8832 offset = 8;
8833 else
8834 offset = 0;
8835
8836 regcache_raw_write (regcache, double_regnum, buf + offset);
8837 offset = 8 - offset;
8838 regcache_raw_write (regcache, double_regnum + 1, buf + offset);
8839 }
8840
8841 static void
8842 arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
8843 int regnum, const gdb_byte *buf)
8844 {
8845 const int num_regs = gdbarch_num_regs (gdbarch);
8846 char name_buf[4];
8847 gdb_byte reg_buf[8];
8848 int offset, double_regnum;
8849
8850 gdb_assert (regnum >= num_regs);
8851 regnum -= num_regs;
8852
8853 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8854 /* Quad-precision register. */
8855 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
8856 else
8857 {
8858 /* Single-precision register. */
8859 gdb_assert (regnum < 32);
8860
8861 /* s0 is always the least significant half of d0. */
8862 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8863 offset = (regnum & 1) ? 0 : 4;
8864 else
8865 offset = (regnum & 1) ? 4 : 0;
8866
8867 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
8868 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8869 strlen (name_buf));
8870
8871 regcache_raw_read (regcache, double_regnum, reg_buf);
8872 memcpy (reg_buf + offset, buf, 4);
8873 regcache_raw_write (regcache, double_regnum, reg_buf);
8874 }
8875 }
8876
8877 static struct value *
8878 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8879 {
8880 const int *reg_p = (const int *) baton;
8881 return value_of_register (*reg_p, frame);
8882 }
8883 \f
8884 static enum gdb_osabi
8885 arm_elf_osabi_sniffer (bfd *abfd)
8886 {
8887 unsigned int elfosabi;
8888 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
8889
8890 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
8891
8892 if (elfosabi == ELFOSABI_ARM)
8893 /* GNU tools use this value. Check note sections in this case,
8894 as well. */
8895 bfd_map_over_sections (abfd,
8896 generic_elf_osabi_sniff_abi_tag_sections,
8897 &osabi);
8898
8899 /* Anything else will be handled by the generic ELF sniffer. */
8900 return osabi;
8901 }
8902
8903 static int
8904 arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8905 struct reggroup *group)
8906 {
8907 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8908 this, FPS register belongs to save_regroup, restore_reggroup, and
8909 all_reggroup, of course. */
8910 if (regnum == ARM_FPS_REGNUM)
8911 return (group == float_reggroup
8912 || group == save_reggroup
8913 || group == restore_reggroup
8914 || group == all_reggroup);
8915 else
8916 return default_register_reggroup_p (gdbarch, regnum, group);
8917 }
8918
8919 \f
8920 /* For backward-compatibility we allow two 'g' packet lengths with
8921 the remote protocol depending on whether FPA registers are
8922 supplied. M-profile targets do not have FPA registers, but some
8923 stubs already exist in the wild which use a 'g' packet which
8924 supplies them albeit with dummy values. The packet format which
8925 includes FPA registers should be considered deprecated for
8926 M-profile targets. */
8927
8928 static void
8929 arm_register_g_packet_guesses (struct gdbarch *gdbarch)
8930 {
8931 if (gdbarch_tdep (gdbarch)->is_m)
8932 {
8933 /* If we know from the executable this is an M-profile target,
8934 cater for remote targets whose register set layout is the
8935 same as the FPA layout. */
8936 register_remote_g_packet_guess (gdbarch,
8937 /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */
8938 (16 * INT_REGISTER_SIZE)
8939 + (8 * FP_REGISTER_SIZE)
8940 + (2 * INT_REGISTER_SIZE),
8941 tdesc_arm_with_m_fpa_layout);
8942
8943 /* The regular M-profile layout. */
8944 register_remote_g_packet_guess (gdbarch,
8945 /* r0-r12,sp,lr,pc; xpsr */
8946 (16 * INT_REGISTER_SIZE)
8947 + INT_REGISTER_SIZE,
8948 tdesc_arm_with_m);
8949
8950 /* M-profile plus M4F VFP. */
8951 register_remote_g_packet_guess (gdbarch,
8952 /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */
8953 (16 * INT_REGISTER_SIZE)
8954 + (16 * VFP_REGISTER_SIZE)
8955 + (2 * INT_REGISTER_SIZE),
8956 tdesc_arm_with_m_vfp_d16);
8957 }
8958
8959 /* Otherwise we don't have a useful guess. */
8960 }
8961
8962 /* Implement the code_of_frame_writable gdbarch method. */
8963
8964 static int
8965 arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame)
8966 {
8967 if (gdbarch_tdep (gdbarch)->is_m
8968 && get_frame_type (frame) == SIGTRAMP_FRAME)
8969 {
8970 /* M-profile exception frames return to some magic PCs, where
8971 isn't writable at all. */
8972 return 0;
8973 }
8974 else
8975 return 1;
8976 }
8977
8978 \f
8979 /* Initialize the current architecture based on INFO. If possible,
8980 re-use an architecture from ARCHES, which is a list of
8981 architectures already created during this debugging session.
8982
8983 Called e.g. at program startup, when reading a core file, and when
8984 reading a binary file. */
8985
8986 static struct gdbarch *
8987 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8988 {
8989 struct gdbarch_tdep *tdep;
8990 struct gdbarch *gdbarch;
8991 struct gdbarch_list *best_arch;
8992 enum arm_abi_kind arm_abi = arm_abi_global;
8993 enum arm_float_model fp_model = arm_fp_model;
8994 struct tdesc_arch_data *tdesc_data = NULL;
8995 int i, is_m = 0;
8996 int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
8997 int have_wmmx_registers = 0;
8998 int have_neon = 0;
8999 int have_fpa_registers = 1;
9000 const struct target_desc *tdesc = info.target_desc;
9001
9002 /* If we have an object to base this architecture on, try to determine
9003 its ABI. */
9004
9005 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
9006 {
9007 int ei_osabi, e_flags;
9008
9009 switch (bfd_get_flavour (info.abfd))
9010 {
9011 case bfd_target_coff_flavour:
9012 /* Assume it's an old APCS-style ABI. */
9013 /* XXX WinCE? */
9014 arm_abi = ARM_ABI_APCS;
9015 break;
9016
9017 case bfd_target_elf_flavour:
9018 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
9019 e_flags = elf_elfheader (info.abfd)->e_flags;
9020
9021 if (ei_osabi == ELFOSABI_ARM)
9022 {
9023 /* GNU tools used to use this value, but do not for EABI
9024 objects. There's nowhere to tag an EABI version
9025 anyway, so assume APCS. */
9026 arm_abi = ARM_ABI_APCS;
9027 }
9028 else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
9029 {
9030 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
9031 int attr_arch, attr_profile;
9032
9033 switch (eabi_ver)
9034 {
9035 case EF_ARM_EABI_UNKNOWN:
9036 /* Assume GNU tools. */
9037 arm_abi = ARM_ABI_APCS;
9038 break;
9039
9040 case EF_ARM_EABI_VER4:
9041 case EF_ARM_EABI_VER5:
9042 arm_abi = ARM_ABI_AAPCS;
9043 /* EABI binaries default to VFP float ordering.
9044 They may also contain build attributes that can
9045 be used to identify if the VFP argument-passing
9046 ABI is in use. */
9047 if (fp_model == ARM_FLOAT_AUTO)
9048 {
9049 #ifdef HAVE_ELF
9050 switch (bfd_elf_get_obj_attr_int (info.abfd,
9051 OBJ_ATTR_PROC,
9052 Tag_ABI_VFP_args))
9053 {
9054 case AEABI_VFP_args_base:
9055 /* "The user intended FP parameter/result
9056 passing to conform to AAPCS, base
9057 variant". */
9058 fp_model = ARM_FLOAT_SOFT_VFP;
9059 break;
9060 case AEABI_VFP_args_vfp:
9061 /* "The user intended FP parameter/result
9062 passing to conform to AAPCS, VFP
9063 variant". */
9064 fp_model = ARM_FLOAT_VFP;
9065 break;
9066 case AEABI_VFP_args_toolchain:
9067 /* "The user intended FP parameter/result
9068 passing to conform to tool chain-specific
9069 conventions" - we don't know any such
9070 conventions, so leave it as "auto". */
9071 break;
9072 case AEABI_VFP_args_compatible:
9073 /* "Code is compatible with both the base
9074 and VFP variants; the user did not permit
9075 non-variadic functions to pass FP
9076 parameters/results" - leave it as
9077 "auto". */
9078 break;
9079 default:
9080 /* Attribute value not mentioned in the
9081 November 2012 ABI, so leave it as
9082 "auto". */
9083 break;
9084 }
9085 #else
9086 fp_model = ARM_FLOAT_SOFT_VFP;
9087 #endif
9088 }
9089 break;
9090
9091 default:
9092 /* Leave it as "auto". */
9093 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
9094 break;
9095 }
9096
9097 #ifdef HAVE_ELF
9098 /* Detect M-profile programs. This only works if the
9099 executable file includes build attributes; GCC does
9100 copy them to the executable, but e.g. RealView does
9101 not. */
9102 attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
9103 Tag_CPU_arch);
9104 attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
9105 OBJ_ATTR_PROC,
9106 Tag_CPU_arch_profile);
9107 /* GCC specifies the profile for v6-M; RealView only
9108 specifies the profile for architectures starting with
9109 V7 (as opposed to architectures with a tag
9110 numerically greater than TAG_CPU_ARCH_V7). */
9111 if (!tdesc_has_registers (tdesc)
9112 && (attr_arch == TAG_CPU_ARCH_V6_M
9113 || attr_arch == TAG_CPU_ARCH_V6S_M
9114 || attr_profile == 'M'))
9115 is_m = 1;
9116 #endif
9117 }
9118
9119 if (fp_model == ARM_FLOAT_AUTO)
9120 {
9121 int e_flags = elf_elfheader (info.abfd)->e_flags;
9122
9123 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
9124 {
9125 case 0:
9126 /* Leave it as "auto". Strictly speaking this case
9127 means FPA, but almost nobody uses that now, and
9128 many toolchains fail to set the appropriate bits
9129 for the floating-point model they use. */
9130 break;
9131 case EF_ARM_SOFT_FLOAT:
9132 fp_model = ARM_FLOAT_SOFT_FPA;
9133 break;
9134 case EF_ARM_VFP_FLOAT:
9135 fp_model = ARM_FLOAT_VFP;
9136 break;
9137 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
9138 fp_model = ARM_FLOAT_SOFT_VFP;
9139 break;
9140 }
9141 }
9142
9143 if (e_flags & EF_ARM_BE8)
9144 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
9145
9146 break;
9147
9148 default:
9149 /* Leave it as "auto". */
9150 break;
9151 }
9152 }
9153
9154 /* Check any target description for validity. */
9155 if (tdesc_has_registers (tdesc))
9156 {
9157 /* For most registers we require GDB's default names; but also allow
9158 the numeric names for sp / lr / pc, as a convenience. */
9159 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
9160 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
9161 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
9162
9163 const struct tdesc_feature *feature;
9164 int valid_p;
9165
9166 feature = tdesc_find_feature (tdesc,
9167 "org.gnu.gdb.arm.core");
9168 if (feature == NULL)
9169 {
9170 feature = tdesc_find_feature (tdesc,
9171 "org.gnu.gdb.arm.m-profile");
9172 if (feature == NULL)
9173 return NULL;
9174 else
9175 is_m = 1;
9176 }
9177
9178 tdesc_data = tdesc_data_alloc ();
9179
9180 valid_p = 1;
9181 for (i = 0; i < ARM_SP_REGNUM; i++)
9182 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9183 arm_register_names[i]);
9184 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9185 ARM_SP_REGNUM,
9186 arm_sp_names);
9187 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9188 ARM_LR_REGNUM,
9189 arm_lr_names);
9190 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9191 ARM_PC_REGNUM,
9192 arm_pc_names);
9193 if (is_m)
9194 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9195 ARM_PS_REGNUM, "xpsr");
9196 else
9197 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9198 ARM_PS_REGNUM, "cpsr");
9199
9200 if (!valid_p)
9201 {
9202 tdesc_data_cleanup (tdesc_data);
9203 return NULL;
9204 }
9205
9206 feature = tdesc_find_feature (tdesc,
9207 "org.gnu.gdb.arm.fpa");
9208 if (feature != NULL)
9209 {
9210 valid_p = 1;
9211 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
9212 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9213 arm_register_names[i]);
9214 if (!valid_p)
9215 {
9216 tdesc_data_cleanup (tdesc_data);
9217 return NULL;
9218 }
9219 }
9220 else
9221 have_fpa_registers = 0;
9222
9223 feature = tdesc_find_feature (tdesc,
9224 "org.gnu.gdb.xscale.iwmmxt");
9225 if (feature != NULL)
9226 {
9227 static const char *const iwmmxt_names[] = {
9228 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
9229 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
9230 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
9231 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
9232 };
9233
9234 valid_p = 1;
9235 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
9236 valid_p
9237 &= tdesc_numbered_register (feature, tdesc_data, i,
9238 iwmmxt_names[i - ARM_WR0_REGNUM]);
9239
9240 /* Check for the control registers, but do not fail if they
9241 are missing. */
9242 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
9243 tdesc_numbered_register (feature, tdesc_data, i,
9244 iwmmxt_names[i - ARM_WR0_REGNUM]);
9245
9246 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
9247 valid_p
9248 &= tdesc_numbered_register (feature, tdesc_data, i,
9249 iwmmxt_names[i - ARM_WR0_REGNUM]);
9250
9251 if (!valid_p)
9252 {
9253 tdesc_data_cleanup (tdesc_data);
9254 return NULL;
9255 }
9256
9257 have_wmmx_registers = 1;
9258 }
9259
9260 /* If we have a VFP unit, check whether the single precision registers
9261 are present. If not, then we will synthesize them as pseudo
9262 registers. */
9263 feature = tdesc_find_feature (tdesc,
9264 "org.gnu.gdb.arm.vfp");
9265 if (feature != NULL)
9266 {
9267 static const char *const vfp_double_names[] = {
9268 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
9269 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
9270 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
9271 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
9272 };
9273
9274 /* Require the double precision registers. There must be either
9275 16 or 32. */
9276 valid_p = 1;
9277 for (i = 0; i < 32; i++)
9278 {
9279 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9280 ARM_D0_REGNUM + i,
9281 vfp_double_names[i]);
9282 if (!valid_p)
9283 break;
9284 }
9285 if (!valid_p && i == 16)
9286 valid_p = 1;
9287
9288 /* Also require FPSCR. */
9289 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9290 ARM_FPSCR_REGNUM, "fpscr");
9291 if (!valid_p)
9292 {
9293 tdesc_data_cleanup (tdesc_data);
9294 return NULL;
9295 }
9296
9297 if (tdesc_unnumbered_register (feature, "s0") == 0)
9298 have_vfp_pseudos = 1;
9299
9300 vfp_register_count = i;
9301
9302 /* If we have VFP, also check for NEON. The architecture allows
9303 NEON without VFP (integer vector operations only), but GDB
9304 does not support that. */
9305 feature = tdesc_find_feature (tdesc,
9306 "org.gnu.gdb.arm.neon");
9307 if (feature != NULL)
9308 {
9309 /* NEON requires 32 double-precision registers. */
9310 if (i != 32)
9311 {
9312 tdesc_data_cleanup (tdesc_data);
9313 return NULL;
9314 }
9315
9316 /* If there are quad registers defined by the stub, use
9317 their type; otherwise (normally) provide them with
9318 the default type. */
9319 if (tdesc_unnumbered_register (feature, "q0") == 0)
9320 have_neon_pseudos = 1;
9321
9322 have_neon = 1;
9323 }
9324 }
9325 }
9326
9327 /* If there is already a candidate, use it. */
9328 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
9329 best_arch != NULL;
9330 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
9331 {
9332 if (arm_abi != ARM_ABI_AUTO
9333 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
9334 continue;
9335
9336 if (fp_model != ARM_FLOAT_AUTO
9337 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
9338 continue;
9339
9340 /* There are various other properties in tdep that we do not
9341 need to check here: those derived from a target description,
9342 since gdbarches with a different target description are
9343 automatically disqualified. */
9344
9345 /* Do check is_m, though, since it might come from the binary. */
9346 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
9347 continue;
9348
9349 /* Found a match. */
9350 break;
9351 }
9352
9353 if (best_arch != NULL)
9354 {
9355 if (tdesc_data != NULL)
9356 tdesc_data_cleanup (tdesc_data);
9357 return best_arch->gdbarch;
9358 }
9359
9360 tdep = XCNEW (struct gdbarch_tdep);
9361 gdbarch = gdbarch_alloc (&info, tdep);
9362
9363 /* Record additional information about the architecture we are defining.
9364 These are gdbarch discriminators, like the OSABI. */
9365 tdep->arm_abi = arm_abi;
9366 tdep->fp_model = fp_model;
9367 tdep->is_m = is_m;
9368 tdep->have_fpa_registers = have_fpa_registers;
9369 tdep->have_wmmx_registers = have_wmmx_registers;
9370 gdb_assert (vfp_register_count == 0
9371 || vfp_register_count == 16
9372 || vfp_register_count == 32);
9373 tdep->vfp_register_count = vfp_register_count;
9374 tdep->have_vfp_pseudos = have_vfp_pseudos;
9375 tdep->have_neon_pseudos = have_neon_pseudos;
9376 tdep->have_neon = have_neon;
9377
9378 arm_register_g_packet_guesses (gdbarch);
9379
9380 /* Breakpoints. */
9381 switch (info.byte_order_for_code)
9382 {
9383 case BFD_ENDIAN_BIG:
9384 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
9385 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
9386 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
9387 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
9388
9389 break;
9390
9391 case BFD_ENDIAN_LITTLE:
9392 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
9393 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
9394 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
9395 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
9396
9397 break;
9398
9399 default:
9400 internal_error (__FILE__, __LINE__,
9401 _("arm_gdbarch_init: bad byte order for float format"));
9402 }
9403
9404 /* On ARM targets char defaults to unsigned. */
9405 set_gdbarch_char_signed (gdbarch, 0);
9406
9407 /* Note: for displaced stepping, this includes the breakpoint, and one word
9408 of additional scratch space. This setting isn't used for anything beside
9409 displaced stepping at present. */
9410 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
9411
9412 /* This should be low enough for everything. */
9413 tdep->lowest_pc = 0x20;
9414 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
9415
9416 /* The default, for both APCS and AAPCS, is to return small
9417 structures in registers. */
9418 tdep->struct_return = reg_struct_return;
9419
9420 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
9421 set_gdbarch_frame_align (gdbarch, arm_frame_align);
9422
9423 if (is_m)
9424 set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable);
9425
9426 set_gdbarch_write_pc (gdbarch, arm_write_pc);
9427
9428 /* Frame handling. */
9429 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
9430 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
9431 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
9432
9433 frame_base_set_default (gdbarch, &arm_normal_base);
9434
9435 /* Address manipulation. */
9436 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
9437
9438 /* Advance PC across function entry code. */
9439 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
9440
9441 /* Detect whether PC is at a point where the stack has been destroyed. */
9442 set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
9443
9444 /* Skip trampolines. */
9445 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
9446
9447 /* The stack grows downward. */
9448 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9449
9450 /* Breakpoint manipulation. */
9451 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc);
9452 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind);
9453 set_gdbarch_breakpoint_kind_from_current_state (gdbarch,
9454 arm_breakpoint_kind_from_current_state);
9455
9456 /* Information about registers, etc. */
9457 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
9458 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9459 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
9460 set_gdbarch_register_type (gdbarch, arm_register_type);
9461 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
9462
9463 /* This "info float" is FPA-specific. Use the generic version if we
9464 do not have FPA. */
9465 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
9466 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
9467
9468 /* Internal <-> external register number maps. */
9469 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
9470 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
9471
9472 set_gdbarch_register_name (gdbarch, arm_register_name);
9473
9474 /* Returning results. */
9475 set_gdbarch_return_value (gdbarch, arm_return_value);
9476
9477 /* Disassembly. */
9478 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
9479
9480 /* Minsymbol frobbing. */
9481 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
9482 set_gdbarch_coff_make_msymbol_special (gdbarch,
9483 arm_coff_make_msymbol_special);
9484 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
9485
9486 /* Thumb-2 IT block support. */
9487 set_gdbarch_adjust_breakpoint_address (gdbarch,
9488 arm_adjust_breakpoint_address);
9489
9490 /* Virtual tables. */
9491 set_gdbarch_vbit_in_delta (gdbarch, 1);
9492
9493 /* Hook in the ABI-specific overrides, if they have been registered. */
9494 gdbarch_init_osabi (info, gdbarch);
9495
9496 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
9497
9498 /* Add some default predicates. */
9499 if (is_m)
9500 frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
9501 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
9502 dwarf2_append_unwinders (gdbarch);
9503 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
9504 frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind);
9505 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
9506
9507 /* Now we have tuned the configuration, set a few final things,
9508 based on what the OS ABI has told us. */
9509
9510 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
9511 binaries are always marked. */
9512 if (tdep->arm_abi == ARM_ABI_AUTO)
9513 tdep->arm_abi = ARM_ABI_APCS;
9514
9515 /* Watchpoints are not steppable. */
9516 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
9517
9518 /* We used to default to FPA for generic ARM, but almost nobody
9519 uses that now, and we now provide a way for the user to force
9520 the model. So default to the most useful variant. */
9521 if (tdep->fp_model == ARM_FLOAT_AUTO)
9522 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
9523
9524 if (tdep->jb_pc >= 0)
9525 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
9526
9527 /* Floating point sizes and format. */
9528 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
9529 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
9530 {
9531 set_gdbarch_double_format
9532 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9533 set_gdbarch_long_double_format
9534 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9535 }
9536 else
9537 {
9538 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
9539 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
9540 }
9541
9542 if (have_vfp_pseudos)
9543 {
9544 /* NOTE: These are the only pseudo registers used by
9545 the ARM target at the moment. If more are added, a
9546 little more care in numbering will be needed. */
9547
9548 int num_pseudos = 32;
9549 if (have_neon_pseudos)
9550 num_pseudos += 16;
9551 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
9552 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
9553 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
9554 }
9555
9556 if (tdesc_data)
9557 {
9558 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
9559
9560 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
9561
9562 /* Override tdesc_register_type to adjust the types of VFP
9563 registers for NEON. */
9564 set_gdbarch_register_type (gdbarch, arm_register_type);
9565 }
9566
9567 /* Add standard register aliases. We add aliases even for those
9568 nanes which are used by the current architecture - it's simpler,
9569 and does no harm, since nothing ever lists user registers. */
9570 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
9571 user_reg_add (gdbarch, arm_register_aliases[i].name,
9572 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
9573
9574 set_gdbarch_disassembler_options (gdbarch, &arm_disassembler_options);
9575 set_gdbarch_valid_disassembler_options (gdbarch, disassembler_options_arm ());
9576
9577 return gdbarch;
9578 }
9579
9580 static void
9581 arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
9582 {
9583 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9584
9585 if (tdep == NULL)
9586 return;
9587
9588 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
9589 (unsigned long) tdep->lowest_pc);
9590 }
9591
9592 namespace selftests
9593 {
9594 static void arm_record_test (void);
9595 }
9596
9597 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
9598
9599 void
9600 _initialize_arm_tdep (void)
9601 {
9602 long length;
9603 const char *setname;
9604 const char *setdesc;
9605 int i, j;
9606 char regdesc[1024], *rdptr = regdesc;
9607 size_t rest = sizeof (regdesc);
9608
9609 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
9610
9611 arm_objfile_data_key
9612 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
9613
9614 /* Add ourselves to objfile event chain. */
9615 observer_attach_new_objfile (arm_exidx_new_objfile);
9616 arm_exidx_data_key
9617 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
9618
9619 /* Register an ELF OS ABI sniffer for ARM binaries. */
9620 gdbarch_register_osabi_sniffer (bfd_arch_arm,
9621 bfd_target_elf_flavour,
9622 arm_elf_osabi_sniffer);
9623
9624 /* Initialize the standard target descriptions. */
9625 initialize_tdesc_arm_with_m ();
9626 initialize_tdesc_arm_with_m_fpa_layout ();
9627 initialize_tdesc_arm_with_m_vfp_d16 ();
9628 initialize_tdesc_arm_with_iwmmxt ();
9629 initialize_tdesc_arm_with_vfpv2 ();
9630 initialize_tdesc_arm_with_vfpv3 ();
9631 initialize_tdesc_arm_with_neon ();
9632
9633 /* Add root prefix command for all "set arm"/"show arm" commands. */
9634 add_prefix_cmd ("arm", no_class, set_arm_command,
9635 _("Various ARM-specific commands."),
9636 &setarmcmdlist, "set arm ", 0, &setlist);
9637
9638 add_prefix_cmd ("arm", no_class, show_arm_command,
9639 _("Various ARM-specific commands."),
9640 &showarmcmdlist, "show arm ", 0, &showlist);
9641
9642
9643 arm_disassembler_options = xstrdup ("reg-names-std");
9644 const disasm_options_t *disasm_options = disassembler_options_arm ();
9645 int num_disassembly_styles = 0;
9646 for (i = 0; disasm_options->name[i] != NULL; i++)
9647 if (CONST_STRNEQ (disasm_options->name[i], "reg-names-"))
9648 num_disassembly_styles++;
9649
9650 /* Initialize the array that will be passed to add_setshow_enum_cmd(). */
9651 valid_disassembly_styles = XNEWVEC (const char *,
9652 num_disassembly_styles + 1);
9653 for (i = j = 0; disasm_options->name[i] != NULL; i++)
9654 if (CONST_STRNEQ (disasm_options->name[i], "reg-names-"))
9655 {
9656 size_t offset = strlen ("reg-names-");
9657 const char *style = disasm_options->name[i];
9658 valid_disassembly_styles[j++] = &style[offset];
9659 length = snprintf (rdptr, rest, "%s - %s\n", &style[offset],
9660 disasm_options->description[i]);
9661 rdptr += length;
9662 rest -= length;
9663 }
9664 /* Mark the end of valid options. */
9665 valid_disassembly_styles[num_disassembly_styles] = NULL;
9666
9667 /* Create the help text. */
9668 std::string helptext = string_printf ("%s%s%s",
9669 _("The valid values are:\n"),
9670 regdesc,
9671 _("The default is \"std\"."));
9672
9673 add_setshow_enum_cmd("disassembler", no_class,
9674 valid_disassembly_styles, &disassembly_style,
9675 _("Set the disassembly style."),
9676 _("Show the disassembly style."),
9677 helptext.c_str (),
9678 set_disassembly_style_sfunc,
9679 show_disassembly_style_sfunc,
9680 &setarmcmdlist, &showarmcmdlist);
9681
9682 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
9683 _("Set usage of ARM 32-bit mode."),
9684 _("Show usage of ARM 32-bit mode."),
9685 _("When off, a 26-bit PC will be used."),
9686 NULL,
9687 NULL, /* FIXME: i18n: Usage of ARM 32-bit
9688 mode is %s. */
9689 &setarmcmdlist, &showarmcmdlist);
9690
9691 /* Add a command to allow the user to force the FPU model. */
9692 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
9693 _("Set the floating point type."),
9694 _("Show the floating point type."),
9695 _("auto - Determine the FP typefrom the OS-ABI.\n\
9696 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
9697 fpa - FPA co-processor (GCC compiled).\n\
9698 softvfp - Software FP with pure-endian doubles.\n\
9699 vfp - VFP co-processor."),
9700 set_fp_model_sfunc, show_fp_model,
9701 &setarmcmdlist, &showarmcmdlist);
9702
9703 /* Add a command to allow the user to force the ABI. */
9704 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
9705 _("Set the ABI."),
9706 _("Show the ABI."),
9707 NULL, arm_set_abi, arm_show_abi,
9708 &setarmcmdlist, &showarmcmdlist);
9709
9710 /* Add two commands to allow the user to force the assumed
9711 execution mode. */
9712 add_setshow_enum_cmd ("fallback-mode", class_support,
9713 arm_mode_strings, &arm_fallback_mode_string,
9714 _("Set the mode assumed when symbols are unavailable."),
9715 _("Show the mode assumed when symbols are unavailable."),
9716 NULL, NULL, arm_show_fallback_mode,
9717 &setarmcmdlist, &showarmcmdlist);
9718 add_setshow_enum_cmd ("force-mode", class_support,
9719 arm_mode_strings, &arm_force_mode_string,
9720 _("Set the mode assumed even when symbols are available."),
9721 _("Show the mode assumed even when symbols are available."),
9722 NULL, NULL, arm_show_force_mode,
9723 &setarmcmdlist, &showarmcmdlist);
9724
9725 /* Debugging flag. */
9726 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
9727 _("Set ARM debugging."),
9728 _("Show ARM debugging."),
9729 _("When on, arm-specific debugging is enabled."),
9730 NULL,
9731 NULL, /* FIXME: i18n: "ARM debugging is %s. */
9732 &setdebuglist, &showdebuglist);
9733
9734 #if GDB_SELF_TEST
9735 register_self_test (selftests::arm_record_test);
9736 #endif
9737
9738 }
9739
9740 /* ARM-reversible process record data structures. */
9741
9742 #define ARM_INSN_SIZE_BYTES 4
9743 #define THUMB_INSN_SIZE_BYTES 2
9744 #define THUMB2_INSN_SIZE_BYTES 4
9745
9746
9747 /* Position of the bit within a 32-bit ARM instruction
9748 that defines whether the instruction is a load or store. */
9749 #define INSN_S_L_BIT_NUM 20
9750
9751 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
9752 do \
9753 { \
9754 unsigned int reg_len = LENGTH; \
9755 if (reg_len) \
9756 { \
9757 REGS = XNEWVEC (uint32_t, reg_len); \
9758 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
9759 } \
9760 } \
9761 while (0)
9762
9763 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
9764 do \
9765 { \
9766 unsigned int mem_len = LENGTH; \
9767 if (mem_len) \
9768 { \
9769 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
9770 memcpy(&MEMS->len, &RECORD_BUF[0], \
9771 sizeof(struct arm_mem_r) * LENGTH); \
9772 } \
9773 } \
9774 while (0)
9775
9776 /* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
9777 #define INSN_RECORDED(ARM_RECORD) \
9778 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
9779
9780 /* ARM memory record structure. */
9781 struct arm_mem_r
9782 {
9783 uint32_t len; /* Record length. */
9784 uint32_t addr; /* Memory address. */
9785 };
9786
9787 /* ARM instruction record contains opcode of current insn
9788 and execution state (before entry to decode_insn()),
9789 contains list of to-be-modified registers and
9790 memory blocks (on return from decode_insn()). */
9791
9792 typedef struct insn_decode_record_t
9793 {
9794 struct gdbarch *gdbarch;
9795 struct regcache *regcache;
9796 CORE_ADDR this_addr; /* Address of the insn being decoded. */
9797 uint32_t arm_insn; /* Should accommodate thumb. */
9798 uint32_t cond; /* Condition code. */
9799 uint32_t opcode; /* Insn opcode. */
9800 uint32_t decode; /* Insn decode bits. */
9801 uint32_t mem_rec_count; /* No of mem records. */
9802 uint32_t reg_rec_count; /* No of reg records. */
9803 uint32_t *arm_regs; /* Registers to be saved for this record. */
9804 struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
9805 } insn_decode_record;
9806
9807
9808 /* Checks ARM SBZ and SBO mandatory fields. */
9809
9810 static int
9811 sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
9812 {
9813 uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
9814
9815 if (!len)
9816 return 1;
9817
9818 if (!sbo)
9819 ones = ~ones;
9820
9821 while (ones)
9822 {
9823 if (!(ones & sbo))
9824 {
9825 return 0;
9826 }
9827 ones = ones >> 1;
9828 }
9829 return 1;
9830 }
9831
9832 enum arm_record_result
9833 {
9834 ARM_RECORD_SUCCESS = 0,
9835 ARM_RECORD_FAILURE = 1
9836 };
9837
9838 typedef enum
9839 {
9840 ARM_RECORD_STRH=1,
9841 ARM_RECORD_STRD
9842 } arm_record_strx_t;
9843
9844 typedef enum
9845 {
9846 ARM_RECORD=1,
9847 THUMB_RECORD,
9848 THUMB2_RECORD
9849 } record_type_t;
9850
9851
9852 static int
9853 arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf,
9854 uint32_t *record_buf_mem, arm_record_strx_t str_type)
9855 {
9856
9857 struct regcache *reg_cache = arm_insn_r->regcache;
9858 ULONGEST u_regval[2]= {0};
9859
9860 uint32_t reg_src1 = 0, reg_src2 = 0;
9861 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
9862
9863 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
9864 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
9865
9866 if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
9867 {
9868 /* 1) Handle misc store, immediate offset. */
9869 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9870 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9871 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9872 regcache_raw_read_unsigned (reg_cache, reg_src1,
9873 &u_regval[0]);
9874 if (ARM_PC_REGNUM == reg_src1)
9875 {
9876 /* If R15 was used as Rn, hence current PC+8. */
9877 u_regval[0] = u_regval[0] + 8;
9878 }
9879 offset_8 = (immed_high << 4) | immed_low;
9880 /* Calculate target store address. */
9881 if (14 == arm_insn_r->opcode)
9882 {
9883 tgt_mem_addr = u_regval[0] + offset_8;
9884 }
9885 else
9886 {
9887 tgt_mem_addr = u_regval[0] - offset_8;
9888 }
9889 if (ARM_RECORD_STRH == str_type)
9890 {
9891 record_buf_mem[0] = 2;
9892 record_buf_mem[1] = tgt_mem_addr;
9893 arm_insn_r->mem_rec_count = 1;
9894 }
9895 else if (ARM_RECORD_STRD == str_type)
9896 {
9897 record_buf_mem[0] = 4;
9898 record_buf_mem[1] = tgt_mem_addr;
9899 record_buf_mem[2] = 4;
9900 record_buf_mem[3] = tgt_mem_addr + 4;
9901 arm_insn_r->mem_rec_count = 2;
9902 }
9903 }
9904 else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
9905 {
9906 /* 2) Store, register offset. */
9907 /* Get Rm. */
9908 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9909 /* Get Rn. */
9910 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9911 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9912 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9913 if (15 == reg_src2)
9914 {
9915 /* If R15 was used as Rn, hence current PC+8. */
9916 u_regval[0] = u_regval[0] + 8;
9917 }
9918 /* Calculate target store address, Rn +/- Rm, register offset. */
9919 if (12 == arm_insn_r->opcode)
9920 {
9921 tgt_mem_addr = u_regval[0] + u_regval[1];
9922 }
9923 else
9924 {
9925 tgt_mem_addr = u_regval[1] - u_regval[0];
9926 }
9927 if (ARM_RECORD_STRH == str_type)
9928 {
9929 record_buf_mem[0] = 2;
9930 record_buf_mem[1] = tgt_mem_addr;
9931 arm_insn_r->mem_rec_count = 1;
9932 }
9933 else if (ARM_RECORD_STRD == str_type)
9934 {
9935 record_buf_mem[0] = 4;
9936 record_buf_mem[1] = tgt_mem_addr;
9937 record_buf_mem[2] = 4;
9938 record_buf_mem[3] = tgt_mem_addr + 4;
9939 arm_insn_r->mem_rec_count = 2;
9940 }
9941 }
9942 else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
9943 || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9944 {
9945 /* 3) Store, immediate pre-indexed. */
9946 /* 5) Store, immediate post-indexed. */
9947 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9948 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9949 offset_8 = (immed_high << 4) | immed_low;
9950 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9951 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9952 /* Calculate target store address, Rn +/- Rm, register offset. */
9953 if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9954 {
9955 tgt_mem_addr = u_regval[0] + offset_8;
9956 }
9957 else
9958 {
9959 tgt_mem_addr = u_regval[0] - offset_8;
9960 }
9961 if (ARM_RECORD_STRH == str_type)
9962 {
9963 record_buf_mem[0] = 2;
9964 record_buf_mem[1] = tgt_mem_addr;
9965 arm_insn_r->mem_rec_count = 1;
9966 }
9967 else if (ARM_RECORD_STRD == str_type)
9968 {
9969 record_buf_mem[0] = 4;
9970 record_buf_mem[1] = tgt_mem_addr;
9971 record_buf_mem[2] = 4;
9972 record_buf_mem[3] = tgt_mem_addr + 4;
9973 arm_insn_r->mem_rec_count = 2;
9974 }
9975 /* Record Rn also as it changes. */
9976 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9977 arm_insn_r->reg_rec_count = 1;
9978 }
9979 else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
9980 || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9981 {
9982 /* 4) Store, register pre-indexed. */
9983 /* 6) Store, register post -indexed. */
9984 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9985 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9986 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9987 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9988 /* Calculate target store address, Rn +/- Rm, register offset. */
9989 if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9990 {
9991 tgt_mem_addr = u_regval[0] + u_regval[1];
9992 }
9993 else
9994 {
9995 tgt_mem_addr = u_regval[1] - u_regval[0];
9996 }
9997 if (ARM_RECORD_STRH == str_type)
9998 {
9999 record_buf_mem[0] = 2;
10000 record_buf_mem[1] = tgt_mem_addr;
10001 arm_insn_r->mem_rec_count = 1;
10002 }
10003 else if (ARM_RECORD_STRD == str_type)
10004 {
10005 record_buf_mem[0] = 4;
10006 record_buf_mem[1] = tgt_mem_addr;
10007 record_buf_mem[2] = 4;
10008 record_buf_mem[3] = tgt_mem_addr + 4;
10009 arm_insn_r->mem_rec_count = 2;
10010 }
10011 /* Record Rn also as it changes. */
10012 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
10013 arm_insn_r->reg_rec_count = 1;
10014 }
10015 return 0;
10016 }
10017
10018 /* Handling ARM extension space insns. */
10019
10020 static int
10021 arm_record_extension_space (insn_decode_record *arm_insn_r)
10022 {
10023 uint32_t ret = 0; /* Return value: -1:record failure ; 0:success */
10024 uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
10025 uint32_t record_buf[8], record_buf_mem[8];
10026 uint32_t reg_src1 = 0;
10027 struct regcache *reg_cache = arm_insn_r->regcache;
10028 ULONGEST u_regval = 0;
10029
10030 gdb_assert (!INSN_RECORDED(arm_insn_r));
10031 /* Handle unconditional insn extension space. */
10032
10033 opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
10034 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10035 if (arm_insn_r->cond)
10036 {
10037 /* PLD has no affect on architectural state, it just affects
10038 the caches. */
10039 if (5 == ((opcode1 & 0xE0) >> 5))
10040 {
10041 /* BLX(1) */
10042 record_buf[0] = ARM_PS_REGNUM;
10043 record_buf[1] = ARM_LR_REGNUM;
10044 arm_insn_r->reg_rec_count = 2;
10045 }
10046 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
10047 }
10048
10049
10050 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10051 if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
10052 {
10053 ret = -1;
10054 /* Undefined instruction on ARM V5; need to handle if later
10055 versions define it. */
10056 }
10057
10058 opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
10059 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10060 insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
10061
10062 /* Handle arithmetic insn extension space. */
10063 if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
10064 && !INSN_RECORDED(arm_insn_r))
10065 {
10066 /* Handle MLA(S) and MUL(S). */
10067 if (0 <= insn_op1 && 3 >= insn_op1)
10068 {
10069 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10070 record_buf[1] = ARM_PS_REGNUM;
10071 arm_insn_r->reg_rec_count = 2;
10072 }
10073 else if (4 <= insn_op1 && 15 >= insn_op1)
10074 {
10075 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
10076 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10077 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10078 record_buf[2] = ARM_PS_REGNUM;
10079 arm_insn_r->reg_rec_count = 3;
10080 }
10081 }
10082
10083 opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
10084 opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
10085 insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
10086
10087 /* Handle control insn extension space. */
10088
10089 if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
10090 && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
10091 {
10092 if (!bit (arm_insn_r->arm_insn,25))
10093 {
10094 if (!bits (arm_insn_r->arm_insn, 4, 7))
10095 {
10096 if ((0 == insn_op1) || (2 == insn_op1))
10097 {
10098 /* MRS. */
10099 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10100 arm_insn_r->reg_rec_count = 1;
10101 }
10102 else if (1 == insn_op1)
10103 {
10104 /* CSPR is going to be changed. */
10105 record_buf[0] = ARM_PS_REGNUM;
10106 arm_insn_r->reg_rec_count = 1;
10107 }
10108 else if (3 == insn_op1)
10109 {
10110 /* SPSR is going to be changed. */
10111 /* We need to get SPSR value, which is yet to be done. */
10112 return -1;
10113 }
10114 }
10115 else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
10116 {
10117 if (1 == insn_op1)
10118 {
10119 /* BX. */
10120 record_buf[0] = ARM_PS_REGNUM;
10121 arm_insn_r->reg_rec_count = 1;
10122 }
10123 else if (3 == insn_op1)
10124 {
10125 /* CLZ. */
10126 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10127 arm_insn_r->reg_rec_count = 1;
10128 }
10129 }
10130 else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
10131 {
10132 /* BLX. */
10133 record_buf[0] = ARM_PS_REGNUM;
10134 record_buf[1] = ARM_LR_REGNUM;
10135 arm_insn_r->reg_rec_count = 2;
10136 }
10137 else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
10138 {
10139 /* QADD, QSUB, QDADD, QDSUB */
10140 record_buf[0] = ARM_PS_REGNUM;
10141 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10142 arm_insn_r->reg_rec_count = 2;
10143 }
10144 else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
10145 {
10146 /* BKPT. */
10147 record_buf[0] = ARM_PS_REGNUM;
10148 record_buf[1] = ARM_LR_REGNUM;
10149 arm_insn_r->reg_rec_count = 2;
10150
10151 /* Save SPSR also;how? */
10152 return -1;
10153 }
10154 else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
10155 || 10 == bits (arm_insn_r->arm_insn, 4, 7)
10156 || 12 == bits (arm_insn_r->arm_insn, 4, 7)
10157 || 14 == bits (arm_insn_r->arm_insn, 4, 7)
10158 )
10159 {
10160 if (0 == insn_op1 || 1 == insn_op1)
10161 {
10162 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
10163 /* We dont do optimization for SMULW<y> where we
10164 need only Rd. */
10165 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10166 record_buf[1] = ARM_PS_REGNUM;
10167 arm_insn_r->reg_rec_count = 2;
10168 }
10169 else if (2 == insn_op1)
10170 {
10171 /* SMLAL<x><y>. */
10172 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10173 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
10174 arm_insn_r->reg_rec_count = 2;
10175 }
10176 else if (3 == insn_op1)
10177 {
10178 /* SMUL<x><y>. */
10179 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10180 arm_insn_r->reg_rec_count = 1;
10181 }
10182 }
10183 }
10184 else
10185 {
10186 /* MSR : immediate form. */
10187 if (1 == insn_op1)
10188 {
10189 /* CSPR is going to be changed. */
10190 record_buf[0] = ARM_PS_REGNUM;
10191 arm_insn_r->reg_rec_count = 1;
10192 }
10193 else if (3 == insn_op1)
10194 {
10195 /* SPSR is going to be changed. */
10196 /* we need to get SPSR value, which is yet to be done */
10197 return -1;
10198 }
10199 }
10200 }
10201
10202 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10203 opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
10204 insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
10205
10206 /* Handle load/store insn extension space. */
10207
10208 if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
10209 && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
10210 && !INSN_RECORDED(arm_insn_r))
10211 {
10212 /* SWP/SWPB. */
10213 if (0 == insn_op1)
10214 {
10215 /* These insn, changes register and memory as well. */
10216 /* SWP or SWPB insn. */
10217 /* Get memory address given by Rn. */
10218 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10219 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
10220 /* SWP insn ?, swaps word. */
10221 if (8 == arm_insn_r->opcode)
10222 {
10223 record_buf_mem[0] = 4;
10224 }
10225 else
10226 {
10227 /* SWPB insn, swaps only byte. */
10228 record_buf_mem[0] = 1;
10229 }
10230 record_buf_mem[1] = u_regval;
10231 arm_insn_r->mem_rec_count = 1;
10232 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10233 arm_insn_r->reg_rec_count = 1;
10234 }
10235 else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10236 {
10237 /* STRH. */
10238 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10239 ARM_RECORD_STRH);
10240 }
10241 else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10242 {
10243 /* LDRD. */
10244 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10245 record_buf[1] = record_buf[0] + 1;
10246 arm_insn_r->reg_rec_count = 2;
10247 }
10248 else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10249 {
10250 /* STRD. */
10251 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10252 ARM_RECORD_STRD);
10253 }
10254 else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
10255 {
10256 /* LDRH, LDRSB, LDRSH. */
10257 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10258 arm_insn_r->reg_rec_count = 1;
10259 }
10260
10261 }
10262
10263 opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
10264 if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
10265 && !INSN_RECORDED(arm_insn_r))
10266 {
10267 ret = -1;
10268 /* Handle coprocessor insn extension space. */
10269 }
10270
10271 /* To be done for ARMv5 and later; as of now we return -1. */
10272 if (-1 == ret)
10273 return ret;
10274
10275 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10276 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10277
10278 return ret;
10279 }
10280
10281 /* Handling opcode 000 insns. */
10282
10283 static int
10284 arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
10285 {
10286 struct regcache *reg_cache = arm_insn_r->regcache;
10287 uint32_t record_buf[8], record_buf_mem[8];
10288 ULONGEST u_regval[2] = {0};
10289
10290 uint32_t reg_src1 = 0, reg_dest = 0;
10291 uint32_t opcode1 = 0;
10292
10293 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10294 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10295 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
10296
10297 /* Data processing insn /multiply insn. */
10298 if (9 == arm_insn_r->decode
10299 && ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10300 || (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)))
10301 {
10302 /* Handle multiply instructions. */
10303 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
10304 if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
10305 {
10306 /* Handle MLA and MUL. */
10307 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10308 record_buf[1] = ARM_PS_REGNUM;
10309 arm_insn_r->reg_rec_count = 2;
10310 }
10311 else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10312 {
10313 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
10314 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10315 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10316 record_buf[2] = ARM_PS_REGNUM;
10317 arm_insn_r->reg_rec_count = 3;
10318 }
10319 }
10320 else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10321 && (11 == arm_insn_r->decode || 13 == arm_insn_r->decode))
10322 {
10323 /* Handle misc load insns, as 20th bit (L = 1). */
10324 /* LDR insn has a capability to do branching, if
10325 MOV LR, PC is precceded by LDR insn having Rn as R15
10326 in that case, it emulates branch and link insn, and hence we
10327 need to save CSPR and PC as well. I am not sure this is right
10328 place; as opcode = 010 LDR insn make this happen, if R15 was
10329 used. */
10330 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10331 if (15 != reg_dest)
10332 {
10333 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10334 arm_insn_r->reg_rec_count = 1;
10335 }
10336 else
10337 {
10338 record_buf[0] = reg_dest;
10339 record_buf[1] = ARM_PS_REGNUM;
10340 arm_insn_r->reg_rec_count = 2;
10341 }
10342 }
10343 else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10344 && sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0)
10345 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10346 && 2 == bits (arm_insn_r->arm_insn, 20, 21))
10347 {
10348 /* Handle MSR insn. */
10349 if (9 == arm_insn_r->opcode)
10350 {
10351 /* CSPR is going to be changed. */
10352 record_buf[0] = ARM_PS_REGNUM;
10353 arm_insn_r->reg_rec_count = 1;
10354 }
10355 else
10356 {
10357 /* SPSR is going to be changed. */
10358 /* How to read SPSR value? */
10359 return -1;
10360 }
10361 }
10362 else if (9 == arm_insn_r->decode
10363 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10364 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10365 {
10366 /* Handling SWP, SWPB. */
10367 /* These insn, changes register and memory as well. */
10368 /* SWP or SWPB insn. */
10369
10370 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10371 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10372 /* SWP insn ?, swaps word. */
10373 if (8 == arm_insn_r->opcode)
10374 {
10375 record_buf_mem[0] = 4;
10376 }
10377 else
10378 {
10379 /* SWPB insn, swaps only byte. */
10380 record_buf_mem[0] = 1;
10381 }
10382 record_buf_mem[1] = u_regval[0];
10383 arm_insn_r->mem_rec_count = 1;
10384 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10385 arm_insn_r->reg_rec_count = 1;
10386 }
10387 else if (3 == arm_insn_r->decode && 0x12 == opcode1
10388 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10389 {
10390 /* Handle BLX, branch and link/exchange. */
10391 if (9 == arm_insn_r->opcode)
10392 {
10393 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
10394 and R14 stores the return address. */
10395 record_buf[0] = ARM_PS_REGNUM;
10396 record_buf[1] = ARM_LR_REGNUM;
10397 arm_insn_r->reg_rec_count = 2;
10398 }
10399 }
10400 else if (7 == arm_insn_r->decode && 0x12 == opcode1)
10401 {
10402 /* Handle enhanced software breakpoint insn, BKPT. */
10403 /* CPSR is changed to be executed in ARM state, disabling normal
10404 interrupts, entering abort mode. */
10405 /* According to high vector configuration PC is set. */
10406 /* user hit breakpoint and type reverse, in
10407 that case, we need to go back with previous CPSR and
10408 Program Counter. */
10409 record_buf[0] = ARM_PS_REGNUM;
10410 record_buf[1] = ARM_LR_REGNUM;
10411 arm_insn_r->reg_rec_count = 2;
10412
10413 /* Save SPSR also; how? */
10414 return -1;
10415 }
10416 else if (11 == arm_insn_r->decode
10417 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10418 {
10419 /* Handle enhanced store insns and DSP insns (e.g. LDRD). */
10420
10421 /* Handle str(x) insn */
10422 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10423 ARM_RECORD_STRH);
10424 }
10425 else if (1 == arm_insn_r->decode && 0x12 == opcode1
10426 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10427 {
10428 /* Handle BX, branch and link/exchange. */
10429 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
10430 record_buf[0] = ARM_PS_REGNUM;
10431 arm_insn_r->reg_rec_count = 1;
10432 }
10433 else if (1 == arm_insn_r->decode && 0x16 == opcode1
10434 && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
10435 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
10436 {
10437 /* Count leading zeros: CLZ. */
10438 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10439 arm_insn_r->reg_rec_count = 1;
10440 }
10441 else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10442 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10443 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
10444 && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)
10445 )
10446 {
10447 /* Handle MRS insn. */
10448 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10449 arm_insn_r->reg_rec_count = 1;
10450 }
10451 else if (arm_insn_r->opcode <= 15)
10452 {
10453 /* Normal data processing insns. */
10454 /* Out of 11 shifter operands mode, all the insn modifies destination
10455 register, which is specified by 13-16 decode. */
10456 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10457 record_buf[1] = ARM_PS_REGNUM;
10458 arm_insn_r->reg_rec_count = 2;
10459 }
10460 else
10461 {
10462 return -1;
10463 }
10464
10465 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10466 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10467 return 0;
10468 }
10469
10470 /* Handling opcode 001 insns. */
10471
10472 static int
10473 arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
10474 {
10475 uint32_t record_buf[8], record_buf_mem[8];
10476
10477 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10478 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10479
10480 if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10481 && 2 == bits (arm_insn_r->arm_insn, 20, 21)
10482 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10483 )
10484 {
10485 /* Handle MSR insn. */
10486 if (9 == arm_insn_r->opcode)
10487 {
10488 /* CSPR is going to be changed. */
10489 record_buf[0] = ARM_PS_REGNUM;
10490 arm_insn_r->reg_rec_count = 1;
10491 }
10492 else
10493 {
10494 /* SPSR is going to be changed. */
10495 }
10496 }
10497 else if (arm_insn_r->opcode <= 15)
10498 {
10499 /* Normal data processing insns. */
10500 /* Out of 11 shifter operands mode, all the insn modifies destination
10501 register, which is specified by 13-16 decode. */
10502 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10503 record_buf[1] = ARM_PS_REGNUM;
10504 arm_insn_r->reg_rec_count = 2;
10505 }
10506 else
10507 {
10508 return -1;
10509 }
10510
10511 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10512 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10513 return 0;
10514 }
10515
10516 static int
10517 arm_record_media (insn_decode_record *arm_insn_r)
10518 {
10519 uint32_t record_buf[8];
10520
10521 switch (bits (arm_insn_r->arm_insn, 22, 24))
10522 {
10523 case 0:
10524 /* Parallel addition and subtraction, signed */
10525 case 1:
10526 /* Parallel addition and subtraction, unsigned */
10527 case 2:
10528 case 3:
10529 /* Packing, unpacking, saturation and reversal */
10530 {
10531 int rd = bits (arm_insn_r->arm_insn, 12, 15);
10532
10533 record_buf[arm_insn_r->reg_rec_count++] = rd;
10534 }
10535 break;
10536
10537 case 4:
10538 case 5:
10539 /* Signed multiplies */
10540 {
10541 int rd = bits (arm_insn_r->arm_insn, 16, 19);
10542 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22);
10543
10544 record_buf[arm_insn_r->reg_rec_count++] = rd;
10545 if (op1 == 0x0)
10546 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10547 else if (op1 == 0x4)
10548 record_buf[arm_insn_r->reg_rec_count++]
10549 = bits (arm_insn_r->arm_insn, 12, 15);
10550 }
10551 break;
10552
10553 case 6:
10554 {
10555 if (bit (arm_insn_r->arm_insn, 21)
10556 && bits (arm_insn_r->arm_insn, 5, 6) == 0x2)
10557 {
10558 /* SBFX */
10559 record_buf[arm_insn_r->reg_rec_count++]
10560 = bits (arm_insn_r->arm_insn, 12, 15);
10561 }
10562 else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0
10563 && bits (arm_insn_r->arm_insn, 5, 7) == 0x0)
10564 {
10565 /* USAD8 and USADA8 */
10566 record_buf[arm_insn_r->reg_rec_count++]
10567 = bits (arm_insn_r->arm_insn, 16, 19);
10568 }
10569 }
10570 break;
10571
10572 case 7:
10573 {
10574 if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3
10575 && bits (arm_insn_r->arm_insn, 5, 7) == 0x7)
10576 {
10577 /* Permanently UNDEFINED */
10578 return -1;
10579 }
10580 else
10581 {
10582 /* BFC, BFI and UBFX */
10583 record_buf[arm_insn_r->reg_rec_count++]
10584 = bits (arm_insn_r->arm_insn, 12, 15);
10585 }
10586 }
10587 break;
10588
10589 default:
10590 return -1;
10591 }
10592
10593 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10594
10595 return 0;
10596 }
10597
10598 /* Handle ARM mode instructions with opcode 010. */
10599
10600 static int
10601 arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
10602 {
10603 struct regcache *reg_cache = arm_insn_r->regcache;
10604
10605 uint32_t reg_base , reg_dest;
10606 uint32_t offset_12, tgt_mem_addr;
10607 uint32_t record_buf[8], record_buf_mem[8];
10608 unsigned char wback;
10609 ULONGEST u_regval;
10610
10611 /* Calculate wback. */
10612 wback = (bit (arm_insn_r->arm_insn, 24) == 0)
10613 || (bit (arm_insn_r->arm_insn, 21) == 1);
10614
10615 arm_insn_r->reg_rec_count = 0;
10616 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10617
10618 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10619 {
10620 /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT
10621 and LDRT. */
10622
10623 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10624 record_buf[arm_insn_r->reg_rec_count++] = reg_dest;
10625
10626 /* The LDR instruction is capable of doing branching. If MOV LR, PC
10627 preceeds a LDR instruction having R15 as reg_base, it
10628 emulates a branch and link instruction, and hence we need to save
10629 CPSR and PC as well. */
10630 if (ARM_PC_REGNUM == reg_dest)
10631 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10632
10633 /* If wback is true, also save the base register, which is going to be
10634 written to. */
10635 if (wback)
10636 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10637 }
10638 else
10639 {
10640 /* STR (immediate), STRB (immediate), STRBT and STRT. */
10641
10642 offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
10643 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10644
10645 /* Handle bit U. */
10646 if (bit (arm_insn_r->arm_insn, 23))
10647 {
10648 /* U == 1: Add the offset. */
10649 tgt_mem_addr = (uint32_t) u_regval + offset_12;
10650 }
10651 else
10652 {
10653 /* U == 0: subtract the offset. */
10654 tgt_mem_addr = (uint32_t) u_regval - offset_12;
10655 }
10656
10657 /* Bit 22 tells us whether the store instruction writes 1 byte or 4
10658 bytes. */
10659 if (bit (arm_insn_r->arm_insn, 22))
10660 {
10661 /* STRB and STRBT: 1 byte. */
10662 record_buf_mem[0] = 1;
10663 }
10664 else
10665 {
10666 /* STR and STRT: 4 bytes. */
10667 record_buf_mem[0] = 4;
10668 }
10669
10670 /* Handle bit P. */
10671 if (bit (arm_insn_r->arm_insn, 24))
10672 record_buf_mem[1] = tgt_mem_addr;
10673 else
10674 record_buf_mem[1] = (uint32_t) u_regval;
10675
10676 arm_insn_r->mem_rec_count = 1;
10677
10678 /* If wback is true, also save the base register, which is going to be
10679 written to. */
10680 if (wback)
10681 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10682 }
10683
10684 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10685 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10686 return 0;
10687 }
10688
10689 /* Handling opcode 011 insns. */
10690
10691 static int
10692 arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
10693 {
10694 struct regcache *reg_cache = arm_insn_r->regcache;
10695
10696 uint32_t shift_imm = 0;
10697 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
10698 uint32_t offset_12 = 0, tgt_mem_addr = 0;
10699 uint32_t record_buf[8], record_buf_mem[8];
10700
10701 LONGEST s_word;
10702 ULONGEST u_regval[2];
10703
10704 if (bit (arm_insn_r->arm_insn, 4))
10705 return arm_record_media (arm_insn_r);
10706
10707 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10708 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10709
10710 /* Handle enhanced store insns and LDRD DSP insn,
10711 order begins according to addressing modes for store insns
10712 STRH insn. */
10713
10714 /* LDR or STR? */
10715 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10716 {
10717 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10718 /* LDR insn has a capability to do branching, if
10719 MOV LR, PC is precedded by LDR insn having Rn as R15
10720 in that case, it emulates branch and link insn, and hence we
10721 need to save CSPR and PC as well. */
10722 if (15 != reg_dest)
10723 {
10724 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10725 arm_insn_r->reg_rec_count = 1;
10726 }
10727 else
10728 {
10729 record_buf[0] = reg_dest;
10730 record_buf[1] = ARM_PS_REGNUM;
10731 arm_insn_r->reg_rec_count = 2;
10732 }
10733 }
10734 else
10735 {
10736 if (! bits (arm_insn_r->arm_insn, 4, 11))
10737 {
10738 /* Store insn, register offset and register pre-indexed,
10739 register post-indexed. */
10740 /* Get Rm. */
10741 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10742 /* Get Rn. */
10743 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10744 regcache_raw_read_unsigned (reg_cache, reg_src1
10745 , &u_regval[0]);
10746 regcache_raw_read_unsigned (reg_cache, reg_src2
10747 , &u_regval[1]);
10748 if (15 == reg_src2)
10749 {
10750 /* If R15 was used as Rn, hence current PC+8. */
10751 /* Pre-indexed mode doesnt reach here ; illegal insn. */
10752 u_regval[0] = u_regval[0] + 8;
10753 }
10754 /* Calculate target store address, Rn +/- Rm, register offset. */
10755 /* U == 1. */
10756 if (bit (arm_insn_r->arm_insn, 23))
10757 {
10758 tgt_mem_addr = u_regval[0] + u_regval[1];
10759 }
10760 else
10761 {
10762 tgt_mem_addr = u_regval[1] - u_regval[0];
10763 }
10764
10765 switch (arm_insn_r->opcode)
10766 {
10767 /* STR. */
10768 case 8:
10769 case 12:
10770 /* STR. */
10771 case 9:
10772 case 13:
10773 /* STRT. */
10774 case 1:
10775 case 5:
10776 /* STR. */
10777 case 0:
10778 case 4:
10779 record_buf_mem[0] = 4;
10780 break;
10781
10782 /* STRB. */
10783 case 10:
10784 case 14:
10785 /* STRB. */
10786 case 11:
10787 case 15:
10788 /* STRBT. */
10789 case 3:
10790 case 7:
10791 /* STRB. */
10792 case 2:
10793 case 6:
10794 record_buf_mem[0] = 1;
10795 break;
10796
10797 default:
10798 gdb_assert_not_reached ("no decoding pattern found");
10799 break;
10800 }
10801 record_buf_mem[1] = tgt_mem_addr;
10802 arm_insn_r->mem_rec_count = 1;
10803
10804 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10805 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10806 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10807 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10808 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10809 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10810 )
10811 {
10812 /* Rn is going to be changed in pre-indexed mode and
10813 post-indexed mode as well. */
10814 record_buf[0] = reg_src2;
10815 arm_insn_r->reg_rec_count = 1;
10816 }
10817 }
10818 else
10819 {
10820 /* Store insn, scaled register offset; scaled pre-indexed. */
10821 offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
10822 /* Get Rm. */
10823 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10824 /* Get Rn. */
10825 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10826 /* Get shift_imm. */
10827 shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
10828 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10829 regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
10830 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10831 /* Offset_12 used as shift. */
10832 switch (offset_12)
10833 {
10834 case 0:
10835 /* Offset_12 used as index. */
10836 offset_12 = u_regval[0] << shift_imm;
10837 break;
10838
10839 case 1:
10840 offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
10841 break;
10842
10843 case 2:
10844 if (!shift_imm)
10845 {
10846 if (bit (u_regval[0], 31))
10847 {
10848 offset_12 = 0xFFFFFFFF;
10849 }
10850 else
10851 {
10852 offset_12 = 0;
10853 }
10854 }
10855 else
10856 {
10857 /* This is arithmetic shift. */
10858 offset_12 = s_word >> shift_imm;
10859 }
10860 break;
10861
10862 case 3:
10863 if (!shift_imm)
10864 {
10865 regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
10866 &u_regval[1]);
10867 /* Get C flag value and shift it by 31. */
10868 offset_12 = (((bit (u_regval[1], 29)) << 31) \
10869 | (u_regval[0]) >> 1);
10870 }
10871 else
10872 {
10873 offset_12 = (u_regval[0] >> shift_imm) \
10874 | (u_regval[0] <<
10875 (sizeof(uint32_t) - shift_imm));
10876 }
10877 break;
10878
10879 default:
10880 gdb_assert_not_reached ("no decoding pattern found");
10881 break;
10882 }
10883
10884 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10885 /* bit U set. */
10886 if (bit (arm_insn_r->arm_insn, 23))
10887 {
10888 tgt_mem_addr = u_regval[1] + offset_12;
10889 }
10890 else
10891 {
10892 tgt_mem_addr = u_regval[1] - offset_12;
10893 }
10894
10895 switch (arm_insn_r->opcode)
10896 {
10897 /* STR. */
10898 case 8:
10899 case 12:
10900 /* STR. */
10901 case 9:
10902 case 13:
10903 /* STRT. */
10904 case 1:
10905 case 5:
10906 /* STR. */
10907 case 0:
10908 case 4:
10909 record_buf_mem[0] = 4;
10910 break;
10911
10912 /* STRB. */
10913 case 10:
10914 case 14:
10915 /* STRB. */
10916 case 11:
10917 case 15:
10918 /* STRBT. */
10919 case 3:
10920 case 7:
10921 /* STRB. */
10922 case 2:
10923 case 6:
10924 record_buf_mem[0] = 1;
10925 break;
10926
10927 default:
10928 gdb_assert_not_reached ("no decoding pattern found");
10929 break;
10930 }
10931 record_buf_mem[1] = tgt_mem_addr;
10932 arm_insn_r->mem_rec_count = 1;
10933
10934 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10935 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10936 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10937 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10938 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10939 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10940 )
10941 {
10942 /* Rn is going to be changed in register scaled pre-indexed
10943 mode,and scaled post indexed mode. */
10944 record_buf[0] = reg_src2;
10945 arm_insn_r->reg_rec_count = 1;
10946 }
10947 }
10948 }
10949
10950 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10951 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10952 return 0;
10953 }
10954
10955 /* Handle ARM mode instructions with opcode 100. */
10956
10957 static int
10958 arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
10959 {
10960 struct regcache *reg_cache = arm_insn_r->regcache;
10961 uint32_t register_count = 0, register_bits;
10962 uint32_t reg_base, addr_mode;
10963 uint32_t record_buf[24], record_buf_mem[48];
10964 uint32_t wback;
10965 ULONGEST u_regval;
10966
10967 /* Fetch the list of registers. */
10968 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
10969 arm_insn_r->reg_rec_count = 0;
10970
10971 /* Fetch the base register that contains the address we are loading data
10972 to. */
10973 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
10974
10975 /* Calculate wback. */
10976 wback = (bit (arm_insn_r->arm_insn, 21) == 1);
10977
10978 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10979 {
10980 /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */
10981
10982 /* Find out which registers are going to be loaded from memory. */
10983 while (register_bits)
10984 {
10985 if (register_bits & 0x00000001)
10986 record_buf[arm_insn_r->reg_rec_count++] = register_count;
10987 register_bits = register_bits >> 1;
10988 register_count++;
10989 }
10990
10991
10992 /* If wback is true, also save the base register, which is going to be
10993 written to. */
10994 if (wback)
10995 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10996
10997 /* Save the CPSR register. */
10998 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10999 }
11000 else
11001 {
11002 /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */
11003
11004 addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
11005
11006 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
11007
11008 /* Find out how many registers are going to be stored to memory. */
11009 while (register_bits)
11010 {
11011 if (register_bits & 0x00000001)
11012 register_count++;
11013 register_bits = register_bits >> 1;
11014 }
11015
11016 switch (addr_mode)
11017 {
11018 /* STMDA (STMED): Decrement after. */
11019 case 0:
11020 record_buf_mem[1] = (uint32_t) u_regval
11021 - register_count * INT_REGISTER_SIZE + 4;
11022 break;
11023 /* STM (STMIA, STMEA): Increment after. */
11024 case 1:
11025 record_buf_mem[1] = (uint32_t) u_regval;
11026 break;
11027 /* STMDB (STMFD): Decrement before. */
11028 case 2:
11029 record_buf_mem[1] = (uint32_t) u_regval
11030 - register_count * INT_REGISTER_SIZE;
11031 break;
11032 /* STMIB (STMFA): Increment before. */
11033 case 3:
11034 record_buf_mem[1] = (uint32_t) u_regval + INT_REGISTER_SIZE;
11035 break;
11036 default:
11037 gdb_assert_not_reached ("no decoding pattern found");
11038 break;
11039 }
11040
11041 record_buf_mem[0] = register_count * INT_REGISTER_SIZE;
11042 arm_insn_r->mem_rec_count = 1;
11043
11044 /* If wback is true, also save the base register, which is going to be
11045 written to. */
11046 if (wback)
11047 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
11048 }
11049
11050 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11051 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11052 return 0;
11053 }
11054
11055 /* Handling opcode 101 insns. */
11056
11057 static int
11058 arm_record_b_bl (insn_decode_record *arm_insn_r)
11059 {
11060 uint32_t record_buf[8];
11061
11062 /* Handle B, BL, BLX(1) insns. */
11063 /* B simply branches so we do nothing here. */
11064 /* Note: BLX(1) doesnt fall here but instead it falls into
11065 extension space. */
11066 if (bit (arm_insn_r->arm_insn, 24))
11067 {
11068 record_buf[0] = ARM_LR_REGNUM;
11069 arm_insn_r->reg_rec_count = 1;
11070 }
11071
11072 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11073
11074 return 0;
11075 }
11076
11077 static int
11078 arm_record_unsupported_insn (insn_decode_record *arm_insn_r)
11079 {
11080 printf_unfiltered (_("Process record does not support instruction "
11081 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11082 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
11083
11084 return -1;
11085 }
11086
11087 /* Record handler for vector data transfer instructions. */
11088
11089 static int
11090 arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r)
11091 {
11092 uint32_t bits_a, bit_c, bit_l, reg_t, reg_v;
11093 uint32_t record_buf[4];
11094
11095 reg_t = bits (arm_insn_r->arm_insn, 12, 15);
11096 reg_v = bits (arm_insn_r->arm_insn, 21, 23);
11097 bits_a = bits (arm_insn_r->arm_insn, 21, 23);
11098 bit_l = bit (arm_insn_r->arm_insn, 20);
11099 bit_c = bit (arm_insn_r->arm_insn, 8);
11100
11101 /* Handle VMOV instruction. */
11102 if (bit_l && bit_c)
11103 {
11104 record_buf[0] = reg_t;
11105 arm_insn_r->reg_rec_count = 1;
11106 }
11107 else if (bit_l && !bit_c)
11108 {
11109 /* Handle VMOV instruction. */
11110 if (bits_a == 0x00)
11111 {
11112 record_buf[0] = reg_t;
11113 arm_insn_r->reg_rec_count = 1;
11114 }
11115 /* Handle VMRS instruction. */
11116 else if (bits_a == 0x07)
11117 {
11118 if (reg_t == 15)
11119 reg_t = ARM_PS_REGNUM;
11120
11121 record_buf[0] = reg_t;
11122 arm_insn_r->reg_rec_count = 1;
11123 }
11124 }
11125 else if (!bit_l && !bit_c)
11126 {
11127 /* Handle VMOV instruction. */
11128 if (bits_a == 0x00)
11129 {
11130 record_buf[0] = ARM_D0_REGNUM + reg_v;
11131
11132 arm_insn_r->reg_rec_count = 1;
11133 }
11134 /* Handle VMSR instruction. */
11135 else if (bits_a == 0x07)
11136 {
11137 record_buf[0] = ARM_FPSCR_REGNUM;
11138 arm_insn_r->reg_rec_count = 1;
11139 }
11140 }
11141 else if (!bit_l && bit_c)
11142 {
11143 /* Handle VMOV instruction. */
11144 if (!(bits_a & 0x04))
11145 {
11146 record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4))
11147 + ARM_D0_REGNUM;
11148 arm_insn_r->reg_rec_count = 1;
11149 }
11150 /* Handle VDUP instruction. */
11151 else
11152 {
11153 if (bit (arm_insn_r->arm_insn, 21))
11154 {
11155 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11156 record_buf[0] = reg_v + ARM_D0_REGNUM;
11157 record_buf[1] = reg_v + ARM_D0_REGNUM + 1;
11158 arm_insn_r->reg_rec_count = 2;
11159 }
11160 else
11161 {
11162 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11163 record_buf[0] = reg_v + ARM_D0_REGNUM;
11164 arm_insn_r->reg_rec_count = 1;
11165 }
11166 }
11167 }
11168
11169 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11170 return 0;
11171 }
11172
11173 /* Record handler for extension register load/store instructions. */
11174
11175 static int
11176 arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r)
11177 {
11178 uint32_t opcode, single_reg;
11179 uint8_t op_vldm_vstm;
11180 uint32_t record_buf[8], record_buf_mem[128];
11181 ULONGEST u_regval = 0;
11182
11183 struct regcache *reg_cache = arm_insn_r->regcache;
11184
11185 opcode = bits (arm_insn_r->arm_insn, 20, 24);
11186 single_reg = !bit (arm_insn_r->arm_insn, 8);
11187 op_vldm_vstm = opcode & 0x1b;
11188
11189 /* Handle VMOV instructions. */
11190 if ((opcode & 0x1e) == 0x04)
11191 {
11192 if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */
11193 {
11194 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11195 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
11196 arm_insn_r->reg_rec_count = 2;
11197 }
11198 else
11199 {
11200 uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3);
11201 uint8_t bit_m = bit (arm_insn_r->arm_insn, 5);
11202
11203 if (single_reg)
11204 {
11205 /* The first S register number m is REG_M:M (M is bit 5),
11206 the corresponding D register number is REG_M:M / 2, which
11207 is REG_M. */
11208 record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m;
11209 /* The second S register number is REG_M:M + 1, the
11210 corresponding D register number is (REG_M:M + 1) / 2.
11211 IOW, if bit M is 1, the first and second S registers
11212 are mapped to different D registers, otherwise, they are
11213 in the same D register. */
11214 if (bit_m)
11215 {
11216 record_buf[arm_insn_r->reg_rec_count++]
11217 = ARM_D0_REGNUM + reg_m + 1;
11218 }
11219 }
11220 else
11221 {
11222 record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM);
11223 arm_insn_r->reg_rec_count = 1;
11224 }
11225 }
11226 }
11227 /* Handle VSTM and VPUSH instructions. */
11228 else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a
11229 || op_vldm_vstm == 0x12)
11230 {
11231 uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count;
11232 uint32_t memory_index = 0;
11233
11234 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11235 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11236 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11237 imm_off32 = imm_off8 << 2;
11238 memory_count = imm_off8;
11239
11240 if (bit (arm_insn_r->arm_insn, 23))
11241 start_address = u_regval;
11242 else
11243 start_address = u_regval - imm_off32;
11244
11245 if (bit (arm_insn_r->arm_insn, 21))
11246 {
11247 record_buf[0] = reg_rn;
11248 arm_insn_r->reg_rec_count = 1;
11249 }
11250
11251 while (memory_count > 0)
11252 {
11253 if (single_reg)
11254 {
11255 record_buf_mem[memory_index] = 4;
11256 record_buf_mem[memory_index + 1] = start_address;
11257 start_address = start_address + 4;
11258 memory_index = memory_index + 2;
11259 }
11260 else
11261 {
11262 record_buf_mem[memory_index] = 4;
11263 record_buf_mem[memory_index + 1] = start_address;
11264 record_buf_mem[memory_index + 2] = 4;
11265 record_buf_mem[memory_index + 3] = start_address + 4;
11266 start_address = start_address + 8;
11267 memory_index = memory_index + 4;
11268 }
11269 memory_count--;
11270 }
11271 arm_insn_r->mem_rec_count = (memory_index >> 1);
11272 }
11273 /* Handle VLDM instructions. */
11274 else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b
11275 || op_vldm_vstm == 0x13)
11276 {
11277 uint32_t reg_count, reg_vd;
11278 uint32_t reg_index = 0;
11279 uint32_t bit_d = bit (arm_insn_r->arm_insn, 22);
11280
11281 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11282 reg_count = bits (arm_insn_r->arm_insn, 0, 7);
11283
11284 /* REG_VD is the first D register number. If the instruction
11285 loads memory to S registers (SINGLE_REG is TRUE), the register
11286 number is (REG_VD << 1 | bit D), so the corresponding D
11287 register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */
11288 if (!single_reg)
11289 reg_vd = reg_vd | (bit_d << 4);
11290
11291 if (bit (arm_insn_r->arm_insn, 21) /* write back */)
11292 record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19);
11293
11294 /* If the instruction loads memory to D register, REG_COUNT should
11295 be divided by 2, according to the ARM Architecture Reference
11296 Manual. If the instruction loads memory to S register, divide by
11297 2 as well because two S registers are mapped to D register. */
11298 reg_count = reg_count / 2;
11299 if (single_reg && bit_d)
11300 {
11301 /* Increase the register count if S register list starts from
11302 an odd number (bit d is one). */
11303 reg_count++;
11304 }
11305
11306 while (reg_count > 0)
11307 {
11308 record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1;
11309 reg_count--;
11310 }
11311 arm_insn_r->reg_rec_count = reg_index;
11312 }
11313 /* VSTR Vector store register. */
11314 else if ((opcode & 0x13) == 0x10)
11315 {
11316 uint32_t start_address, reg_rn, imm_off32, imm_off8;
11317 uint32_t memory_index = 0;
11318
11319 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11320 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11321 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
11322 imm_off32 = imm_off8 << 2;
11323
11324 if (bit (arm_insn_r->arm_insn, 23))
11325 start_address = u_regval + imm_off32;
11326 else
11327 start_address = u_regval - imm_off32;
11328
11329 if (single_reg)
11330 {
11331 record_buf_mem[memory_index] = 4;
11332 record_buf_mem[memory_index + 1] = start_address;
11333 arm_insn_r->mem_rec_count = 1;
11334 }
11335 else
11336 {
11337 record_buf_mem[memory_index] = 4;
11338 record_buf_mem[memory_index + 1] = start_address;
11339 record_buf_mem[memory_index + 2] = 4;
11340 record_buf_mem[memory_index + 3] = start_address + 4;
11341 arm_insn_r->mem_rec_count = 2;
11342 }
11343 }
11344 /* VLDR Vector load register. */
11345 else if ((opcode & 0x13) == 0x11)
11346 {
11347 uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11348
11349 if (!single_reg)
11350 {
11351 reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4);
11352 record_buf[0] = ARM_D0_REGNUM + reg_vd;
11353 }
11354 else
11355 {
11356 reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22);
11357 /* Record register D rather than pseudo register S. */
11358 record_buf[0] = ARM_D0_REGNUM + reg_vd / 2;
11359 }
11360 arm_insn_r->reg_rec_count = 1;
11361 }
11362
11363 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11364 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11365 return 0;
11366 }
11367
11368 /* Record handler for arm/thumb mode VFP data processing instructions. */
11369
11370 static int
11371 arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r)
11372 {
11373 uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd;
11374 uint32_t record_buf[4];
11375 enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV};
11376 enum insn_types curr_insn_type = INSN_INV;
11377
11378 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11379 opc1 = bits (arm_insn_r->arm_insn, 20, 23);
11380 opc2 = bits (arm_insn_r->arm_insn, 16, 19);
11381 opc3 = bits (arm_insn_r->arm_insn, 6, 7);
11382 dp_op_sz = bit (arm_insn_r->arm_insn, 8);
11383 bit_d = bit (arm_insn_r->arm_insn, 22);
11384 opc1 = opc1 & 0x04;
11385
11386 /* Handle VMLA, VMLS. */
11387 if (opc1 == 0x00)
11388 {
11389 if (bit (arm_insn_r->arm_insn, 10))
11390 {
11391 if (bit (arm_insn_r->arm_insn, 6))
11392 curr_insn_type = INSN_T0;
11393 else
11394 curr_insn_type = INSN_T1;
11395 }
11396 else
11397 {
11398 if (dp_op_sz)
11399 curr_insn_type = INSN_T1;
11400 else
11401 curr_insn_type = INSN_T2;
11402 }
11403 }
11404 /* Handle VNMLA, VNMLS, VNMUL. */
11405 else if (opc1 == 0x01)
11406 {
11407 if (dp_op_sz)
11408 curr_insn_type = INSN_T1;
11409 else
11410 curr_insn_type = INSN_T2;
11411 }
11412 /* Handle VMUL. */
11413 else if (opc1 == 0x02 && !(opc3 & 0x01))
11414 {
11415 if (bit (arm_insn_r->arm_insn, 10))
11416 {
11417 if (bit (arm_insn_r->arm_insn, 6))
11418 curr_insn_type = INSN_T0;
11419 else
11420 curr_insn_type = INSN_T1;
11421 }
11422 else
11423 {
11424 if (dp_op_sz)
11425 curr_insn_type = INSN_T1;
11426 else
11427 curr_insn_type = INSN_T2;
11428 }
11429 }
11430 /* Handle VADD, VSUB. */
11431 else if (opc1 == 0x03)
11432 {
11433 if (!bit (arm_insn_r->arm_insn, 9))
11434 {
11435 if (bit (arm_insn_r->arm_insn, 6))
11436 curr_insn_type = INSN_T0;
11437 else
11438 curr_insn_type = INSN_T1;
11439 }
11440 else
11441 {
11442 if (dp_op_sz)
11443 curr_insn_type = INSN_T1;
11444 else
11445 curr_insn_type = INSN_T2;
11446 }
11447 }
11448 /* Handle VDIV. */
11449 else if (opc1 == 0x0b)
11450 {
11451 if (dp_op_sz)
11452 curr_insn_type = INSN_T1;
11453 else
11454 curr_insn_type = INSN_T2;
11455 }
11456 /* Handle all other vfp data processing instructions. */
11457 else if (opc1 == 0x0b)
11458 {
11459 /* Handle VMOV. */
11460 if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01))
11461 {
11462 if (bit (arm_insn_r->arm_insn, 4))
11463 {
11464 if (bit (arm_insn_r->arm_insn, 6))
11465 curr_insn_type = INSN_T0;
11466 else
11467 curr_insn_type = INSN_T1;
11468 }
11469 else
11470 {
11471 if (dp_op_sz)
11472 curr_insn_type = INSN_T1;
11473 else
11474 curr_insn_type = INSN_T2;
11475 }
11476 }
11477 /* Handle VNEG and VABS. */
11478 else if ((opc2 == 0x01 && opc3 == 0x01)
11479 || (opc2 == 0x00 && opc3 == 0x03))
11480 {
11481 if (!bit (arm_insn_r->arm_insn, 11))
11482 {
11483 if (bit (arm_insn_r->arm_insn, 6))
11484 curr_insn_type = INSN_T0;
11485 else
11486 curr_insn_type = INSN_T1;
11487 }
11488 else
11489 {
11490 if (dp_op_sz)
11491 curr_insn_type = INSN_T1;
11492 else
11493 curr_insn_type = INSN_T2;
11494 }
11495 }
11496 /* Handle VSQRT. */
11497 else if (opc2 == 0x01 && opc3 == 0x03)
11498 {
11499 if (dp_op_sz)
11500 curr_insn_type = INSN_T1;
11501 else
11502 curr_insn_type = INSN_T2;
11503 }
11504 /* Handle VCVT. */
11505 else if (opc2 == 0x07 && opc3 == 0x03)
11506 {
11507 if (!dp_op_sz)
11508 curr_insn_type = INSN_T1;
11509 else
11510 curr_insn_type = INSN_T2;
11511 }
11512 else if (opc3 & 0x01)
11513 {
11514 /* Handle VCVT. */
11515 if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c)
11516 {
11517 if (!bit (arm_insn_r->arm_insn, 18))
11518 curr_insn_type = INSN_T2;
11519 else
11520 {
11521 if (dp_op_sz)
11522 curr_insn_type = INSN_T1;
11523 else
11524 curr_insn_type = INSN_T2;
11525 }
11526 }
11527 /* Handle VCVT. */
11528 else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e)
11529 {
11530 if (dp_op_sz)
11531 curr_insn_type = INSN_T1;
11532 else
11533 curr_insn_type = INSN_T2;
11534 }
11535 /* Handle VCVTB, VCVTT. */
11536 else if ((opc2 & 0x0e) == 0x02)
11537 curr_insn_type = INSN_T2;
11538 /* Handle VCMP, VCMPE. */
11539 else if ((opc2 & 0x0e) == 0x04)
11540 curr_insn_type = INSN_T3;
11541 }
11542 }
11543
11544 switch (curr_insn_type)
11545 {
11546 case INSN_T0:
11547 reg_vd = reg_vd | (bit_d << 4);
11548 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11549 record_buf[1] = reg_vd + ARM_D0_REGNUM + 1;
11550 arm_insn_r->reg_rec_count = 2;
11551 break;
11552
11553 case INSN_T1:
11554 reg_vd = reg_vd | (bit_d << 4);
11555 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11556 arm_insn_r->reg_rec_count = 1;
11557 break;
11558
11559 case INSN_T2:
11560 reg_vd = (reg_vd << 1) | bit_d;
11561 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11562 arm_insn_r->reg_rec_count = 1;
11563 break;
11564
11565 case INSN_T3:
11566 record_buf[0] = ARM_FPSCR_REGNUM;
11567 arm_insn_r->reg_rec_count = 1;
11568 break;
11569
11570 default:
11571 gdb_assert_not_reached ("no decoding pattern found");
11572 break;
11573 }
11574
11575 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11576 return 0;
11577 }
11578
11579 /* Handling opcode 110 insns. */
11580
11581 static int
11582 arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r)
11583 {
11584 uint32_t op1, op1_ebit, coproc;
11585
11586 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11587 op1 = bits (arm_insn_r->arm_insn, 20, 25);
11588 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11589
11590 if ((coproc & 0x0e) == 0x0a)
11591 {
11592 /* Handle extension register ld/st instructions. */
11593 if (!(op1 & 0x20))
11594 return arm_record_exreg_ld_st_insn (arm_insn_r);
11595
11596 /* 64-bit transfers between arm core and extension registers. */
11597 if ((op1 & 0x3e) == 0x04)
11598 return arm_record_exreg_ld_st_insn (arm_insn_r);
11599 }
11600 else
11601 {
11602 /* Handle coprocessor ld/st instructions. */
11603 if (!(op1 & 0x3a))
11604 {
11605 /* Store. */
11606 if (!op1_ebit)
11607 return arm_record_unsupported_insn (arm_insn_r);
11608 else
11609 /* Load. */
11610 return arm_record_unsupported_insn (arm_insn_r);
11611 }
11612
11613 /* Move to coprocessor from two arm core registers. */
11614 if (op1 == 0x4)
11615 return arm_record_unsupported_insn (arm_insn_r);
11616
11617 /* Move to two arm core registers from coprocessor. */
11618 if (op1 == 0x5)
11619 {
11620 uint32_t reg_t[2];
11621
11622 reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15);
11623 reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19);
11624 arm_insn_r->reg_rec_count = 2;
11625
11626 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t);
11627 return 0;
11628 }
11629 }
11630 return arm_record_unsupported_insn (arm_insn_r);
11631 }
11632
11633 /* Handling opcode 111 insns. */
11634
11635 static int
11636 arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
11637 {
11638 uint32_t op, op1_sbit, op1_ebit, coproc;
11639 struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
11640 struct regcache *reg_cache = arm_insn_r->regcache;
11641
11642 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
11643 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11644 op1_sbit = bit (arm_insn_r->arm_insn, 24);
11645 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11646 op = bit (arm_insn_r->arm_insn, 4);
11647
11648 /* Handle arm SWI/SVC system call instructions. */
11649 if (op1_sbit)
11650 {
11651 if (tdep->arm_syscall_record != NULL)
11652 {
11653 ULONGEST svc_operand, svc_number;
11654
11655 svc_operand = (0x00ffffff & arm_insn_r->arm_insn);
11656
11657 if (svc_operand) /* OABI. */
11658 svc_number = svc_operand - 0x900000;
11659 else /* EABI. */
11660 regcache_raw_read_unsigned (reg_cache, 7, &svc_number);
11661
11662 return tdep->arm_syscall_record (reg_cache, svc_number);
11663 }
11664 else
11665 {
11666 printf_unfiltered (_("no syscall record support\n"));
11667 return -1;
11668 }
11669 }
11670
11671 if ((coproc & 0x0e) == 0x0a)
11672 {
11673 /* VFP data-processing instructions. */
11674 if (!op1_sbit && !op)
11675 return arm_record_vfp_data_proc_insn (arm_insn_r);
11676
11677 /* Advanced SIMD, VFP instructions. */
11678 if (!op1_sbit && op)
11679 return arm_record_vdata_transfer_insn (arm_insn_r);
11680 }
11681 else
11682 {
11683 /* Coprocessor data operations. */
11684 if (!op1_sbit && !op)
11685 return arm_record_unsupported_insn (arm_insn_r);
11686
11687 /* Move to Coprocessor from ARM core register. */
11688 if (!op1_sbit && !op1_ebit && op)
11689 return arm_record_unsupported_insn (arm_insn_r);
11690
11691 /* Move to arm core register from coprocessor. */
11692 if (!op1_sbit && op1_ebit && op)
11693 {
11694 uint32_t record_buf[1];
11695
11696 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11697 if (record_buf[0] == 15)
11698 record_buf[0] = ARM_PS_REGNUM;
11699
11700 arm_insn_r->reg_rec_count = 1;
11701 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count,
11702 record_buf);
11703 return 0;
11704 }
11705 }
11706
11707 return arm_record_unsupported_insn (arm_insn_r);
11708 }
11709
11710 /* Handling opcode 000 insns. */
11711
11712 static int
11713 thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
11714 {
11715 uint32_t record_buf[8];
11716 uint32_t reg_src1 = 0;
11717
11718 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11719
11720 record_buf[0] = ARM_PS_REGNUM;
11721 record_buf[1] = reg_src1;
11722 thumb_insn_r->reg_rec_count = 2;
11723
11724 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11725
11726 return 0;
11727 }
11728
11729
11730 /* Handling opcode 001 insns. */
11731
11732 static int
11733 thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
11734 {
11735 uint32_t record_buf[8];
11736 uint32_t reg_src1 = 0;
11737
11738 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11739
11740 record_buf[0] = ARM_PS_REGNUM;
11741 record_buf[1] = reg_src1;
11742 thumb_insn_r->reg_rec_count = 2;
11743
11744 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11745
11746 return 0;
11747 }
11748
11749 /* Handling opcode 010 insns. */
11750
11751 static int
11752 thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
11753 {
11754 struct regcache *reg_cache = thumb_insn_r->regcache;
11755 uint32_t record_buf[8], record_buf_mem[8];
11756
11757 uint32_t reg_src1 = 0, reg_src2 = 0;
11758 uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
11759
11760 ULONGEST u_regval[2] = {0};
11761
11762 opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
11763
11764 if (bit (thumb_insn_r->arm_insn, 12))
11765 {
11766 /* Handle load/store register offset. */
11767 uint32_t opB = bits (thumb_insn_r->arm_insn, 9, 11);
11768
11769 if (opB >= 4 && opB <= 7)
11770 {
11771 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
11772 reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
11773 record_buf[0] = reg_src1;
11774 thumb_insn_r->reg_rec_count = 1;
11775 }
11776 else if (opB >= 0 && opB <= 2)
11777 {
11778 /* STR(2), STRB(2), STRH(2) . */
11779 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11780 reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
11781 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11782 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11783 if (0 == opB)
11784 record_buf_mem[0] = 4; /* STR (2). */
11785 else if (2 == opB)
11786 record_buf_mem[0] = 1; /* STRB (2). */
11787 else if (1 == opB)
11788 record_buf_mem[0] = 2; /* STRH (2). */
11789 record_buf_mem[1] = u_regval[0] + u_regval[1];
11790 thumb_insn_r->mem_rec_count = 1;
11791 }
11792 }
11793 else if (bit (thumb_insn_r->arm_insn, 11))
11794 {
11795 /* Handle load from literal pool. */
11796 /* LDR(3). */
11797 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11798 record_buf[0] = reg_src1;
11799 thumb_insn_r->reg_rec_count = 1;
11800 }
11801 else if (opcode1)
11802 {
11803 /* Special data instructions and branch and exchange */
11804 opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
11805 opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
11806 if ((3 == opcode2) && (!opcode3))
11807 {
11808 /* Branch with exchange. */
11809 record_buf[0] = ARM_PS_REGNUM;
11810 thumb_insn_r->reg_rec_count = 1;
11811 }
11812 else
11813 {
11814 /* Format 8; special data processing insns. */
11815 record_buf[0] = ARM_PS_REGNUM;
11816 record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3
11817 | bits (thumb_insn_r->arm_insn, 0, 2));
11818 thumb_insn_r->reg_rec_count = 2;
11819 }
11820 }
11821 else
11822 {
11823 /* Format 5; data processing insns. */
11824 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11825 if (bit (thumb_insn_r->arm_insn, 7))
11826 {
11827 reg_src1 = reg_src1 + 8;
11828 }
11829 record_buf[0] = ARM_PS_REGNUM;
11830 record_buf[1] = reg_src1;
11831 thumb_insn_r->reg_rec_count = 2;
11832 }
11833
11834 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11835 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11836 record_buf_mem);
11837
11838 return 0;
11839 }
11840
11841 /* Handling opcode 001 insns. */
11842
11843 static int
11844 thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
11845 {
11846 struct regcache *reg_cache = thumb_insn_r->regcache;
11847 uint32_t record_buf[8], record_buf_mem[8];
11848
11849 uint32_t reg_src1 = 0;
11850 uint32_t opcode = 0, immed_5 = 0;
11851
11852 ULONGEST u_regval = 0;
11853
11854 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11855
11856 if (opcode)
11857 {
11858 /* LDR(1). */
11859 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11860 record_buf[0] = reg_src1;
11861 thumb_insn_r->reg_rec_count = 1;
11862 }
11863 else
11864 {
11865 /* STR(1). */
11866 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11867 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11868 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11869 record_buf_mem[0] = 4;
11870 record_buf_mem[1] = u_regval + (immed_5 * 4);
11871 thumb_insn_r->mem_rec_count = 1;
11872 }
11873
11874 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11875 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11876 record_buf_mem);
11877
11878 return 0;
11879 }
11880
11881 /* Handling opcode 100 insns. */
11882
11883 static int
11884 thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
11885 {
11886 struct regcache *reg_cache = thumb_insn_r->regcache;
11887 uint32_t record_buf[8], record_buf_mem[8];
11888
11889 uint32_t reg_src1 = 0;
11890 uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
11891
11892 ULONGEST u_regval = 0;
11893
11894 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11895
11896 if (3 == opcode)
11897 {
11898 /* LDR(4). */
11899 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11900 record_buf[0] = reg_src1;
11901 thumb_insn_r->reg_rec_count = 1;
11902 }
11903 else if (1 == opcode)
11904 {
11905 /* LDRH(1). */
11906 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11907 record_buf[0] = reg_src1;
11908 thumb_insn_r->reg_rec_count = 1;
11909 }
11910 else if (2 == opcode)
11911 {
11912 /* STR(3). */
11913 immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
11914 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11915 record_buf_mem[0] = 4;
11916 record_buf_mem[1] = u_regval + (immed_8 * 4);
11917 thumb_insn_r->mem_rec_count = 1;
11918 }
11919 else if (0 == opcode)
11920 {
11921 /* STRH(1). */
11922 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11923 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11924 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11925 record_buf_mem[0] = 2;
11926 record_buf_mem[1] = u_regval + (immed_5 * 2);
11927 thumb_insn_r->mem_rec_count = 1;
11928 }
11929
11930 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11931 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11932 record_buf_mem);
11933
11934 return 0;
11935 }
11936
11937 /* Handling opcode 101 insns. */
11938
11939 static int
11940 thumb_record_misc (insn_decode_record *thumb_insn_r)
11941 {
11942 struct regcache *reg_cache = thumb_insn_r->regcache;
11943
11944 uint32_t opcode = 0;
11945 uint32_t register_bits = 0, register_count = 0;
11946 uint32_t index = 0, start_address = 0;
11947 uint32_t record_buf[24], record_buf_mem[48];
11948 uint32_t reg_src1;
11949
11950 ULONGEST u_regval = 0;
11951
11952 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11953
11954 if (opcode == 0 || opcode == 1)
11955 {
11956 /* ADR and ADD (SP plus immediate) */
11957
11958 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11959 record_buf[0] = reg_src1;
11960 thumb_insn_r->reg_rec_count = 1;
11961 }
11962 else
11963 {
11964 /* Miscellaneous 16-bit instructions */
11965 uint32_t opcode2 = bits (thumb_insn_r->arm_insn, 8, 11);
11966
11967 switch (opcode2)
11968 {
11969 case 6:
11970 /* SETEND and CPS */
11971 break;
11972 case 0:
11973 /* ADD/SUB (SP plus immediate) */
11974 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11975 record_buf[0] = ARM_SP_REGNUM;
11976 thumb_insn_r->reg_rec_count = 1;
11977 break;
11978 case 1: /* fall through */
11979 case 3: /* fall through */
11980 case 9: /* fall through */
11981 case 11:
11982 /* CBNZ, CBZ */
11983 break;
11984 case 2:
11985 /* SXTH, SXTB, UXTH, UXTB */
11986 record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
11987 thumb_insn_r->reg_rec_count = 1;
11988 break;
11989 case 4: /* fall through */
11990 case 5:
11991 /* PUSH. */
11992 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
11993 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11994 while (register_bits)
11995 {
11996 if (register_bits & 0x00000001)
11997 register_count++;
11998 register_bits = register_bits >> 1;
11999 }
12000 start_address = u_regval - \
12001 (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
12002 thumb_insn_r->mem_rec_count = register_count;
12003 while (register_count)
12004 {
12005 record_buf_mem[(register_count * 2) - 1] = start_address;
12006 record_buf_mem[(register_count * 2) - 2] = 4;
12007 start_address = start_address + 4;
12008 register_count--;
12009 }
12010 record_buf[0] = ARM_SP_REGNUM;
12011 thumb_insn_r->reg_rec_count = 1;
12012 break;
12013 case 10:
12014 /* REV, REV16, REVSH */
12015 record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2);
12016 thumb_insn_r->reg_rec_count = 1;
12017 break;
12018 case 12: /* fall through */
12019 case 13:
12020 /* POP. */
12021 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12022 while (register_bits)
12023 {
12024 if (register_bits & 0x00000001)
12025 record_buf[index++] = register_count;
12026 register_bits = register_bits >> 1;
12027 register_count++;
12028 }
12029 record_buf[index++] = ARM_PS_REGNUM;
12030 record_buf[index++] = ARM_SP_REGNUM;
12031 thumb_insn_r->reg_rec_count = index;
12032 break;
12033 case 0xe:
12034 /* BKPT insn. */
12035 /* Handle enhanced software breakpoint insn, BKPT. */
12036 /* CPSR is changed to be executed in ARM state, disabling normal
12037 interrupts, entering abort mode. */
12038 /* According to high vector configuration PC is set. */
12039 /* User hits breakpoint and type reverse, in that case, we need to go back with
12040 previous CPSR and Program Counter. */
12041 record_buf[0] = ARM_PS_REGNUM;
12042 record_buf[1] = ARM_LR_REGNUM;
12043 thumb_insn_r->reg_rec_count = 2;
12044 /* We need to save SPSR value, which is not yet done. */
12045 printf_unfiltered (_("Process record does not support instruction "
12046 "0x%0x at address %s.\n"),
12047 thumb_insn_r->arm_insn,
12048 paddress (thumb_insn_r->gdbarch,
12049 thumb_insn_r->this_addr));
12050 return -1;
12051
12052 case 0xf:
12053 /* If-Then, and hints */
12054 break;
12055 default:
12056 return -1;
12057 };
12058 }
12059
12060 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12061 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12062 record_buf_mem);
12063
12064 return 0;
12065 }
12066
12067 /* Handling opcode 110 insns. */
12068
12069 static int
12070 thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)
12071 {
12072 struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
12073 struct regcache *reg_cache = thumb_insn_r->regcache;
12074
12075 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
12076 uint32_t reg_src1 = 0;
12077 uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
12078 uint32_t index = 0, start_address = 0;
12079 uint32_t record_buf[24], record_buf_mem[48];
12080
12081 ULONGEST u_regval = 0;
12082
12083 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
12084 opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
12085
12086 if (1 == opcode2)
12087 {
12088
12089 /* LDMIA. */
12090 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12091 /* Get Rn. */
12092 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12093 while (register_bits)
12094 {
12095 if (register_bits & 0x00000001)
12096 record_buf[index++] = register_count;
12097 register_bits = register_bits >> 1;
12098 register_count++;
12099 }
12100 record_buf[index++] = reg_src1;
12101 thumb_insn_r->reg_rec_count = index;
12102 }
12103 else if (0 == opcode2)
12104 {
12105 /* It handles both STMIA. */
12106 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12107 /* Get Rn. */
12108 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12109 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12110 while (register_bits)
12111 {
12112 if (register_bits & 0x00000001)
12113 register_count++;
12114 register_bits = register_bits >> 1;
12115 }
12116 start_address = u_regval;
12117 thumb_insn_r->mem_rec_count = register_count;
12118 while (register_count)
12119 {
12120 record_buf_mem[(register_count * 2) - 1] = start_address;
12121 record_buf_mem[(register_count * 2) - 2] = 4;
12122 start_address = start_address + 4;
12123 register_count--;
12124 }
12125 }
12126 else if (0x1F == opcode1)
12127 {
12128 /* Handle arm syscall insn. */
12129 if (tdep->arm_syscall_record != NULL)
12130 {
12131 regcache_raw_read_unsigned (reg_cache, 7, &u_regval);
12132 ret = tdep->arm_syscall_record (reg_cache, u_regval);
12133 }
12134 else
12135 {
12136 printf_unfiltered (_("no syscall record support\n"));
12137 return -1;
12138 }
12139 }
12140
12141 /* B (1), conditional branch is automatically taken care in process_record,
12142 as PC is saved there. */
12143
12144 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12145 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12146 record_buf_mem);
12147
12148 return ret;
12149 }
12150
12151 /* Handling opcode 111 insns. */
12152
12153 static int
12154 thumb_record_branch (insn_decode_record *thumb_insn_r)
12155 {
12156 uint32_t record_buf[8];
12157 uint32_t bits_h = 0;
12158
12159 bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
12160
12161 if (2 == bits_h || 3 == bits_h)
12162 {
12163 /* BL */
12164 record_buf[0] = ARM_LR_REGNUM;
12165 thumb_insn_r->reg_rec_count = 1;
12166 }
12167 else if (1 == bits_h)
12168 {
12169 /* BLX(1). */
12170 record_buf[0] = ARM_PS_REGNUM;
12171 record_buf[1] = ARM_LR_REGNUM;
12172 thumb_insn_r->reg_rec_count = 2;
12173 }
12174
12175 /* B(2) is automatically taken care in process_record, as PC is
12176 saved there. */
12177
12178 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12179
12180 return 0;
12181 }
12182
12183 /* Handler for thumb2 load/store multiple instructions. */
12184
12185 static int
12186 thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r)
12187 {
12188 struct regcache *reg_cache = thumb2_insn_r->regcache;
12189
12190 uint32_t reg_rn, op;
12191 uint32_t register_bits = 0, register_count = 0;
12192 uint32_t index = 0, start_address = 0;
12193 uint32_t record_buf[24], record_buf_mem[48];
12194
12195 ULONGEST u_regval = 0;
12196
12197 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12198 op = bits (thumb2_insn_r->arm_insn, 23, 24);
12199
12200 if (0 == op || 3 == op)
12201 {
12202 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12203 {
12204 /* Handle RFE instruction. */
12205 record_buf[0] = ARM_PS_REGNUM;
12206 thumb2_insn_r->reg_rec_count = 1;
12207 }
12208 else
12209 {
12210 /* Handle SRS instruction after reading banked SP. */
12211 return arm_record_unsupported_insn (thumb2_insn_r);
12212 }
12213 }
12214 else if (1 == op || 2 == op)
12215 {
12216 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12217 {
12218 /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
12219 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12220 while (register_bits)
12221 {
12222 if (register_bits & 0x00000001)
12223 record_buf[index++] = register_count;
12224
12225 register_count++;
12226 register_bits = register_bits >> 1;
12227 }
12228 record_buf[index++] = reg_rn;
12229 record_buf[index++] = ARM_PS_REGNUM;
12230 thumb2_insn_r->reg_rec_count = index;
12231 }
12232 else
12233 {
12234 /* Handle STM/STMIA/STMEA and STMDB/STMFD. */
12235 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12236 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12237 while (register_bits)
12238 {
12239 if (register_bits & 0x00000001)
12240 register_count++;
12241
12242 register_bits = register_bits >> 1;
12243 }
12244
12245 if (1 == op)
12246 {
12247 /* Start address calculation for LDMDB/LDMEA. */
12248 start_address = u_regval;
12249 }
12250 else if (2 == op)
12251 {
12252 /* Start address calculation for LDMDB/LDMEA. */
12253 start_address = u_regval - register_count * 4;
12254 }
12255
12256 thumb2_insn_r->mem_rec_count = register_count;
12257 while (register_count)
12258 {
12259 record_buf_mem[register_count * 2 - 1] = start_address;
12260 record_buf_mem[register_count * 2 - 2] = 4;
12261 start_address = start_address + 4;
12262 register_count--;
12263 }
12264 record_buf[0] = reg_rn;
12265 record_buf[1] = ARM_PS_REGNUM;
12266 thumb2_insn_r->reg_rec_count = 2;
12267 }
12268 }
12269
12270 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12271 record_buf_mem);
12272 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12273 record_buf);
12274 return ARM_RECORD_SUCCESS;
12275 }
12276
12277 /* Handler for thumb2 load/store (dual/exclusive) and table branch
12278 instructions. */
12279
12280 static int
12281 thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r)
12282 {
12283 struct regcache *reg_cache = thumb2_insn_r->regcache;
12284
12285 uint32_t reg_rd, reg_rn, offset_imm;
12286 uint32_t reg_dest1, reg_dest2;
12287 uint32_t address, offset_addr;
12288 uint32_t record_buf[8], record_buf_mem[8];
12289 uint32_t op1, op2, op3;
12290
12291 ULONGEST u_regval[2];
12292
12293 op1 = bits (thumb2_insn_r->arm_insn, 23, 24);
12294 op2 = bits (thumb2_insn_r->arm_insn, 20, 21);
12295 op3 = bits (thumb2_insn_r->arm_insn, 4, 7);
12296
12297 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12298 {
12299 if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3)))
12300 {
12301 reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15);
12302 record_buf[0] = reg_dest1;
12303 record_buf[1] = ARM_PS_REGNUM;
12304 thumb2_insn_r->reg_rec_count = 2;
12305 }
12306
12307 if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3))
12308 {
12309 reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12310 record_buf[2] = reg_dest2;
12311 thumb2_insn_r->reg_rec_count = 3;
12312 }
12313 }
12314 else
12315 {
12316 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12317 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12318
12319 if (0 == op1 && 0 == op2)
12320 {
12321 /* Handle STREX. */
12322 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12323 address = u_regval[0] + (offset_imm * 4);
12324 record_buf_mem[0] = 4;
12325 record_buf_mem[1] = address;
12326 thumb2_insn_r->mem_rec_count = 1;
12327 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12328 record_buf[0] = reg_rd;
12329 thumb2_insn_r->reg_rec_count = 1;
12330 }
12331 else if (1 == op1 && 0 == op2)
12332 {
12333 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12334 record_buf[0] = reg_rd;
12335 thumb2_insn_r->reg_rec_count = 1;
12336 address = u_regval[0];
12337 record_buf_mem[1] = address;
12338
12339 if (4 == op3)
12340 {
12341 /* Handle STREXB. */
12342 record_buf_mem[0] = 1;
12343 thumb2_insn_r->mem_rec_count = 1;
12344 }
12345 else if (5 == op3)
12346 {
12347 /* Handle STREXH. */
12348 record_buf_mem[0] = 2 ;
12349 thumb2_insn_r->mem_rec_count = 1;
12350 }
12351 else if (7 == op3)
12352 {
12353 /* Handle STREXD. */
12354 address = u_regval[0];
12355 record_buf_mem[0] = 4;
12356 record_buf_mem[2] = 4;
12357 record_buf_mem[3] = address + 4;
12358 thumb2_insn_r->mem_rec_count = 2;
12359 }
12360 }
12361 else
12362 {
12363 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12364
12365 if (bit (thumb2_insn_r->arm_insn, 24))
12366 {
12367 if (bit (thumb2_insn_r->arm_insn, 23))
12368 offset_addr = u_regval[0] + (offset_imm * 4);
12369 else
12370 offset_addr = u_regval[0] - (offset_imm * 4);
12371
12372 address = offset_addr;
12373 }
12374 else
12375 address = u_regval[0];
12376
12377 record_buf_mem[0] = 4;
12378 record_buf_mem[1] = address;
12379 record_buf_mem[2] = 4;
12380 record_buf_mem[3] = address + 4;
12381 thumb2_insn_r->mem_rec_count = 2;
12382 record_buf[0] = reg_rn;
12383 thumb2_insn_r->reg_rec_count = 1;
12384 }
12385 }
12386
12387 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12388 record_buf);
12389 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12390 record_buf_mem);
12391 return ARM_RECORD_SUCCESS;
12392 }
12393
12394 /* Handler for thumb2 data processing (shift register and modified immediate)
12395 instructions. */
12396
12397 static int
12398 thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r)
12399 {
12400 uint32_t reg_rd, op;
12401 uint32_t record_buf[8];
12402
12403 op = bits (thumb2_insn_r->arm_insn, 21, 24);
12404 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12405
12406 if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd)
12407 {
12408 record_buf[0] = ARM_PS_REGNUM;
12409 thumb2_insn_r->reg_rec_count = 1;
12410 }
12411 else
12412 {
12413 record_buf[0] = reg_rd;
12414 record_buf[1] = ARM_PS_REGNUM;
12415 thumb2_insn_r->reg_rec_count = 2;
12416 }
12417
12418 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12419 record_buf);
12420 return ARM_RECORD_SUCCESS;
12421 }
12422
12423 /* Generic handler for thumb2 instructions which effect destination and PS
12424 registers. */
12425
12426 static int
12427 thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r)
12428 {
12429 uint32_t reg_rd;
12430 uint32_t record_buf[8];
12431
12432 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12433
12434 record_buf[0] = reg_rd;
12435 record_buf[1] = ARM_PS_REGNUM;
12436 thumb2_insn_r->reg_rec_count = 2;
12437
12438 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12439 record_buf);
12440 return ARM_RECORD_SUCCESS;
12441 }
12442
12443 /* Handler for thumb2 branch and miscellaneous control instructions. */
12444
12445 static int
12446 thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r)
12447 {
12448 uint32_t op, op1, op2;
12449 uint32_t record_buf[8];
12450
12451 op = bits (thumb2_insn_r->arm_insn, 20, 26);
12452 op1 = bits (thumb2_insn_r->arm_insn, 12, 14);
12453 op2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12454
12455 /* Handle MSR insn. */
12456 if (!(op1 & 0x2) && 0x38 == op)
12457 {
12458 if (!(op2 & 0x3))
12459 {
12460 /* CPSR is going to be changed. */
12461 record_buf[0] = ARM_PS_REGNUM;
12462 thumb2_insn_r->reg_rec_count = 1;
12463 }
12464 else
12465 {
12466 arm_record_unsupported_insn(thumb2_insn_r);
12467 return -1;
12468 }
12469 }
12470 else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5))
12471 {
12472 /* BLX. */
12473 record_buf[0] = ARM_PS_REGNUM;
12474 record_buf[1] = ARM_LR_REGNUM;
12475 thumb2_insn_r->reg_rec_count = 2;
12476 }
12477
12478 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12479 record_buf);
12480 return ARM_RECORD_SUCCESS;
12481 }
12482
12483 /* Handler for thumb2 store single data item instructions. */
12484
12485 static int
12486 thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r)
12487 {
12488 struct regcache *reg_cache = thumb2_insn_r->regcache;
12489
12490 uint32_t reg_rn, reg_rm, offset_imm, shift_imm;
12491 uint32_t address, offset_addr;
12492 uint32_t record_buf[8], record_buf_mem[8];
12493 uint32_t op1, op2;
12494
12495 ULONGEST u_regval[2];
12496
12497 op1 = bits (thumb2_insn_r->arm_insn, 21, 23);
12498 op2 = bits (thumb2_insn_r->arm_insn, 6, 11);
12499 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12500 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12501
12502 if (bit (thumb2_insn_r->arm_insn, 23))
12503 {
12504 /* T2 encoding. */
12505 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11);
12506 offset_addr = u_regval[0] + offset_imm;
12507 address = offset_addr;
12508 }
12509 else
12510 {
12511 /* T3 encoding. */
12512 if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20))
12513 {
12514 /* Handle STRB (register). */
12515 reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3);
12516 regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]);
12517 shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5);
12518 offset_addr = u_regval[1] << shift_imm;
12519 address = u_regval[0] + offset_addr;
12520 }
12521 else
12522 {
12523 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12524 if (bit (thumb2_insn_r->arm_insn, 10))
12525 {
12526 if (bit (thumb2_insn_r->arm_insn, 9))
12527 offset_addr = u_regval[0] + offset_imm;
12528 else
12529 offset_addr = u_regval[0] - offset_imm;
12530
12531 address = offset_addr;
12532 }
12533 else
12534 address = u_regval[0];
12535 }
12536 }
12537
12538 switch (op1)
12539 {
12540 /* Store byte instructions. */
12541 case 4:
12542 case 0:
12543 record_buf_mem[0] = 1;
12544 break;
12545 /* Store half word instructions. */
12546 case 1:
12547 case 5:
12548 record_buf_mem[0] = 2;
12549 break;
12550 /* Store word instructions. */
12551 case 2:
12552 case 6:
12553 record_buf_mem[0] = 4;
12554 break;
12555
12556 default:
12557 gdb_assert_not_reached ("no decoding pattern found");
12558 break;
12559 }
12560
12561 record_buf_mem[1] = address;
12562 thumb2_insn_r->mem_rec_count = 1;
12563 record_buf[0] = reg_rn;
12564 thumb2_insn_r->reg_rec_count = 1;
12565
12566 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12567 record_buf);
12568 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12569 record_buf_mem);
12570 return ARM_RECORD_SUCCESS;
12571 }
12572
12573 /* Handler for thumb2 load memory hints instructions. */
12574
12575 static int
12576 thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r)
12577 {
12578 uint32_t record_buf[8];
12579 uint32_t reg_rt, reg_rn;
12580
12581 reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15);
12582 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12583
12584 if (ARM_PC_REGNUM != reg_rt)
12585 {
12586 record_buf[0] = reg_rt;
12587 record_buf[1] = reg_rn;
12588 record_buf[2] = ARM_PS_REGNUM;
12589 thumb2_insn_r->reg_rec_count = 3;
12590
12591 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12592 record_buf);
12593 return ARM_RECORD_SUCCESS;
12594 }
12595
12596 return ARM_RECORD_FAILURE;
12597 }
12598
12599 /* Handler for thumb2 load word instructions. */
12600
12601 static int
12602 thumb2_record_ld_word (insn_decode_record *thumb2_insn_r)
12603 {
12604 uint32_t record_buf[8];
12605
12606 record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15);
12607 record_buf[1] = ARM_PS_REGNUM;
12608 thumb2_insn_r->reg_rec_count = 2;
12609
12610 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12611 record_buf);
12612 return ARM_RECORD_SUCCESS;
12613 }
12614
12615 /* Handler for thumb2 long multiply, long multiply accumulate, and
12616 divide instructions. */
12617
12618 static int
12619 thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r)
12620 {
12621 uint32_t opcode1 = 0, opcode2 = 0;
12622 uint32_t record_buf[8];
12623
12624 opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22);
12625 opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7);
12626
12627 if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6))
12628 {
12629 /* Handle SMULL, UMULL, SMULAL. */
12630 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
12631 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12632 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12633 record_buf[2] = ARM_PS_REGNUM;
12634 thumb2_insn_r->reg_rec_count = 3;
12635 }
12636 else if (1 == opcode1 || 3 == opcode2)
12637 {
12638 /* Handle SDIV and UDIV. */
12639 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12640 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12641 record_buf[2] = ARM_PS_REGNUM;
12642 thumb2_insn_r->reg_rec_count = 3;
12643 }
12644 else
12645 return ARM_RECORD_FAILURE;
12646
12647 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12648 record_buf);
12649 return ARM_RECORD_SUCCESS;
12650 }
12651
12652 /* Record handler for thumb32 coprocessor instructions. */
12653
12654 static int
12655 thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r)
12656 {
12657 if (bit (thumb2_insn_r->arm_insn, 25))
12658 return arm_record_coproc_data_proc (thumb2_insn_r);
12659 else
12660 return arm_record_asimd_vfp_coproc (thumb2_insn_r);
12661 }
12662
12663 /* Record handler for advance SIMD structure load/store instructions. */
12664
12665 static int
12666 thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r)
12667 {
12668 struct regcache *reg_cache = thumb2_insn_r->regcache;
12669 uint32_t l_bit, a_bit, b_bits;
12670 uint32_t record_buf[128], record_buf_mem[128];
12671 uint32_t reg_rn, reg_vd, address, f_elem;
12672 uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0;
12673 uint8_t f_ebytes;
12674
12675 l_bit = bit (thumb2_insn_r->arm_insn, 21);
12676 a_bit = bit (thumb2_insn_r->arm_insn, 23);
12677 b_bits = bits (thumb2_insn_r->arm_insn, 8, 11);
12678 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12679 reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15);
12680 reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd;
12681 f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7));
12682 f_elem = 8 / f_ebytes;
12683
12684 if (!l_bit)
12685 {
12686 ULONGEST u_regval = 0;
12687 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12688 address = u_regval;
12689
12690 if (!a_bit)
12691 {
12692 /* Handle VST1. */
12693 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12694 {
12695 if (b_bits == 0x07)
12696 bf_regs = 1;
12697 else if (b_bits == 0x0a)
12698 bf_regs = 2;
12699 else if (b_bits == 0x06)
12700 bf_regs = 3;
12701 else if (b_bits == 0x02)
12702 bf_regs = 4;
12703 else
12704 bf_regs = 0;
12705
12706 for (index_r = 0; index_r < bf_regs; index_r++)
12707 {
12708 for (index_e = 0; index_e < f_elem; index_e++)
12709 {
12710 record_buf_mem[index_m++] = f_ebytes;
12711 record_buf_mem[index_m++] = address;
12712 address = address + f_ebytes;
12713 thumb2_insn_r->mem_rec_count += 1;
12714 }
12715 }
12716 }
12717 /* Handle VST2. */
12718 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12719 {
12720 if (b_bits == 0x09 || b_bits == 0x08)
12721 bf_regs = 1;
12722 else if (b_bits == 0x03)
12723 bf_regs = 2;
12724 else
12725 bf_regs = 0;
12726
12727 for (index_r = 0; index_r < bf_regs; index_r++)
12728 for (index_e = 0; index_e < f_elem; index_e++)
12729 {
12730 for (loop_t = 0; loop_t < 2; loop_t++)
12731 {
12732 record_buf_mem[index_m++] = f_ebytes;
12733 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12734 thumb2_insn_r->mem_rec_count += 1;
12735 }
12736 address = address + (2 * f_ebytes);
12737 }
12738 }
12739 /* Handle VST3. */
12740 else if ((b_bits & 0x0e) == 0x04)
12741 {
12742 for (index_e = 0; index_e < f_elem; index_e++)
12743 {
12744 for (loop_t = 0; loop_t < 3; loop_t++)
12745 {
12746 record_buf_mem[index_m++] = f_ebytes;
12747 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12748 thumb2_insn_r->mem_rec_count += 1;
12749 }
12750 address = address + (3 * f_ebytes);
12751 }
12752 }
12753 /* Handle VST4. */
12754 else if (!(b_bits & 0x0e))
12755 {
12756 for (index_e = 0; index_e < f_elem; index_e++)
12757 {
12758 for (loop_t = 0; loop_t < 4; loop_t++)
12759 {
12760 record_buf_mem[index_m++] = f_ebytes;
12761 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12762 thumb2_insn_r->mem_rec_count += 1;
12763 }
12764 address = address + (4 * f_ebytes);
12765 }
12766 }
12767 }
12768 else
12769 {
12770 uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11);
12771
12772 if (bft_size == 0x00)
12773 f_ebytes = 1;
12774 else if (bft_size == 0x01)
12775 f_ebytes = 2;
12776 else if (bft_size == 0x02)
12777 f_ebytes = 4;
12778 else
12779 f_ebytes = 0;
12780
12781 /* Handle VST1. */
12782 if (!(b_bits & 0x0b) || b_bits == 0x08)
12783 thumb2_insn_r->mem_rec_count = 1;
12784 /* Handle VST2. */
12785 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09)
12786 thumb2_insn_r->mem_rec_count = 2;
12787 /* Handle VST3. */
12788 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a)
12789 thumb2_insn_r->mem_rec_count = 3;
12790 /* Handle VST4. */
12791 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b)
12792 thumb2_insn_r->mem_rec_count = 4;
12793
12794 for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++)
12795 {
12796 record_buf_mem[index_m] = f_ebytes;
12797 record_buf_mem[index_m] = address + (index_m * f_ebytes);
12798 }
12799 }
12800 }
12801 else
12802 {
12803 if (!a_bit)
12804 {
12805 /* Handle VLD1. */
12806 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12807 thumb2_insn_r->reg_rec_count = 1;
12808 /* Handle VLD2. */
12809 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12810 thumb2_insn_r->reg_rec_count = 2;
12811 /* Handle VLD3. */
12812 else if ((b_bits & 0x0e) == 0x04)
12813 thumb2_insn_r->reg_rec_count = 3;
12814 /* Handle VLD4. */
12815 else if (!(b_bits & 0x0e))
12816 thumb2_insn_r->reg_rec_count = 4;
12817 }
12818 else
12819 {
12820 /* Handle VLD1. */
12821 if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c)
12822 thumb2_insn_r->reg_rec_count = 1;
12823 /* Handle VLD2. */
12824 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d)
12825 thumb2_insn_r->reg_rec_count = 2;
12826 /* Handle VLD3. */
12827 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e)
12828 thumb2_insn_r->reg_rec_count = 3;
12829 /* Handle VLD4. */
12830 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f)
12831 thumb2_insn_r->reg_rec_count = 4;
12832
12833 for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++)
12834 record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r;
12835 }
12836 }
12837
12838 if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15)
12839 {
12840 record_buf[index_r] = reg_rn;
12841 thumb2_insn_r->reg_rec_count += 1;
12842 }
12843
12844 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12845 record_buf);
12846 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12847 record_buf_mem);
12848 return 0;
12849 }
12850
12851 /* Decodes thumb2 instruction type and invokes its record handler. */
12852
12853 static unsigned int
12854 thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r)
12855 {
12856 uint32_t op, op1, op2;
12857
12858 op = bit (thumb2_insn_r->arm_insn, 15);
12859 op1 = bits (thumb2_insn_r->arm_insn, 27, 28);
12860 op2 = bits (thumb2_insn_r->arm_insn, 20, 26);
12861
12862 if (op1 == 0x01)
12863 {
12864 if (!(op2 & 0x64 ))
12865 {
12866 /* Load/store multiple instruction. */
12867 return thumb2_record_ld_st_multiple (thumb2_insn_r);
12868 }
12869 else if ((op2 & 0x64) == 0x4)
12870 {
12871 /* Load/store (dual/exclusive) and table branch instruction. */
12872 return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r);
12873 }
12874 else if ((op2 & 0x60) == 0x20)
12875 {
12876 /* Data-processing (shifted register). */
12877 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12878 }
12879 else if (op2 & 0x40)
12880 {
12881 /* Co-processor instructions. */
12882 return thumb2_record_coproc_insn (thumb2_insn_r);
12883 }
12884 }
12885 else if (op1 == 0x02)
12886 {
12887 if (op)
12888 {
12889 /* Branches and miscellaneous control instructions. */
12890 return thumb2_record_branch_misc_cntrl (thumb2_insn_r);
12891 }
12892 else if (op2 & 0x20)
12893 {
12894 /* Data-processing (plain binary immediate) instruction. */
12895 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12896 }
12897 else
12898 {
12899 /* Data-processing (modified immediate). */
12900 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12901 }
12902 }
12903 else if (op1 == 0x03)
12904 {
12905 if (!(op2 & 0x71 ))
12906 {
12907 /* Store single data item. */
12908 return thumb2_record_str_single_data (thumb2_insn_r);
12909 }
12910 else if (!((op2 & 0x71) ^ 0x10))
12911 {
12912 /* Advanced SIMD or structure load/store instructions. */
12913 return thumb2_record_asimd_struct_ld_st (thumb2_insn_r);
12914 }
12915 else if (!((op2 & 0x67) ^ 0x01))
12916 {
12917 /* Load byte, memory hints instruction. */
12918 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12919 }
12920 else if (!((op2 & 0x67) ^ 0x03))
12921 {
12922 /* Load halfword, memory hints instruction. */
12923 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12924 }
12925 else if (!((op2 & 0x67) ^ 0x05))
12926 {
12927 /* Load word instruction. */
12928 return thumb2_record_ld_word (thumb2_insn_r);
12929 }
12930 else if (!((op2 & 0x70) ^ 0x20))
12931 {
12932 /* Data-processing (register) instruction. */
12933 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12934 }
12935 else if (!((op2 & 0x78) ^ 0x30))
12936 {
12937 /* Multiply, multiply accumulate, abs diff instruction. */
12938 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12939 }
12940 else if (!((op2 & 0x78) ^ 0x38))
12941 {
12942 /* Long multiply, long multiply accumulate, and divide. */
12943 return thumb2_record_lmul_lmla_div (thumb2_insn_r);
12944 }
12945 else if (op2 & 0x40)
12946 {
12947 /* Co-processor instructions. */
12948 return thumb2_record_coproc_insn (thumb2_insn_r);
12949 }
12950 }
12951
12952 return -1;
12953 }
12954
12955 /* Abstract memory reader. */
12956
12957 class abstract_memory_reader
12958 {
12959 public:
12960 /* Read LEN bytes of target memory at address MEMADDR, placing the
12961 results in GDB's memory at BUF. Return true on success. */
12962
12963 virtual bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len) = 0;
12964 };
12965
12966 /* Instruction reader from real target. */
12967
12968 class instruction_reader : public abstract_memory_reader
12969 {
12970 public:
12971 bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len)
12972 {
12973 if (target_read_memory (memaddr, buf, len))
12974 return false;
12975 else
12976 return true;
12977 }
12978 };
12979
12980 /* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
12981 and positive val on fauilure. */
12982
12983 static int
12984 extract_arm_insn (abstract_memory_reader& reader,
12985 insn_decode_record *insn_record, uint32_t insn_size)
12986 {
12987 gdb_byte buf[insn_size];
12988
12989 memset (&buf[0], 0, insn_size);
12990
12991 if (!reader.read (insn_record->this_addr, buf, insn_size))
12992 return 1;
12993 insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
12994 insn_size,
12995 gdbarch_byte_order_for_code (insn_record->gdbarch));
12996 return 0;
12997 }
12998
12999 typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
13000
13001 /* Decode arm/thumb insn depending on condition cods and opcodes; and
13002 dispatch it. */
13003
13004 static int
13005 decode_insn (abstract_memory_reader &reader, insn_decode_record *arm_record,
13006 record_type_t record_type, uint32_t insn_size)
13007 {
13008
13009 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm
13010 instruction. */
13011 static const sti_arm_hdl_fp_t arm_handle_insn[8] =
13012 {
13013 arm_record_data_proc_misc_ld_str, /* 000. */
13014 arm_record_data_proc_imm, /* 001. */
13015 arm_record_ld_st_imm_offset, /* 010. */
13016 arm_record_ld_st_reg_offset, /* 011. */
13017 arm_record_ld_st_multiple, /* 100. */
13018 arm_record_b_bl, /* 101. */
13019 arm_record_asimd_vfp_coproc, /* 110. */
13020 arm_record_coproc_data_proc /* 111. */
13021 };
13022
13023 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb
13024 instruction. */
13025 static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
13026 { \
13027 thumb_record_shift_add_sub, /* 000. */
13028 thumb_record_add_sub_cmp_mov, /* 001. */
13029 thumb_record_ld_st_reg_offset, /* 010. */
13030 thumb_record_ld_st_imm_offset, /* 011. */
13031 thumb_record_ld_st_stack, /* 100. */
13032 thumb_record_misc, /* 101. */
13033 thumb_record_ldm_stm_swi, /* 110. */
13034 thumb_record_branch /* 111. */
13035 };
13036
13037 uint32_t ret = 0; /* return value: negative:failure 0:success. */
13038 uint32_t insn_id = 0;
13039
13040 if (extract_arm_insn (reader, arm_record, insn_size))
13041 {
13042 if (record_debug)
13043 {
13044 printf_unfiltered (_("Process record: error reading memory at "
13045 "addr %s len = %d.\n"),
13046 paddress (arm_record->gdbarch,
13047 arm_record->this_addr), insn_size);
13048 }
13049 return -1;
13050 }
13051 else if (ARM_RECORD == record_type)
13052 {
13053 arm_record->cond = bits (arm_record->arm_insn, 28, 31);
13054 insn_id = bits (arm_record->arm_insn, 25, 27);
13055
13056 if (arm_record->cond == 0xf)
13057 ret = arm_record_extension_space (arm_record);
13058 else
13059 {
13060 /* If this insn has fallen into extension space
13061 then we need not decode it anymore. */
13062 ret = arm_handle_insn[insn_id] (arm_record);
13063 }
13064 if (ret != ARM_RECORD_SUCCESS)
13065 {
13066 arm_record_unsupported_insn (arm_record);
13067 ret = -1;
13068 }
13069 }
13070 else if (THUMB_RECORD == record_type)
13071 {
13072 /* As thumb does not have condition codes, we set negative. */
13073 arm_record->cond = -1;
13074 insn_id = bits (arm_record->arm_insn, 13, 15);
13075 ret = thumb_handle_insn[insn_id] (arm_record);
13076 if (ret != ARM_RECORD_SUCCESS)
13077 {
13078 arm_record_unsupported_insn (arm_record);
13079 ret = -1;
13080 }
13081 }
13082 else if (THUMB2_RECORD == record_type)
13083 {
13084 /* As thumb does not have condition codes, we set negative. */
13085 arm_record->cond = -1;
13086
13087 /* Swap first half of 32bit thumb instruction with second half. */
13088 arm_record->arm_insn
13089 = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16);
13090
13091 ret = thumb2_record_decode_insn_handler (arm_record);
13092
13093 if (ret != ARM_RECORD_SUCCESS)
13094 {
13095 arm_record_unsupported_insn (arm_record);
13096 ret = -1;
13097 }
13098 }
13099 else
13100 {
13101 /* Throw assertion. */
13102 gdb_assert_not_reached ("not a valid instruction, could not decode");
13103 }
13104
13105 return ret;
13106 }
13107
13108 #if GDB_SELF_TEST
13109 namespace selftests {
13110
13111 /* Provide both 16-bit and 32-bit thumb instructions. */
13112
13113 class instruction_reader_thumb : public abstract_memory_reader
13114 {
13115 public:
13116 template<size_t SIZE>
13117 instruction_reader_thumb (enum bfd_endian endian,
13118 const uint16_t (&insns)[SIZE])
13119 : m_endian (endian), m_insns (insns), m_insns_size (SIZE)
13120 {}
13121
13122 bool read (CORE_ADDR memaddr, gdb_byte *buf, const size_t len)
13123 {
13124 SELF_CHECK (len == 4 || len == 2);
13125 SELF_CHECK (memaddr % 2 == 0);
13126 SELF_CHECK ((memaddr / 2) < m_insns_size);
13127
13128 store_unsigned_integer (buf, 2, m_endian, m_insns[memaddr / 2]);
13129 if (len == 4)
13130 {
13131 store_unsigned_integer (&buf[2], 2, m_endian,
13132 m_insns[memaddr / 2 + 1]);
13133 }
13134 return true;
13135 }
13136
13137 private:
13138 enum bfd_endian m_endian;
13139 const uint16_t *m_insns;
13140 size_t m_insns_size;
13141 };
13142
13143 static void
13144 arm_record_test (void)
13145 {
13146 struct gdbarch_info info;
13147 gdbarch_info_init (&info);
13148 info.bfd_arch_info = bfd_scan_arch ("arm");
13149
13150 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
13151
13152 SELF_CHECK (gdbarch != NULL);
13153
13154 /* 16-bit Thumb instructions. */
13155 {
13156 insn_decode_record arm_record;
13157
13158 memset (&arm_record, 0, sizeof (insn_decode_record));
13159 arm_record.gdbarch = gdbarch;
13160
13161 static const uint16_t insns[] = {
13162 /* db b2 uxtb r3, r3 */
13163 0xb2db,
13164 /* cd 58 ldr r5, [r1, r3] */
13165 0x58cd,
13166 };
13167
13168 enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch);
13169 instruction_reader_thumb reader (endian, insns);
13170 int ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13171 THUMB_INSN_SIZE_BYTES);
13172
13173 SELF_CHECK (ret == 0);
13174 SELF_CHECK (arm_record.mem_rec_count == 0);
13175 SELF_CHECK (arm_record.reg_rec_count == 1);
13176 SELF_CHECK (arm_record.arm_regs[0] == 3);
13177
13178 arm_record.this_addr += 2;
13179 ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13180 THUMB_INSN_SIZE_BYTES);
13181
13182 SELF_CHECK (ret == 0);
13183 SELF_CHECK (arm_record.mem_rec_count == 0);
13184 SELF_CHECK (arm_record.reg_rec_count == 1);
13185 SELF_CHECK (arm_record.arm_regs[0] == 5);
13186 }
13187
13188 /* 32-bit Thumb-2 instructions. */
13189 {
13190 insn_decode_record arm_record;
13191
13192 memset (&arm_record, 0, sizeof (insn_decode_record));
13193 arm_record.gdbarch = gdbarch;
13194
13195 static const uint16_t insns[] = {
13196 /* 1d ee 70 7f mrc 15, 0, r7, cr13, cr0, {3} */
13197 0xee1d, 0x7f70,
13198 };
13199
13200 enum bfd_endian endian = gdbarch_byte_order_for_code (arm_record.gdbarch);
13201 instruction_reader_thumb reader (endian, insns);
13202 int ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
13203 THUMB2_INSN_SIZE_BYTES);
13204
13205 SELF_CHECK (ret == 0);
13206 SELF_CHECK (arm_record.mem_rec_count == 0);
13207 SELF_CHECK (arm_record.reg_rec_count == 1);
13208 SELF_CHECK (arm_record.arm_regs[0] == 7);
13209 }
13210 }
13211 } // namespace selftests
13212 #endif /* GDB_SELF_TEST */
13213
13214 /* Cleans up local record registers and memory allocations. */
13215
13216 static void
13217 deallocate_reg_mem (insn_decode_record *record)
13218 {
13219 xfree (record->arm_regs);
13220 xfree (record->arm_mems);
13221 }
13222
13223
13224 /* Parse the current instruction and record the values of the registers and
13225 memory that will be changed in current instruction to record_arch_list".
13226 Return -1 if something is wrong. */
13227
13228 int
13229 arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
13230 CORE_ADDR insn_addr)
13231 {
13232
13233 uint32_t no_of_rec = 0;
13234 uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
13235 ULONGEST t_bit = 0, insn_id = 0;
13236
13237 ULONGEST u_regval = 0;
13238
13239 insn_decode_record arm_record;
13240
13241 memset (&arm_record, 0, sizeof (insn_decode_record));
13242 arm_record.regcache = regcache;
13243 arm_record.this_addr = insn_addr;
13244 arm_record.gdbarch = gdbarch;
13245
13246
13247 if (record_debug > 1)
13248 {
13249 fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
13250 "addr = %s\n",
13251 paddress (gdbarch, arm_record.this_addr));
13252 }
13253
13254 instruction_reader reader;
13255 if (extract_arm_insn (reader, &arm_record, 2))
13256 {
13257 if (record_debug)
13258 {
13259 printf_unfiltered (_("Process record: error reading memory at "
13260 "addr %s len = %d.\n"),
13261 paddress (arm_record.gdbarch,
13262 arm_record.this_addr), 2);
13263 }
13264 return -1;
13265 }
13266
13267 /* Check the insn, whether it is thumb or arm one. */
13268
13269 t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
13270 regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
13271
13272
13273 if (!(u_regval & t_bit))
13274 {
13275 /* We are decoding arm insn. */
13276 ret = decode_insn (reader, &arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
13277 }
13278 else
13279 {
13280 insn_id = bits (arm_record.arm_insn, 11, 15);
13281 /* is it thumb2 insn? */
13282 if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
13283 {
13284 ret = decode_insn (reader, &arm_record, THUMB2_RECORD,
13285 THUMB2_INSN_SIZE_BYTES);
13286 }
13287 else
13288 {
13289 /* We are decoding thumb insn. */
13290 ret = decode_insn (reader, &arm_record, THUMB_RECORD,
13291 THUMB_INSN_SIZE_BYTES);
13292 }
13293 }
13294
13295 if (0 == ret)
13296 {
13297 /* Record registers. */
13298 record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
13299 if (arm_record.arm_regs)
13300 {
13301 for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
13302 {
13303 if (record_full_arch_list_add_reg
13304 (arm_record.regcache , arm_record.arm_regs[no_of_rec]))
13305 ret = -1;
13306 }
13307 }
13308 /* Record memories. */
13309 if (arm_record.arm_mems)
13310 {
13311 for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
13312 {
13313 if (record_full_arch_list_add_mem
13314 ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
13315 arm_record.arm_mems[no_of_rec].len))
13316 ret = -1;
13317 }
13318 }
13319
13320 if (record_full_arch_list_add_end ())
13321 ret = -1;
13322 }
13323
13324
13325 deallocate_reg_mem (&arm_record);
13326
13327 return ret;
13328 }
This page took 0.497299 seconds and 4 git commands to generate.