import gdb-1999-08-16 snapshot
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Target-dependent code for the Acorn Risc Machine (ARM).
2 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995-1999
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "symfile.h"
28 #include "gdb_string.h"
29 #include "coff/internal.h" /* Internal format of COFF symbols in BFD */
30
31 /*
32 The following macros are actually wrong. Neither arm nor thumb can
33 or should set the lsb on addr.
34 The thumb addresses are mod 2, so (addr & 2) would be a good heuristic
35 to use when checking for thumb (see arm_pc_is_thumb() below).
36 Unfortunately, something else depends on these (incorrect) macros, so
37 fixing them actually breaks gdb. I didn't have time to investigate. Z.R.
38 */
39 /* Thumb function addresses are odd (bit 0 is set). Here are some
40 macros to test, set, or clear bit 0 of addresses. */
41 #define IS_THUMB_ADDR(addr) ((addr) & 1)
42 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
43 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
44
45 /* Macros to round N up or down to the next A boundary; A must be
46 a power of two. */
47 #define ROUND_DOWN(n,a) ((n) & ~((a) - 1))
48 #define ROUND_UP(n,a) (((n) + (a) - 1) & ~((a) - 1))
49
50 static char *apcs_register_names[] =
51 { "a1", "a2", "a3", "a4", /* 0 1 2 3 */
52 "v1", "v2", "v3", "v4", /* 4 5 6 7 */
53 "v5", "v6", "sl", "fp", /* 8 9 10 11 */
54 "ip", "sp", "lr", "pc", /* 12 13 14 15 */
55 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
56 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
57 "fps","ps" } /* 24 25 */;
58
59 /* These names are the ones which gcc emits, and
60 I find them less confusing. Toggle between them
61 using the `othernames' command. */
62 static char *additional_register_names[] =
63 { "r0", "r1", "r2", "r3", /* 0 1 2 3 */
64 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
65 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
66 "r12", "r13", "r14", "pc", /* 12 13 14 15 */
67 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
68 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
69 "fps","ps" } /* 24 25 */;
70
71 /* By default use the APCS registers names */
72
73 char **arm_register_names = apcs_register_names;
74 /* This is the variable the is set with "set disassembly-flavor",
75 and its legitimate values. */
76 static char apcs_flavor[] = "apcs";
77 static char r_prefix_flavor[] = "r-prefix";
78 static char *valid_flavors[] = {
79 apcs_flavor,
80 r_prefix_flavor,
81 NULL
82 };
83 static char *disassembly_flavor = apcs_flavor;
84
85 /* This is used to keep the bfd arch_info in sync with the disassembly flavor. */
86 static void set_disassembly_flavor_sfunc PARAMS ((char *, int, \
87 struct cmd_list_element *));
88 static void set_disassembly_flavor ();
89
90 /* Should call_function allocate stack space for a struct return? */
91 /* The system C compiler uses a similar structure return convention to gcc */
92 int
93 arm_use_struct_convention (gcc_p, type)
94 int gcc_p;
95 struct type *type;
96 {
97 return (TYPE_LENGTH (type) > 4);
98 }
99
100 int
101 arm_frame_chain_valid (chain, thisframe)
102 CORE_ADDR chain;
103 struct frame_info *thisframe;
104 {
105 #define LOWEST_PC 0x20 /* the first 0x20 bytes are the trap vectors. */
106 return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
107 }
108
109 /* Set to true if the 32-bit mode is in use. */
110
111 int arm_apcs_32 = 1;
112
113 /* Flag set by arm_fix_call_dummy that tells whether the target function
114 is a Thumb function. This flag is checked by arm_push_arguments.
115 FIXME: Change the PUSH_ARGUMENTS macro (and its use in valops.c) to
116 pass the function address as an additional parameter. */
117
118 static int target_is_thumb;
119
120 /* Flag set by arm_fix_call_dummy that tells whether the calling function
121 is a Thumb function. This flag is checked by arm_pc_is_thumb
122 and arm_call_dummy_breakpoint_offset. */
123
124 static int caller_is_thumb;
125
126 /* Tell if the program counter value in MEMADDR is in a Thumb function. */
127
128 int
129 arm_pc_is_thumb (memaddr)
130 bfd_vma memaddr;
131 {
132 struct minimal_symbol *sym;
133 CORE_ADDR sp;
134
135 /* If bit 0 of the address is set, assume this is a Thumb address. */
136 if (IS_THUMB_ADDR (memaddr))
137 return 1;
138
139 /* Thumb function have a "special" bit set in minimal symbols */
140 sym = lookup_minimal_symbol_by_pc (memaddr);
141 if (sym)
142 {
143 return (MSYMBOL_IS_SPECIAL (sym));
144 }
145 else
146 return 0;
147 }
148
149 /* Tell if the program counter value in MEMADDR is in a call dummy that
150 is being called from a Thumb function. */
151
152 int
153 arm_pc_is_thumb_dummy (memaddr)
154 bfd_vma memaddr;
155 {
156 CORE_ADDR sp = read_sp ();
157
158 if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 64))
159 return caller_is_thumb;
160 else
161 return 0;
162 }
163
164 CORE_ADDR
165 arm_addr_bits_remove (val)
166 CORE_ADDR val;
167 {
168 if (arm_pc_is_thumb (val))
169 return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe));
170 else
171 return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
172 }
173
174 CORE_ADDR
175 arm_saved_pc_after_call (frame)
176 struct frame_info *frame;
177 {
178 return ADDR_BITS_REMOVE (read_register (LR_REGNUM));
179 }
180
181 int
182 arm_frameless_function_invocation (fi)
183 struct frame_info *fi;
184 {
185 CORE_ADDR func_start, after_prologue;
186 int frameless;
187
188 func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET);
189 after_prologue = SKIP_PROLOGUE (func_start);
190
191 /* There are some frameless functions whose first two instructions
192 follow the standard APCS form, in which case after_prologue
193 will be func_start + 8. */
194
195 frameless = (after_prologue < func_start + 12);
196 return frameless;
197 }
198
199 /* A typical Thumb prologue looks like this:
200 push {r7, lr}
201 add sp, sp, #-28
202 add r7, sp, #12
203 Sometimes the latter instruction may be replaced by:
204 mov r7, sp
205 */
206
207 static CORE_ADDR
208 thumb_skip_prologue (pc)
209 CORE_ADDR pc;
210 {
211 CORE_ADDR current_pc;
212
213 for (current_pc = pc; current_pc < pc + 20; current_pc += 2)
214 {
215 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
216
217 if ((insn & 0xfe00) != 0xb400 /* push {..., r7, lr} */
218 && (insn & 0xff00) != 0xb000 /* add sp, #simm */
219 && (insn & 0xff00) != 0xaf00 /* add r7, sp, #imm */
220 && insn != 0x466f /* mov r7, sp */
221 && (insn & 0xffc0) != 0x4640) /* mov r0-r7, r8-r15 */
222 break;
223 }
224
225 return current_pc;
226 }
227
228 /* APCS (ARM procedure call standard) defines the following prologue:
229
230 mov ip, sp
231 [stmfd sp!, {a1,a2,a3,a4}]
232 stmfd sp!, {...,fp,ip,lr,pc}
233 [stfe f7, [sp, #-12]!]
234 [stfe f6, [sp, #-12]!]
235 [stfe f5, [sp, #-12]!]
236 [stfe f4, [sp, #-12]!]
237 sub fp, ip, #nn // nn == 20 or 4 depending on second ins
238 */
239
240 CORE_ADDR
241 arm_skip_prologue (pc)
242 CORE_ADDR pc;
243 {
244 unsigned long inst;
245 CORE_ADDR skip_pc;
246 CORE_ADDR func_addr, func_end;
247 struct symtab_and_line sal;
248
249 /* See what the symbol table says. */
250
251 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
252 {
253 sal = find_pc_line (func_addr, 0);
254 if ((sal.line != 0) && (sal.end < func_end))
255 return sal.end;
256 }
257
258 /* Check if this is Thumb code. */
259 if (arm_pc_is_thumb (pc))
260 return thumb_skip_prologue (pc);
261
262 /* Can't find the prologue end in the symbol table, try it the hard way
263 by disassembling the instructions. */
264 skip_pc = pc;
265 inst = read_memory_integer (skip_pc, 4);
266 if (inst != 0xe1a0c00d) /* mov ip, sp */
267 return pc;
268
269 skip_pc += 4;
270 inst = read_memory_integer (skip_pc, 4);
271 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
272 {
273 skip_pc += 4;
274 inst = read_memory_integer (skip_pc, 4);
275 }
276
277 if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */
278 return pc;
279
280 skip_pc += 4;
281 inst = read_memory_integer (skip_pc, 4);
282
283 /* Any insns after this point may float into the code, if it makes
284 for better instruction scheduling, so we skip them only if
285 we find them, but still consdier the function to be frame-ful */
286
287 /* We may have either one sfmfd instruction here, or several stfe insns,
288 depending on the version of floating point code we support. */
289 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
290 {
291 skip_pc += 4;
292 inst = read_memory_integer (skip_pc, 4);
293 }
294 else
295 {
296 while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
297 {
298 skip_pc += 4;
299 inst = read_memory_integer (skip_pc, 4);
300 }
301 }
302
303 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
304 skip_pc += 4;
305
306 return skip_pc;
307 }
308 /* *INDENT-OFF* */
309 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
310 This function decodes a Thumb function prologue to determine:
311 1) the size of the stack frame
312 2) which registers are saved on it
313 3) the offsets of saved regs
314 4) the offset from the stack pointer to the frame pointer
315 This information is stored in the "extra" fields of the frame_info.
316
317 A typical Thumb function prologue might look like this:
318 push {r7, lr}
319 sub sp, #28,
320 add r7, sp, #12
321 Which would create this stack frame (offsets relative to FP)
322 old SP -> 24 stack parameters
323 20 LR
324 16 R7
325 R7 -> 0 local variables (16 bytes)
326 SP -> -12 additional stack space (12 bytes)
327 The frame size would thus be 36 bytes, and the frame offset would be
328 12 bytes. The frame register is R7. */
329 /* *INDENT-ON* */
330
331
332
333
334 static void
335 thumb_scan_prologue (fi)
336 struct frame_info *fi;
337 {
338 CORE_ADDR prologue_start;
339 CORE_ADDR prologue_end;
340 CORE_ADDR current_pc;
341 int saved_reg[16]; /* which register has been copied to register n? */
342 int i;
343
344 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
345 {
346 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
347
348 if (sal.line == 0) /* no line info, use current PC */
349 prologue_end = fi->pc;
350 else if (sal.end < prologue_end) /* next line begins after fn end */
351 prologue_end = sal.end; /* (probably means no prologue) */
352 }
353 else
354 prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
355 /* 16 pushes, an add, and "mv fp,sp" */
356
357 prologue_end = min (prologue_end, fi->pc);
358
359 /* Initialize the saved register map. When register H is copied to
360 register L, we will put H in saved_reg[L]. */
361 for (i = 0; i < 16; i++)
362 saved_reg[i] = i;
363
364 /* Search the prologue looking for instructions that set up the
365 frame pointer, adjust the stack pointer, and save registers. */
366
367 fi->framesize = 0;
368 for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
369 {
370 unsigned short insn;
371 int regno;
372 int offset;
373
374 insn = read_memory_unsigned_integer (current_pc, 2);
375
376 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
377 {
378 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
379 whether to save LR (R14). */
380 int mask = (insn & 0xff) | ((insn & 0x100) << 6);
381
382 /* Calculate offsets of saved R0-R7 and LR. */
383 for (regno = LR_REGNUM; regno >= 0; regno--)
384 if (mask & (1 << regno))
385 {
386 fi->framesize += 4;
387 fi->fsr.regs[saved_reg[regno]] = -(fi->framesize);
388 saved_reg[regno] = regno; /* reset saved register map */
389 }
390 }
391 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm */
392 {
393 offset = (insn & 0x7f) << 2; /* get scaled offset */
394 if (insn & 0x80) /* is it signed? */
395 offset = -offset;
396 fi->framesize -= offset;
397 }
398 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
399 {
400 fi->framereg = THUMB_FP_REGNUM;
401 fi->frameoffset = (insn & 0xff) << 2; /* get scaled offset */
402 }
403 else if (insn == 0x466f) /* mov r7, sp */
404 {
405 fi->framereg = THUMB_FP_REGNUM;
406 fi->frameoffset = 0;
407 saved_reg[THUMB_FP_REGNUM] = SP_REGNUM;
408 }
409 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
410 {
411 int lo_reg = insn & 7; /* dest. register (r0-r7) */
412 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
413 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
414 }
415 else
416 break; /* anything else isn't prologue */
417 }
418 }
419
420 /* Function: check_prologue_cache
421 Check if prologue for this frame's PC has already been scanned.
422 If it has, copy the relevant information about that prologue and
423 return non-zero. Otherwise do not copy anything and return zero.
424
425 The information saved in the cache includes:
426 * the frame register number;
427 * the size of the stack frame;
428 * the offsets of saved regs (relative to the old SP); and
429 * the offset from the stack pointer to the frame pointer
430
431 The cache contains only one entry, since this is adequate
432 for the typical sequence of prologue scan requests we get.
433 When performing a backtrace, GDB will usually ask to scan
434 the same function twice in a row (once to get the frame chain,
435 and once to fill in the extra frame information).
436 */
437
438 static struct frame_info prologue_cache;
439
440 static int
441 check_prologue_cache (fi)
442 struct frame_info *fi;
443 {
444 int i;
445
446 if (fi->pc == prologue_cache.pc)
447 {
448 fi->framereg = prologue_cache.framereg;
449 fi->framesize = prologue_cache.framesize;
450 fi->frameoffset = prologue_cache.frameoffset;
451 for (i = 0; i <= NUM_REGS; i++)
452 fi->fsr.regs[i] = prologue_cache.fsr.regs[i];
453 return 1;
454 }
455 else
456 return 0;
457 }
458
459
460 /* Function: save_prologue_cache
461 Copy the prologue information from fi to the prologue cache.
462 */
463
464 static void
465 save_prologue_cache (fi)
466 struct frame_info *fi;
467 {
468 int i;
469
470 prologue_cache.pc = fi->pc;
471 prologue_cache.framereg = fi->framereg;
472 prologue_cache.framesize = fi->framesize;
473 prologue_cache.frameoffset = fi->frameoffset;
474
475 for (i = 0; i <= NUM_REGS; i++)
476 prologue_cache.fsr.regs[i] = fi->fsr.regs[i];
477 }
478
479
480 /* Function: arm_scan_prologue
481 This function decodes an ARM function prologue to determine:
482 1) the size of the stack frame
483 2) which registers are saved on it
484 3) the offsets of saved regs
485 4) the offset from the stack pointer to the frame pointer
486 This information is stored in the "extra" fields of the frame_info.
487
488 There are two basic forms for the ARM prologue. The fixed argument
489 function call will look like:
490
491 mov ip, sp
492 stmfd sp!, {fp, ip, lr, pc}
493 sub fp, ip, #4
494 [sub sp, sp, #4]
495
496 Which would create this stack frame (offsets relative to FP):
497 IP -> 4 (caller's stack)
498 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
499 -4 LR (return address in caller)
500 -8 IP (copy of caller's SP)
501 -12 FP (caller's FP)
502 SP -> -28 Local variables
503
504 The frame size would thus be 32 bytes, and the frame offset would be
505 28 bytes. The stmfd call can also save any of the vN registers it
506 plans to use, which increases the frame size accordingly.
507
508 Note: The stored PC is 8 off of the STMFD instruction that stored it
509 because the ARM Store instructions always store PC + 8 when you read
510 the PC register.
511
512 A variable argument function call will look like:
513
514 mov ip, sp
515 stmfd sp!, {a1, a2, a3, a4}
516 stmfd sp!, {fp, ip, lr, pc}
517 sub fp, ip, #20
518
519 Which would create this stack frame (offsets relative to FP):
520 IP -> 20 (caller's stack)
521 16 A4
522 12 A3
523 8 A2
524 4 A1
525 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
526 -4 LR (return address in caller)
527 -8 IP (copy of caller's SP)
528 -12 FP (caller's FP)
529 SP -> -28 Local variables
530
531 The frame size would thus be 48 bytes, and the frame offset would be
532 28 bytes.
533
534 There is another potential complication, which is that the optimizer
535 will try to separate the store of fp in the "stmfd" instruction from
536 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
537 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
538
539 Also, note, the original version of the ARM toolchain claimed that there
540 should be an
541
542 instruction at the end of the prologue. I have never seen GCC produce
543 this, and the ARM docs don't mention it. We still test for it below in
544 case it happens...
545
546 */
547
548 static void
549 arm_scan_prologue (fi)
550 struct frame_info *fi;
551 {
552 int regno, sp_offset, fp_offset;
553 CORE_ADDR prologue_start, prologue_end, current_pc;
554
555 /* Check if this function is already in the cache of frame information. */
556 if (check_prologue_cache (fi))
557 return;
558
559 /* Assume there is no frame until proven otherwise. */
560 fi->framereg = SP_REGNUM;
561 fi->framesize = 0;
562 fi->frameoffset = 0;
563
564 /* Check for Thumb prologue. */
565 if (arm_pc_is_thumb (fi->pc))
566 {
567 thumb_scan_prologue (fi);
568 save_prologue_cache (fi);
569 return;
570 }
571
572 /* Find the function prologue. If we can't find the function in
573 the symbol table, peek in the stack frame to find the PC. */
574 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
575 {
576 /* Assume the prologue is everything between the first instruction
577 in the function and the first source line. */
578 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
579
580 if (sal.line == 0) /* no line info, use current PC */
581 prologue_end = fi->pc;
582 else if (sal.end < prologue_end) /* next line begins after fn end */
583 prologue_end = sal.end; /* (probably means no prologue) */
584 }
585 else
586 {
587 /* Get address of the stmfd in the prologue of the callee; the saved
588 PC is the address of the stmfd + 8. */
589 prologue_start = ADDR_BITS_REMOVE(read_memory_integer (fi->frame, 4))
590 - 8;
591 prologue_end = prologue_start + 64; /* This is all the insn's
592 that could be in the prologue,
593 plus room for 5 insn's inserted
594 by the scheduler. */
595 }
596
597 /* Now search the prologue looking for instructions that set up the
598 frame pointer, adjust the stack pointer, and save registers.
599
600 Be careful, however, and if it doesn't look like a prologue,
601 don't try to scan it. If, for instance, a frameless function
602 begins with stmfd sp!, then we will tell ourselves there is
603 a frame, which will confuse stack traceback, as well ad"finish"
604 and other operations that rely on a knowledge of the stack
605 traceback.
606
607 In the APCS, the prologue should start with "mov ip, sp" so
608 if we don't see this as the first insn, we will stop. */
609
610 sp_offset = fp_offset = 0;
611
612 if (read_memory_unsigned_integer (prologue_start, 4)
613 == 0xe1a0c00d) /* mov ip, sp */
614 {
615 for (current_pc = prologue_start +4; current_pc < prologue_end;
616 current_pc += 4)
617 {
618 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
619
620 if ((insn & 0xffff0000) == 0xe92d0000)
621 /* stmfd sp!, {..., fp, ip, lr, pc}
622 or
623 stmfd sp!, {a1, a2, a3, a4} */
624 {
625 int mask = insn & 0xffff;
626
627 /* Calculate offsets of saved registers. */
628 for (regno = PC_REGNUM; regno >= 0; regno--)
629 if (mask & (1 << regno))
630 {
631 sp_offset -= 4;
632 fi->fsr.regs[regno] = sp_offset;
633 }
634 }
635 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
636 {
637 unsigned imm = insn & 0xff; /* immediate value */
638 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
639 imm = (imm >> rot) | (imm << (32-rot));
640 fp_offset = -imm;
641 fi->framereg = FP_REGNUM;
642 }
643 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
644 {
645 unsigned imm = insn & 0xff; /* immediate value */
646 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
647 imm = (imm >> rot) | (imm << (32-rot));
648 sp_offset -= imm;
649 }
650 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
651 {
652 sp_offset -= 12;
653 regno = F0_REGNUM + ((insn >> 12) & 0x07);
654 fi->fsr.regs[regno] = sp_offset;
655 }
656 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
657 {
658 int n_saved_fp_regs, i;
659 unsigned int fp_start_reg, fp_bound_reg;
660
661 if ((insn & 0x800) == 0x800) /* N0 is set */
662 {
663 if ((insn & 0x40000) == 0x40000) /* N1 is set */
664 n_saved_fp_regs = 3;
665 else
666 n_saved_fp_regs = 1;
667 }
668 else
669 {
670 if ((insn & 0x40000) == 0x40000) /* N1 is set */
671 n_saved_fp_regs = 2;
672 else
673 n_saved_fp_regs = 4;
674 }
675
676 fp_start_reg = F0_REGNUM + ((insn >> 12) & 0x7);
677 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
678 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
679 {
680 sp_offset -= 12;
681 fi->fsr.regs[fp_start_reg++] = sp_offset;
682 }
683 }
684 else
685 continue; /* The optimizer might shove anything into the
686 prologue, so we just skip what we don't recognize. */
687 }
688 }
689
690 /* The frame size is just the negative of the offset (from the original SP)
691 of the last thing thing we pushed on the stack. The frame offset is
692 [new FP] - [new SP]. */
693 fi->framesize = -sp_offset;
694 fi->frameoffset = fp_offset - sp_offset;
695
696 save_prologue_cache (fi);
697 }
698
699
700 /* Function: find_callers_reg
701 Find REGNUM on the stack. Otherwise, it's in an active register. One thing
702 we might want to do here is to check REGNUM against the clobber mask, and
703 somehow flag it as invalid if it isn't saved on the stack somewhere. This
704 would provide a graceful failure mode when trying to get the value of
705 caller-saves registers for an inner frame. */
706
707 static CORE_ADDR
708 arm_find_callers_reg (fi, regnum)
709 struct frame_info *fi;
710 int regnum;
711 {
712 for (; fi; fi = fi->next)
713
714 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
715 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
716 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
717 else
718 #endif
719 if (fi->fsr.regs[regnum] != 0)
720 return read_memory_integer (fi->fsr.regs[regnum],
721 REGISTER_RAW_SIZE (regnum));
722 return read_register (regnum);
723 }
724 /* *INDENT-OFF* */
725 /* Function: frame_chain
726 Given a GDB frame, determine the address of the calling function's frame.
727 This will be used to create a new GDB frame struct, and then
728 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
729 For ARM, we save the frame size when we initialize the frame_info.
730
731 The original definition of this function was a macro in tm-arm.h:
732 { In the case of the ARM, the frame's nominal address is the FP value,
733 and 12 bytes before comes the saved previous FP value as a 4-byte word. }
734
735 #define FRAME_CHAIN(thisframe) \
736 ((thisframe)->pc >= LOWEST_PC ? \
737 read_memory_integer ((thisframe)->frame - 12, 4) :\
738 0)
739 */
740 /* *INDENT-ON* */
741
742
743
744
745 CORE_ADDR
746 arm_frame_chain (fi)
747 struct frame_info *fi;
748 {
749 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
750 CORE_ADDR fn_start, callers_pc, fp;
751
752 /* is this a dummy frame? */
753 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
754 return fi->frame; /* dummy frame same as caller's frame */
755
756 /* is caller-of-this a dummy frame? */
757 callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
758 fp = arm_find_callers_reg (fi, FP_REGNUM);
759 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
760 return fp; /* dummy frame's frame may bear no relation to ours */
761
762 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
763 if (fn_start == entry_point_address ())
764 return 0; /* in _start fn, don't chain further */
765 #endif
766 CORE_ADDR caller_pc, fn_start;
767 struct frame_info caller_fi;
768 int framereg = fi->framereg;
769
770 if (fi->pc < LOWEST_PC)
771 return 0;
772
773 /* If the caller is the startup code, we're at the end of the chain. */
774 caller_pc = FRAME_SAVED_PC (fi);
775 if (find_pc_partial_function (caller_pc, 0, &fn_start, 0))
776 if (fn_start == entry_point_address ())
777 return 0;
778
779 /* If the caller is Thumb and the caller is ARM, or vice versa,
780 the frame register of the caller is different from ours.
781 So we must scan the prologue of the caller to determine its
782 frame register number. */
783 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
784 {
785 memset (&caller_fi, 0, sizeof (caller_fi));
786 caller_fi.pc = caller_pc;
787 arm_scan_prologue (&caller_fi);
788 framereg = caller_fi.framereg;
789 }
790
791 /* If the caller used a frame register, return its value.
792 Otherwise, return the caller's stack pointer. */
793 if (framereg == FP_REGNUM || framereg == THUMB_FP_REGNUM)
794 return arm_find_callers_reg (fi, framereg);
795 else
796 return fi->frame + fi->framesize;
797 }
798
799 /* Function: init_extra_frame_info
800 This function actually figures out the frame address for a given pc and
801 sp. This is tricky because we sometimes don't use an explicit
802 frame pointer, and the previous stack pointer isn't necessarily recorded
803 on the stack. The only reliable way to get this info is to
804 examine the prologue.
805 FROMLEAF is a little confusing, it means this is the next frame up
806 the chain AFTER a frameless function. If this is true, then the
807 frame value for this frame is still in the fp register. */
808
809 void
810 arm_init_extra_frame_info (fromleaf, fi)
811 int fromleaf;
812 struct frame_info * fi;
813 {
814 int reg;
815
816 if (fi->next)
817 fi->pc = FRAME_SAVED_PC (fi->next);
818
819 memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
820
821 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
822 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
823 {
824 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
825 by assuming it's always FP. */
826 fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
827 fi->framesize = 0;
828 fi->frameoffset = 0;
829 return;
830 }
831 else
832 #endif
833 {
834 arm_scan_prologue (fi);
835
836 if (!fi->next) /* this is the innermost frame? */
837 fi->frame = read_register (fi->framereg);
838 else /* not the innermost frame */
839 /* If we have an FP, the callee saved it. */
840 if (fi->framereg == FP_REGNUM || fi->framereg == THUMB_FP_REGNUM)
841 if (fi->next->fsr.regs[fi->framereg] != 0)
842 fi->frame = read_memory_integer (fi->next->fsr.regs[fi->framereg],
843 4);
844 else if (fromleaf) /* If we were called by a frameless fn.
845 then our frame is still in the frame pointer
846 register on the board... */
847 fi->frame = read_fp ();
848
849 /* Calculate actual addresses of saved registers using offsets determined
850 by arm_scan_prologue. */
851 for (reg = 0; reg < NUM_REGS; reg++)
852 if (fi->fsr.regs[reg] != 0)
853 fi->fsr.regs[reg] += fi->frame + fi->framesize - fi->frameoffset;
854 }
855 }
856
857
858 /* Function: frame_saved_pc
859 Find the caller of this frame. We do this by seeing if LR_REGNUM is saved
860 in the stack anywhere, otherwise we get it from the registers.
861
862 The old definition of this function was a macro:
863 #define FRAME_SAVED_PC(FRAME) \
864 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4))
865 */
866
867 CORE_ADDR
868 arm_frame_saved_pc (fi)
869 struct frame_info *fi;
870 {
871 #if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
872 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
873 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
874 else
875 #endif
876 {
877 CORE_ADDR pc = arm_find_callers_reg (fi, LR_REGNUM);
878 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
879 }
880 }
881
882
883 /* Return the frame address. On ARM, it is R11; on Thumb it is R7.
884 Examine the Program Status Register to decide which state we're in. */
885
886 CORE_ADDR
887 arm_target_read_fp ()
888 {
889 if (read_register (PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
890 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
891 else
892 return read_register (FP_REGNUM); /* R11 if ARM */
893 }
894
895
896 /* Calculate the frame offsets of the saved registers (ARM version). */
897 void
898 arm_frame_find_saved_regs (fi, regaddr)
899 struct frame_info *fi;
900 struct frame_saved_regs *regaddr;
901 {
902 memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
903 }
904
905
906 void
907 arm_push_dummy_frame ()
908 {
909 CORE_ADDR old_sp = read_register (SP_REGNUM);
910 CORE_ADDR sp = old_sp;
911 CORE_ADDR fp, prologue_start;
912 int regnum;
913
914 /* Push the two dummy prologue instructions in reverse order,
915 so that they'll be in the correct low-to-high order in memory. */
916 /* sub fp, ip, #4 */
917 sp = push_word (sp, 0xe24cb004);
918 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
919 prologue_start = sp = push_word (sp, 0xe92ddfff);
920
921 /* push a pointer to the dummy prologue + 12, because when
922 stm instruction stores the PC, it stores the address of the stm
923 instruction itself plus 12. */
924 fp = sp = push_word (sp, prologue_start + 12);
925 sp = push_word (sp, read_register (PC_REGNUM)); /* FIXME: was PS_REGNUM */
926 sp = push_word (sp, old_sp);
927 sp = push_word (sp, read_register (FP_REGNUM));
928
929 for (regnum = 10; regnum >= 0; regnum--)
930 sp = push_word (sp, read_register (regnum));
931
932 write_register (FP_REGNUM, fp);
933 write_register (THUMB_FP_REGNUM, fp);
934 write_register (SP_REGNUM, sp);
935 }
936
937 /* Fix up the call dummy, based on whether the processor is currently
938 in Thumb or ARM mode, and whether the target function is Thumb
939 or ARM. There are three different situations requiring three
940 different dummies:
941
942 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
943 been copied into the dummy parameter to this function.
944 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
945 "mov pc,r4" instruction patched to be a "bx r4" instead.
946 * Thumb calling anything: uses the Thumb dummy defined below, which
947 works for calling both ARM and Thumb functions.
948
949 All three call dummies expect to receive the target function address
950 in R4, with the low bit set if it's a Thumb function.
951 */
952
953 void
954 arm_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
955 char *dummy;
956 CORE_ADDR pc;
957 CORE_ADDR fun;
958 int nargs;
959 value_ptr *args;
960 struct type *type;
961 int gcc_p;
962 {
963 static short thumb_dummy[4] =
964 {
965 0xf000, 0xf801, /* bl label */
966 0xdf18, /* swi 24 */
967 0x4720, /* label: bx r4 */
968 };
969 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
970
971 /* Set flag indicating whether the current PC is in a Thumb function. */
972 caller_is_thumb = arm_pc_is_thumb (read_pc ());
973
974 /* If the target function is Thumb, set the low bit of the function address.
975 And if the CPU is currently in ARM mode, patch the second instruction
976 of call dummy to use a BX instruction to switch to Thumb mode. */
977 target_is_thumb = arm_pc_is_thumb (fun);
978 if (target_is_thumb)
979 {
980 fun |= 1;
981 if (!caller_is_thumb)
982 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
983 }
984
985 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
986 instead of the ARM one that's already been copied. This will
987 work for both Thumb and ARM target functions. */
988 if (caller_is_thumb)
989 {
990 int i;
991 char *p = dummy;
992 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
993
994 for (i = 0; i < len; i++)
995 {
996 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
997 p += sizeof (thumb_dummy[0]);
998 }
999 }
1000
1001 /* Put the target address in r4; the call dummy will copy this to the PC. */
1002 write_register (4, fun);
1003 }
1004
1005
1006 /* Return the offset in the call dummy of the instruction that needs
1007 to have a breakpoint placed on it. This is the offset of the 'swi 24'
1008 instruction, which is no longer actually used, but simply acts
1009 as a place-holder now.
1010
1011 This implements the CALL_DUMMY_BREAK_OFFSET macro.
1012 */
1013
1014 int
1015 arm_call_dummy_breakpoint_offset ()
1016 {
1017 if (caller_is_thumb)
1018 return 4;
1019 else
1020 return 8;
1021 }
1022
1023
1024 CORE_ADDR
1025 arm_push_arguments (nargs, args, sp, struct_return, struct_addr)
1026 int nargs;
1027 value_ptr *args;
1028 CORE_ADDR sp;
1029 int struct_return;
1030 CORE_ADDR struct_addr;
1031 {
1032 int argreg;
1033 int float_argreg;
1034 int argnum;
1035 int stack_offset;
1036 struct stack_arg
1037 {
1038 char *val;
1039 int len;
1040 int offset;
1041 };
1042 struct stack_arg *stack_args =
1043 (struct stack_arg *) alloca (nargs * sizeof (struct stack_arg));
1044 int nstack_args = 0;
1045
1046
1047 /* Initialize the integer and float register pointers. */
1048 argreg = A1_REGNUM;
1049 float_argreg = F0_REGNUM;
1050
1051 /* the struct_return pointer occupies the first parameter-passing reg */
1052 if (struct_return)
1053 write_register (argreg++, struct_addr);
1054
1055 /* The offset onto the stack at which we will start copying parameters
1056 (after the registers are used up) begins at 16 in the old ABI.
1057 This leaves room for the "home" area for register parameters. */
1058 stack_offset = REGISTER_SIZE * 4;
1059
1060 /* Process args from left to right. Store as many as allowed in
1061 registers, save the rest to be pushed on the stack */
1062 for (argnum = 0; argnum < nargs; argnum++)
1063 {
1064 char *val;
1065 value_ptr arg = args[argnum];
1066 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1067 struct type *target_type = TYPE_TARGET_TYPE (arg_type);
1068 int len = TYPE_LENGTH (arg_type);
1069 enum type_code typecode = TYPE_CODE (arg_type);
1070 CORE_ADDR regval;
1071 int newarg;
1072
1073 val = (char *) VALUE_CONTENTS (arg);
1074
1075 /* If the argument is a pointer to a function, and it's a Thumb
1076 function, set the low bit of the pointer. */
1077 if (typecode == TYPE_CODE_PTR
1078 && target_type != NULL
1079 && TYPE_CODE (target_type) == TYPE_CODE_FUNC)
1080 {
1081 regval = extract_address (val, len);
1082 if (arm_pc_is_thumb (regval))
1083 store_address (val, len, MAKE_THUMB_ADDR (regval));
1084 }
1085
1086 #define MAPCS_FLOAT 0 /* --mapcs-float not implemented by the compiler yet */
1087 #if MAPCS_FLOAT
1088 /* Up to four floating point arguments can be passed in floating
1089 point registers on ARM (not on Thumb). */
1090 if (typecode == TYPE_CODE_FLT
1091 && float_argreg <= ARM_LAST_FP_ARG_REGNUM
1092 && !target_is_thumb)
1093 {
1094 /* This is a floating point value that fits entirely
1095 in a single register. */
1096 regval = extract_address (val, len);
1097 write_register (float_argreg++, regval);
1098 }
1099 else
1100 #endif
1101 {
1102 /* Copy the argument to general registers or the stack in
1103 register-sized pieces. Large arguments are split between
1104 registers and stack. */
1105 while (len > 0)
1106 {
1107 if (argreg <= ARM_LAST_ARG_REGNUM)
1108 {
1109 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1110 regval = extract_address (val, partial_len);
1111
1112 /* It's a simple argument being passed in a general
1113 register. */
1114 write_register (argreg, regval);
1115 argreg++;
1116 len -= partial_len;
1117 val += partial_len;
1118 }
1119 else
1120 {
1121 /* keep for later pushing */
1122 stack_args[nstack_args].val = val;
1123 stack_args[nstack_args++].len = len;
1124 break;
1125 }
1126 }
1127 }
1128 }
1129 /* now do the real stack pushing, process args right to left */
1130 while (nstack_args--)
1131 {
1132 sp -= stack_args[nstack_args].len;
1133 write_memory (sp, stack_args[nstack_args].val,
1134 stack_args[nstack_args].len);
1135 }
1136
1137 /* Return adjusted stack pointer. */
1138 return sp;
1139 }
1140
1141 void
1142 arm_pop_frame ()
1143 {
1144 struct frame_info *frame = get_current_frame ();
1145 int regnum;
1146 CORE_ADDR old_SP;
1147
1148 old_SP = read_register (frame->framereg);
1149 for (regnum = 0; regnum < NUM_REGS; regnum++)
1150 if (frame->fsr.regs[regnum] != 0)
1151 write_register (regnum,
1152 read_memory_integer (frame->fsr.regs[regnum], 4));
1153
1154 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
1155 write_register (SP_REGNUM, old_SP);
1156
1157 flush_cached_frames ();
1158 }
1159
1160 static void
1161 print_fpu_flags (flags)
1162 int flags;
1163 {
1164 if (flags & (1 << 0))
1165 fputs ("IVO ", stdout);
1166 if (flags & (1 << 1))
1167 fputs ("DVZ ", stdout);
1168 if (flags & (1 << 2))
1169 fputs ("OFL ", stdout);
1170 if (flags & (1 << 3))
1171 fputs ("UFL ", stdout);
1172 if (flags & (1 << 4))
1173 fputs ("INX ", stdout);
1174 putchar ('\n');
1175 }
1176
1177 void
1178 arm_float_info ()
1179 {
1180 register unsigned long status = read_register (FPS_REGNUM);
1181 int type;
1182
1183 type = (status >> 24) & 127;
1184 printf ("%s FPU type %d\n",
1185 (status & (1<<31)) ? "Hardware" : "Software",
1186 type);
1187 fputs ("mask: ", stdout);
1188 print_fpu_flags (status >> 16);
1189 fputs ("flags: ", stdout);
1190 print_fpu_flags (status);
1191 }
1192
1193 /* If the disassembly mode is APCS, we have to also switch the
1194 bfd mach_type. This function is run in the set disassembly_flavor
1195 command, and does that. */
1196
1197 static void
1198 set_disassembly_flavor_sfunc (args, from_tty, c)
1199 char *args;
1200 int from_tty;
1201 struct cmd_list_element *c;
1202 {
1203 set_disassembly_flavor ();
1204 }
1205
1206 static void
1207 set_disassembly_flavor ()
1208 {
1209 if (disassembly_flavor == apcs_flavor)
1210 {
1211 if (arm_toggle_regnames () == 0)
1212 arm_toggle_regnames ();
1213 arm_register_names = apcs_register_names;
1214 }
1215 else if (disassembly_flavor == r_prefix_flavor)
1216 {
1217 if (arm_toggle_regnames () == 1)
1218 arm_toggle_regnames ();
1219 arm_register_names = additional_register_names;
1220 }
1221 }
1222
1223 /* arm_othernames implements the "othernames" command. This is kind of
1224 hacky, and I prefer the set-show disassembly-flavor which is also used
1225 for the x86 gdb. I will keep this around, however, in case anyone is
1226 actually using it. */
1227
1228 static void
1229 arm_othernames ()
1230 {
1231 if (disassembly_flavor == r_prefix_flavor)
1232 {
1233 disassembly_flavor = apcs_flavor;
1234 set_disassembly_flavor ();
1235 }
1236 else
1237 {
1238 disassembly_flavor = r_prefix_flavor;
1239 set_disassembly_flavor ();
1240 }
1241 }
1242
1243 /* FIXME: Fill in with the 'right thing', see asm
1244 template in arm-convert.s */
1245
1246 void
1247 convert_from_extended (ptr, dbl)
1248 void *ptr;
1249 double *dbl;
1250 {
1251 *dbl = *(double *) ptr;
1252 }
1253
1254 void
1255 convert_to_extended (dbl, ptr)
1256 void *ptr;
1257 double *dbl;
1258 {
1259 *(double *) ptr = *dbl;
1260 }
1261
1262 static int
1263 condition_true (cond, status_reg)
1264 unsigned long cond;
1265 unsigned long status_reg;
1266 {
1267 if (cond == INST_AL || cond == INST_NV)
1268 return 1;
1269
1270 switch (cond)
1271 {
1272 case INST_EQ:
1273 return ((status_reg & FLAG_Z) != 0);
1274 case INST_NE:
1275 return ((status_reg & FLAG_Z) == 0);
1276 case INST_CS:
1277 return ((status_reg & FLAG_C) != 0);
1278 case INST_CC:
1279 return ((status_reg & FLAG_C) == 0);
1280 case INST_MI:
1281 return ((status_reg & FLAG_N) != 0);
1282 case INST_PL:
1283 return ((status_reg & FLAG_N) == 0);
1284 case INST_VS:
1285 return ((status_reg & FLAG_V) != 0);
1286 case INST_VC:
1287 return ((status_reg & FLAG_V) == 0);
1288 case INST_HI:
1289 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1290 case INST_LS:
1291 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1292 case INST_GE:
1293 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1294 case INST_LT:
1295 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1296 case INST_GT:
1297 return (((status_reg & FLAG_Z) == 0) &&
1298 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1299 case INST_LE:
1300 return (((status_reg & FLAG_Z) != 0) ||
1301 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1302 }
1303 return 1;
1304 }
1305
1306 #define submask(x) ((1L << ((x) + 1)) - 1)
1307 #define bit(obj,st) (((obj) >> (st)) & 1)
1308 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1309 #define sbits(obj,st,fn) \
1310 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1311 #define BranchDest(addr,instr) \
1312 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1313 #define ARM_PC_32 1
1314
1315 static unsigned long
1316 shifted_reg_val (inst, carry, pc_val, status_reg)
1317 unsigned long inst;
1318 int carry;
1319 unsigned long pc_val;
1320 unsigned long status_reg;
1321 {
1322 unsigned long res, shift;
1323 int rm = bits (inst, 0, 3);
1324 unsigned long shifttype = bits (inst, 5, 6);
1325
1326 if (bit (inst, 4))
1327 {
1328 int rs = bits (inst, 8, 11);
1329 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1330 }
1331 else
1332 shift = bits (inst, 7, 11);
1333
1334 res = (rm == 15
1335 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1336 + (bit (inst, 4) ? 12 : 8))
1337 : read_register (rm));
1338
1339 switch (shifttype)
1340 {
1341 case 0: /* LSL */
1342 res = shift >= 32 ? 0 : res << shift;
1343 break;
1344
1345 case 1: /* LSR */
1346 res = shift >= 32 ? 0 : res >> shift;
1347 break;
1348
1349 case 2: /* ASR */
1350 if (shift >= 32)
1351 shift = 31;
1352 res = ((res & 0x80000000L)
1353 ? ~((~res) >> shift) : res >> shift);
1354 break;
1355
1356 case 3: /* ROR/RRX */
1357 shift &= 31;
1358 if (shift == 0)
1359 res = (res >> 1) | (carry ? 0x80000000L : 0);
1360 else
1361 res = (res >> shift) | (res << (32 - shift));
1362 break;
1363 }
1364
1365 return res & 0xffffffff;
1366 }
1367
1368
1369 /* Return number of 1-bits in VAL. */
1370
1371 static int
1372 bitcount (val)
1373 unsigned long val;
1374 {
1375 int nbits;
1376 for (nbits = 0; val != 0; nbits++)
1377 val &= val - 1; /* delete rightmost 1-bit in val */
1378 return nbits;
1379 }
1380
1381
1382 static CORE_ADDR
1383 thumb_get_next_pc (pc)
1384 CORE_ADDR pc;
1385 {
1386 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1387 unsigned short inst1 = read_memory_integer (pc, 2);
1388 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1389 unsigned long offset;
1390
1391 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1392 {
1393 CORE_ADDR sp;
1394
1395 /* Fetch the saved PC from the stack. It's stored above
1396 all of the other registers. */
1397 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
1398 sp = read_register (SP_REGNUM);
1399 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1400 nextpc = ADDR_BITS_REMOVE (nextpc);
1401 if (nextpc == pc)
1402 error ("Infinite loop detected");
1403 }
1404 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1405 {
1406 unsigned long status = read_register (PS_REGNUM);
1407 unsigned long cond = bits (inst1, 8, 11);
1408 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1409 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1410 }
1411 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1412 {
1413 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1414 }
1415 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1416 {
1417 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1418 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1419 nextpc = pc_val + offset;
1420 }
1421
1422 return nextpc;
1423 }
1424
1425
1426 CORE_ADDR
1427 arm_get_next_pc (pc)
1428 CORE_ADDR pc;
1429 {
1430 unsigned long pc_val;
1431 unsigned long this_instr;
1432 unsigned long status;
1433 CORE_ADDR nextpc;
1434
1435 if (arm_pc_is_thumb (pc))
1436 return thumb_get_next_pc (pc);
1437
1438 pc_val = (unsigned long) pc;
1439 this_instr = read_memory_integer (pc, 4);
1440 status = read_register (PS_REGNUM);
1441 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1442
1443 if (condition_true (bits (this_instr, 28, 31), status))
1444 {
1445 switch (bits (this_instr, 24, 27))
1446 {
1447 case 0x0:
1448 case 0x1: /* data processing */
1449 case 0x2:
1450 case 0x3:
1451 {
1452 unsigned long operand1, operand2, result = 0;
1453 unsigned long rn;
1454 int c;
1455
1456 if (bits (this_instr, 12, 15) != 15)
1457 break;
1458
1459 if (bits (this_instr, 22, 25) == 0
1460 && bits (this_instr, 4, 7) == 9) /* multiply */
1461 error ("Illegal update to pc in instruction");
1462
1463 /* Multiply into PC */
1464 c = (status & FLAG_C) ? 1 : 0;
1465 rn = bits (this_instr, 16, 19);
1466 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1467
1468 if (bit (this_instr, 25))
1469 {
1470 unsigned long immval = bits (this_instr, 0, 7);
1471 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1472 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1473 & 0xffffffff;
1474 }
1475 else /* operand 2 is a shifted register */
1476 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1477
1478 switch (bits (this_instr, 21, 24))
1479 {
1480 case 0x0: /*and */
1481 result = operand1 & operand2;
1482 break;
1483
1484 case 0x1: /*eor */
1485 result = operand1 ^ operand2;
1486 break;
1487
1488 case 0x2: /*sub */
1489 result = operand1 - operand2;
1490 break;
1491
1492 case 0x3: /*rsb */
1493 result = operand2 - operand1;
1494 break;
1495
1496 case 0x4: /*add */
1497 result = operand1 + operand2;
1498 break;
1499
1500 case 0x5: /*adc */
1501 result = operand1 + operand2 + c;
1502 break;
1503
1504 case 0x6: /*sbc */
1505 result = operand1 - operand2 + c;
1506 break;
1507
1508 case 0x7: /*rsc */
1509 result = operand2 - operand1 + c;
1510 break;
1511
1512 case 0x8:
1513 case 0x9:
1514 case 0xa:
1515 case 0xb: /* tst, teq, cmp, cmn */
1516 result = (unsigned long) nextpc;
1517 break;
1518
1519 case 0xc: /*orr */
1520 result = operand1 | operand2;
1521 break;
1522
1523 case 0xd: /*mov */
1524 /* Always step into a function. */
1525 result = operand2;
1526 break;
1527
1528 case 0xe: /*bic */
1529 result = operand1 & ~operand2;
1530 break;
1531
1532 case 0xf: /*mvn */
1533 result = ~operand2;
1534 break;
1535 }
1536 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1537
1538 if (nextpc == pc)
1539 error ("Infinite loop detected");
1540 break;
1541 }
1542
1543 case 0x4:
1544 case 0x5: /* data transfer */
1545 case 0x6:
1546 case 0x7:
1547 if (bit (this_instr, 20))
1548 {
1549 /* load */
1550 if (bits (this_instr, 12, 15) == 15)
1551 {
1552 /* rd == pc */
1553 unsigned long rn;
1554 unsigned long base;
1555
1556 if (bit (this_instr, 22))
1557 error ("Illegal update to pc in instruction");
1558
1559 /* byte write to PC */
1560 rn = bits (this_instr, 16, 19);
1561 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1562 if (bit (this_instr, 24))
1563 {
1564 /* pre-indexed */
1565 int c = (status & FLAG_C) ? 1 : 0;
1566 unsigned long offset =
1567 (bit (this_instr, 25)
1568 ? shifted_reg_val (this_instr, c, pc_val)
1569 : bits (this_instr, 0, 11));
1570
1571 if (bit (this_instr, 23))
1572 base += offset;
1573 else
1574 base -= offset;
1575 }
1576 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1577 4);
1578
1579 nextpc = ADDR_BITS_REMOVE (nextpc);
1580
1581 if (nextpc == pc)
1582 error ("Infinite loop detected");
1583 }
1584 }
1585 break;
1586
1587 case 0x8:
1588 case 0x9: /* block transfer */
1589 if (bit (this_instr, 20))
1590 {
1591 /* LDM */
1592 if (bit (this_instr, 15))
1593 {
1594 /* loading pc */
1595 int offset = 0;
1596
1597 if (bit (this_instr, 23))
1598 {
1599 /* up */
1600 unsigned long reglist = bits (this_instr, 0, 14);
1601 offset = bitcount (reglist) * 4;
1602 if (bit (this_instr, 24)) /* pre */
1603 offset += 4;
1604 }
1605 else if (bit (this_instr, 24))
1606 offset = -4;
1607
1608 {
1609 unsigned long rn_val =
1610 read_register (bits (this_instr, 16, 19));
1611 nextpc =
1612 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1613 + offset),
1614 4);
1615 }
1616 nextpc = ADDR_BITS_REMOVE (nextpc);
1617 if (nextpc == pc)
1618 error ("Infinite loop detected");
1619 }
1620 }
1621 break;
1622
1623 case 0xb: /* branch & link */
1624 case 0xa: /* branch */
1625 {
1626 nextpc = BranchDest (pc, this_instr);
1627
1628 nextpc = ADDR_BITS_REMOVE (nextpc);
1629 if (nextpc == pc)
1630 error ("Infinite loop detected");
1631 break;
1632 }
1633
1634 case 0xc:
1635 case 0xd:
1636 case 0xe: /* coproc ops */
1637 case 0xf: /* SWI */
1638 break;
1639
1640 default:
1641 fprintf (stderr, "Bad bit-field extraction\n");
1642 return (pc);
1643 }
1644 }
1645
1646 return nextpc;
1647 }
1648
1649 #include "bfd-in2.h"
1650 #include "libcoff.h"
1651
1652 static int
1653 gdb_print_insn_arm (memaddr, info)
1654 bfd_vma memaddr;
1655 disassemble_info *info;
1656 {
1657 if (arm_pc_is_thumb (memaddr))
1658 {
1659 static asymbol *asym;
1660 static combined_entry_type ce;
1661 static struct coff_symbol_struct csym;
1662 static struct _bfd fake_bfd;
1663 static bfd_target fake_target;
1664
1665 if (csym.native == NULL)
1666 {
1667 /* Create a fake symbol vector containing a Thumb symbol. This is
1668 solely so that the code in print_insn_little_arm() and
1669 print_insn_big_arm() in opcodes/arm-dis.c will detect the presence
1670 of a Thumb symbol and switch to decoding Thumb instructions. */
1671
1672 fake_target.flavour = bfd_target_coff_flavour;
1673 fake_bfd.xvec = &fake_target;
1674 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1675 csym.native = &ce;
1676 csym.symbol.the_bfd = &fake_bfd;
1677 csym.symbol.name = "fake";
1678 asym = (asymbol *) & csym;
1679 }
1680
1681 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1682 info->symbols = &asym;
1683 }
1684 else
1685 info->symbols = NULL;
1686
1687 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1688 return print_insn_big_arm (memaddr, info);
1689 else
1690 return print_insn_little_arm (memaddr, info);
1691 }
1692
1693 /* Sequence of bytes for breakpoint instruction. */
1694 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7} /* Recognized illegal opcodes */
1695 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1696 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1697 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1698
1699 /* The following has been superseded by BREAKPOINT_FOR_PC, but
1700 is defined merely to keep mem-break.c happy. */
1701 #define LITTLE_BREAKPOINT ARM_LE_BREAKPOINT
1702 #define BIG_BREAKPOINT ARM_BE_BREAKPOINT
1703
1704 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
1705 counter value to determine whether a 16- or 32-bit breakpoint should be
1706 used. It returns a pointer to a string of bytes that encode a breakpoint
1707 instruction, stores the length of the string to *lenptr, and adjusts pc
1708 (if necessary) to point to the actual memory location where the
1709 breakpoint should be inserted. */
1710
1711 unsigned char *
1712 arm_breakpoint_from_pc (pcptr, lenptr)
1713 CORE_ADDR *pcptr;
1714 int *lenptr;
1715 {
1716 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
1717 {
1718 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1719 {
1720 static char thumb_breakpoint[] = THUMB_BE_BREAKPOINT;
1721 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1722 *lenptr = sizeof (thumb_breakpoint);
1723 return thumb_breakpoint;
1724 }
1725 else
1726 {
1727 static char thumb_breakpoint[] = THUMB_LE_BREAKPOINT;
1728 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1729 *lenptr = sizeof (thumb_breakpoint);
1730 return thumb_breakpoint;
1731 }
1732 }
1733 else
1734 {
1735 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1736 {
1737 static char arm_breakpoint[] = ARM_BE_BREAKPOINT;
1738 *lenptr = sizeof (arm_breakpoint);
1739 return arm_breakpoint;
1740 }
1741 else
1742 {
1743 static char arm_breakpoint[] = ARM_LE_BREAKPOINT;
1744 *lenptr = sizeof (arm_breakpoint);
1745 return arm_breakpoint;
1746 }
1747 }
1748 }
1749 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
1750 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
1751
1752 int
1753 arm_in_call_stub (pc, name)
1754 CORE_ADDR pc;
1755 char *name;
1756 {
1757 CORE_ADDR start_addr;
1758
1759 /* Find the starting address of the function containing the PC. If the
1760 caller didn't give us a name, look it up at the same time. */
1761 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
1762 return 0;
1763
1764 return strncmp (name, "_call_via_r", 11) == 0;
1765 }
1766
1767
1768 /* If PC is in a Thumb call or return stub, return the address of the target
1769 PC, which is in a register. The thunk functions are called _called_via_xx,
1770 where x is the register name. The possible names are r0-r9, sl, fp, ip,
1771 sp, and lr. */
1772
1773 CORE_ADDR
1774 arm_skip_stub (pc)
1775 CORE_ADDR pc;
1776 {
1777 char *name;
1778 CORE_ADDR start_addr;
1779
1780 /* Find the starting address and name of the function containing the PC. */
1781 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1782 return 0;
1783
1784 /* Call thunks always start with "_call_via_". */
1785 if (strncmp (name, "_call_via_", 10) == 0)
1786 {
1787 /* Use the name suffix to determine which register contains
1788 the target PC. */
1789 static char *table[15] =
1790 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1791 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
1792 };
1793 int regno;
1794
1795 for (regno = 0; regno <= 14; regno++)
1796 if (strcmp (&name[10], table[regno]) == 0)
1797 return read_register (regno);
1798 }
1799 return 0; /* not a stub */
1800 }
1801
1802
1803 void
1804 _initialize_arm_tdep ()
1805 {
1806 struct cmd_list_element *new_cmd;
1807
1808 tm_print_insn = gdb_print_insn_arm;
1809
1810 /* Sync the opcode insn printer with our register viewer: */
1811
1812 if (arm_toggle_regnames () != 1)
1813 arm_toggle_regnames ();
1814
1815 /* Add the deprecated "othernames" command */
1816
1817 add_com ("othernames", class_obscure, arm_othernames,
1818 "Switch to the other set of register names.");
1819
1820 /* Add the disassembly-flavor command */
1821
1822 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1823 valid_flavors,
1824 (char *) &disassembly_flavor,
1825 "Set the disassembly flavor, \
1826 the valid values are \"apcs\" and \"r-prefix\", \
1827 and the default value is \"apcs\".",
1828 &setlist);
1829 new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
1830 add_show_from_set(new_cmd, &showlist);
1831
1832 /* ??? Maybe this should be a boolean. */
1833 add_show_from_set (add_set_cmd ("apcs32", no_class,
1834 var_zinteger, (char *)&arm_apcs_32,
1835 "Set usage of ARM 32-bit mode.\n", &setlist),
1836 & showlist);
1837
1838 }
1839
1840 /* Test whether the coff symbol specific value corresponds to a Thumb function */
1841 int
1842 coff_sym_is_thumb (int val)
1843 {
1844 return (val == C_THUMBEXT ||
1845 val == C_THUMBSTAT ||
1846 val == C_THUMBEXTFUNC ||
1847 val == C_THUMBSTATFUNC ||
1848 val == C_THUMBLABEL);
1849 }
This page took 0.087225 seconds and 4 git commands to generate.