Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / arm-tdep.h
1 /* Common target dependent code for GDB on ARM systems.
2 Copyright (C) 2002-2021 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #ifndef ARM_TDEP_H
20 #define ARM_TDEP_H
21
22 /* Forward declarations. */
23 struct regset;
24 struct address_space;
25 struct get_next_pcs;
26 struct arm_get_next_pcs;
27 struct gdb_get_next_pcs;
28
29 /* Set to true if the 32-bit mode is in use. */
30
31 extern bool arm_apcs_32;
32
33 #include "gdbarch.h"
34 #include "arch/arm.h"
35 #include "infrun.h"
36
37 #include <vector>
38
39 /* Number of machine registers. The only define actually required
40 is gdbarch_num_regs. The other definitions are used for documentation
41 purposes and code readability. */
42 /* For 26 bit ARM code, a fake copy of the PC is placed in register 25 (PS)
43 (and called PS for processor status) so the status bits can be cleared
44 from the PC (register 15). For 32 bit ARM code, a copy of CPSR is placed
45 in PS. */
46 #define NUM_FREGS 8 /* Number of floating point registers. */
47 #define NUM_SREGS 2 /* Number of status registers. */
48 #define NUM_GREGS 16 /* Number of general purpose registers. */
49
50
51
52 /* Type of floating-point code in use by inferior. There are really 3 models
53 that are traditionally supported (plus the endianness issue), but gcc can
54 only generate 2 of those. The third is APCS_FLOAT, where arguments to
55 functions are passed in floating-point registers.
56
57 In addition to the traditional models, VFP adds two more.
58
59 If you update this enum, don't forget to update fp_model_strings in
60 arm-tdep.c. */
61
62 enum arm_float_model
63 {
64 ARM_FLOAT_AUTO, /* Automatic detection. Do not set in tdep. */
65 ARM_FLOAT_SOFT_FPA, /* Traditional soft-float (mixed-endian on LE ARM). */
66 ARM_FLOAT_FPA, /* FPA co-processor. GCC calling convention. */
67 ARM_FLOAT_SOFT_VFP, /* Soft-float with pure-endian doubles. */
68 ARM_FLOAT_VFP, /* Full VFP calling convention. */
69 ARM_FLOAT_LAST /* Keep at end. */
70 };
71
72 /* ABI used by the inferior. */
73 enum arm_abi_kind
74 {
75 ARM_ABI_AUTO,
76 ARM_ABI_APCS,
77 ARM_ABI_AAPCS,
78 ARM_ABI_LAST
79 };
80
81 /* Convention for returning structures. */
82
83 enum struct_return
84 {
85 pcc_struct_return, /* Return "short" structures in memory. */
86 reg_struct_return /* Return "short" structures in registers. */
87 };
88
89 /* Target-dependent structure in gdbarch. */
90 struct gdbarch_tdep
91 {
92 /* The ABI for this architecture. It should never be set to
93 ARM_ABI_AUTO. */
94 enum arm_abi_kind arm_abi;
95
96 enum arm_float_model fp_model; /* Floating point calling conventions. */
97
98 bool have_fpa_registers; /* Does the target report the FPA registers? */
99 bool have_wmmx_registers; /* Does the target report the WMMX registers? */
100 /* The number of VFP registers reported by the target. It is zero
101 if VFP registers are not supported. */
102 int vfp_register_count;
103 bool have_vfp_pseudos; /* Are we synthesizing the single precision
104 VFP registers? */
105 bool have_neon_pseudos; /* Are we synthesizing the quad precision
106 NEON registers? Requires
107 have_vfp_pseudos. */
108 bool have_neon; /* Do we have a NEON unit? */
109
110 bool is_m; /* Does the target follow the "M" profile. */
111 CORE_ADDR lowest_pc; /* Lowest address at which instructions
112 will appear. */
113
114 const gdb_byte *arm_breakpoint; /* Breakpoint pattern for an ARM insn. */
115 int arm_breakpoint_size; /* And its size. */
116 const gdb_byte *thumb_breakpoint; /* Breakpoint pattern for a Thumb insn. */
117 int thumb_breakpoint_size; /* And its size. */
118
119 /* If the Thumb breakpoint is an undefined instruction (which is
120 affected by IT blocks) rather than a BKPT instruction (which is
121 not), then we need a 32-bit Thumb breakpoint to preserve the
122 instruction count in IT blocks. */
123 const gdb_byte *thumb2_breakpoint;
124 int thumb2_breakpoint_size;
125
126 int jb_pc; /* Offset to PC value in jump buffer.
127 If this is negative, longjmp support
128 will be disabled. */
129 size_t jb_elt_size; /* And the size of each entry in the buf. */
130
131 /* Convention for returning structures. */
132 enum struct_return struct_return;
133
134 /* ISA-specific data types. */
135 struct type *arm_ext_type;
136 struct type *neon_double_type;
137 struct type *neon_quad_type;
138
139 /* syscall record. */
140 int (*arm_syscall_record) (struct regcache *regcache, unsigned long svc_number);
141 };
142
143 /* Structures used for displaced stepping. */
144
145 /* The maximum number of temporaries available for displaced instructions. */
146 #define DISPLACED_TEMPS 16
147 /* The maximum number of modified instructions generated for one single-stepped
148 instruction, including the breakpoint (usually at the end of the instruction
149 sequence) and any scratch words, etc. */
150 #define ARM_DISPLACED_MODIFIED_INSNS 8
151
152 struct arm_displaced_step_copy_insn_closure
153 : public displaced_step_copy_insn_closure
154 {
155 ULONGEST tmp[DISPLACED_TEMPS];
156 int rd;
157 int wrote_to_pc;
158 union
159 {
160 struct
161 {
162 int xfersize;
163 int rn; /* Writeback register. */
164 unsigned int immed : 1; /* Offset is immediate. */
165 unsigned int writeback : 1; /* Perform base-register writeback. */
166 unsigned int restore_r4 : 1; /* Used r4 as scratch. */
167 } ldst;
168
169 struct
170 {
171 unsigned long dest;
172 unsigned int link : 1;
173 unsigned int exchange : 1;
174 unsigned int cond : 4;
175 } branch;
176
177 struct
178 {
179 unsigned int regmask;
180 int rn;
181 CORE_ADDR xfer_addr;
182 unsigned int load : 1;
183 unsigned int user : 1;
184 unsigned int increment : 1;
185 unsigned int before : 1;
186 unsigned int writeback : 1;
187 unsigned int cond : 4;
188 } block;
189
190 struct
191 {
192 unsigned int immed : 1;
193 } preload;
194
195 struct
196 {
197 /* If non-NULL, override generic SVC handling (e.g. for a particular
198 OS). */
199 int (*copy_svc_os) (struct gdbarch *gdbarch, struct regcache *regs,
200 arm_displaced_step_copy_insn_closure *dsc);
201 } svc;
202 } u;
203
204 /* The size of original instruction, 2 or 4. */
205 unsigned int insn_size;
206 /* True if the original insn (and thus all replacement insns) are Thumb
207 instead of ARM. */
208 unsigned int is_thumb;
209
210 /* The slots in the array is used in this way below,
211 - ARM instruction occupies one slot,
212 - Thumb 16 bit instruction occupies one slot,
213 - Thumb 32-bit instruction occupies *two* slots, one part for each. */
214 unsigned long modinsn[ARM_DISPLACED_MODIFIED_INSNS];
215 int numinsns;
216 CORE_ADDR insn_addr;
217 CORE_ADDR scratch_base;
218 void (*cleanup) (struct gdbarch *, struct regcache *,
219 arm_displaced_step_copy_insn_closure *);
220 };
221
222 /* Values for the WRITE_PC argument to displaced_write_reg. If the register
223 write may write to the PC, specifies the way the CPSR T bit, etc. is
224 modified by the instruction. */
225
226 enum pc_write_style
227 {
228 BRANCH_WRITE_PC,
229 BX_WRITE_PC,
230 LOAD_WRITE_PC,
231 ALU_WRITE_PC,
232 CANNOT_WRITE_PC
233 };
234
235 extern void
236 arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
237 CORE_ADDR to, struct regcache *regs,
238 arm_displaced_step_copy_insn_closure *dsc);
239 extern void
240 arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
241 CORE_ADDR to,
242 arm_displaced_step_copy_insn_closure *dsc);
243 extern ULONGEST
244 displaced_read_reg (regcache *regs, arm_displaced_step_copy_insn_closure *dsc,
245 int regno);
246 extern void
247 displaced_write_reg (struct regcache *regs,
248 arm_displaced_step_copy_insn_closure *dsc, int regno,
249 ULONGEST val, enum pc_write_style write_pc);
250
251 CORE_ADDR arm_skip_stub (struct frame_info *, CORE_ADDR);
252
253 ULONGEST arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr,
254 int len,
255 int byte_order);
256
257 CORE_ADDR arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
258 CORE_ADDR val);
259
260 int arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self);
261
262 std::vector<CORE_ADDR> arm_software_single_step (struct regcache *);
263 int arm_is_thumb (struct regcache *regcache);
264 int arm_frame_is_thumb (struct frame_info *frame);
265
266 extern void arm_displaced_step_fixup (struct gdbarch *,
267 displaced_step_copy_insn_closure *,
268 CORE_ADDR, CORE_ADDR, struct regcache *);
269
270 /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
271 extern int arm_psr_thumb_bit (struct gdbarch *);
272
273 /* Is the instruction at the given memory address a Thumb or ARM
274 instruction? */
275 extern int arm_pc_is_thumb (struct gdbarch *, CORE_ADDR);
276
277 extern int arm_process_record (struct gdbarch *gdbarch,
278 struct regcache *regcache, CORE_ADDR addr);
279 /* Functions exported from arm-bsd-tdep.h. */
280
281 /* Return the appropriate register set for the core section identified
282 by SECT_NAME and SECT_SIZE. */
283
284 extern void
285 armbsd_iterate_over_regset_sections (struct gdbarch *gdbarch,
286 iterate_over_regset_sections_cb *cb,
287 void *cb_data,
288 const struct regcache *regcache);
289
290 /* Get the correct Arm target description with given FP hardware type. */
291 const target_desc *arm_read_description (arm_fp_type fp_type);
292
293 /* Get the correct Arm M-Profile target description with given hardware
294 type. */
295 const target_desc *arm_read_mprofile_description (arm_m_profile_type m_type);
296
297 #endif /* arm-tdep.h */
This page took 0.035209 seconds and 4 git commands to generate.