Copyright year update in most files of the GDB Project.
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
21
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdbtypes.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "gdb_string.h"
38 #include "dis-asm.h"
39
40 /* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
70
71 #undef XMALLOC
72 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
74 /* Constants: prefixed with AVR_ to avoid name space clashes */
75
76 enum
77 {
78 AVR_REG_W = 24,
79 AVR_REG_X = 26,
80 AVR_REG_Y = 28,
81 AVR_FP_REGNUM = 28,
82 AVR_REG_Z = 30,
83
84 AVR_SREG_REGNUM = 32,
85 AVR_SP_REGNUM = 33,
86 AVR_PC_REGNUM = 34,
87
88 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
89 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
90
91 /* Pseudo registers. */
92 AVR_PSEUDO_PC_REGNUM = 35,
93 AVR_NUM_PSEUDO_REGS = 1,
94
95 AVR_PC_REG_INDEX = 35, /* index into array of registers */
96
97 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
98
99 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
100 AVR_MAX_PUSHES = 18,
101
102 /* Number of the last pushed register. r17 for current avr-gcc */
103 AVR_LAST_PUSHED_REGNUM = 17,
104
105 AVR_ARG1_REGNUM = 24, /* Single byte argument */
106 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
107
108 AVR_RET1_REGNUM = 24, /* Single byte return value */
109 AVR_RETN_REGNUM = 25, /* Multi byte return value */
110
111 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
112 bits? Do these have to match the bfd vma values? It sure would make
113 things easier in the future if they didn't need to match.
114
115 Note: I chose these values so as to be consistent with bfd vma
116 addresses.
117
118 TRoth/2002-04-08: There is already a conflict with very large programs
119 in the mega128. The mega128 has 128K instruction bytes (64K words),
120 thus the Most Significant Bit is 0x10000 which gets masked off my
121 AVR_MEM_MASK.
122
123 The problem manifests itself when trying to set a breakpoint in a
124 function which resides in the upper half of the instruction space and
125 thus requires a 17-bit address.
126
127 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
128 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
129 but could be for some remote targets by just adding the correct offset
130 to the address and letting the remote target handle the low-level
131 details of actually accessing the eeprom. */
132
133 AVR_IMEM_START = 0x00000000, /* INSN memory */
134 AVR_SMEM_START = 0x00800000, /* SRAM memory */
135 #if 1
136 /* No eeprom mask defined */
137 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
138 #else
139 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
140 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
141 #endif
142 };
143
144 /* Prologue types:
145
146 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
147 causes the generation of the CALL type prologues). */
148
149 enum {
150 AVR_PROLOGUE_NONE, /* No prologue */
151 AVR_PROLOGUE_NORMAL,
152 AVR_PROLOGUE_CALL, /* -mcall-prologues */
153 AVR_PROLOGUE_MAIN,
154 AVR_PROLOGUE_INTR, /* interrupt handler */
155 AVR_PROLOGUE_SIG, /* signal handler */
156 };
157
158 /* Any function with a frame looks like this
159 ....... <-SP POINTS HERE
160 LOCALS1 <-FP POINTS HERE
161 LOCALS0
162 SAVED FP
163 SAVED R3
164 SAVED R2
165 RET PC
166 FIRST ARG
167 SECOND ARG */
168
169 struct avr_unwind_cache
170 {
171 /* The previous frame's inner most stack address. Used as this
172 frame ID's stack_addr. */
173 CORE_ADDR prev_sp;
174 /* The frame's base, optionally used by the high-level debug info. */
175 CORE_ADDR base;
176 int size;
177 int prologue_type;
178 /* Table indicating the location of each and every register. */
179 struct trad_frame_saved_reg *saved_regs;
180 };
181
182 struct gdbarch_tdep
183 {
184 /* Number of bytes stored to the stack by call instructions.
185 2 bytes for avr1-5, 3 bytes for avr6. */
186 int call_length;
187
188 /* Type for void. */
189 struct type *void_type;
190 /* Type for a function returning void. */
191 struct type *func_void_type;
192 /* Type for a pointer to a function. Used for the type of PC. */
193 struct type *pc_type;
194 };
195
196 /* Lookup the name of a register given it's number. */
197
198 static const char *
199 avr_register_name (struct gdbarch *gdbarch, int regnum)
200 {
201 static const char * const register_names[] = {
202 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
203 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
204 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
205 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
206 "SREG", "SP", "PC2",
207 "pc"
208 };
209 if (regnum < 0)
210 return NULL;
211 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
212 return NULL;
213 return register_names[regnum];
214 }
215
216 /* Return the GDB type object for the "standard" data type
217 of data in register N. */
218
219 static struct type *
220 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
221 {
222 if (reg_nr == AVR_PC_REGNUM)
223 return builtin_type (gdbarch)->builtin_uint32;
224 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
225 return gdbarch_tdep (gdbarch)->pc_type;
226 if (reg_nr == AVR_SP_REGNUM)
227 return builtin_type (gdbarch)->builtin_data_ptr;
228 return builtin_type (gdbarch)->builtin_uint8;
229 }
230
231 /* Instruction address checks and convertions. */
232
233 static CORE_ADDR
234 avr_make_iaddr (CORE_ADDR x)
235 {
236 return ((x) | AVR_IMEM_START);
237 }
238
239 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
240 devices are already up to 128KBytes of flash space.
241
242 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
243
244 static CORE_ADDR
245 avr_convert_iaddr_to_raw (CORE_ADDR x)
246 {
247 return ((x) & 0xffffffff);
248 }
249
250 /* SRAM address checks and convertions. */
251
252 static CORE_ADDR
253 avr_make_saddr (CORE_ADDR x)
254 {
255 /* Return 0 for NULL. */
256 if (x == 0)
257 return 0;
258
259 return ((x) | AVR_SMEM_START);
260 }
261
262 static CORE_ADDR
263 avr_convert_saddr_to_raw (CORE_ADDR x)
264 {
265 return ((x) & 0xffffffff);
266 }
267
268 /* EEPROM address checks and convertions. I don't know if these will ever
269 actually be used, but I've added them just the same. TRoth */
270
271 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
272 programs in the mega128. */
273
274 /* static CORE_ADDR */
275 /* avr_make_eaddr (CORE_ADDR x) */
276 /* { */
277 /* return ((x) | AVR_EMEM_START); */
278 /* } */
279
280 /* static int */
281 /* avr_eaddr_p (CORE_ADDR x) */
282 /* { */
283 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
284 /* } */
285
286 /* static CORE_ADDR */
287 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
288 /* { */
289 /* return ((x) & 0xffffffff); */
290 /* } */
291
292 /* Convert from address to pointer and vice-versa. */
293
294 static void
295 avr_address_to_pointer (struct gdbarch *gdbarch,
296 struct type *type, gdb_byte *buf, CORE_ADDR addr)
297 {
298 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
299
300 /* Is it a code address? */
301 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
302 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
303 {
304 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
305 avr_convert_iaddr_to_raw (addr >> 1));
306 }
307 else
308 {
309 /* Strip off any upper segment bits. */
310 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
311 avr_convert_saddr_to_raw (addr));
312 }
313 }
314
315 static CORE_ADDR
316 avr_pointer_to_address (struct gdbarch *gdbarch,
317 struct type *type, const gdb_byte *buf)
318 {
319 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
320 CORE_ADDR addr
321 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
322
323 /* Is it a code address? */
324 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
325 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
326 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
327 return avr_make_iaddr (addr << 1);
328 else
329 return avr_make_saddr (addr);
330 }
331
332 static CORE_ADDR
333 avr_integer_to_address (struct gdbarch *gdbarch,
334 struct type *type, const gdb_byte *buf)
335 {
336 ULONGEST addr = unpack_long (type, buf);
337
338 return avr_make_saddr (addr);
339 }
340
341 static CORE_ADDR
342 avr_read_pc (struct regcache *regcache)
343 {
344 ULONGEST pc;
345 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
346 return avr_make_iaddr (pc);
347 }
348
349 static void
350 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
351 {
352 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
353 avr_convert_iaddr_to_raw (val));
354 }
355
356 static enum register_status
357 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
358 int regnum, gdb_byte *buf)
359 {
360 ULONGEST val;
361 enum register_status status;
362
363 switch (regnum)
364 {
365 case AVR_PSEUDO_PC_REGNUM:
366 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
367 if (status != REG_VALID)
368 return status;
369 val >>= 1;
370 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
371 return status;
372 default:
373 internal_error (__FILE__, __LINE__, _("invalid regnum"));
374 }
375 }
376
377 static void
378 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
379 int regnum, const gdb_byte *buf)
380 {
381 ULONGEST val;
382
383 switch (regnum)
384 {
385 case AVR_PSEUDO_PC_REGNUM:
386 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
387 val <<= 1;
388 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
389 break;
390 default:
391 internal_error (__FILE__, __LINE__, _("invalid regnum"));
392 }
393 }
394
395 /* Function: avr_scan_prologue
396
397 This function decodes an AVR function prologue to determine:
398 1) the size of the stack frame
399 2) which registers are saved on it
400 3) the offsets of saved regs
401 This information is stored in the avr_unwind_cache structure.
402
403 Some devices lack the sbiw instruction, so on those replace this:
404 sbiw r28, XX
405 with this:
406 subi r28,lo8(XX)
407 sbci r29,hi8(XX)
408
409 A typical AVR function prologue with a frame pointer might look like this:
410 push rXX ; saved regs
411 ...
412 push r28
413 push r29
414 in r28,__SP_L__
415 in r29,__SP_H__
416 sbiw r28,<LOCALS_SIZE>
417 in __tmp_reg__,__SREG__
418 cli
419 out __SP_H__,r29
420 out __SREG__,__tmp_reg__
421 out __SP_L__,r28
422
423 A typical AVR function prologue without a frame pointer might look like
424 this:
425 push rXX ; saved regs
426 ...
427
428 A main function prologue looks like this:
429 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
430 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
431 out __SP_H__,r29
432 out __SP_L__,r28
433
434 A signal handler prologue looks like this:
435 push __zero_reg__
436 push __tmp_reg__
437 in __tmp_reg__, __SREG__
438 push __tmp_reg__
439 clr __zero_reg__
440 push rXX ; save registers r18:r27, r30:r31
441 ...
442 push r28 ; save frame pointer
443 push r29
444 in r28, __SP_L__
445 in r29, __SP_H__
446 sbiw r28, <LOCALS_SIZE>
447 out __SP_H__, r29
448 out __SP_L__, r28
449
450 A interrupt handler prologue looks like this:
451 sei
452 push __zero_reg__
453 push __tmp_reg__
454 in __tmp_reg__, __SREG__
455 push __tmp_reg__
456 clr __zero_reg__
457 push rXX ; save registers r18:r27, r30:r31
458 ...
459 push r28 ; save frame pointer
460 push r29
461 in r28, __SP_L__
462 in r29, __SP_H__
463 sbiw r28, <LOCALS_SIZE>
464 cli
465 out __SP_H__, r29
466 sei
467 out __SP_L__, r28
468
469 A `-mcall-prologues' prologue looks like this (Note that the megas use a
470 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
471 32 bit insn and rjmp is a 16 bit insn):
472 ldi r26,lo8(<LOCALS_SIZE>)
473 ldi r27,hi8(<LOCALS_SIZE>)
474 ldi r30,pm_lo8(.L_foo_body)
475 ldi r31,pm_hi8(.L_foo_body)
476 rjmp __prologue_saves__+RRR
477 .L_foo_body: */
478
479 /* Not really part of a prologue, but still need to scan for it, is when a
480 function prologue moves values passed via registers as arguments to new
481 registers. In this case, all local variables live in registers, so there
482 may be some register saves. This is what it looks like:
483 movw rMM, rNN
484 ...
485
486 There could be multiple movw's. If the target doesn't have a movw insn, it
487 will use two mov insns. This could be done after any of the above prologue
488 types. */
489
490 static CORE_ADDR
491 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
492 struct avr_unwind_cache *info)
493 {
494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
495 int i;
496 unsigned short insn;
497 int scan_stage = 0;
498 struct minimal_symbol *msymbol;
499 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
500 int vpc = 0;
501 int len;
502
503 len = pc_end - pc_beg;
504 if (len > AVR_MAX_PROLOGUE_SIZE)
505 len = AVR_MAX_PROLOGUE_SIZE;
506
507 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
508 reading in the bytes of the prologue. The problem is that the figuring
509 out where the end of the prologue is is a bit difficult. The old code
510 tried to do that, but failed quite often. */
511 read_memory (pc_beg, prologue, len);
512
513 /* Scanning main()'s prologue
514 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
515 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
516 out __SP_H__,r29
517 out __SP_L__,r28 */
518
519 if (len >= 4)
520 {
521 CORE_ADDR locals;
522 static const unsigned char img[] = {
523 0xde, 0xbf, /* out __SP_H__,r29 */
524 0xcd, 0xbf /* out __SP_L__,r28 */
525 };
526
527 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
528 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
529 if ((insn & 0xf0f0) == 0xe0c0)
530 {
531 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
532 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
533 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
534 if ((insn & 0xf0f0) == 0xe0d0)
535 {
536 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
537 if (vpc + 4 + sizeof (img) < len
538 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
539 {
540 info->prologue_type = AVR_PROLOGUE_MAIN;
541 info->base = locals;
542 return pc_beg + 4;
543 }
544 }
545 }
546 }
547
548 /* Scanning `-mcall-prologues' prologue
549 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
550
551 while (1) /* Using a while to avoid many goto's */
552 {
553 int loc_size;
554 int body_addr;
555 unsigned num_pushes;
556 int pc_offset = 0;
557
558 /* At least the fifth instruction must have been executed to
559 modify frame shape. */
560 if (len < 10)
561 break;
562
563 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
564 /* ldi r26,<LOCALS_SIZE> */
565 if ((insn & 0xf0f0) != 0xe0a0)
566 break;
567 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
568 pc_offset += 2;
569
570 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
571 /* ldi r27,<LOCALS_SIZE> / 256 */
572 if ((insn & 0xf0f0) != 0xe0b0)
573 break;
574 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
575 pc_offset += 2;
576
577 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
578 /* ldi r30,pm_lo8(.L_foo_body) */
579 if ((insn & 0xf0f0) != 0xe0e0)
580 break;
581 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
582 pc_offset += 2;
583
584 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
585 /* ldi r31,pm_hi8(.L_foo_body) */
586 if ((insn & 0xf0f0) != 0xe0f0)
587 break;
588 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
589 pc_offset += 2;
590
591 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
592 if (!msymbol)
593 break;
594
595 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
596 /* rjmp __prologue_saves__+RRR */
597 if ((insn & 0xf000) == 0xc000)
598 {
599 /* Extract PC relative offset from RJMP */
600 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
601 /* Convert offset to byte addressable mode */
602 i *= 2;
603 /* Destination address */
604 i += pc_beg + 10;
605
606 if (body_addr != (pc_beg + 10)/2)
607 break;
608
609 pc_offset += 2;
610 }
611 else if ((insn & 0xfe0e) == 0x940c)
612 {
613 /* Extract absolute PC address from JMP */
614 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
615 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
616 & 0xffff));
617 /* Convert address to byte addressable mode */
618 i *= 2;
619
620 if (body_addr != (pc_beg + 12)/2)
621 break;
622
623 pc_offset += 4;
624 }
625 else
626 break;
627
628 /* Resolve offset (in words) from __prologue_saves__ symbol.
629 Which is a pushes count in `-mcall-prologues' mode */
630 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
631
632 if (num_pushes > AVR_MAX_PUSHES)
633 {
634 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
635 num_pushes);
636 num_pushes = 0;
637 }
638
639 if (num_pushes)
640 {
641 int from;
642
643 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
644 if (num_pushes >= 2)
645 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
646
647 i = 0;
648 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
649 from <= AVR_LAST_PUSHED_REGNUM; ++from)
650 info->saved_regs [from].addr = ++i;
651 }
652 info->size = loc_size + num_pushes;
653 info->prologue_type = AVR_PROLOGUE_CALL;
654
655 return pc_beg + pc_offset;
656 }
657
658 /* Scan for the beginning of the prologue for an interrupt or signal
659 function. Note that we have to set the prologue type here since the
660 third stage of the prologue may not be present (e.g. no saved registered
661 or changing of the SP register). */
662
663 if (1)
664 {
665 static const unsigned char img[] = {
666 0x78, 0x94, /* sei */
667 0x1f, 0x92, /* push r1 */
668 0x0f, 0x92, /* push r0 */
669 0x0f, 0xb6, /* in r0,0x3f SREG */
670 0x0f, 0x92, /* push r0 */
671 0x11, 0x24 /* clr r1 */
672 };
673 if (len >= sizeof (img)
674 && memcmp (prologue, img, sizeof (img)) == 0)
675 {
676 info->prologue_type = AVR_PROLOGUE_INTR;
677 vpc += sizeof (img);
678 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
679 info->saved_regs[0].addr = 2;
680 info->saved_regs[1].addr = 1;
681 info->size += 3;
682 }
683 else if (len >= sizeof (img) - 2
684 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
685 {
686 info->prologue_type = AVR_PROLOGUE_SIG;
687 vpc += sizeof (img) - 2;
688 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
689 info->saved_regs[0].addr = 2;
690 info->saved_regs[1].addr = 1;
691 info->size += 2;
692 }
693 }
694
695 /* First stage of the prologue scanning.
696 Scan pushes (saved registers) */
697
698 for (; vpc < len; vpc += 2)
699 {
700 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
701 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
702 {
703 /* Bits 4-9 contain a mask for registers R0-R32. */
704 int regno = (insn & 0x1f0) >> 4;
705 info->size++;
706 info->saved_regs[regno].addr = info->size;
707 scan_stage = 1;
708 }
709 else
710 break;
711 }
712
713 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
714
715 /* Handle static small stack allocation using rcall or push. */
716
717 while (scan_stage == 1 && vpc < len)
718 {
719 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
720 if (insn == 0xd000) /* rcall .+0 */
721 {
722 info->size += gdbarch_tdep (gdbarch)->call_length;
723 vpc += 2;
724 }
725 else if (insn == 0x920f) /* push r0 */
726 {
727 info->size += 1;
728 vpc += 2;
729 }
730 else
731 break;
732 }
733
734 /* Second stage of the prologue scanning.
735 Scan:
736 in r28,__SP_L__
737 in r29,__SP_H__ */
738
739 if (scan_stage == 1 && vpc < len)
740 {
741 static const unsigned char img[] = {
742 0xcd, 0xb7, /* in r28,__SP_L__ */
743 0xde, 0xb7 /* in r29,__SP_H__ */
744 };
745 unsigned short insn1;
746
747 if (vpc + sizeof (img) < len
748 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
749 {
750 vpc += 4;
751 scan_stage = 2;
752 }
753 }
754
755 /* Third stage of the prologue scanning. (Really two stages).
756 Scan for:
757 sbiw r28,XX or subi r28,lo8(XX)
758 sbci r29,hi8(XX)
759 in __tmp_reg__,__SREG__
760 cli
761 out __SP_H__,r29
762 out __SREG__,__tmp_reg__
763 out __SP_L__,r28 */
764
765 if (scan_stage == 2 && vpc < len)
766 {
767 int locals_size = 0;
768 static const unsigned char img[] = {
769 0x0f, 0xb6, /* in r0,0x3f */
770 0xf8, 0x94, /* cli */
771 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
772 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
773 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
774 };
775 static const unsigned char img_sig[] = {
776 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
777 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
778 };
779 static const unsigned char img_int[] = {
780 0xf8, 0x94, /* cli */
781 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
782 0x78, 0x94, /* sei */
783 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
784 };
785
786 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
787 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
788 {
789 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
790 vpc += 2;
791 }
792 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
793 {
794 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
795 vpc += 2;
796 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
797 vpc += 2;
798 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
799 }
800 else
801 return pc_beg + vpc;
802
803 /* Scan the last part of the prologue. May not be present for interrupt
804 or signal handler functions, which is why we set the prologue type
805 when we saw the beginning of the prologue previously. */
806
807 if (vpc + sizeof (img_sig) < len
808 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
809 {
810 vpc += sizeof (img_sig);
811 }
812 else if (vpc + sizeof (img_int) < len
813 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
814 {
815 vpc += sizeof (img_int);
816 }
817 if (vpc + sizeof (img) < len
818 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
819 {
820 info->prologue_type = AVR_PROLOGUE_NORMAL;
821 vpc += sizeof (img);
822 }
823
824 info->size += locals_size;
825
826 /* Fall through. */
827 }
828
829 /* If we got this far, we could not scan the prologue, so just return the pc
830 of the frame plus an adjustment for argument move insns. */
831
832 for (; vpc < len; vpc += 2)
833 {
834 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
835 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
836 continue;
837 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
838 continue;
839 else
840 break;
841 }
842
843 return pc_beg + vpc;
844 }
845
846 static CORE_ADDR
847 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
848 {
849 CORE_ADDR func_addr, func_end;
850 CORE_ADDR post_prologue_pc;
851
852 /* See what the symbol table says */
853
854 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
855 return pc;
856
857 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
858 if (post_prologue_pc != 0)
859 return max (pc, post_prologue_pc);
860
861 {
862 CORE_ADDR prologue_end = pc;
863 struct avr_unwind_cache info = {0};
864 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
865
866 info.saved_regs = saved_regs;
867
868 /* Need to run the prologue scanner to figure out if the function has a
869 prologue and possibly skip over moving arguments passed via registers
870 to other registers. */
871
872 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
873
874 if (info.prologue_type != AVR_PROLOGUE_NONE)
875 return prologue_end;
876 }
877
878 /* Either we didn't find the start of this function (nothing we can do),
879 or there's no line info, or the line after the prologue is after
880 the end of the function (there probably isn't a prologue). */
881
882 return pc;
883 }
884
885 /* Not all avr devices support the BREAK insn. Those that don't should treat
886 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
887 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
888
889 static const unsigned char *
890 avr_breakpoint_from_pc (struct gdbarch *gdbarch,
891 CORE_ADDR *pcptr, int *lenptr)
892 {
893 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
894 *lenptr = sizeof (avr_break_insn);
895 return avr_break_insn;
896 }
897
898 /* Determine, for architecture GDBARCH, how a return value of TYPE
899 should be returned. If it is supposed to be returned in registers,
900 and READBUF is non-zero, read the appropriate value from REGCACHE,
901 and copy it into READBUF. If WRITEBUF is non-zero, write the value
902 from WRITEBUF into REGCACHE. */
903
904 static enum return_value_convention
905 avr_return_value (struct gdbarch *gdbarch, struct type *func_type,
906 struct type *valtype, struct regcache *regcache,
907 gdb_byte *readbuf, const gdb_byte *writebuf)
908 {
909 int i;
910 /* Single byte are returned in r24.
911 Otherwise, the MSB of the return value is always in r25, calculate which
912 register holds the LSB. */
913 int lsb_reg;
914
915 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
916 || TYPE_CODE (valtype) == TYPE_CODE_UNION
917 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
918 && TYPE_LENGTH (valtype) > 8)
919 return RETURN_VALUE_STRUCT_CONVENTION;
920
921 if (TYPE_LENGTH (valtype) <= 2)
922 lsb_reg = 24;
923 else if (TYPE_LENGTH (valtype) <= 4)
924 lsb_reg = 22;
925 else if (TYPE_LENGTH (valtype) <= 8)
926 lsb_reg = 18;
927 else
928 gdb_assert_not_reached ("unexpected type length");
929
930 if (writebuf != NULL)
931 {
932 for (i = 0; i < TYPE_LENGTH (valtype); i++)
933 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
934 }
935
936 if (readbuf != NULL)
937 {
938 for (i = 0; i < TYPE_LENGTH (valtype); i++)
939 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
940 }
941
942 return RETURN_VALUE_REGISTER_CONVENTION;
943 }
944
945
946 /* Put here the code to store, into fi->saved_regs, the addresses of
947 the saved registers of frame described by FRAME_INFO. This
948 includes special registers such as pc and fp saved in special ways
949 in the stack frame. sp is even more special: the address we return
950 for it IS the sp for the next frame. */
951
952 static struct avr_unwind_cache *
953 avr_frame_unwind_cache (struct frame_info *this_frame,
954 void **this_prologue_cache)
955 {
956 CORE_ADDR start_pc, current_pc;
957 ULONGEST prev_sp;
958 ULONGEST this_base;
959 struct avr_unwind_cache *info;
960 struct gdbarch *gdbarch;
961 struct gdbarch_tdep *tdep;
962 int i;
963
964 if (*this_prologue_cache)
965 return *this_prologue_cache;
966
967 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
968 *this_prologue_cache = info;
969 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
970
971 info->size = 0;
972 info->prologue_type = AVR_PROLOGUE_NONE;
973
974 start_pc = get_frame_func (this_frame);
975 current_pc = get_frame_pc (this_frame);
976 if ((start_pc > 0) && (start_pc <= current_pc))
977 avr_scan_prologue (get_frame_arch (this_frame),
978 start_pc, current_pc, info);
979
980 if ((info->prologue_type != AVR_PROLOGUE_NONE)
981 && (info->prologue_type != AVR_PROLOGUE_MAIN))
982 {
983 ULONGEST high_base; /* High byte of FP */
984
985 /* The SP was moved to the FP. This indicates that a new frame
986 was created. Get THIS frame's FP value by unwinding it from
987 the next frame. */
988 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
989 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
990 this_base += (high_base << 8);
991
992 /* The FP points at the last saved register. Adjust the FP back
993 to before the first saved register giving the SP. */
994 prev_sp = this_base + info->size;
995 }
996 else
997 {
998 /* Assume that the FP is this frame's SP but with that pushed
999 stack space added back. */
1000 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1001 prev_sp = this_base + info->size;
1002 }
1003
1004 /* Add 1 here to adjust for the post-decrement nature of the push
1005 instruction.*/
1006 info->prev_sp = avr_make_saddr (prev_sp + 1);
1007 info->base = avr_make_saddr (this_base);
1008
1009 gdbarch = get_frame_arch (this_frame);
1010
1011 /* Adjust all the saved registers so that they contain addresses and not
1012 offsets. */
1013 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1014 if (info->saved_regs[i].addr > 0)
1015 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1016
1017 /* Except for the main and startup code, the return PC is always saved on
1018 the stack and is at the base of the frame. */
1019
1020 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1021 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1022
1023 /* The previous frame's SP needed to be computed. Save the computed
1024 value. */
1025 tdep = gdbarch_tdep (gdbarch);
1026 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1027 info->prev_sp - 1 + tdep->call_length);
1028
1029 return info;
1030 }
1031
1032 static CORE_ADDR
1033 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1034 {
1035 ULONGEST pc;
1036
1037 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1038
1039 return avr_make_iaddr (pc);
1040 }
1041
1042 static CORE_ADDR
1043 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1044 {
1045 ULONGEST sp;
1046
1047 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1048
1049 return avr_make_saddr (sp);
1050 }
1051
1052 /* Given a GDB frame, determine the address of the calling function's
1053 frame. This will be used to create a new GDB frame struct. */
1054
1055 static void
1056 avr_frame_this_id (struct frame_info *this_frame,
1057 void **this_prologue_cache,
1058 struct frame_id *this_id)
1059 {
1060 struct avr_unwind_cache *info
1061 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1062 CORE_ADDR base;
1063 CORE_ADDR func;
1064 struct frame_id id;
1065
1066 /* The FUNC is easy. */
1067 func = get_frame_func (this_frame);
1068
1069 /* Hopefully the prologue analysis either correctly determined the
1070 frame's base (which is the SP from the previous frame), or set
1071 that base to "NULL". */
1072 base = info->prev_sp;
1073 if (base == 0)
1074 return;
1075
1076 id = frame_id_build (base, func);
1077 (*this_id) = id;
1078 }
1079
1080 static struct value *
1081 avr_frame_prev_register (struct frame_info *this_frame,
1082 void **this_prologue_cache, int regnum)
1083 {
1084 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1085 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1086 struct avr_unwind_cache *info
1087 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1088
1089 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1090 {
1091 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1092 {
1093 /* Reading the return PC from the PC register is slightly
1094 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1095 but in reality, only two bytes (3 in upcoming mega256) are
1096 stored on the stack.
1097
1098 Also, note that the value on the stack is an addr to a word
1099 not a byte, so we will need to multiply it by two at some
1100 point.
1101
1102 And to confuse matters even more, the return address stored
1103 on the stack is in big endian byte order, even though most
1104 everything else about the avr is little endian. Ick! */
1105 ULONGEST pc;
1106 int i;
1107 unsigned char buf[3];
1108 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1110
1111 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1112 buf, tdep->call_length);
1113
1114 /* Extract the PC read from memory as a big-endian. */
1115 pc = 0;
1116 for (i = 0; i < tdep->call_length; i++)
1117 pc = (pc << 8) | buf[i];
1118
1119 if (regnum == AVR_PC_REGNUM)
1120 pc <<= 1;
1121
1122 return frame_unwind_got_constant (this_frame, regnum, pc);
1123 }
1124
1125 return frame_unwind_got_optimized (this_frame, regnum);
1126 }
1127
1128 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1129 }
1130
1131 static const struct frame_unwind avr_frame_unwind = {
1132 NORMAL_FRAME,
1133 default_frame_unwind_stop_reason,
1134 avr_frame_this_id,
1135 avr_frame_prev_register,
1136 NULL,
1137 default_frame_sniffer
1138 };
1139
1140 static CORE_ADDR
1141 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1142 {
1143 struct avr_unwind_cache *info
1144 = avr_frame_unwind_cache (this_frame, this_cache);
1145
1146 return info->base;
1147 }
1148
1149 static const struct frame_base avr_frame_base = {
1150 &avr_frame_unwind,
1151 avr_frame_base_address,
1152 avr_frame_base_address,
1153 avr_frame_base_address
1154 };
1155
1156 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1157 frame. The frame ID's base needs to match the TOS value saved by
1158 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1159
1160 static struct frame_id
1161 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1162 {
1163 ULONGEST base;
1164
1165 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1166 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1167 }
1168
1169 /* When arguments must be pushed onto the stack, they go on in reverse
1170 order. The below implements a FILO (stack) to do this. */
1171
1172 struct stack_item
1173 {
1174 int len;
1175 struct stack_item *prev;
1176 void *data;
1177 };
1178
1179 static struct stack_item *
1180 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1181 {
1182 struct stack_item *si;
1183 si = xmalloc (sizeof (struct stack_item));
1184 si->data = xmalloc (len);
1185 si->len = len;
1186 si->prev = prev;
1187 memcpy (si->data, contents, len);
1188 return si;
1189 }
1190
1191 static struct stack_item *pop_stack_item (struct stack_item *si);
1192 static struct stack_item *
1193 pop_stack_item (struct stack_item *si)
1194 {
1195 struct stack_item *dead = si;
1196 si = si->prev;
1197 xfree (dead->data);
1198 xfree (dead);
1199 return si;
1200 }
1201
1202 /* Setup the function arguments for calling a function in the inferior.
1203
1204 On the AVR architecture, there are 18 registers (R25 to R8) which are
1205 dedicated for passing function arguments. Up to the first 18 arguments
1206 (depending on size) may go into these registers. The rest go on the stack.
1207
1208 All arguments are aligned to start in even-numbered registers (odd-sized
1209 arguments, including char, have one free register above them). For example,
1210 an int in arg1 and a char in arg2 would be passed as such:
1211
1212 arg1 -> r25:r24
1213 arg2 -> r22
1214
1215 Arguments that are larger than 2 bytes will be split between two or more
1216 registers as available, but will NOT be split between a register and the
1217 stack. Arguments that go onto the stack are pushed last arg first (this is
1218 similar to the d10v). */
1219
1220 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1221 inaccurate.
1222
1223 An exceptional case exists for struct arguments (and possibly other
1224 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1225 not a multiple of WORDSIZE bytes. In this case the argument is never split
1226 between the registers and the stack, but instead is copied in its entirety
1227 onto the stack, AND also copied into as many registers as there is room
1228 for. In other words, space in registers permitting, two copies of the same
1229 argument are passed in. As far as I can tell, only the one on the stack is
1230 used, although that may be a function of the level of compiler
1231 optimization. I suspect this is a compiler bug. Arguments of these odd
1232 sizes are left-justified within the word (as opposed to arguments smaller
1233 than WORDSIZE bytes, which are right-justified).
1234
1235 If the function is to return an aggregate type such as a struct, the caller
1236 must allocate space into which the callee will copy the return value. In
1237 this case, a pointer to the return value location is passed into the callee
1238 in register R0, which displaces one of the other arguments passed in via
1239 registers R0 to R2. */
1240
1241 static CORE_ADDR
1242 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1243 struct regcache *regcache, CORE_ADDR bp_addr,
1244 int nargs, struct value **args, CORE_ADDR sp,
1245 int struct_return, CORE_ADDR struct_addr)
1246 {
1247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1248 int i;
1249 unsigned char buf[3];
1250 int call_length = gdbarch_tdep (gdbarch)->call_length;
1251 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1252 int regnum = AVR_ARGN_REGNUM;
1253 struct stack_item *si = NULL;
1254
1255 if (struct_return)
1256 {
1257 regcache_cooked_write_unsigned
1258 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1259 regcache_cooked_write_unsigned
1260 (regcache, regnum--, struct_addr & 0xff);
1261 /* SP being post decremented, we need to reserve one byte so that the
1262 return address won't overwrite the result (or vice-versa). */
1263 if (sp == struct_addr)
1264 sp--;
1265 }
1266
1267 for (i = 0; i < nargs; i++)
1268 {
1269 int last_regnum;
1270 int j;
1271 struct value *arg = args[i];
1272 struct type *type = check_typedef (value_type (arg));
1273 const bfd_byte *contents = value_contents (arg);
1274 int len = TYPE_LENGTH (type);
1275
1276 /* Calculate the potential last register needed. */
1277 last_regnum = regnum - (len + (len & 1));
1278
1279 /* If there are registers available, use them. Once we start putting
1280 stuff on the stack, all subsequent args go on stack. */
1281 if ((si == NULL) && (last_regnum >= 8))
1282 {
1283 ULONGEST val;
1284
1285 /* Skip a register for odd length args. */
1286 if (len & 1)
1287 regnum--;
1288
1289 val = extract_unsigned_integer (contents, len, byte_order);
1290 for (j = 0; j < len; j++)
1291 regcache_cooked_write_unsigned
1292 (regcache, regnum--, val >> (8 * (len - j - 1)));
1293 }
1294 /* No registers available, push the args onto the stack. */
1295 else
1296 {
1297 /* From here on, we don't care about regnum. */
1298 si = push_stack_item (si, contents, len);
1299 }
1300 }
1301
1302 /* Push args onto the stack. */
1303 while (si)
1304 {
1305 sp -= si->len;
1306 /* Add 1 to sp here to account for post decr nature of pushes. */
1307 write_memory (sp + 1, si->data, si->len);
1308 si = pop_stack_item (si);
1309 }
1310
1311 /* Set the return address. For the avr, the return address is the BP_ADDR.
1312 Need to push the return address onto the stack noting that it needs to be
1313 in big-endian order on the stack. */
1314 for (i = 1; i <= call_length; i++)
1315 {
1316 buf[call_length - i] = return_pc & 0xff;
1317 return_pc >>= 8;
1318 }
1319
1320 sp -= call_length;
1321 /* Use 'sp + 1' since pushes are post decr ops. */
1322 write_memory (sp + 1, buf, call_length);
1323
1324 /* Finally, update the SP register. */
1325 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1326 avr_convert_saddr_to_raw (sp));
1327
1328 /* Return SP value for the dummy frame, where the return address hasn't been
1329 pushed. */
1330 return sp + call_length;
1331 }
1332
1333 /* Unfortunately dwarf2 register for SP is 32. */
1334
1335 static int
1336 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1337 {
1338 if (reg >= 0 && reg < 32)
1339 return reg;
1340 if (reg == 32)
1341 return AVR_SP_REGNUM;
1342
1343 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1344
1345 return -1;
1346 }
1347
1348 /* Initialize the gdbarch structure for the AVR's. */
1349
1350 static struct gdbarch *
1351 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1352 {
1353 struct gdbarch *gdbarch;
1354 struct gdbarch_tdep *tdep;
1355 struct gdbarch_list *best_arch;
1356 int call_length;
1357
1358 /* Avr-6 call instructions save 3 bytes. */
1359 switch (info.bfd_arch_info->mach)
1360 {
1361 case bfd_mach_avr1:
1362 case bfd_mach_avr2:
1363 case bfd_mach_avr3:
1364 case bfd_mach_avr4:
1365 case bfd_mach_avr5:
1366 default:
1367 call_length = 2;
1368 break;
1369 case bfd_mach_avr6:
1370 call_length = 3;
1371 break;
1372 }
1373
1374 /* If there is already a candidate, use it. */
1375 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1376 best_arch != NULL;
1377 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1378 {
1379 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1380 return best_arch->gdbarch;
1381 }
1382
1383 /* None found, create a new architecture from the information provided. */
1384 tdep = XMALLOC (struct gdbarch_tdep);
1385 gdbarch = gdbarch_alloc (&info, tdep);
1386
1387 tdep->call_length = call_length;
1388
1389 /* Create a type for PC. We can't use builtin types here, as they may not
1390 be defined. */
1391 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1392 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1393 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1394 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1395 TYPE_UNSIGNED (tdep->pc_type) = 1;
1396
1397 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1398 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1399 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1400 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1401 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1402 set_gdbarch_addr_bit (gdbarch, 32);
1403
1404 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1405 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1406 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1407
1408 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1409 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1410 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1411
1412 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1413 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1414
1415 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1416
1417 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1418 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1419
1420 set_gdbarch_register_name (gdbarch, avr_register_name);
1421 set_gdbarch_register_type (gdbarch, avr_register_type);
1422
1423 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1424 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1425 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1426
1427 set_gdbarch_return_value (gdbarch, avr_return_value);
1428 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1429
1430 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1431
1432 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1433
1434 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1435 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1436 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1437
1438 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1439 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1440
1441 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1442
1443 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1444 frame_base_set_default (gdbarch, &avr_frame_base);
1445
1446 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1447
1448 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1449 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1450
1451 return gdbarch;
1452 }
1453
1454 /* Send a query request to the avr remote target asking for values of the io
1455 registers. If args parameter is not NULL, then the user has requested info
1456 on a specific io register [This still needs implemented and is ignored for
1457 now]. The query string should be one of these forms:
1458
1459 "Ravr.io_reg" -> reply is "NN" number of io registers
1460
1461 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1462 registers to be read. The reply should be "<NAME>,VV;" for each io register
1463 where, <NAME> is a string, and VV is the hex value of the register.
1464
1465 All io registers are 8-bit. */
1466
1467 static void
1468 avr_io_reg_read_command (char *args, int from_tty)
1469 {
1470 LONGEST bufsiz = 0;
1471 gdb_byte *buf;
1472 char query[400];
1473 char *p;
1474 unsigned int nreg = 0;
1475 unsigned int val;
1476 int i, j, k, step;
1477
1478 /* Find out how many io registers the target has. */
1479 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1480 "avr.io_reg", &buf);
1481
1482 if (bufsiz <= 0)
1483 {
1484 fprintf_unfiltered (gdb_stderr,
1485 _("ERR: info io_registers NOT supported "
1486 "by current target\n"));
1487 return;
1488 }
1489
1490 if (sscanf (buf, "%x", &nreg) != 1)
1491 {
1492 fprintf_unfiltered (gdb_stderr,
1493 _("Error fetching number of io registers\n"));
1494 xfree (buf);
1495 return;
1496 }
1497
1498 xfree (buf);
1499
1500 reinitialize_more_filter ();
1501
1502 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1503
1504 /* only fetch up to 8 registers at a time to keep the buffer small */
1505 step = 8;
1506
1507 for (i = 0; i < nreg; i += step)
1508 {
1509 /* how many registers this round? */
1510 j = step;
1511 if ((i+j) >= nreg)
1512 j = nreg - i; /* last block is less than 8 registers */
1513
1514 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1515 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1516 query, &buf);
1517
1518 p = buf;
1519 for (k = i; k < (i + j); k++)
1520 {
1521 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1522 {
1523 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1524 while ((*p != ';') && (*p != '\0'))
1525 p++;
1526 p++; /* skip over ';' */
1527 if (*p == '\0')
1528 break;
1529 }
1530 }
1531
1532 xfree (buf);
1533 }
1534 }
1535
1536 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1537
1538 void
1539 _initialize_avr_tdep (void)
1540 {
1541 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1542
1543 /* Add a new command to allow the user to query the avr remote target for
1544 the values of the io space registers in a saner way than just using
1545 `x/NNNb ADDR`. */
1546
1547 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1548 io_registers' to signify it is not available on other platforms. */
1549
1550 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1551 _("query remote avr target for io space register values"),
1552 &infolist);
1553 }
This page took 0.104719 seconds and 5 git commands to generate.