remove gdb_string.h
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
21
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdbtypes.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include <string.h>
38 #include "dis-asm.h"
39
40 /* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
70
71 /* Constants: prefixed with AVR_ to avoid name space clashes */
72
73 enum
74 {
75 AVR_REG_W = 24,
76 AVR_REG_X = 26,
77 AVR_REG_Y = 28,
78 AVR_FP_REGNUM = 28,
79 AVR_REG_Z = 30,
80
81 AVR_SREG_REGNUM = 32,
82 AVR_SP_REGNUM = 33,
83 AVR_PC_REGNUM = 34,
84
85 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
86 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
87
88 /* Pseudo registers. */
89 AVR_PSEUDO_PC_REGNUM = 35,
90 AVR_NUM_PSEUDO_REGS = 1,
91
92 AVR_PC_REG_INDEX = 35, /* index into array of registers */
93
94 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
95
96 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
97 AVR_MAX_PUSHES = 18,
98
99 /* Number of the last pushed register. r17 for current avr-gcc */
100 AVR_LAST_PUSHED_REGNUM = 17,
101
102 AVR_ARG1_REGNUM = 24, /* Single byte argument */
103 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
104
105 AVR_RET1_REGNUM = 24, /* Single byte return value */
106 AVR_RETN_REGNUM = 25, /* Multi byte return value */
107
108 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
109 bits? Do these have to match the bfd vma values? It sure would make
110 things easier in the future if they didn't need to match.
111
112 Note: I chose these values so as to be consistent with bfd vma
113 addresses.
114
115 TRoth/2002-04-08: There is already a conflict with very large programs
116 in the mega128. The mega128 has 128K instruction bytes (64K words),
117 thus the Most Significant Bit is 0x10000 which gets masked off my
118 AVR_MEM_MASK.
119
120 The problem manifests itself when trying to set a breakpoint in a
121 function which resides in the upper half of the instruction space and
122 thus requires a 17-bit address.
123
124 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
125 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
126 but could be for some remote targets by just adding the correct offset
127 to the address and letting the remote target handle the low-level
128 details of actually accessing the eeprom. */
129
130 AVR_IMEM_START = 0x00000000, /* INSN memory */
131 AVR_SMEM_START = 0x00800000, /* SRAM memory */
132 #if 1
133 /* No eeprom mask defined */
134 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
135 #else
136 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
137 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
138 #endif
139 };
140
141 /* Prologue types:
142
143 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
144 causes the generation of the CALL type prologues). */
145
146 enum {
147 AVR_PROLOGUE_NONE, /* No prologue */
148 AVR_PROLOGUE_NORMAL,
149 AVR_PROLOGUE_CALL, /* -mcall-prologues */
150 AVR_PROLOGUE_MAIN,
151 AVR_PROLOGUE_INTR, /* interrupt handler */
152 AVR_PROLOGUE_SIG, /* signal handler */
153 };
154
155 /* Any function with a frame looks like this
156 ....... <-SP POINTS HERE
157 LOCALS1 <-FP POINTS HERE
158 LOCALS0
159 SAVED FP
160 SAVED R3
161 SAVED R2
162 RET PC
163 FIRST ARG
164 SECOND ARG */
165
166 struct avr_unwind_cache
167 {
168 /* The previous frame's inner most stack address. Used as this
169 frame ID's stack_addr. */
170 CORE_ADDR prev_sp;
171 /* The frame's base, optionally used by the high-level debug info. */
172 CORE_ADDR base;
173 int size;
174 int prologue_type;
175 /* Table indicating the location of each and every register. */
176 struct trad_frame_saved_reg *saved_regs;
177 };
178
179 struct gdbarch_tdep
180 {
181 /* Number of bytes stored to the stack by call instructions.
182 2 bytes for avr1-5, 3 bytes for avr6. */
183 int call_length;
184
185 /* Type for void. */
186 struct type *void_type;
187 /* Type for a function returning void. */
188 struct type *func_void_type;
189 /* Type for a pointer to a function. Used for the type of PC. */
190 struct type *pc_type;
191 };
192
193 /* Lookup the name of a register given it's number. */
194
195 static const char *
196 avr_register_name (struct gdbarch *gdbarch, int regnum)
197 {
198 static const char * const register_names[] = {
199 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
200 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
201 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
202 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
203 "SREG", "SP", "PC2",
204 "pc"
205 };
206 if (regnum < 0)
207 return NULL;
208 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
209 return NULL;
210 return register_names[regnum];
211 }
212
213 /* Return the GDB type object for the "standard" data type
214 of data in register N. */
215
216 static struct type *
217 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
218 {
219 if (reg_nr == AVR_PC_REGNUM)
220 return builtin_type (gdbarch)->builtin_uint32;
221 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
222 return gdbarch_tdep (gdbarch)->pc_type;
223 if (reg_nr == AVR_SP_REGNUM)
224 return builtin_type (gdbarch)->builtin_data_ptr;
225 return builtin_type (gdbarch)->builtin_uint8;
226 }
227
228 /* Instruction address checks and convertions. */
229
230 static CORE_ADDR
231 avr_make_iaddr (CORE_ADDR x)
232 {
233 return ((x) | AVR_IMEM_START);
234 }
235
236 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
237 devices are already up to 128KBytes of flash space.
238
239 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
240
241 static CORE_ADDR
242 avr_convert_iaddr_to_raw (CORE_ADDR x)
243 {
244 return ((x) & 0xffffffff);
245 }
246
247 /* SRAM address checks and convertions. */
248
249 static CORE_ADDR
250 avr_make_saddr (CORE_ADDR x)
251 {
252 /* Return 0 for NULL. */
253 if (x == 0)
254 return 0;
255
256 return ((x) | AVR_SMEM_START);
257 }
258
259 static CORE_ADDR
260 avr_convert_saddr_to_raw (CORE_ADDR x)
261 {
262 return ((x) & 0xffffffff);
263 }
264
265 /* EEPROM address checks and convertions. I don't know if these will ever
266 actually be used, but I've added them just the same. TRoth */
267
268 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
269 programs in the mega128. */
270
271 /* static CORE_ADDR */
272 /* avr_make_eaddr (CORE_ADDR x) */
273 /* { */
274 /* return ((x) | AVR_EMEM_START); */
275 /* } */
276
277 /* static int */
278 /* avr_eaddr_p (CORE_ADDR x) */
279 /* { */
280 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
281 /* } */
282
283 /* static CORE_ADDR */
284 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
285 /* { */
286 /* return ((x) & 0xffffffff); */
287 /* } */
288
289 /* Convert from address to pointer and vice-versa. */
290
291 static void
292 avr_address_to_pointer (struct gdbarch *gdbarch,
293 struct type *type, gdb_byte *buf, CORE_ADDR addr)
294 {
295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
296
297 /* Is it a code address? */
298 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
299 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
300 {
301 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
302 avr_convert_iaddr_to_raw (addr >> 1));
303 }
304 else
305 {
306 /* Strip off any upper segment bits. */
307 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
308 avr_convert_saddr_to_raw (addr));
309 }
310 }
311
312 static CORE_ADDR
313 avr_pointer_to_address (struct gdbarch *gdbarch,
314 struct type *type, const gdb_byte *buf)
315 {
316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
317 CORE_ADDR addr
318 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
319
320 /* Is it a code address? */
321 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
322 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
323 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
324 return avr_make_iaddr (addr << 1);
325 else
326 return avr_make_saddr (addr);
327 }
328
329 static CORE_ADDR
330 avr_integer_to_address (struct gdbarch *gdbarch,
331 struct type *type, const gdb_byte *buf)
332 {
333 ULONGEST addr = unpack_long (type, buf);
334
335 return avr_make_saddr (addr);
336 }
337
338 static CORE_ADDR
339 avr_read_pc (struct regcache *regcache)
340 {
341 ULONGEST pc;
342 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
343 return avr_make_iaddr (pc);
344 }
345
346 static void
347 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
348 {
349 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
350 avr_convert_iaddr_to_raw (val));
351 }
352
353 static enum register_status
354 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
355 int regnum, gdb_byte *buf)
356 {
357 ULONGEST val;
358 enum register_status status;
359
360 switch (regnum)
361 {
362 case AVR_PSEUDO_PC_REGNUM:
363 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
364 if (status != REG_VALID)
365 return status;
366 val >>= 1;
367 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
368 return status;
369 default:
370 internal_error (__FILE__, __LINE__, _("invalid regnum"));
371 }
372 }
373
374 static void
375 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
376 int regnum, const gdb_byte *buf)
377 {
378 ULONGEST val;
379
380 switch (regnum)
381 {
382 case AVR_PSEUDO_PC_REGNUM:
383 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
384 val <<= 1;
385 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
386 break;
387 default:
388 internal_error (__FILE__, __LINE__, _("invalid regnum"));
389 }
390 }
391
392 /* Function: avr_scan_prologue
393
394 This function decodes an AVR function prologue to determine:
395 1) the size of the stack frame
396 2) which registers are saved on it
397 3) the offsets of saved regs
398 This information is stored in the avr_unwind_cache structure.
399
400 Some devices lack the sbiw instruction, so on those replace this:
401 sbiw r28, XX
402 with this:
403 subi r28,lo8(XX)
404 sbci r29,hi8(XX)
405
406 A typical AVR function prologue with a frame pointer might look like this:
407 push rXX ; saved regs
408 ...
409 push r28
410 push r29
411 in r28,__SP_L__
412 in r29,__SP_H__
413 sbiw r28,<LOCALS_SIZE>
414 in __tmp_reg__,__SREG__
415 cli
416 out __SP_H__,r29
417 out __SREG__,__tmp_reg__
418 out __SP_L__,r28
419
420 A typical AVR function prologue without a frame pointer might look like
421 this:
422 push rXX ; saved regs
423 ...
424
425 A main function prologue looks like this:
426 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
427 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
428 out __SP_H__,r29
429 out __SP_L__,r28
430
431 A signal handler prologue looks like this:
432 push __zero_reg__
433 push __tmp_reg__
434 in __tmp_reg__, __SREG__
435 push __tmp_reg__
436 clr __zero_reg__
437 push rXX ; save registers r18:r27, r30:r31
438 ...
439 push r28 ; save frame pointer
440 push r29
441 in r28, __SP_L__
442 in r29, __SP_H__
443 sbiw r28, <LOCALS_SIZE>
444 out __SP_H__, r29
445 out __SP_L__, r28
446
447 A interrupt handler prologue looks like this:
448 sei
449 push __zero_reg__
450 push __tmp_reg__
451 in __tmp_reg__, __SREG__
452 push __tmp_reg__
453 clr __zero_reg__
454 push rXX ; save registers r18:r27, r30:r31
455 ...
456 push r28 ; save frame pointer
457 push r29
458 in r28, __SP_L__
459 in r29, __SP_H__
460 sbiw r28, <LOCALS_SIZE>
461 cli
462 out __SP_H__, r29
463 sei
464 out __SP_L__, r28
465
466 A `-mcall-prologues' prologue looks like this (Note that the megas use a
467 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
468 32 bit insn and rjmp is a 16 bit insn):
469 ldi r26,lo8(<LOCALS_SIZE>)
470 ldi r27,hi8(<LOCALS_SIZE>)
471 ldi r30,pm_lo8(.L_foo_body)
472 ldi r31,pm_hi8(.L_foo_body)
473 rjmp __prologue_saves__+RRR
474 .L_foo_body: */
475
476 /* Not really part of a prologue, but still need to scan for it, is when a
477 function prologue moves values passed via registers as arguments to new
478 registers. In this case, all local variables live in registers, so there
479 may be some register saves. This is what it looks like:
480 movw rMM, rNN
481 ...
482
483 There could be multiple movw's. If the target doesn't have a movw insn, it
484 will use two mov insns. This could be done after any of the above prologue
485 types. */
486
487 static CORE_ADDR
488 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
489 struct avr_unwind_cache *info)
490 {
491 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
492 int i;
493 unsigned short insn;
494 int scan_stage = 0;
495 struct minimal_symbol *msymbol;
496 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
497 int vpc = 0;
498 int len;
499
500 len = pc_end - pc_beg;
501 if (len > AVR_MAX_PROLOGUE_SIZE)
502 len = AVR_MAX_PROLOGUE_SIZE;
503
504 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
505 reading in the bytes of the prologue. The problem is that the figuring
506 out where the end of the prologue is is a bit difficult. The old code
507 tried to do that, but failed quite often. */
508 read_memory (pc_beg, prologue, len);
509
510 /* Scanning main()'s prologue
511 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
512 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
513 out __SP_H__,r29
514 out __SP_L__,r28 */
515
516 if (len >= 4)
517 {
518 CORE_ADDR locals;
519 static const unsigned char img[] = {
520 0xde, 0xbf, /* out __SP_H__,r29 */
521 0xcd, 0xbf /* out __SP_L__,r28 */
522 };
523
524 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
525 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
526 if ((insn & 0xf0f0) == 0xe0c0)
527 {
528 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
529 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
530 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
531 if ((insn & 0xf0f0) == 0xe0d0)
532 {
533 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
534 if (vpc + 4 + sizeof (img) < len
535 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
536 {
537 info->prologue_type = AVR_PROLOGUE_MAIN;
538 info->base = locals;
539 return pc_beg + 4;
540 }
541 }
542 }
543 }
544
545 /* Scanning `-mcall-prologues' prologue
546 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
547
548 while (1) /* Using a while to avoid many goto's */
549 {
550 int loc_size;
551 int body_addr;
552 unsigned num_pushes;
553 int pc_offset = 0;
554
555 /* At least the fifth instruction must have been executed to
556 modify frame shape. */
557 if (len < 10)
558 break;
559
560 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
561 /* ldi r26,<LOCALS_SIZE> */
562 if ((insn & 0xf0f0) != 0xe0a0)
563 break;
564 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
565 pc_offset += 2;
566
567 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
568 /* ldi r27,<LOCALS_SIZE> / 256 */
569 if ((insn & 0xf0f0) != 0xe0b0)
570 break;
571 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
572 pc_offset += 2;
573
574 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
575 /* ldi r30,pm_lo8(.L_foo_body) */
576 if ((insn & 0xf0f0) != 0xe0e0)
577 break;
578 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
579 pc_offset += 2;
580
581 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
582 /* ldi r31,pm_hi8(.L_foo_body) */
583 if ((insn & 0xf0f0) != 0xe0f0)
584 break;
585 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
586 pc_offset += 2;
587
588 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
589 if (!msymbol)
590 break;
591
592 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
593 /* rjmp __prologue_saves__+RRR */
594 if ((insn & 0xf000) == 0xc000)
595 {
596 /* Extract PC relative offset from RJMP */
597 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
598 /* Convert offset to byte addressable mode */
599 i *= 2;
600 /* Destination address */
601 i += pc_beg + 10;
602
603 if (body_addr != (pc_beg + 10)/2)
604 break;
605
606 pc_offset += 2;
607 }
608 else if ((insn & 0xfe0e) == 0x940c)
609 {
610 /* Extract absolute PC address from JMP */
611 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
612 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
613 & 0xffff));
614 /* Convert address to byte addressable mode */
615 i *= 2;
616
617 if (body_addr != (pc_beg + 12)/2)
618 break;
619
620 pc_offset += 4;
621 }
622 else
623 break;
624
625 /* Resolve offset (in words) from __prologue_saves__ symbol.
626 Which is a pushes count in `-mcall-prologues' mode */
627 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
628
629 if (num_pushes > AVR_MAX_PUSHES)
630 {
631 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
632 num_pushes);
633 num_pushes = 0;
634 }
635
636 if (num_pushes)
637 {
638 int from;
639
640 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
641 if (num_pushes >= 2)
642 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
643
644 i = 0;
645 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
646 from <= AVR_LAST_PUSHED_REGNUM; ++from)
647 info->saved_regs [from].addr = ++i;
648 }
649 info->size = loc_size + num_pushes;
650 info->prologue_type = AVR_PROLOGUE_CALL;
651
652 return pc_beg + pc_offset;
653 }
654
655 /* Scan for the beginning of the prologue for an interrupt or signal
656 function. Note that we have to set the prologue type here since the
657 third stage of the prologue may not be present (e.g. no saved registered
658 or changing of the SP register). */
659
660 if (1)
661 {
662 static const unsigned char img[] = {
663 0x78, 0x94, /* sei */
664 0x1f, 0x92, /* push r1 */
665 0x0f, 0x92, /* push r0 */
666 0x0f, 0xb6, /* in r0,0x3f SREG */
667 0x0f, 0x92, /* push r0 */
668 0x11, 0x24 /* clr r1 */
669 };
670 if (len >= sizeof (img)
671 && memcmp (prologue, img, sizeof (img)) == 0)
672 {
673 info->prologue_type = AVR_PROLOGUE_INTR;
674 vpc += sizeof (img);
675 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
676 info->saved_regs[0].addr = 2;
677 info->saved_regs[1].addr = 1;
678 info->size += 3;
679 }
680 else if (len >= sizeof (img) - 2
681 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
682 {
683 info->prologue_type = AVR_PROLOGUE_SIG;
684 vpc += sizeof (img) - 2;
685 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
686 info->saved_regs[0].addr = 2;
687 info->saved_regs[1].addr = 1;
688 info->size += 2;
689 }
690 }
691
692 /* First stage of the prologue scanning.
693 Scan pushes (saved registers) */
694
695 for (; vpc < len; vpc += 2)
696 {
697 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
698 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
699 {
700 /* Bits 4-9 contain a mask for registers R0-R32. */
701 int regno = (insn & 0x1f0) >> 4;
702 info->size++;
703 info->saved_regs[regno].addr = info->size;
704 scan_stage = 1;
705 }
706 else
707 break;
708 }
709
710 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
711
712 /* Handle static small stack allocation using rcall or push. */
713
714 while (scan_stage == 1 && vpc < len)
715 {
716 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
717 if (insn == 0xd000) /* rcall .+0 */
718 {
719 info->size += gdbarch_tdep (gdbarch)->call_length;
720 vpc += 2;
721 }
722 else if (insn == 0x920f) /* push r0 */
723 {
724 info->size += 1;
725 vpc += 2;
726 }
727 else
728 break;
729 }
730
731 /* Second stage of the prologue scanning.
732 Scan:
733 in r28,__SP_L__
734 in r29,__SP_H__ */
735
736 if (scan_stage == 1 && vpc < len)
737 {
738 static const unsigned char img[] = {
739 0xcd, 0xb7, /* in r28,__SP_L__ */
740 0xde, 0xb7 /* in r29,__SP_H__ */
741 };
742
743 if (vpc + sizeof (img) < len
744 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
745 {
746 vpc += 4;
747 scan_stage = 2;
748 }
749 }
750
751 /* Third stage of the prologue scanning. (Really two stages).
752 Scan for:
753 sbiw r28,XX or subi r28,lo8(XX)
754 sbci r29,hi8(XX)
755 in __tmp_reg__,__SREG__
756 cli
757 out __SP_H__,r29
758 out __SREG__,__tmp_reg__
759 out __SP_L__,r28 */
760
761 if (scan_stage == 2 && vpc < len)
762 {
763 int locals_size = 0;
764 static const unsigned char img[] = {
765 0x0f, 0xb6, /* in r0,0x3f */
766 0xf8, 0x94, /* cli */
767 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
768 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
769 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
770 };
771 static const unsigned char img_sig[] = {
772 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
773 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
774 };
775 static const unsigned char img_int[] = {
776 0xf8, 0x94, /* cli */
777 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
778 0x78, 0x94, /* sei */
779 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
780 };
781
782 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
783 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
784 {
785 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
786 vpc += 2;
787 }
788 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
789 {
790 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
791 vpc += 2;
792 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
793 vpc += 2;
794 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
795 }
796 else
797 return pc_beg + vpc;
798
799 /* Scan the last part of the prologue. May not be present for interrupt
800 or signal handler functions, which is why we set the prologue type
801 when we saw the beginning of the prologue previously. */
802
803 if (vpc + sizeof (img_sig) < len
804 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
805 {
806 vpc += sizeof (img_sig);
807 }
808 else if (vpc + sizeof (img_int) < len
809 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
810 {
811 vpc += sizeof (img_int);
812 }
813 if (vpc + sizeof (img) < len
814 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
815 {
816 info->prologue_type = AVR_PROLOGUE_NORMAL;
817 vpc += sizeof (img);
818 }
819
820 info->size += locals_size;
821
822 /* Fall through. */
823 }
824
825 /* If we got this far, we could not scan the prologue, so just return the pc
826 of the frame plus an adjustment for argument move insns. */
827
828 for (; vpc < len; vpc += 2)
829 {
830 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
831 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
832 continue;
833 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
834 continue;
835 else
836 break;
837 }
838
839 return pc_beg + vpc;
840 }
841
842 static CORE_ADDR
843 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
844 {
845 CORE_ADDR func_addr, func_end;
846 CORE_ADDR post_prologue_pc;
847
848 /* See what the symbol table says */
849
850 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
851 return pc;
852
853 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
854 if (post_prologue_pc != 0)
855 return max (pc, post_prologue_pc);
856
857 {
858 CORE_ADDR prologue_end = pc;
859 struct avr_unwind_cache info = {0};
860 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
861
862 info.saved_regs = saved_regs;
863
864 /* Need to run the prologue scanner to figure out if the function has a
865 prologue and possibly skip over moving arguments passed via registers
866 to other registers. */
867
868 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
869
870 if (info.prologue_type != AVR_PROLOGUE_NONE)
871 return prologue_end;
872 }
873
874 /* Either we didn't find the start of this function (nothing we can do),
875 or there's no line info, or the line after the prologue is after
876 the end of the function (there probably isn't a prologue). */
877
878 return pc;
879 }
880
881 /* Not all avr devices support the BREAK insn. Those that don't should treat
882 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
883 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
884
885 static const unsigned char *
886 avr_breakpoint_from_pc (struct gdbarch *gdbarch,
887 CORE_ADDR *pcptr, int *lenptr)
888 {
889 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
890 *lenptr = sizeof (avr_break_insn);
891 return avr_break_insn;
892 }
893
894 /* Determine, for architecture GDBARCH, how a return value of TYPE
895 should be returned. If it is supposed to be returned in registers,
896 and READBUF is non-zero, read the appropriate value from REGCACHE,
897 and copy it into READBUF. If WRITEBUF is non-zero, write the value
898 from WRITEBUF into REGCACHE. */
899
900 static enum return_value_convention
901 avr_return_value (struct gdbarch *gdbarch, struct value *function,
902 struct type *valtype, struct regcache *regcache,
903 gdb_byte *readbuf, const gdb_byte *writebuf)
904 {
905 int i;
906 /* Single byte are returned in r24.
907 Otherwise, the MSB of the return value is always in r25, calculate which
908 register holds the LSB. */
909 int lsb_reg;
910
911 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
912 || TYPE_CODE (valtype) == TYPE_CODE_UNION
913 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
914 && TYPE_LENGTH (valtype) > 8)
915 return RETURN_VALUE_STRUCT_CONVENTION;
916
917 if (TYPE_LENGTH (valtype) <= 2)
918 lsb_reg = 24;
919 else if (TYPE_LENGTH (valtype) <= 4)
920 lsb_reg = 22;
921 else if (TYPE_LENGTH (valtype) <= 8)
922 lsb_reg = 18;
923 else
924 gdb_assert_not_reached ("unexpected type length");
925
926 if (writebuf != NULL)
927 {
928 for (i = 0; i < TYPE_LENGTH (valtype); i++)
929 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
930 }
931
932 if (readbuf != NULL)
933 {
934 for (i = 0; i < TYPE_LENGTH (valtype); i++)
935 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
936 }
937
938 return RETURN_VALUE_REGISTER_CONVENTION;
939 }
940
941
942 /* Put here the code to store, into fi->saved_regs, the addresses of
943 the saved registers of frame described by FRAME_INFO. This
944 includes special registers such as pc and fp saved in special ways
945 in the stack frame. sp is even more special: the address we return
946 for it IS the sp for the next frame. */
947
948 static struct avr_unwind_cache *
949 avr_frame_unwind_cache (struct frame_info *this_frame,
950 void **this_prologue_cache)
951 {
952 CORE_ADDR start_pc, current_pc;
953 ULONGEST prev_sp;
954 ULONGEST this_base;
955 struct avr_unwind_cache *info;
956 struct gdbarch *gdbarch;
957 struct gdbarch_tdep *tdep;
958 int i;
959
960 if (*this_prologue_cache)
961 return *this_prologue_cache;
962
963 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
964 *this_prologue_cache = info;
965 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
966
967 info->size = 0;
968 info->prologue_type = AVR_PROLOGUE_NONE;
969
970 start_pc = get_frame_func (this_frame);
971 current_pc = get_frame_pc (this_frame);
972 if ((start_pc > 0) && (start_pc <= current_pc))
973 avr_scan_prologue (get_frame_arch (this_frame),
974 start_pc, current_pc, info);
975
976 if ((info->prologue_type != AVR_PROLOGUE_NONE)
977 && (info->prologue_type != AVR_PROLOGUE_MAIN))
978 {
979 ULONGEST high_base; /* High byte of FP */
980
981 /* The SP was moved to the FP. This indicates that a new frame
982 was created. Get THIS frame's FP value by unwinding it from
983 the next frame. */
984 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
985 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
986 this_base += (high_base << 8);
987
988 /* The FP points at the last saved register. Adjust the FP back
989 to before the first saved register giving the SP. */
990 prev_sp = this_base + info->size;
991 }
992 else
993 {
994 /* Assume that the FP is this frame's SP but with that pushed
995 stack space added back. */
996 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
997 prev_sp = this_base + info->size;
998 }
999
1000 /* Add 1 here to adjust for the post-decrement nature of the push
1001 instruction.*/
1002 info->prev_sp = avr_make_saddr (prev_sp + 1);
1003 info->base = avr_make_saddr (this_base);
1004
1005 gdbarch = get_frame_arch (this_frame);
1006
1007 /* Adjust all the saved registers so that they contain addresses and not
1008 offsets. */
1009 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1010 if (info->saved_regs[i].addr > 0)
1011 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1012
1013 /* Except for the main and startup code, the return PC is always saved on
1014 the stack and is at the base of the frame. */
1015
1016 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1017 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1018
1019 /* The previous frame's SP needed to be computed. Save the computed
1020 value. */
1021 tdep = gdbarch_tdep (gdbarch);
1022 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1023 info->prev_sp - 1 + tdep->call_length);
1024
1025 return info;
1026 }
1027
1028 static CORE_ADDR
1029 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1030 {
1031 ULONGEST pc;
1032
1033 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1034
1035 return avr_make_iaddr (pc);
1036 }
1037
1038 static CORE_ADDR
1039 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1040 {
1041 ULONGEST sp;
1042
1043 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1044
1045 return avr_make_saddr (sp);
1046 }
1047
1048 /* Given a GDB frame, determine the address of the calling function's
1049 frame. This will be used to create a new GDB frame struct. */
1050
1051 static void
1052 avr_frame_this_id (struct frame_info *this_frame,
1053 void **this_prologue_cache,
1054 struct frame_id *this_id)
1055 {
1056 struct avr_unwind_cache *info
1057 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1058 CORE_ADDR base;
1059 CORE_ADDR func;
1060 struct frame_id id;
1061
1062 /* The FUNC is easy. */
1063 func = get_frame_func (this_frame);
1064
1065 /* Hopefully the prologue analysis either correctly determined the
1066 frame's base (which is the SP from the previous frame), or set
1067 that base to "NULL". */
1068 base = info->prev_sp;
1069 if (base == 0)
1070 return;
1071
1072 id = frame_id_build (base, func);
1073 (*this_id) = id;
1074 }
1075
1076 static struct value *
1077 avr_frame_prev_register (struct frame_info *this_frame,
1078 void **this_prologue_cache, int regnum)
1079 {
1080 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1081 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1082 struct avr_unwind_cache *info
1083 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1084
1085 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1086 {
1087 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1088 {
1089 /* Reading the return PC from the PC register is slightly
1090 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1091 but in reality, only two bytes (3 in upcoming mega256) are
1092 stored on the stack.
1093
1094 Also, note that the value on the stack is an addr to a word
1095 not a byte, so we will need to multiply it by two at some
1096 point.
1097
1098 And to confuse matters even more, the return address stored
1099 on the stack is in big endian byte order, even though most
1100 everything else about the avr is little endian. Ick! */
1101 ULONGEST pc;
1102 int i;
1103 gdb_byte buf[3];
1104 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1106
1107 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1108 buf, tdep->call_length);
1109
1110 /* Extract the PC read from memory as a big-endian. */
1111 pc = 0;
1112 for (i = 0; i < tdep->call_length; i++)
1113 pc = (pc << 8) | buf[i];
1114
1115 if (regnum == AVR_PC_REGNUM)
1116 pc <<= 1;
1117
1118 return frame_unwind_got_constant (this_frame, regnum, pc);
1119 }
1120
1121 return frame_unwind_got_optimized (this_frame, regnum);
1122 }
1123
1124 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1125 }
1126
1127 static const struct frame_unwind avr_frame_unwind = {
1128 NORMAL_FRAME,
1129 default_frame_unwind_stop_reason,
1130 avr_frame_this_id,
1131 avr_frame_prev_register,
1132 NULL,
1133 default_frame_sniffer
1134 };
1135
1136 static CORE_ADDR
1137 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1138 {
1139 struct avr_unwind_cache *info
1140 = avr_frame_unwind_cache (this_frame, this_cache);
1141
1142 return info->base;
1143 }
1144
1145 static const struct frame_base avr_frame_base = {
1146 &avr_frame_unwind,
1147 avr_frame_base_address,
1148 avr_frame_base_address,
1149 avr_frame_base_address
1150 };
1151
1152 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1153 frame. The frame ID's base needs to match the TOS value saved by
1154 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1155
1156 static struct frame_id
1157 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1158 {
1159 ULONGEST base;
1160
1161 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1162 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1163 }
1164
1165 /* When arguments must be pushed onto the stack, they go on in reverse
1166 order. The below implements a FILO (stack) to do this. */
1167
1168 struct stack_item
1169 {
1170 int len;
1171 struct stack_item *prev;
1172 void *data;
1173 };
1174
1175 static struct stack_item *
1176 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1177 {
1178 struct stack_item *si;
1179 si = xmalloc (sizeof (struct stack_item));
1180 si->data = xmalloc (len);
1181 si->len = len;
1182 si->prev = prev;
1183 memcpy (si->data, contents, len);
1184 return si;
1185 }
1186
1187 static struct stack_item *pop_stack_item (struct stack_item *si);
1188 static struct stack_item *
1189 pop_stack_item (struct stack_item *si)
1190 {
1191 struct stack_item *dead = si;
1192 si = si->prev;
1193 xfree (dead->data);
1194 xfree (dead);
1195 return si;
1196 }
1197
1198 /* Setup the function arguments for calling a function in the inferior.
1199
1200 On the AVR architecture, there are 18 registers (R25 to R8) which are
1201 dedicated for passing function arguments. Up to the first 18 arguments
1202 (depending on size) may go into these registers. The rest go on the stack.
1203
1204 All arguments are aligned to start in even-numbered registers (odd-sized
1205 arguments, including char, have one free register above them). For example,
1206 an int in arg1 and a char in arg2 would be passed as such:
1207
1208 arg1 -> r25:r24
1209 arg2 -> r22
1210
1211 Arguments that are larger than 2 bytes will be split between two or more
1212 registers as available, but will NOT be split between a register and the
1213 stack. Arguments that go onto the stack are pushed last arg first (this is
1214 similar to the d10v). */
1215
1216 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1217 inaccurate.
1218
1219 An exceptional case exists for struct arguments (and possibly other
1220 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1221 not a multiple of WORDSIZE bytes. In this case the argument is never split
1222 between the registers and the stack, but instead is copied in its entirety
1223 onto the stack, AND also copied into as many registers as there is room
1224 for. In other words, space in registers permitting, two copies of the same
1225 argument are passed in. As far as I can tell, only the one on the stack is
1226 used, although that may be a function of the level of compiler
1227 optimization. I suspect this is a compiler bug. Arguments of these odd
1228 sizes are left-justified within the word (as opposed to arguments smaller
1229 than WORDSIZE bytes, which are right-justified).
1230
1231 If the function is to return an aggregate type such as a struct, the caller
1232 must allocate space into which the callee will copy the return value. In
1233 this case, a pointer to the return value location is passed into the callee
1234 in register R0, which displaces one of the other arguments passed in via
1235 registers R0 to R2. */
1236
1237 static CORE_ADDR
1238 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1239 struct regcache *regcache, CORE_ADDR bp_addr,
1240 int nargs, struct value **args, CORE_ADDR sp,
1241 int struct_return, CORE_ADDR struct_addr)
1242 {
1243 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1244 int i;
1245 gdb_byte buf[3];
1246 int call_length = gdbarch_tdep (gdbarch)->call_length;
1247 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1248 int regnum = AVR_ARGN_REGNUM;
1249 struct stack_item *si = NULL;
1250
1251 if (struct_return)
1252 {
1253 regcache_cooked_write_unsigned
1254 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1255 regcache_cooked_write_unsigned
1256 (regcache, regnum--, struct_addr & 0xff);
1257 /* SP being post decremented, we need to reserve one byte so that the
1258 return address won't overwrite the result (or vice-versa). */
1259 if (sp == struct_addr)
1260 sp--;
1261 }
1262
1263 for (i = 0; i < nargs; i++)
1264 {
1265 int last_regnum;
1266 int j;
1267 struct value *arg = args[i];
1268 struct type *type = check_typedef (value_type (arg));
1269 const bfd_byte *contents = value_contents (arg);
1270 int len = TYPE_LENGTH (type);
1271
1272 /* Calculate the potential last register needed. */
1273 last_regnum = regnum - (len + (len & 1));
1274
1275 /* If there are registers available, use them. Once we start putting
1276 stuff on the stack, all subsequent args go on stack. */
1277 if ((si == NULL) && (last_regnum >= 8))
1278 {
1279 ULONGEST val;
1280
1281 /* Skip a register for odd length args. */
1282 if (len & 1)
1283 regnum--;
1284
1285 val = extract_unsigned_integer (contents, len, byte_order);
1286 for (j = 0; j < len; j++)
1287 regcache_cooked_write_unsigned
1288 (regcache, regnum--, val >> (8 * (len - j - 1)));
1289 }
1290 /* No registers available, push the args onto the stack. */
1291 else
1292 {
1293 /* From here on, we don't care about regnum. */
1294 si = push_stack_item (si, contents, len);
1295 }
1296 }
1297
1298 /* Push args onto the stack. */
1299 while (si)
1300 {
1301 sp -= si->len;
1302 /* Add 1 to sp here to account for post decr nature of pushes. */
1303 write_memory (sp + 1, si->data, si->len);
1304 si = pop_stack_item (si);
1305 }
1306
1307 /* Set the return address. For the avr, the return address is the BP_ADDR.
1308 Need to push the return address onto the stack noting that it needs to be
1309 in big-endian order on the stack. */
1310 for (i = 1; i <= call_length; i++)
1311 {
1312 buf[call_length - i] = return_pc & 0xff;
1313 return_pc >>= 8;
1314 }
1315
1316 sp -= call_length;
1317 /* Use 'sp + 1' since pushes are post decr ops. */
1318 write_memory (sp + 1, buf, call_length);
1319
1320 /* Finally, update the SP register. */
1321 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1322 avr_convert_saddr_to_raw (sp));
1323
1324 /* Return SP value for the dummy frame, where the return address hasn't been
1325 pushed. */
1326 return sp + call_length;
1327 }
1328
1329 /* Unfortunately dwarf2 register for SP is 32. */
1330
1331 static int
1332 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1333 {
1334 if (reg >= 0 && reg < 32)
1335 return reg;
1336 if (reg == 32)
1337 return AVR_SP_REGNUM;
1338
1339 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1340
1341 return -1;
1342 }
1343
1344 /* Initialize the gdbarch structure for the AVR's. */
1345
1346 static struct gdbarch *
1347 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1348 {
1349 struct gdbarch *gdbarch;
1350 struct gdbarch_tdep *tdep;
1351 struct gdbarch_list *best_arch;
1352 int call_length;
1353
1354 /* Avr-6 call instructions save 3 bytes. */
1355 switch (info.bfd_arch_info->mach)
1356 {
1357 case bfd_mach_avr1:
1358 case bfd_mach_avr2:
1359 case bfd_mach_avr3:
1360 case bfd_mach_avr4:
1361 case bfd_mach_avr5:
1362 default:
1363 call_length = 2;
1364 break;
1365 case bfd_mach_avr6:
1366 call_length = 3;
1367 break;
1368 }
1369
1370 /* If there is already a candidate, use it. */
1371 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1372 best_arch != NULL;
1373 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1374 {
1375 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1376 return best_arch->gdbarch;
1377 }
1378
1379 /* None found, create a new architecture from the information provided. */
1380 tdep = XMALLOC (struct gdbarch_tdep);
1381 gdbarch = gdbarch_alloc (&info, tdep);
1382
1383 tdep->call_length = call_length;
1384
1385 /* Create a type for PC. We can't use builtin types here, as they may not
1386 be defined. */
1387 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1388 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1389 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1390 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1391 TYPE_UNSIGNED (tdep->pc_type) = 1;
1392
1393 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1394 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1395 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1396 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1397 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1398 set_gdbarch_addr_bit (gdbarch, 32);
1399
1400 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1401 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1402 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1403
1404 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1405 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1406 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1407
1408 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1409 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1410
1411 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1412
1413 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1414 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1415
1416 set_gdbarch_register_name (gdbarch, avr_register_name);
1417 set_gdbarch_register_type (gdbarch, avr_register_type);
1418
1419 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1420 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1421 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1422
1423 set_gdbarch_return_value (gdbarch, avr_return_value);
1424 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1425
1426 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1427
1428 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1429
1430 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1431 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1432 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1433
1434 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1435 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1436
1437 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1438
1439 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1440 frame_base_set_default (gdbarch, &avr_frame_base);
1441
1442 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1443
1444 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1445 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1446
1447 return gdbarch;
1448 }
1449
1450 /* Send a query request to the avr remote target asking for values of the io
1451 registers. If args parameter is not NULL, then the user has requested info
1452 on a specific io register [This still needs implemented and is ignored for
1453 now]. The query string should be one of these forms:
1454
1455 "Ravr.io_reg" -> reply is "NN" number of io registers
1456
1457 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1458 registers to be read. The reply should be "<NAME>,VV;" for each io register
1459 where, <NAME> is a string, and VV is the hex value of the register.
1460
1461 All io registers are 8-bit. */
1462
1463 static void
1464 avr_io_reg_read_command (char *args, int from_tty)
1465 {
1466 LONGEST bufsiz = 0;
1467 gdb_byte *buf;
1468 const char *bufstr;
1469 char query[400];
1470 const char *p;
1471 unsigned int nreg = 0;
1472 unsigned int val;
1473 int i, j, k, step;
1474
1475 /* Find out how many io registers the target has. */
1476 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1477 "avr.io_reg", &buf);
1478 bufstr = (const char *) buf;
1479
1480 if (bufsiz <= 0)
1481 {
1482 fprintf_unfiltered (gdb_stderr,
1483 _("ERR: info io_registers NOT supported "
1484 "by current target\n"));
1485 return;
1486 }
1487
1488 if (sscanf (bufstr, "%x", &nreg) != 1)
1489 {
1490 fprintf_unfiltered (gdb_stderr,
1491 _("Error fetching number of io registers\n"));
1492 xfree (buf);
1493 return;
1494 }
1495
1496 xfree (buf);
1497
1498 reinitialize_more_filter ();
1499
1500 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1501
1502 /* only fetch up to 8 registers at a time to keep the buffer small */
1503 step = 8;
1504
1505 for (i = 0; i < nreg; i += step)
1506 {
1507 /* how many registers this round? */
1508 j = step;
1509 if ((i+j) >= nreg)
1510 j = nreg - i; /* last block is less than 8 registers */
1511
1512 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1513 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1514 query, &buf);
1515
1516 p = (const char *) buf;
1517 for (k = i; k < (i + j); k++)
1518 {
1519 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1520 {
1521 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1522 while ((*p != ';') && (*p != '\0'))
1523 p++;
1524 p++; /* skip over ';' */
1525 if (*p == '\0')
1526 break;
1527 }
1528 }
1529
1530 xfree (buf);
1531 }
1532 }
1533
1534 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1535
1536 void
1537 _initialize_avr_tdep (void)
1538 {
1539 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1540
1541 /* Add a new command to allow the user to query the avr remote target for
1542 the values of the io space registers in a saner way than just using
1543 `x/NNNb ADDR`. */
1544
1545 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1546 io_registers' to signify it is not available on other platforms. */
1547
1548 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1549 _("query remote avr target for io space register values"),
1550 &infolist);
1551 }
This page took 0.066371 seconds and 5 git commands to generate.