* frame.c (frame_unwind_unsigned_register): Delete.
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Contributed by Theodore A. Roth, troth@openavr.org */
22
23 /* Portions of this file were taken from the original gdb-4.18 patch developed
24 by Denis Chertykov, denisc@overta.ru */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "gdb_string.h"
39 #include "dis-asm.h"
40
41 /* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72 #undef XMALLOC
73 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74
75 #undef EXTRACT_INSN
76 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
77
78 /* Constants: prefixed with AVR_ to avoid name space clashes */
79
80 enum
81 {
82 AVR_REG_W = 24,
83 AVR_REG_X = 26,
84 AVR_REG_Y = 28,
85 AVR_FP_REGNUM = 28,
86 AVR_REG_Z = 30,
87
88 AVR_SREG_REGNUM = 32,
89 AVR_SP_REGNUM = 33,
90 AVR_PC_REGNUM = 34,
91
92 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
93 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
94
95 AVR_PC_REG_INDEX = 35, /* index into array of registers */
96
97 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
98
99 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
100 AVR_MAX_PUSHES = 18,
101
102 /* Number of the last pushed register. r17 for current avr-gcc */
103 AVR_LAST_PUSHED_REGNUM = 17,
104
105 AVR_ARG1_REGNUM = 24, /* Single byte argument */
106 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
107
108 AVR_RET1_REGNUM = 24, /* Single byte return value */
109 AVR_RETN_REGNUM = 25, /* Multi byte return value */
110
111 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
112 bits? Do these have to match the bfd vma values?. It sure would make
113 things easier in the future if they didn't need to match.
114
115 Note: I chose these values so as to be consistent with bfd vma
116 addresses.
117
118 TRoth/2002-04-08: There is already a conflict with very large programs
119 in the mega128. The mega128 has 128K instruction bytes (64K words),
120 thus the Most Significant Bit is 0x10000 which gets masked off my
121 AVR_MEM_MASK.
122
123 The problem manifests itself when trying to set a breakpoint in a
124 function which resides in the upper half of the instruction space and
125 thus requires a 17-bit address.
126
127 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
128 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
129 but could be for some remote targets by just adding the correct offset
130 to the address and letting the remote target handle the low-level
131 details of actually accessing the eeprom. */
132
133 AVR_IMEM_START = 0x00000000, /* INSN memory */
134 AVR_SMEM_START = 0x00800000, /* SRAM memory */
135 #if 1
136 /* No eeprom mask defined */
137 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
138 #else
139 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
140 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
141 #endif
142 };
143
144 /* Prologue types:
145
146 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
147 causes the generation of the CALL type prologues). */
148
149 enum {
150 AVR_PROLOGUE_NONE, /* No prologue */
151 AVR_PROLOGUE_NORMAL,
152 AVR_PROLOGUE_CALL, /* -mcall-prologues */
153 AVR_PROLOGUE_MAIN,
154 AVR_PROLOGUE_INTR, /* interrupt handler */
155 AVR_PROLOGUE_SIG, /* signal handler */
156 };
157
158 /* Any function with a frame looks like this
159 ....... <-SP POINTS HERE
160 LOCALS1 <-FP POINTS HERE
161 LOCALS0
162 SAVED FP
163 SAVED R3
164 SAVED R2
165 RET PC
166 FIRST ARG
167 SECOND ARG */
168
169 struct avr_unwind_cache
170 {
171 /* The previous frame's inner most stack address. Used as this
172 frame ID's stack_addr. */
173 CORE_ADDR prev_sp;
174 /* The frame's base, optionally used by the high-level debug info. */
175 CORE_ADDR base;
176 int size;
177 int prologue_type;
178 /* Table indicating the location of each and every register. */
179 struct trad_frame_saved_reg *saved_regs;
180 };
181
182 struct gdbarch_tdep
183 {
184 /* FIXME: TRoth: is there anything to put here? */
185 int foo;
186 };
187
188 /* Lookup the name of a register given it's number. */
189
190 static const char *
191 avr_register_name (int regnum)
192 {
193 static char *register_names[] = {
194 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
195 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
196 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
197 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
198 "SREG", "SP", "PC"
199 };
200 if (regnum < 0)
201 return NULL;
202 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
203 return NULL;
204 return register_names[regnum];
205 }
206
207 /* Return the GDB type object for the "standard" data type
208 of data in register N. */
209
210 static struct type *
211 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
212 {
213 if (reg_nr == AVR_PC_REGNUM)
214 return builtin_type_uint32;
215 if (reg_nr == AVR_SP_REGNUM)
216 return builtin_type_void_data_ptr;
217 else
218 return builtin_type_uint8;
219 }
220
221 /* Instruction address checks and convertions. */
222
223 static CORE_ADDR
224 avr_make_iaddr (CORE_ADDR x)
225 {
226 return ((x) | AVR_IMEM_START);
227 }
228
229 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
230 devices are already up to 128KBytes of flash space.
231
232 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
233
234 static CORE_ADDR
235 avr_convert_iaddr_to_raw (CORE_ADDR x)
236 {
237 return ((x) & 0xffffffff);
238 }
239
240 /* SRAM address checks and convertions. */
241
242 static CORE_ADDR
243 avr_make_saddr (CORE_ADDR x)
244 {
245 return ((x) | AVR_SMEM_START);
246 }
247
248 static CORE_ADDR
249 avr_convert_saddr_to_raw (CORE_ADDR x)
250 {
251 return ((x) & 0xffffffff);
252 }
253
254 /* EEPROM address checks and convertions. I don't know if these will ever
255 actually be used, but I've added them just the same. TRoth */
256
257 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
258 programs in the mega128. */
259
260 /* static CORE_ADDR */
261 /* avr_make_eaddr (CORE_ADDR x) */
262 /* { */
263 /* return ((x) | AVR_EMEM_START); */
264 /* } */
265
266 /* static int */
267 /* avr_eaddr_p (CORE_ADDR x) */
268 /* { */
269 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
270 /* } */
271
272 /* static CORE_ADDR */
273 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
274 /* { */
275 /* return ((x) & 0xffffffff); */
276 /* } */
277
278 /* Convert from address to pointer and vice-versa. */
279
280 static void
281 avr_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
282 {
283 /* Is it a code address? */
284 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
285 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
286 {
287 store_unsigned_integer (buf, TYPE_LENGTH (type),
288 avr_convert_iaddr_to_raw (addr >> 1));
289 }
290 else
291 {
292 /* Strip off any upper segment bits. */
293 store_unsigned_integer (buf, TYPE_LENGTH (type),
294 avr_convert_saddr_to_raw (addr));
295 }
296 }
297
298 static CORE_ADDR
299 avr_pointer_to_address (struct type *type, const gdb_byte *buf)
300 {
301 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
302
303 /* Is it a code address? */
304 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
305 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
306 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
307 return avr_make_iaddr (addr << 1);
308 else
309 return avr_make_saddr (addr);
310 }
311
312 static CORE_ADDR
313 avr_read_pc (struct regcache *regcache)
314 {
315 ULONGEST pc;
316 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
317 return avr_make_iaddr (pc);
318 }
319
320 static void
321 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
322 {
323 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
324 avr_convert_iaddr_to_raw (val));
325 }
326
327 static int
328 avr_scan_arg_moves (int vpc, unsigned char *prologue)
329 {
330 unsigned short insn;
331
332 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
333 {
334 insn = EXTRACT_INSN (&prologue[vpc]);
335 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
336 continue;
337 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
338 continue;
339 else
340 break;
341 }
342
343 return vpc;
344 }
345
346 /* Function: avr_scan_prologue
347
348 This function decodes an AVR function prologue to determine:
349 1) the size of the stack frame
350 2) which registers are saved on it
351 3) the offsets of saved regs
352 This information is stored in the avr_unwind_cache structure.
353
354 Some devices lack the sbiw instruction, so on those replace this:
355 sbiw r28, XX
356 with this:
357 subi r28,lo8(XX)
358 sbci r29,hi8(XX)
359
360 A typical AVR function prologue with a frame pointer might look like this:
361 push rXX ; saved regs
362 ...
363 push r28
364 push r29
365 in r28,__SP_L__
366 in r29,__SP_H__
367 sbiw r28,<LOCALS_SIZE>
368 in __tmp_reg__,__SREG__
369 cli
370 out __SP_H__,r29
371 out __SREG__,__tmp_reg__
372 out __SP_L__,r28
373
374 A typical AVR function prologue without a frame pointer might look like
375 this:
376 push rXX ; saved regs
377 ...
378
379 A main function prologue looks like this:
380 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
381 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
382 out __SP_H__,r29
383 out __SP_L__,r28
384
385 A signal handler prologue looks like this:
386 push __zero_reg__
387 push __tmp_reg__
388 in __tmp_reg__, __SREG__
389 push __tmp_reg__
390 clr __zero_reg__
391 push rXX ; save registers r18:r27, r30:r31
392 ...
393 push r28 ; save frame pointer
394 push r29
395 in r28, __SP_L__
396 in r29, __SP_H__
397 sbiw r28, <LOCALS_SIZE>
398 out __SP_H__, r29
399 out __SP_L__, r28
400
401 A interrupt handler prologue looks like this:
402 sei
403 push __zero_reg__
404 push __tmp_reg__
405 in __tmp_reg__, __SREG__
406 push __tmp_reg__
407 clr __zero_reg__
408 push rXX ; save registers r18:r27, r30:r31
409 ...
410 push r28 ; save frame pointer
411 push r29
412 in r28, __SP_L__
413 in r29, __SP_H__
414 sbiw r28, <LOCALS_SIZE>
415 cli
416 out __SP_H__, r29
417 sei
418 out __SP_L__, r28
419
420 A `-mcall-prologues' prologue looks like this (Note that the megas use a
421 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
422 32 bit insn and rjmp is a 16 bit insn):
423 ldi r26,lo8(<LOCALS_SIZE>)
424 ldi r27,hi8(<LOCALS_SIZE>)
425 ldi r30,pm_lo8(.L_foo_body)
426 ldi r31,pm_hi8(.L_foo_body)
427 rjmp __prologue_saves__+RRR
428 .L_foo_body: */
429
430 /* Not really part of a prologue, but still need to scan for it, is when a
431 function prologue moves values passed via registers as arguments to new
432 registers. In this case, all local variables live in registers, so there
433 may be some register saves. This is what it looks like:
434 movw rMM, rNN
435 ...
436
437 There could be multiple movw's. If the target doesn't have a movw insn, it
438 will use two mov insns. This could be done after any of the above prologue
439 types. */
440
441 static CORE_ADDR
442 avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
443 {
444 int i;
445 unsigned short insn;
446 int scan_stage = 0;
447 struct minimal_symbol *msymbol;
448 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
449 int vpc = 0;
450
451 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
452 reading in the bytes of the prologue. The problem is that the figuring
453 out where the end of the prologue is is a bit difficult. The old code
454 tried to do that, but failed quite often. */
455 read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
456
457 /* Scanning main()'s prologue
458 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
459 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
460 out __SP_H__,r29
461 out __SP_L__,r28 */
462
463 if (1)
464 {
465 CORE_ADDR locals;
466 unsigned char img[] = {
467 0xde, 0xbf, /* out __SP_H__,r29 */
468 0xcd, 0xbf /* out __SP_L__,r28 */
469 };
470
471 insn = EXTRACT_INSN (&prologue[vpc]);
472 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
473 if ((insn & 0xf0f0) == 0xe0c0)
474 {
475 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
476 insn = EXTRACT_INSN (&prologue[vpc + 2]);
477 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
478 if ((insn & 0xf0f0) == 0xe0d0)
479 {
480 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
481 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
482 {
483 info->prologue_type = AVR_PROLOGUE_MAIN;
484 info->base = locals;
485 return pc + 4;
486 }
487 }
488 }
489 }
490
491 /* Scanning `-mcall-prologues' prologue
492 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
493
494 while (1) /* Using a while to avoid many goto's */
495 {
496 int loc_size;
497 int body_addr;
498 unsigned num_pushes;
499 int pc_offset = 0;
500
501 insn = EXTRACT_INSN (&prologue[vpc]);
502 /* ldi r26,<LOCALS_SIZE> */
503 if ((insn & 0xf0f0) != 0xe0a0)
504 break;
505 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
506 pc_offset += 2;
507
508 insn = EXTRACT_INSN (&prologue[vpc + 2]);
509 /* ldi r27,<LOCALS_SIZE> / 256 */
510 if ((insn & 0xf0f0) != 0xe0b0)
511 break;
512 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
513 pc_offset += 2;
514
515 insn = EXTRACT_INSN (&prologue[vpc + 4]);
516 /* ldi r30,pm_lo8(.L_foo_body) */
517 if ((insn & 0xf0f0) != 0xe0e0)
518 break;
519 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
520 pc_offset += 2;
521
522 insn = EXTRACT_INSN (&prologue[vpc + 6]);
523 /* ldi r31,pm_hi8(.L_foo_body) */
524 if ((insn & 0xf0f0) != 0xe0f0)
525 break;
526 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
527 pc_offset += 2;
528
529 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
530 if (!msymbol)
531 break;
532
533 insn = EXTRACT_INSN (&prologue[vpc + 8]);
534 /* rjmp __prologue_saves__+RRR */
535 if ((insn & 0xf000) == 0xc000)
536 {
537 /* Extract PC relative offset from RJMP */
538 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
539 /* Convert offset to byte addressable mode */
540 i *= 2;
541 /* Destination address */
542 i += pc + 10;
543
544 if (body_addr != (pc + 10)/2)
545 break;
546
547 pc_offset += 2;
548 }
549 else if ((insn & 0xfe0e) == 0x940c)
550 {
551 /* Extract absolute PC address from JMP */
552 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
553 | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
554 /* Convert address to byte addressable mode */
555 i *= 2;
556
557 if (body_addr != (pc + 12)/2)
558 break;
559
560 pc_offset += 4;
561 }
562 else
563 break;
564
565 /* Resolve offset (in words) from __prologue_saves__ symbol.
566 Which is a pushes count in `-mcall-prologues' mode */
567 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
568
569 if (num_pushes > AVR_MAX_PUSHES)
570 {
571 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
572 num_pushes);
573 num_pushes = 0;
574 }
575
576 if (num_pushes)
577 {
578 int from;
579
580 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
581 if (num_pushes >= 2)
582 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
583
584 i = 0;
585 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
586 from <= AVR_LAST_PUSHED_REGNUM; ++from)
587 info->saved_regs [from].addr = ++i;
588 }
589 info->size = loc_size + num_pushes;
590 info->prologue_type = AVR_PROLOGUE_CALL;
591
592 return pc + pc_offset;
593 }
594
595 /* Scan for the beginning of the prologue for an interrupt or signal
596 function. Note that we have to set the prologue type here since the
597 third stage of the prologue may not be present (e.g. no saved registered
598 or changing of the SP register). */
599
600 if (1)
601 {
602 unsigned char img[] = {
603 0x78, 0x94, /* sei */
604 0x1f, 0x92, /* push r1 */
605 0x0f, 0x92, /* push r0 */
606 0x0f, 0xb6, /* in r0,0x3f SREG */
607 0x0f, 0x92, /* push r0 */
608 0x11, 0x24 /* clr r1 */
609 };
610 if (memcmp (prologue, img, sizeof (img)) == 0)
611 {
612 info->prologue_type = AVR_PROLOGUE_INTR;
613 vpc += sizeof (img);
614 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
615 info->saved_regs[0].addr = 2;
616 info->saved_regs[1].addr = 1;
617 info->size += 3;
618 }
619 else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
620 {
621 info->prologue_type = AVR_PROLOGUE_SIG;
622 vpc += sizeof (img) - 2;
623 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
624 info->saved_regs[0].addr = 2;
625 info->saved_regs[1].addr = 1;
626 info->size += 3;
627 }
628 }
629
630 /* First stage of the prologue scanning.
631 Scan pushes (saved registers) */
632
633 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
634 {
635 insn = EXTRACT_INSN (&prologue[vpc]);
636 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
637 {
638 /* Bits 4-9 contain a mask for registers R0-R32. */
639 int regno = (insn & 0x1f0) >> 4;
640 info->size++;
641 info->saved_regs[regno].addr = info->size;
642 scan_stage = 1;
643 }
644 else
645 break;
646 }
647
648 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
649 fprintf_unfiltered (gdb_stderr,
650 _("Hit end of prologue while scanning pushes\n"));
651
652 /* Second stage of the prologue scanning.
653 Scan:
654 in r28,__SP_L__
655 in r29,__SP_H__ */
656
657 if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
658 {
659 unsigned char img[] = {
660 0xcd, 0xb7, /* in r28,__SP_L__ */
661 0xde, 0xb7 /* in r29,__SP_H__ */
662 };
663 unsigned short insn1;
664
665 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
666 {
667 vpc += 4;
668 scan_stage = 2;
669 }
670 }
671
672 /* Third stage of the prologue scanning. (Really two stages)
673 Scan for:
674 sbiw r28,XX or subi r28,lo8(XX)
675 sbci r29,hi8(XX)
676 in __tmp_reg__,__SREG__
677 cli
678 out __SP_H__,r29
679 out __SREG__,__tmp_reg__
680 out __SP_L__,r28 */
681
682 if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
683 {
684 int locals_size = 0;
685 unsigned char img[] = {
686 0x0f, 0xb6, /* in r0,0x3f */
687 0xf8, 0x94, /* cli */
688 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
689 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
690 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
691 };
692 unsigned char img_sig[] = {
693 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
694 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
695 };
696 unsigned char img_int[] = {
697 0xf8, 0x94, /* cli */
698 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
699 0x78, 0x94, /* sei */
700 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
701 };
702
703 insn = EXTRACT_INSN (&prologue[vpc]);
704 vpc += 2;
705 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
706 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
707 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
708 {
709 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
710 insn = EXTRACT_INSN (&prologue[vpc]);
711 vpc += 2;
712 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
713 }
714 else
715 return pc + vpc;
716
717 /* Scan the last part of the prologue. May not be present for interrupt
718 or signal handler functions, which is why we set the prologue type
719 when we saw the beginning of the prologue previously. */
720
721 if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
722 {
723 vpc += sizeof (img_sig);
724 }
725 else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
726 {
727 vpc += sizeof (img_int);
728 }
729 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
730 {
731 info->prologue_type = AVR_PROLOGUE_NORMAL;
732 vpc += sizeof (img);
733 }
734
735 info->size += locals_size;
736
737 return pc + avr_scan_arg_moves (vpc, prologue);
738 }
739
740 /* If we got this far, we could not scan the prologue, so just return the pc
741 of the frame plus an adjustment for argument move insns. */
742
743 return pc + avr_scan_arg_moves (vpc, prologue);;
744 }
745
746 static CORE_ADDR
747 avr_skip_prologue (CORE_ADDR pc)
748 {
749 CORE_ADDR func_addr, func_end;
750 CORE_ADDR prologue_end = pc;
751
752 /* See what the symbol table says */
753
754 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
755 {
756 struct symtab_and_line sal;
757 struct avr_unwind_cache info = {0};
758 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
759
760 info.saved_regs = saved_regs;
761
762 /* Need to run the prologue scanner to figure out if the function has a
763 prologue and possibly skip over moving arguments passed via registers
764 to other registers. */
765
766 prologue_end = avr_scan_prologue (pc, &info);
767
768 if (info.prologue_type == AVR_PROLOGUE_NONE)
769 return pc;
770 else
771 {
772 sal = find_pc_line (func_addr, 0);
773
774 if (sal.line != 0 && sal.end < func_end)
775 return sal.end;
776 }
777 }
778
779 /* Either we didn't find the start of this function (nothing we can do),
780 or there's no line info, or the line after the prologue is after
781 the end of the function (there probably isn't a prologue). */
782
783 return prologue_end;
784 }
785
786 /* Not all avr devices support the BREAK insn. Those that don't should treat
787 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
788 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
789
790 static const unsigned char *
791 avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
792 {
793 static unsigned char avr_break_insn [] = { 0x98, 0x95 };
794 *lenptr = sizeof (avr_break_insn);
795 return avr_break_insn;
796 }
797
798 /* Given a return value in `regbuf' with a type `valtype',
799 extract and copy its value into `valbuf'.
800
801 Return values are always passed via registers r25:r24:... */
802
803 static void
804 avr_extract_return_value (struct type *type, struct regcache *regcache,
805 gdb_byte *valbuf)
806 {
807 ULONGEST r24, r25;
808 ULONGEST c;
809 int len;
810 if (TYPE_LENGTH (type) == 1)
811 {
812 regcache_cooked_read_unsigned (regcache, 24, &c);
813 store_unsigned_integer (valbuf, 1, c);
814 }
815 else
816 {
817 int i;
818 /* The MSB of the return value is always in r25, calculate which
819 register holds the LSB. */
820 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
821
822 for (i=0; i< TYPE_LENGTH (type); i++)
823 {
824 regcache_cooked_read (regcache, lsb_reg + i,
825 (bfd_byte *) valbuf + i);
826 }
827 }
828 }
829
830 /* Determine, for architecture GDBARCH, how a return value of TYPE
831 should be returned. If it is supposed to be returned in registers,
832 and READBUF is non-zero, read the appropriate value from REGCACHE,
833 and copy it into READBUF. If WRITEBUF is non-zero, write the value
834 from WRITEBUF into REGCACHE. */
835
836 enum return_value_convention
837 avr_return_value (struct gdbarch *gdbarch, struct type *valtype,
838 struct regcache *regcache, gdb_byte *readbuf,
839 const gdb_byte *writebuf)
840 {
841 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
842 || TYPE_CODE (valtype) == TYPE_CODE_UNION
843 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
844 && !(TYPE_LENGTH (valtype) == 1
845 || TYPE_LENGTH (valtype) == 2
846 || TYPE_LENGTH (valtype) == 4
847 || TYPE_LENGTH (valtype) == 8));
848
849 if (writebuf != NULL)
850 {
851 gdb_assert (!struct_return);
852 error (_("Cannot store return value."));
853 }
854
855 if (readbuf != NULL)
856 {
857 gdb_assert (!struct_return);
858 avr_extract_return_value (valtype, regcache, readbuf);
859 }
860
861 if (struct_return)
862 return RETURN_VALUE_STRUCT_CONVENTION;
863 else
864 return RETURN_VALUE_REGISTER_CONVENTION;
865 }
866
867
868 /* Put here the code to store, into fi->saved_regs, the addresses of
869 the saved registers of frame described by FRAME_INFO. This
870 includes special registers such as pc and fp saved in special ways
871 in the stack frame. sp is even more special: the address we return
872 for it IS the sp for the next frame. */
873
874 struct avr_unwind_cache *
875 avr_frame_unwind_cache (struct frame_info *next_frame,
876 void **this_prologue_cache)
877 {
878 CORE_ADDR pc;
879 ULONGEST prev_sp;
880 ULONGEST this_base;
881 struct avr_unwind_cache *info;
882 int i;
883
884 if ((*this_prologue_cache))
885 return (*this_prologue_cache);
886
887 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
888 (*this_prologue_cache) = info;
889 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
890
891 info->size = 0;
892 info->prologue_type = AVR_PROLOGUE_NONE;
893
894 pc = frame_func_unwind (next_frame, NORMAL_FRAME);
895
896 if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
897 avr_scan_prologue (pc, info);
898
899 if ((info->prologue_type != AVR_PROLOGUE_NONE)
900 && (info->prologue_type != AVR_PROLOGUE_MAIN))
901 {
902 ULONGEST high_base; /* High byte of FP */
903
904 /* The SP was moved to the FP. This indicates that a new frame
905 was created. Get THIS frame's FP value by unwinding it from
906 the next frame. */
907 this_base = frame_unwind_register_unsigned (next_frame, AVR_FP_REGNUM);
908 high_base = frame_unwind_register_unsigned (next_frame, AVR_FP_REGNUM+1);
909 this_base += (high_base << 8);
910
911 /* The FP points at the last saved register. Adjust the FP back
912 to before the first saved register giving the SP. */
913 prev_sp = this_base + info->size;
914 }
915 else
916 {
917 /* Assume that the FP is this frame's SP but with that pushed
918 stack space added back. */
919 this_base = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
920 prev_sp = this_base + info->size;
921 }
922
923 /* Add 1 here to adjust for the post-decrement nature of the push
924 instruction.*/
925 info->prev_sp = avr_make_saddr (prev_sp+1);
926
927 info->base = avr_make_saddr (this_base);
928
929 /* Adjust all the saved registers so that they contain addresses and not
930 offsets. */
931 for (i = 0; i < gdbarch_num_regs (current_gdbarch) - 1; i++)
932 if (info->saved_regs[i].addr)
933 {
934 info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
935 }
936
937 /* Except for the main and startup code, the return PC is always saved on
938 the stack and is at the base of the frame. */
939
940 if (info->prologue_type != AVR_PROLOGUE_MAIN)
941 {
942 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
943 }
944
945 /* The previous frame's SP needed to be computed. Save the computed
946 value. */
947 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, info->prev_sp+1);
948
949 return info;
950 }
951
952 static CORE_ADDR
953 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
954 {
955 ULONGEST pc;
956
957 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
958
959 return avr_make_iaddr (pc);
960 }
961
962 static CORE_ADDR
963 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
964 {
965 ULONGEST sp;
966
967 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
968
969 return avr_make_saddr (sp);
970 }
971
972 /* Given a GDB frame, determine the address of the calling function's
973 frame. This will be used to create a new GDB frame struct. */
974
975 static void
976 avr_frame_this_id (struct frame_info *next_frame,
977 void **this_prologue_cache,
978 struct frame_id *this_id)
979 {
980 struct avr_unwind_cache *info
981 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
982 CORE_ADDR base;
983 CORE_ADDR func;
984 struct frame_id id;
985
986 /* The FUNC is easy. */
987 func = frame_func_unwind (next_frame, NORMAL_FRAME);
988
989 /* Hopefully the prologue analysis either correctly determined the
990 frame's base (which is the SP from the previous frame), or set
991 that base to "NULL". */
992 base = info->prev_sp;
993 if (base == 0)
994 return;
995
996 id = frame_id_build (base, func);
997 (*this_id) = id;
998 }
999
1000 static void
1001 avr_frame_prev_register (struct frame_info *next_frame,
1002 void **this_prologue_cache,
1003 int regnum, int *optimizedp,
1004 enum lval_type *lvalp, CORE_ADDR *addrp,
1005 int *realnump, gdb_byte *bufferp)
1006 {
1007 struct avr_unwind_cache *info
1008 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
1009
1010 if (regnum == AVR_PC_REGNUM)
1011 {
1012 if (trad_frame_addr_p (info->saved_regs, regnum))
1013 {
1014 *optimizedp = 0;
1015 *lvalp = lval_memory;
1016 *addrp = info->saved_regs[regnum].addr;
1017 *realnump = -1;
1018 if (bufferp != NULL)
1019 {
1020 /* Reading the return PC from the PC register is slightly
1021 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1022 but in reality, only two bytes (3 in upcoming mega256) are
1023 stored on the stack.
1024
1025 Also, note that the value on the stack is an addr to a word
1026 not a byte, so we will need to multiply it by two at some
1027 point.
1028
1029 And to confuse matters even more, the return address stored
1030 on the stack is in big endian byte order, even though most
1031 everything else about the avr is little endian. Ick! */
1032
1033 /* FIXME: number of bytes read here will need updated for the
1034 mega256 when it is available. */
1035
1036 ULONGEST pc;
1037 unsigned char tmp;
1038 unsigned char buf[2];
1039
1040 read_memory (info->saved_regs[regnum].addr, buf, 2);
1041
1042 /* Convert the PC read from memory as a big-endian to
1043 little-endian order. */
1044 tmp = buf[0];
1045 buf[0] = buf[1];
1046 buf[1] = tmp;
1047
1048 pc = (extract_unsigned_integer (buf, 2) * 2);
1049 store_unsigned_integer (bufferp,
1050 register_size (current_gdbarch, regnum),
1051 pc);
1052 }
1053 }
1054 }
1055 else
1056 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1057 optimizedp, lvalp, addrp, realnump, bufferp);
1058 }
1059
1060 static const struct frame_unwind avr_frame_unwind = {
1061 NORMAL_FRAME,
1062 avr_frame_this_id,
1063 avr_frame_prev_register
1064 };
1065
1066 const struct frame_unwind *
1067 avr_frame_sniffer (struct frame_info *next_frame)
1068 {
1069 return &avr_frame_unwind;
1070 }
1071
1072 static CORE_ADDR
1073 avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
1074 {
1075 struct avr_unwind_cache *info
1076 = avr_frame_unwind_cache (next_frame, this_cache);
1077
1078 return info->base;
1079 }
1080
1081 static const struct frame_base avr_frame_base = {
1082 &avr_frame_unwind,
1083 avr_frame_base_address,
1084 avr_frame_base_address,
1085 avr_frame_base_address
1086 };
1087
1088 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1089 dummy frame. The frame ID's base needs to match the TOS value
1090 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1091 breakpoint. */
1092
1093 static struct frame_id
1094 avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1095 {
1096 ULONGEST base;
1097
1098 base = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1099 return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
1100 }
1101
1102 /* When arguments must be pushed onto the stack, they go on in reverse
1103 order. The below implements a FILO (stack) to do this. */
1104
1105 struct stack_item
1106 {
1107 int len;
1108 struct stack_item *prev;
1109 void *data;
1110 };
1111
1112 static struct stack_item *
1113 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1114 {
1115 struct stack_item *si;
1116 si = xmalloc (sizeof (struct stack_item));
1117 si->data = xmalloc (len);
1118 si->len = len;
1119 si->prev = prev;
1120 memcpy (si->data, contents, len);
1121 return si;
1122 }
1123
1124 static struct stack_item *pop_stack_item (struct stack_item *si);
1125 static struct stack_item *
1126 pop_stack_item (struct stack_item *si)
1127 {
1128 struct stack_item *dead = si;
1129 si = si->prev;
1130 xfree (dead->data);
1131 xfree (dead);
1132 return si;
1133 }
1134
1135 /* Setup the function arguments for calling a function in the inferior.
1136
1137 On the AVR architecture, there are 18 registers (R25 to R8) which are
1138 dedicated for passing function arguments. Up to the first 18 arguments
1139 (depending on size) may go into these registers. The rest go on the stack.
1140
1141 All arguments are aligned to start in even-numbered registers (odd-sized
1142 arguments, including char, have one free register above them). For example,
1143 an int in arg1 and a char in arg2 would be passed as such:
1144
1145 arg1 -> r25:r24
1146 arg2 -> r22
1147
1148 Arguments that are larger than 2 bytes will be split between two or more
1149 registers as available, but will NOT be split between a register and the
1150 stack. Arguments that go onto the stack are pushed last arg first (this is
1151 similar to the d10v). */
1152
1153 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1154 inaccurate.
1155
1156 An exceptional case exists for struct arguments (and possibly other
1157 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1158 not a multiple of WORDSIZE bytes. In this case the argument is never split
1159 between the registers and the stack, but instead is copied in its entirety
1160 onto the stack, AND also copied into as many registers as there is room
1161 for. In other words, space in registers permitting, two copies of the same
1162 argument are passed in. As far as I can tell, only the one on the stack is
1163 used, although that may be a function of the level of compiler
1164 optimization. I suspect this is a compiler bug. Arguments of these odd
1165 sizes are left-justified within the word (as opposed to arguments smaller
1166 than WORDSIZE bytes, which are right-justified).
1167
1168 If the function is to return an aggregate type such as a struct, the caller
1169 must allocate space into which the callee will copy the return value. In
1170 this case, a pointer to the return value location is passed into the callee
1171 in register R0, which displaces one of the other arguments passed in via
1172 registers R0 to R2. */
1173
1174 static CORE_ADDR
1175 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1176 struct regcache *regcache, CORE_ADDR bp_addr,
1177 int nargs, struct value **args, CORE_ADDR sp,
1178 int struct_return, CORE_ADDR struct_addr)
1179 {
1180 int i;
1181 unsigned char buf[2];
1182 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1183 int regnum = AVR_ARGN_REGNUM;
1184 struct stack_item *si = NULL;
1185
1186 #if 0
1187 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1188 if (struct_return)
1189 {
1190 fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1191 regcache_cooked_write_unsigned (regcache, argreg--, struct_addr & 0xff);
1192 regcache_cooked_write_unsigned (regcache, argreg--, (struct_addr >>8) & 0xff);
1193 }
1194 #endif
1195
1196 for (i = 0; i < nargs; i++)
1197 {
1198 int last_regnum;
1199 int j;
1200 struct value *arg = args[i];
1201 struct type *type = check_typedef (value_type (arg));
1202 const bfd_byte *contents = value_contents (arg);
1203 int len = TYPE_LENGTH (type);
1204
1205 /* Calculate the potential last register needed. */
1206 last_regnum = regnum - (len + (len & 1));
1207
1208 /* If there are registers available, use them. Once we start putting
1209 stuff on the stack, all subsequent args go on stack. */
1210 if ((si == NULL) && (last_regnum >= 8))
1211 {
1212 ULONGEST val;
1213
1214 /* Skip a register for odd length args. */
1215 if (len & 1)
1216 regnum--;
1217
1218 val = extract_unsigned_integer (contents, len);
1219 for (j=0; j<len; j++)
1220 {
1221 regcache_cooked_write_unsigned (regcache, regnum--,
1222 val >> (8*(len-j-1)));
1223 }
1224 }
1225 /* No registers available, push the args onto the stack. */
1226 else
1227 {
1228 /* From here on, we don't care about regnum. */
1229 si = push_stack_item (si, contents, len);
1230 }
1231 }
1232
1233 /* Push args onto the stack. */
1234 while (si)
1235 {
1236 sp -= si->len;
1237 /* Add 1 to sp here to account for post decr nature of pushes. */
1238 write_memory (sp+1, si->data, si->len);
1239 si = pop_stack_item (si);
1240 }
1241
1242 /* Set the return address. For the avr, the return address is the BP_ADDR.
1243 Need to push the return address onto the stack noting that it needs to be
1244 in big-endian order on the stack. */
1245 buf[0] = (return_pc >> 8) & 0xff;
1246 buf[1] = return_pc & 0xff;
1247
1248 sp -= 2;
1249 write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */
1250
1251 /* Finally, update the SP register. */
1252 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1253 avr_convert_saddr_to_raw (sp));
1254
1255 return sp;
1256 }
1257
1258 /* Initialize the gdbarch structure for the AVR's. */
1259
1260 static struct gdbarch *
1261 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1262 {
1263 struct gdbarch *gdbarch;
1264 struct gdbarch_tdep *tdep;
1265
1266 /* Find a candidate among the list of pre-declared architectures. */
1267 arches = gdbarch_list_lookup_by_info (arches, &info);
1268 if (arches != NULL)
1269 return arches->gdbarch;
1270
1271 /* None found, create a new architecture from the information provided. */
1272 tdep = XMALLOC (struct gdbarch_tdep);
1273 gdbarch = gdbarch_alloc (&info, tdep);
1274
1275 /* If we ever need to differentiate the device types, do it here. */
1276 switch (info.bfd_arch_info->mach)
1277 {
1278 case bfd_mach_avr1:
1279 case bfd_mach_avr2:
1280 case bfd_mach_avr3:
1281 case bfd_mach_avr4:
1282 case bfd_mach_avr5:
1283 break;
1284 }
1285
1286 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1287 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1288 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1289 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1290 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1291 set_gdbarch_addr_bit (gdbarch, 32);
1292
1293 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1294 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1295 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1296
1297 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1298 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1299 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1300
1301 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1302 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1303
1304 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1305
1306 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1307 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1308
1309 set_gdbarch_register_name (gdbarch, avr_register_name);
1310 set_gdbarch_register_type (gdbarch, avr_register_type);
1311
1312 set_gdbarch_return_value (gdbarch, avr_return_value);
1313 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1314
1315 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1316
1317 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1318 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1319
1320 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1321 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1322
1323 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1324
1325 frame_unwind_append_sniffer (gdbarch, avr_frame_sniffer);
1326 frame_base_set_default (gdbarch, &avr_frame_base);
1327
1328 set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
1329
1330 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1331 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1332
1333 return gdbarch;
1334 }
1335
1336 /* Send a query request to the avr remote target asking for values of the io
1337 registers. If args parameter is not NULL, then the user has requested info
1338 on a specific io register [This still needs implemented and is ignored for
1339 now]. The query string should be one of these forms:
1340
1341 "Ravr.io_reg" -> reply is "NN" number of io registers
1342
1343 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1344 registers to be read. The reply should be "<NAME>,VV;" for each io register
1345 where, <NAME> is a string, and VV is the hex value of the register.
1346
1347 All io registers are 8-bit. */
1348
1349 static void
1350 avr_io_reg_read_command (char *args, int from_tty)
1351 {
1352 LONGEST bufsiz = 0;
1353 gdb_byte *buf;
1354 char query[400];
1355 char *p;
1356 unsigned int nreg = 0;
1357 unsigned int val;
1358 int i, j, k, step;
1359
1360 /* Find out how many io registers the target has. */
1361 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1362 "avr.io_reg", &buf);
1363
1364 if (bufsiz <= 0)
1365 {
1366 fprintf_unfiltered (gdb_stderr,
1367 _("ERR: info io_registers NOT supported "
1368 "by current target\n"));
1369 return;
1370 }
1371
1372 if (sscanf (buf, "%x", &nreg) != 1)
1373 {
1374 fprintf_unfiltered (gdb_stderr,
1375 _("Error fetching number of io registers\n"));
1376 xfree (buf);
1377 return;
1378 }
1379
1380 xfree (buf);
1381
1382 reinitialize_more_filter ();
1383
1384 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1385
1386 /* only fetch up to 8 registers at a time to keep the buffer small */
1387 step = 8;
1388
1389 for (i = 0; i < nreg; i += step)
1390 {
1391 /* how many registers this round? */
1392 j = step;
1393 if ((i+j) >= nreg)
1394 j = nreg - i; /* last block is less than 8 registers */
1395
1396 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1397 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1398 query, &buf);
1399
1400 p = buf;
1401 for (k = i; k < (i + j); k++)
1402 {
1403 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1404 {
1405 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1406 while ((*p != ';') && (*p != '\0'))
1407 p++;
1408 p++; /* skip over ';' */
1409 if (*p == '\0')
1410 break;
1411 }
1412 }
1413
1414 xfree (buf);
1415 }
1416 }
1417
1418 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1419
1420 void
1421 _initialize_avr_tdep (void)
1422 {
1423 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1424
1425 /* Add a new command to allow the user to query the avr remote target for
1426 the values of the io space registers in a saner way than just using
1427 `x/NNNb ADDR`. */
1428
1429 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1430 io_registers' to signify it is not available on other platforms. */
1431
1432 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1433 _("query remote avr target for io space register values"),
1434 &infolist);
1435 }
This page took 0.057789 seconds and 5 git commands to generate.