gdb: Use std::min and std::max throughout
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
21
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdbtypes.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include <algorithm>
40
41 /* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72 /* Constants: prefixed with AVR_ to avoid name space clashes */
73
74 /* Address space flags */
75
76 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
77 space. */
78
79 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
80 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
81 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
82
83
84 enum
85 {
86 AVR_REG_W = 24,
87 AVR_REG_X = 26,
88 AVR_REG_Y = 28,
89 AVR_FP_REGNUM = 28,
90 AVR_REG_Z = 30,
91
92 AVR_SREG_REGNUM = 32,
93 AVR_SP_REGNUM = 33,
94 AVR_PC_REGNUM = 34,
95
96 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
97 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
98
99 /* Pseudo registers. */
100 AVR_PSEUDO_PC_REGNUM = 35,
101 AVR_NUM_PSEUDO_REGS = 1,
102
103 AVR_PC_REG_INDEX = 35, /* index into array of registers */
104
105 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
106
107 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
108 AVR_MAX_PUSHES = 18,
109
110 /* Number of the last pushed register. r17 for current avr-gcc */
111 AVR_LAST_PUSHED_REGNUM = 17,
112
113 AVR_ARG1_REGNUM = 24, /* Single byte argument */
114 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
115 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
116
117 AVR_RET1_REGNUM = 24, /* Single byte return value */
118 AVR_RETN_REGNUM = 25, /* Multi byte return value */
119
120 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
121 bits? Do these have to match the bfd vma values? It sure would make
122 things easier in the future if they didn't need to match.
123
124 Note: I chose these values so as to be consistent with bfd vma
125 addresses.
126
127 TRoth/2002-04-08: There is already a conflict with very large programs
128 in the mega128. The mega128 has 128K instruction bytes (64K words),
129 thus the Most Significant Bit is 0x10000 which gets masked off my
130 AVR_MEM_MASK.
131
132 The problem manifests itself when trying to set a breakpoint in a
133 function which resides in the upper half of the instruction space and
134 thus requires a 17-bit address.
135
136 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
137 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
138 but could be for some remote targets by just adding the correct offset
139 to the address and letting the remote target handle the low-level
140 details of actually accessing the eeprom. */
141
142 AVR_IMEM_START = 0x00000000, /* INSN memory */
143 AVR_SMEM_START = 0x00800000, /* SRAM memory */
144 #if 1
145 /* No eeprom mask defined */
146 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
147 #else
148 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
149 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
150 #endif
151 };
152
153 /* Prologue types:
154
155 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
156 causes the generation of the CALL type prologues). */
157
158 enum {
159 AVR_PROLOGUE_NONE, /* No prologue */
160 AVR_PROLOGUE_NORMAL,
161 AVR_PROLOGUE_CALL, /* -mcall-prologues */
162 AVR_PROLOGUE_MAIN,
163 AVR_PROLOGUE_INTR, /* interrupt handler */
164 AVR_PROLOGUE_SIG, /* signal handler */
165 };
166
167 /* Any function with a frame looks like this
168 ....... <-SP POINTS HERE
169 LOCALS1 <-FP POINTS HERE
170 LOCALS0
171 SAVED FP
172 SAVED R3
173 SAVED R2
174 RET PC
175 FIRST ARG
176 SECOND ARG */
177
178 struct avr_unwind_cache
179 {
180 /* The previous frame's inner most stack address. Used as this
181 frame ID's stack_addr. */
182 CORE_ADDR prev_sp;
183 /* The frame's base, optionally used by the high-level debug info. */
184 CORE_ADDR base;
185 int size;
186 int prologue_type;
187 /* Table indicating the location of each and every register. */
188 struct trad_frame_saved_reg *saved_regs;
189 };
190
191 struct gdbarch_tdep
192 {
193 /* Number of bytes stored to the stack by call instructions.
194 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
195 int call_length;
196
197 /* Type for void. */
198 struct type *void_type;
199 /* Type for a function returning void. */
200 struct type *func_void_type;
201 /* Type for a pointer to a function. Used for the type of PC. */
202 struct type *pc_type;
203 };
204
205 /* Lookup the name of a register given it's number. */
206
207 static const char *
208 avr_register_name (struct gdbarch *gdbarch, int regnum)
209 {
210 static const char * const register_names[] = {
211 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
212 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
213 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
214 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
215 "SREG", "SP", "PC2",
216 "pc"
217 };
218 if (regnum < 0)
219 return NULL;
220 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
221 return NULL;
222 return register_names[regnum];
223 }
224
225 /* Return the GDB type object for the "standard" data type
226 of data in register N. */
227
228 static struct type *
229 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
230 {
231 if (reg_nr == AVR_PC_REGNUM)
232 return builtin_type (gdbarch)->builtin_uint32;
233 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
234 return gdbarch_tdep (gdbarch)->pc_type;
235 if (reg_nr == AVR_SP_REGNUM)
236 return builtin_type (gdbarch)->builtin_data_ptr;
237 return builtin_type (gdbarch)->builtin_uint8;
238 }
239
240 /* Instruction address checks and convertions. */
241
242 static CORE_ADDR
243 avr_make_iaddr (CORE_ADDR x)
244 {
245 return ((x) | AVR_IMEM_START);
246 }
247
248 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
249 devices are already up to 128KBytes of flash space.
250
251 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
252
253 static CORE_ADDR
254 avr_convert_iaddr_to_raw (CORE_ADDR x)
255 {
256 return ((x) & 0xffffffff);
257 }
258
259 /* SRAM address checks and convertions. */
260
261 static CORE_ADDR
262 avr_make_saddr (CORE_ADDR x)
263 {
264 /* Return 0 for NULL. */
265 if (x == 0)
266 return 0;
267
268 return ((x) | AVR_SMEM_START);
269 }
270
271 static CORE_ADDR
272 avr_convert_saddr_to_raw (CORE_ADDR x)
273 {
274 return ((x) & 0xffffffff);
275 }
276
277 /* EEPROM address checks and convertions. I don't know if these will ever
278 actually be used, but I've added them just the same. TRoth */
279
280 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
281 programs in the mega128. */
282
283 /* static CORE_ADDR */
284 /* avr_make_eaddr (CORE_ADDR x) */
285 /* { */
286 /* return ((x) | AVR_EMEM_START); */
287 /* } */
288
289 /* static int */
290 /* avr_eaddr_p (CORE_ADDR x) */
291 /* { */
292 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
293 /* } */
294
295 /* static CORE_ADDR */
296 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
297 /* { */
298 /* return ((x) & 0xffffffff); */
299 /* } */
300
301 /* Convert from address to pointer and vice-versa. */
302
303 static void
304 avr_address_to_pointer (struct gdbarch *gdbarch,
305 struct type *type, gdb_byte *buf, CORE_ADDR addr)
306 {
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308
309 /* Is it a data address in flash? */
310 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
311 {
312 /* A data pointer in flash is byte addressed. */
313 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
314 avr_convert_iaddr_to_raw (addr));
315 }
316 /* Is it a code address? */
317 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
318 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
319 {
320 /* A code pointer is word (16 bits) addressed. We shift the address down
321 by 1 bit to convert it to a pointer. */
322 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
323 avr_convert_iaddr_to_raw (addr >> 1));
324 }
325 else
326 {
327 /* Strip off any upper segment bits. */
328 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
329 avr_convert_saddr_to_raw (addr));
330 }
331 }
332
333 static CORE_ADDR
334 avr_pointer_to_address (struct gdbarch *gdbarch,
335 struct type *type, const gdb_byte *buf)
336 {
337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338 CORE_ADDR addr
339 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
340
341 /* Is it a data address in flash? */
342 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
343 {
344 /* A data pointer in flash is already byte addressed. */
345 return avr_make_iaddr (addr);
346 }
347 /* Is it a code address? */
348 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
349 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
350 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
351 {
352 /* A code pointer is word (16 bits) addressed so we shift it up
353 by 1 bit to convert it to an address. */
354 return avr_make_iaddr (addr << 1);
355 }
356 else
357 return avr_make_saddr (addr);
358 }
359
360 static CORE_ADDR
361 avr_integer_to_address (struct gdbarch *gdbarch,
362 struct type *type, const gdb_byte *buf)
363 {
364 ULONGEST addr = unpack_long (type, buf);
365
366 return avr_make_saddr (addr);
367 }
368
369 static CORE_ADDR
370 avr_read_pc (struct regcache *regcache)
371 {
372 ULONGEST pc;
373 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
374 return avr_make_iaddr (pc);
375 }
376
377 static void
378 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
379 {
380 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
381 avr_convert_iaddr_to_raw (val));
382 }
383
384 static enum register_status
385 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
386 int regnum, gdb_byte *buf)
387 {
388 ULONGEST val;
389 enum register_status status;
390
391 switch (regnum)
392 {
393 case AVR_PSEUDO_PC_REGNUM:
394 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
395 if (status != REG_VALID)
396 return status;
397 val >>= 1;
398 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
399 return status;
400 default:
401 internal_error (__FILE__, __LINE__, _("invalid regnum"));
402 }
403 }
404
405 static void
406 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
407 int regnum, const gdb_byte *buf)
408 {
409 ULONGEST val;
410
411 switch (regnum)
412 {
413 case AVR_PSEUDO_PC_REGNUM:
414 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
415 val <<= 1;
416 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
417 break;
418 default:
419 internal_error (__FILE__, __LINE__, _("invalid regnum"));
420 }
421 }
422
423 /* Function: avr_scan_prologue
424
425 This function decodes an AVR function prologue to determine:
426 1) the size of the stack frame
427 2) which registers are saved on it
428 3) the offsets of saved regs
429 This information is stored in the avr_unwind_cache structure.
430
431 Some devices lack the sbiw instruction, so on those replace this:
432 sbiw r28, XX
433 with this:
434 subi r28,lo8(XX)
435 sbci r29,hi8(XX)
436
437 A typical AVR function prologue with a frame pointer might look like this:
438 push rXX ; saved regs
439 ...
440 push r28
441 push r29
442 in r28,__SP_L__
443 in r29,__SP_H__
444 sbiw r28,<LOCALS_SIZE>
445 in __tmp_reg__,__SREG__
446 cli
447 out __SP_H__,r29
448 out __SREG__,__tmp_reg__
449 out __SP_L__,r28
450
451 A typical AVR function prologue without a frame pointer might look like
452 this:
453 push rXX ; saved regs
454 ...
455
456 A main function prologue looks like this:
457 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
458 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
459 out __SP_H__,r29
460 out __SP_L__,r28
461
462 A signal handler prologue looks like this:
463 push __zero_reg__
464 push __tmp_reg__
465 in __tmp_reg__, __SREG__
466 push __tmp_reg__
467 clr __zero_reg__
468 push rXX ; save registers r18:r27, r30:r31
469 ...
470 push r28 ; save frame pointer
471 push r29
472 in r28, __SP_L__
473 in r29, __SP_H__
474 sbiw r28, <LOCALS_SIZE>
475 out __SP_H__, r29
476 out __SP_L__, r28
477
478 A interrupt handler prologue looks like this:
479 sei
480 push __zero_reg__
481 push __tmp_reg__
482 in __tmp_reg__, __SREG__
483 push __tmp_reg__
484 clr __zero_reg__
485 push rXX ; save registers r18:r27, r30:r31
486 ...
487 push r28 ; save frame pointer
488 push r29
489 in r28, __SP_L__
490 in r29, __SP_H__
491 sbiw r28, <LOCALS_SIZE>
492 cli
493 out __SP_H__, r29
494 sei
495 out __SP_L__, r28
496
497 A `-mcall-prologues' prologue looks like this (Note that the megas use a
498 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
499 32 bit insn and rjmp is a 16 bit insn):
500 ldi r26,lo8(<LOCALS_SIZE>)
501 ldi r27,hi8(<LOCALS_SIZE>)
502 ldi r30,pm_lo8(.L_foo_body)
503 ldi r31,pm_hi8(.L_foo_body)
504 rjmp __prologue_saves__+RRR
505 .L_foo_body: */
506
507 /* Not really part of a prologue, but still need to scan for it, is when a
508 function prologue moves values passed via registers as arguments to new
509 registers. In this case, all local variables live in registers, so there
510 may be some register saves. This is what it looks like:
511 movw rMM, rNN
512 ...
513
514 There could be multiple movw's. If the target doesn't have a movw insn, it
515 will use two mov insns. This could be done after any of the above prologue
516 types. */
517
518 static CORE_ADDR
519 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
520 struct avr_unwind_cache *info)
521 {
522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
523 int i;
524 unsigned short insn;
525 int scan_stage = 0;
526 struct bound_minimal_symbol msymbol;
527 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
528 int vpc = 0;
529 int len;
530
531 len = pc_end - pc_beg;
532 if (len > AVR_MAX_PROLOGUE_SIZE)
533 len = AVR_MAX_PROLOGUE_SIZE;
534
535 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
536 reading in the bytes of the prologue. The problem is that the figuring
537 out where the end of the prologue is is a bit difficult. The old code
538 tried to do that, but failed quite often. */
539 read_memory (pc_beg, prologue, len);
540
541 /* Scanning main()'s prologue
542 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
543 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
544 out __SP_H__,r29
545 out __SP_L__,r28 */
546
547 if (len >= 4)
548 {
549 CORE_ADDR locals;
550 static const unsigned char img[] = {
551 0xde, 0xbf, /* out __SP_H__,r29 */
552 0xcd, 0xbf /* out __SP_L__,r28 */
553 };
554
555 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
556 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
557 if ((insn & 0xf0f0) == 0xe0c0)
558 {
559 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
560 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
561 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
562 if ((insn & 0xf0f0) == 0xe0d0)
563 {
564 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
565 if (vpc + 4 + sizeof (img) < len
566 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
567 {
568 info->prologue_type = AVR_PROLOGUE_MAIN;
569 info->base = locals;
570 return pc_beg + 4;
571 }
572 }
573 }
574 }
575
576 /* Scanning `-mcall-prologues' prologue
577 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
578
579 while (1) /* Using a while to avoid many goto's */
580 {
581 int loc_size;
582 int body_addr;
583 unsigned num_pushes;
584 int pc_offset = 0;
585
586 /* At least the fifth instruction must have been executed to
587 modify frame shape. */
588 if (len < 10)
589 break;
590
591 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
592 /* ldi r26,<LOCALS_SIZE> */
593 if ((insn & 0xf0f0) != 0xe0a0)
594 break;
595 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
596 pc_offset += 2;
597
598 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
599 /* ldi r27,<LOCALS_SIZE> / 256 */
600 if ((insn & 0xf0f0) != 0xe0b0)
601 break;
602 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
603 pc_offset += 2;
604
605 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
606 /* ldi r30,pm_lo8(.L_foo_body) */
607 if ((insn & 0xf0f0) != 0xe0e0)
608 break;
609 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
610 pc_offset += 2;
611
612 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
613 /* ldi r31,pm_hi8(.L_foo_body) */
614 if ((insn & 0xf0f0) != 0xe0f0)
615 break;
616 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
617 pc_offset += 2;
618
619 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
620 if (!msymbol.minsym)
621 break;
622
623 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
624 /* rjmp __prologue_saves__+RRR */
625 if ((insn & 0xf000) == 0xc000)
626 {
627 /* Extract PC relative offset from RJMP */
628 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
629 /* Convert offset to byte addressable mode */
630 i *= 2;
631 /* Destination address */
632 i += pc_beg + 10;
633
634 if (body_addr != (pc_beg + 10)/2)
635 break;
636
637 pc_offset += 2;
638 }
639 else if ((insn & 0xfe0e) == 0x940c)
640 {
641 /* Extract absolute PC address from JMP */
642 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
643 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
644 & 0xffff));
645 /* Convert address to byte addressable mode */
646 i *= 2;
647
648 if (body_addr != (pc_beg + 12)/2)
649 break;
650
651 pc_offset += 4;
652 }
653 else
654 break;
655
656 /* Resolve offset (in words) from __prologue_saves__ symbol.
657 Which is a pushes count in `-mcall-prologues' mode */
658 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
659
660 if (num_pushes > AVR_MAX_PUSHES)
661 {
662 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
663 num_pushes);
664 num_pushes = 0;
665 }
666
667 if (num_pushes)
668 {
669 int from;
670
671 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
672 if (num_pushes >= 2)
673 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
674
675 i = 0;
676 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
677 from <= AVR_LAST_PUSHED_REGNUM; ++from)
678 info->saved_regs [from].addr = ++i;
679 }
680 info->size = loc_size + num_pushes;
681 info->prologue_type = AVR_PROLOGUE_CALL;
682
683 return pc_beg + pc_offset;
684 }
685
686 /* Scan for the beginning of the prologue for an interrupt or signal
687 function. Note that we have to set the prologue type here since the
688 third stage of the prologue may not be present (e.g. no saved registered
689 or changing of the SP register). */
690
691 if (1)
692 {
693 static const unsigned char img[] = {
694 0x78, 0x94, /* sei */
695 0x1f, 0x92, /* push r1 */
696 0x0f, 0x92, /* push r0 */
697 0x0f, 0xb6, /* in r0,0x3f SREG */
698 0x0f, 0x92, /* push r0 */
699 0x11, 0x24 /* clr r1 */
700 };
701 if (len >= sizeof (img)
702 && memcmp (prologue, img, sizeof (img)) == 0)
703 {
704 info->prologue_type = AVR_PROLOGUE_INTR;
705 vpc += sizeof (img);
706 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
707 info->saved_regs[0].addr = 2;
708 info->saved_regs[1].addr = 1;
709 info->size += 3;
710 }
711 else if (len >= sizeof (img) - 2
712 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
713 {
714 info->prologue_type = AVR_PROLOGUE_SIG;
715 vpc += sizeof (img) - 2;
716 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
717 info->saved_regs[0].addr = 2;
718 info->saved_regs[1].addr = 1;
719 info->size += 2;
720 }
721 }
722
723 /* First stage of the prologue scanning.
724 Scan pushes (saved registers) */
725
726 for (; vpc < len; vpc += 2)
727 {
728 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
729 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
730 {
731 /* Bits 4-9 contain a mask for registers R0-R32. */
732 int regno = (insn & 0x1f0) >> 4;
733 info->size++;
734 info->saved_regs[regno].addr = info->size;
735 scan_stage = 1;
736 }
737 else
738 break;
739 }
740
741 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
742
743 /* Handle static small stack allocation using rcall or push. */
744
745 while (scan_stage == 1 && vpc < len)
746 {
747 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
748 if (insn == 0xd000) /* rcall .+0 */
749 {
750 info->size += gdbarch_tdep (gdbarch)->call_length;
751 vpc += 2;
752 }
753 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
754 {
755 info->size += 1;
756 vpc += 2;
757 }
758 else
759 break;
760 }
761
762 /* Second stage of the prologue scanning.
763 Scan:
764 in r28,__SP_L__
765 in r29,__SP_H__ */
766
767 if (scan_stage == 1 && vpc < len)
768 {
769 static const unsigned char img[] = {
770 0xcd, 0xb7, /* in r28,__SP_L__ */
771 0xde, 0xb7 /* in r29,__SP_H__ */
772 };
773
774 if (vpc + sizeof (img) < len
775 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
776 {
777 vpc += 4;
778 scan_stage = 2;
779 }
780 }
781
782 /* Third stage of the prologue scanning. (Really two stages).
783 Scan for:
784 sbiw r28,XX or subi r28,lo8(XX)
785 sbci r29,hi8(XX)
786 in __tmp_reg__,__SREG__
787 cli
788 out __SP_H__,r29
789 out __SREG__,__tmp_reg__
790 out __SP_L__,r28 */
791
792 if (scan_stage == 2 && vpc < len)
793 {
794 int locals_size = 0;
795 static const unsigned char img[] = {
796 0x0f, 0xb6, /* in r0,0x3f */
797 0xf8, 0x94, /* cli */
798 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
799 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
800 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
801 };
802 static const unsigned char img_sig[] = {
803 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
804 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
805 };
806 static const unsigned char img_int[] = {
807 0xf8, 0x94, /* cli */
808 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
809 0x78, 0x94, /* sei */
810 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
811 };
812
813 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
814 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
815 {
816 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
817 vpc += 2;
818 }
819 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
820 {
821 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
822 vpc += 2;
823 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
824 vpc += 2;
825 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
826 }
827 else
828 return pc_beg + vpc;
829
830 /* Scan the last part of the prologue. May not be present for interrupt
831 or signal handler functions, which is why we set the prologue type
832 when we saw the beginning of the prologue previously. */
833
834 if (vpc + sizeof (img_sig) < len
835 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
836 {
837 vpc += sizeof (img_sig);
838 }
839 else if (vpc + sizeof (img_int) < len
840 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
841 {
842 vpc += sizeof (img_int);
843 }
844 if (vpc + sizeof (img) < len
845 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
846 {
847 info->prologue_type = AVR_PROLOGUE_NORMAL;
848 vpc += sizeof (img);
849 }
850
851 info->size += locals_size;
852
853 /* Fall through. */
854 }
855
856 /* If we got this far, we could not scan the prologue, so just return the pc
857 of the frame plus an adjustment for argument move insns. */
858
859 for (; vpc < len; vpc += 2)
860 {
861 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
862 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
863 continue;
864 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
865 continue;
866 else
867 break;
868 }
869
870 return pc_beg + vpc;
871 }
872
873 static CORE_ADDR
874 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
875 {
876 CORE_ADDR func_addr, func_end;
877 CORE_ADDR post_prologue_pc;
878
879 /* See what the symbol table says */
880
881 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
882 return pc;
883
884 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
885 if (post_prologue_pc != 0)
886 return std::max (pc, post_prologue_pc);
887
888 {
889 CORE_ADDR prologue_end = pc;
890 struct avr_unwind_cache info = {0};
891 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
892
893 info.saved_regs = saved_regs;
894
895 /* Need to run the prologue scanner to figure out if the function has a
896 prologue and possibly skip over moving arguments passed via registers
897 to other registers. */
898
899 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
900
901 if (info.prologue_type != AVR_PROLOGUE_NONE)
902 return prologue_end;
903 }
904
905 /* Either we didn't find the start of this function (nothing we can do),
906 or there's no line info, or the line after the prologue is after
907 the end of the function (there probably isn't a prologue). */
908
909 return pc;
910 }
911
912 /* Not all avr devices support the BREAK insn. Those that don't should treat
913 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
914 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
915
916 static const unsigned char *
917 avr_breakpoint_from_pc (struct gdbarch *gdbarch,
918 CORE_ADDR *pcptr, int *lenptr)
919 {
920 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
921 *lenptr = sizeof (avr_break_insn);
922 return avr_break_insn;
923 }
924
925 /* Determine, for architecture GDBARCH, how a return value of TYPE
926 should be returned. If it is supposed to be returned in registers,
927 and READBUF is non-zero, read the appropriate value from REGCACHE,
928 and copy it into READBUF. If WRITEBUF is non-zero, write the value
929 from WRITEBUF into REGCACHE. */
930
931 static enum return_value_convention
932 avr_return_value (struct gdbarch *gdbarch, struct value *function,
933 struct type *valtype, struct regcache *regcache,
934 gdb_byte *readbuf, const gdb_byte *writebuf)
935 {
936 int i;
937 /* Single byte are returned in r24.
938 Otherwise, the MSB of the return value is always in r25, calculate which
939 register holds the LSB. */
940 int lsb_reg;
941
942 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
943 || TYPE_CODE (valtype) == TYPE_CODE_UNION
944 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
945 && TYPE_LENGTH (valtype) > 8)
946 return RETURN_VALUE_STRUCT_CONVENTION;
947
948 if (TYPE_LENGTH (valtype) <= 2)
949 lsb_reg = 24;
950 else if (TYPE_LENGTH (valtype) <= 4)
951 lsb_reg = 22;
952 else if (TYPE_LENGTH (valtype) <= 8)
953 lsb_reg = 18;
954 else
955 gdb_assert_not_reached ("unexpected type length");
956
957 if (writebuf != NULL)
958 {
959 for (i = 0; i < TYPE_LENGTH (valtype); i++)
960 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
961 }
962
963 if (readbuf != NULL)
964 {
965 for (i = 0; i < TYPE_LENGTH (valtype); i++)
966 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
967 }
968
969 return RETURN_VALUE_REGISTER_CONVENTION;
970 }
971
972
973 /* Put here the code to store, into fi->saved_regs, the addresses of
974 the saved registers of frame described by FRAME_INFO. This
975 includes special registers such as pc and fp saved in special ways
976 in the stack frame. sp is even more special: the address we return
977 for it IS the sp for the next frame. */
978
979 static struct avr_unwind_cache *
980 avr_frame_unwind_cache (struct frame_info *this_frame,
981 void **this_prologue_cache)
982 {
983 CORE_ADDR start_pc, current_pc;
984 ULONGEST prev_sp;
985 ULONGEST this_base;
986 struct avr_unwind_cache *info;
987 struct gdbarch *gdbarch;
988 struct gdbarch_tdep *tdep;
989 int i;
990
991 if (*this_prologue_cache)
992 return (struct avr_unwind_cache *) *this_prologue_cache;
993
994 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
995 *this_prologue_cache = info;
996 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
997
998 info->size = 0;
999 info->prologue_type = AVR_PROLOGUE_NONE;
1000
1001 start_pc = get_frame_func (this_frame);
1002 current_pc = get_frame_pc (this_frame);
1003 if ((start_pc > 0) && (start_pc <= current_pc))
1004 avr_scan_prologue (get_frame_arch (this_frame),
1005 start_pc, current_pc, info);
1006
1007 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1008 && (info->prologue_type != AVR_PROLOGUE_MAIN))
1009 {
1010 ULONGEST high_base; /* High byte of FP */
1011
1012 /* The SP was moved to the FP. This indicates that a new frame
1013 was created. Get THIS frame's FP value by unwinding it from
1014 the next frame. */
1015 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
1016 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
1017 this_base += (high_base << 8);
1018
1019 /* The FP points at the last saved register. Adjust the FP back
1020 to before the first saved register giving the SP. */
1021 prev_sp = this_base + info->size;
1022 }
1023 else
1024 {
1025 /* Assume that the FP is this frame's SP but with that pushed
1026 stack space added back. */
1027 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1028 prev_sp = this_base + info->size;
1029 }
1030
1031 /* Add 1 here to adjust for the post-decrement nature of the push
1032 instruction.*/
1033 info->prev_sp = avr_make_saddr (prev_sp + 1);
1034 info->base = avr_make_saddr (this_base);
1035
1036 gdbarch = get_frame_arch (this_frame);
1037
1038 /* Adjust all the saved registers so that they contain addresses and not
1039 offsets. */
1040 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1041 if (info->saved_regs[i].addr > 0)
1042 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1043
1044 /* Except for the main and startup code, the return PC is always saved on
1045 the stack and is at the base of the frame. */
1046
1047 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1048 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1049
1050 /* The previous frame's SP needed to be computed. Save the computed
1051 value. */
1052 tdep = gdbarch_tdep (gdbarch);
1053 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1054 info->prev_sp - 1 + tdep->call_length);
1055
1056 return info;
1057 }
1058
1059 static CORE_ADDR
1060 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1061 {
1062 ULONGEST pc;
1063
1064 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1065
1066 return avr_make_iaddr (pc);
1067 }
1068
1069 static CORE_ADDR
1070 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1071 {
1072 ULONGEST sp;
1073
1074 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1075
1076 return avr_make_saddr (sp);
1077 }
1078
1079 /* Given a GDB frame, determine the address of the calling function's
1080 frame. This will be used to create a new GDB frame struct. */
1081
1082 static void
1083 avr_frame_this_id (struct frame_info *this_frame,
1084 void **this_prologue_cache,
1085 struct frame_id *this_id)
1086 {
1087 struct avr_unwind_cache *info
1088 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1089 CORE_ADDR base;
1090 CORE_ADDR func;
1091 struct frame_id id;
1092
1093 /* The FUNC is easy. */
1094 func = get_frame_func (this_frame);
1095
1096 /* Hopefully the prologue analysis either correctly determined the
1097 frame's base (which is the SP from the previous frame), or set
1098 that base to "NULL". */
1099 base = info->prev_sp;
1100 if (base == 0)
1101 return;
1102
1103 id = frame_id_build (base, func);
1104 (*this_id) = id;
1105 }
1106
1107 static struct value *
1108 avr_frame_prev_register (struct frame_info *this_frame,
1109 void **this_prologue_cache, int regnum)
1110 {
1111 struct avr_unwind_cache *info
1112 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1113
1114 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1115 {
1116 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1117 {
1118 /* Reading the return PC from the PC register is slightly
1119 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1120 but in reality, only two bytes (3 in upcoming mega256) are
1121 stored on the stack.
1122
1123 Also, note that the value on the stack is an addr to a word
1124 not a byte, so we will need to multiply it by two at some
1125 point.
1126
1127 And to confuse matters even more, the return address stored
1128 on the stack is in big endian byte order, even though most
1129 everything else about the avr is little endian. Ick! */
1130 ULONGEST pc;
1131 int i;
1132 gdb_byte buf[3];
1133 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1135
1136 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1137 buf, tdep->call_length);
1138
1139 /* Extract the PC read from memory as a big-endian. */
1140 pc = 0;
1141 for (i = 0; i < tdep->call_length; i++)
1142 pc = (pc << 8) | buf[i];
1143
1144 if (regnum == AVR_PC_REGNUM)
1145 pc <<= 1;
1146
1147 return frame_unwind_got_constant (this_frame, regnum, pc);
1148 }
1149
1150 return frame_unwind_got_optimized (this_frame, regnum);
1151 }
1152
1153 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1154 }
1155
1156 static const struct frame_unwind avr_frame_unwind = {
1157 NORMAL_FRAME,
1158 default_frame_unwind_stop_reason,
1159 avr_frame_this_id,
1160 avr_frame_prev_register,
1161 NULL,
1162 default_frame_sniffer
1163 };
1164
1165 static CORE_ADDR
1166 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1167 {
1168 struct avr_unwind_cache *info
1169 = avr_frame_unwind_cache (this_frame, this_cache);
1170
1171 return info->base;
1172 }
1173
1174 static const struct frame_base avr_frame_base = {
1175 &avr_frame_unwind,
1176 avr_frame_base_address,
1177 avr_frame_base_address,
1178 avr_frame_base_address
1179 };
1180
1181 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1182 frame. The frame ID's base needs to match the TOS value saved by
1183 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1184
1185 static struct frame_id
1186 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1187 {
1188 ULONGEST base;
1189
1190 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1191 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1192 }
1193
1194 /* When arguments must be pushed onto the stack, they go on in reverse
1195 order. The below implements a FILO (stack) to do this. */
1196
1197 struct stack_item
1198 {
1199 int len;
1200 struct stack_item *prev;
1201 gdb_byte *data;
1202 };
1203
1204 static struct stack_item *
1205 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1206 {
1207 struct stack_item *si;
1208 si = XNEW (struct stack_item);
1209 si->data = (gdb_byte *) xmalloc (len);
1210 si->len = len;
1211 si->prev = prev;
1212 memcpy (si->data, contents, len);
1213 return si;
1214 }
1215
1216 static struct stack_item *pop_stack_item (struct stack_item *si);
1217 static struct stack_item *
1218 pop_stack_item (struct stack_item *si)
1219 {
1220 struct stack_item *dead = si;
1221 si = si->prev;
1222 xfree (dead->data);
1223 xfree (dead);
1224 return si;
1225 }
1226
1227 /* Setup the function arguments for calling a function in the inferior.
1228
1229 On the AVR architecture, there are 18 registers (R25 to R8) which are
1230 dedicated for passing function arguments. Up to the first 18 arguments
1231 (depending on size) may go into these registers. The rest go on the stack.
1232
1233 All arguments are aligned to start in even-numbered registers (odd-sized
1234 arguments, including char, have one free register above them). For example,
1235 an int in arg1 and a char in arg2 would be passed as such:
1236
1237 arg1 -> r25:r24
1238 arg2 -> r22
1239
1240 Arguments that are larger than 2 bytes will be split between two or more
1241 registers as available, but will NOT be split between a register and the
1242 stack. Arguments that go onto the stack are pushed last arg first (this is
1243 similar to the d10v). */
1244
1245 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1246 inaccurate.
1247
1248 An exceptional case exists for struct arguments (and possibly other
1249 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1250 not a multiple of WORDSIZE bytes. In this case the argument is never split
1251 between the registers and the stack, but instead is copied in its entirety
1252 onto the stack, AND also copied into as many registers as there is room
1253 for. In other words, space in registers permitting, two copies of the same
1254 argument are passed in. As far as I can tell, only the one on the stack is
1255 used, although that may be a function of the level of compiler
1256 optimization. I suspect this is a compiler bug. Arguments of these odd
1257 sizes are left-justified within the word (as opposed to arguments smaller
1258 than WORDSIZE bytes, which are right-justified).
1259
1260 If the function is to return an aggregate type such as a struct, the caller
1261 must allocate space into which the callee will copy the return value. In
1262 this case, a pointer to the return value location is passed into the callee
1263 in register R0, which displaces one of the other arguments passed in via
1264 registers R0 to R2. */
1265
1266 static CORE_ADDR
1267 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1268 struct regcache *regcache, CORE_ADDR bp_addr,
1269 int nargs, struct value **args, CORE_ADDR sp,
1270 int struct_return, CORE_ADDR struct_addr)
1271 {
1272 int i;
1273 gdb_byte buf[3];
1274 int call_length = gdbarch_tdep (gdbarch)->call_length;
1275 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1276 int regnum = AVR_ARGN_REGNUM;
1277 struct stack_item *si = NULL;
1278
1279 if (struct_return)
1280 {
1281 regcache_cooked_write_unsigned
1282 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1283 regcache_cooked_write_unsigned
1284 (regcache, regnum--, struct_addr & 0xff);
1285 /* SP being post decremented, we need to reserve one byte so that the
1286 return address won't overwrite the result (or vice-versa). */
1287 if (sp == struct_addr)
1288 sp--;
1289 }
1290
1291 for (i = 0; i < nargs; i++)
1292 {
1293 int last_regnum;
1294 int j;
1295 struct value *arg = args[i];
1296 struct type *type = check_typedef (value_type (arg));
1297 const bfd_byte *contents = value_contents (arg);
1298 int len = TYPE_LENGTH (type);
1299
1300 /* Calculate the potential last register needed.
1301 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1302 shall be used. So, last needed register will be regnum-1(24). */
1303 last_regnum = regnum - (len + (len & 1)) + 1;
1304
1305 /* If there are registers available, use them. Once we start putting
1306 stuff on the stack, all subsequent args go on stack. */
1307 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
1308 {
1309 /* Skip a register for odd length args. */
1310 if (len & 1)
1311 regnum--;
1312
1313 /* Write MSB of argument into register and subsequent bytes in
1314 decreasing register numbers. */
1315 for (j = 0; j < len; j++)
1316 regcache_cooked_write_unsigned
1317 (regcache, regnum--, contents[len - j - 1]);
1318 }
1319 /* No registers available, push the args onto the stack. */
1320 else
1321 {
1322 /* From here on, we don't care about regnum. */
1323 si = push_stack_item (si, contents, len);
1324 }
1325 }
1326
1327 /* Push args onto the stack. */
1328 while (si)
1329 {
1330 sp -= si->len;
1331 /* Add 1 to sp here to account for post decr nature of pushes. */
1332 write_memory (sp + 1, si->data, si->len);
1333 si = pop_stack_item (si);
1334 }
1335
1336 /* Set the return address. For the avr, the return address is the BP_ADDR.
1337 Need to push the return address onto the stack noting that it needs to be
1338 in big-endian order on the stack. */
1339 for (i = 1; i <= call_length; i++)
1340 {
1341 buf[call_length - i] = return_pc & 0xff;
1342 return_pc >>= 8;
1343 }
1344
1345 sp -= call_length;
1346 /* Use 'sp + 1' since pushes are post decr ops. */
1347 write_memory (sp + 1, buf, call_length);
1348
1349 /* Finally, update the SP register. */
1350 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1351 avr_convert_saddr_to_raw (sp));
1352
1353 /* Return SP value for the dummy frame, where the return address hasn't been
1354 pushed. */
1355 return sp + call_length;
1356 }
1357
1358 /* Unfortunately dwarf2 register for SP is 32. */
1359
1360 static int
1361 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1362 {
1363 if (reg >= 0 && reg < 32)
1364 return reg;
1365 if (reg == 32)
1366 return AVR_SP_REGNUM;
1367 return -1;
1368 }
1369
1370 /* Implementation of `address_class_type_flags' gdbarch method.
1371
1372 This method maps DW_AT_address_class attributes to a
1373 type_instance_flag_value. */
1374
1375 static int
1376 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1377 {
1378 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1379 __flash qualifier. Note that this attribute is only valid with
1380 pointer types and therefore the flag is set to the pointer type and
1381 not its target type. */
1382 if (dwarf2_addr_class == 1 && byte_size == 2)
1383 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1384 return 0;
1385 }
1386
1387 /* Implementation of `address_class_type_flags_to_name' gdbarch method.
1388
1389 Convert a type_instance_flag_value to an address space qualifier. */
1390
1391 static const char*
1392 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1393 {
1394 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1395 return "flash";
1396 else
1397 return NULL;
1398 }
1399
1400 /* Implementation of `address_class_name_to_type_flags' gdbarch method.
1401
1402 Convert an address space qualifier to a type_instance_flag_value. */
1403
1404 static int
1405 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1406 const char* name,
1407 int *type_flags_ptr)
1408 {
1409 if (strcmp (name, "flash") == 0)
1410 {
1411 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1412 return 1;
1413 }
1414 else
1415 return 0;
1416 }
1417
1418 /* Initialize the gdbarch structure for the AVR's. */
1419
1420 static struct gdbarch *
1421 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1422 {
1423 struct gdbarch *gdbarch;
1424 struct gdbarch_tdep *tdep;
1425 struct gdbarch_list *best_arch;
1426 int call_length;
1427
1428 /* Avr-6 call instructions save 3 bytes. */
1429 switch (info.bfd_arch_info->mach)
1430 {
1431 case bfd_mach_avr1:
1432 case bfd_mach_avrxmega1:
1433 case bfd_mach_avr2:
1434 case bfd_mach_avrxmega2:
1435 case bfd_mach_avr3:
1436 case bfd_mach_avrxmega3:
1437 case bfd_mach_avr4:
1438 case bfd_mach_avrxmega4:
1439 case bfd_mach_avr5:
1440 case bfd_mach_avrxmega5:
1441 default:
1442 call_length = 2;
1443 break;
1444 case bfd_mach_avr6:
1445 case bfd_mach_avrxmega6:
1446 case bfd_mach_avrxmega7:
1447 call_length = 3;
1448 break;
1449 }
1450
1451 /* If there is already a candidate, use it. */
1452 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1453 best_arch != NULL;
1454 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1455 {
1456 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1457 return best_arch->gdbarch;
1458 }
1459
1460 /* None found, create a new architecture from the information provided. */
1461 tdep = XNEW (struct gdbarch_tdep);
1462 gdbarch = gdbarch_alloc (&info, tdep);
1463
1464 tdep->call_length = call_length;
1465
1466 /* Create a type for PC. We can't use builtin types here, as they may not
1467 be defined. */
1468 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1469 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1470 tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
1471 tdep->func_void_type);
1472
1473 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1474 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1475 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1476 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1477 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1478 set_gdbarch_addr_bit (gdbarch, 32);
1479
1480 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1481 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1482 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1483
1484 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1485 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1486 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1487
1488 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1489 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1490
1491 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1492
1493 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1494 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1495
1496 set_gdbarch_register_name (gdbarch, avr_register_name);
1497 set_gdbarch_register_type (gdbarch, avr_register_type);
1498
1499 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1500 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1501 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1502
1503 set_gdbarch_return_value (gdbarch, avr_return_value);
1504 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1505
1506 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1507
1508 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1509
1510 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1511 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1512 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1513
1514 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1515 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1516
1517 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1518
1519 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1520 frame_base_set_default (gdbarch, &avr_frame_base);
1521
1522 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1523
1524 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1525 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1526
1527 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1528 set_gdbarch_address_class_name_to_type_flags
1529 (gdbarch, avr_address_class_name_to_type_flags);
1530 set_gdbarch_address_class_type_flags_to_name
1531 (gdbarch, avr_address_class_type_flags_to_name);
1532
1533 return gdbarch;
1534 }
1535
1536 /* Send a query request to the avr remote target asking for values of the io
1537 registers. If args parameter is not NULL, then the user has requested info
1538 on a specific io register [This still needs implemented and is ignored for
1539 now]. The query string should be one of these forms:
1540
1541 "Ravr.io_reg" -> reply is "NN" number of io registers
1542
1543 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1544 registers to be read. The reply should be "<NAME>,VV;" for each io register
1545 where, <NAME> is a string, and VV is the hex value of the register.
1546
1547 All io registers are 8-bit. */
1548
1549 static void
1550 avr_io_reg_read_command (char *args, int from_tty)
1551 {
1552 LONGEST bufsiz = 0;
1553 gdb_byte *buf;
1554 const char *bufstr;
1555 char query[400];
1556 const char *p;
1557 unsigned int nreg = 0;
1558 unsigned int val;
1559 int i, j, k, step;
1560
1561 /* Find out how many io registers the target has. */
1562 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1563 "avr.io_reg", &buf);
1564 bufstr = (const char *) buf;
1565
1566 if (bufsiz <= 0)
1567 {
1568 fprintf_unfiltered (gdb_stderr,
1569 _("ERR: info io_registers NOT supported "
1570 "by current target\n"));
1571 return;
1572 }
1573
1574 if (sscanf (bufstr, "%x", &nreg) != 1)
1575 {
1576 fprintf_unfiltered (gdb_stderr,
1577 _("Error fetching number of io registers\n"));
1578 xfree (buf);
1579 return;
1580 }
1581
1582 xfree (buf);
1583
1584 reinitialize_more_filter ();
1585
1586 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1587
1588 /* only fetch up to 8 registers at a time to keep the buffer small */
1589 step = 8;
1590
1591 for (i = 0; i < nreg; i += step)
1592 {
1593 /* how many registers this round? */
1594 j = step;
1595 if ((i+j) >= nreg)
1596 j = nreg - i; /* last block is less than 8 registers */
1597
1598 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1599 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1600 query, &buf);
1601
1602 p = (const char *) buf;
1603 for (k = i; k < (i + j); k++)
1604 {
1605 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1606 {
1607 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1608 while ((*p != ';') && (*p != '\0'))
1609 p++;
1610 p++; /* skip over ';' */
1611 if (*p == '\0')
1612 break;
1613 }
1614 }
1615
1616 xfree (buf);
1617 }
1618 }
1619
1620 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1621
1622 void
1623 _initialize_avr_tdep (void)
1624 {
1625 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1626
1627 /* Add a new command to allow the user to query the avr remote target for
1628 the values of the io space registers in a saner way than just using
1629 `x/NNNb ADDR`. */
1630
1631 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1632 io_registers' to signify it is not available on other platforms. */
1633
1634 add_info ("io_registers", avr_io_reg_read_command,
1635 _("query remote avr target for io space register values"));
1636 }
This page took 0.093947 seconds and 5 git commands to generate.