use bound_minsym as result for lookup_minimal_symbol et al
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
21
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdbtypes.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include <string.h>
38 #include "dis-asm.h"
39
40 /* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
70
71 /* Constants: prefixed with AVR_ to avoid name space clashes */
72
73 enum
74 {
75 AVR_REG_W = 24,
76 AVR_REG_X = 26,
77 AVR_REG_Y = 28,
78 AVR_FP_REGNUM = 28,
79 AVR_REG_Z = 30,
80
81 AVR_SREG_REGNUM = 32,
82 AVR_SP_REGNUM = 33,
83 AVR_PC_REGNUM = 34,
84
85 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
86 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
87
88 /* Pseudo registers. */
89 AVR_PSEUDO_PC_REGNUM = 35,
90 AVR_NUM_PSEUDO_REGS = 1,
91
92 AVR_PC_REG_INDEX = 35, /* index into array of registers */
93
94 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
95
96 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
97 AVR_MAX_PUSHES = 18,
98
99 /* Number of the last pushed register. r17 for current avr-gcc */
100 AVR_LAST_PUSHED_REGNUM = 17,
101
102 AVR_ARG1_REGNUM = 24, /* Single byte argument */
103 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
104
105 AVR_RET1_REGNUM = 24, /* Single byte return value */
106 AVR_RETN_REGNUM = 25, /* Multi byte return value */
107
108 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
109 bits? Do these have to match the bfd vma values? It sure would make
110 things easier in the future if they didn't need to match.
111
112 Note: I chose these values so as to be consistent with bfd vma
113 addresses.
114
115 TRoth/2002-04-08: There is already a conflict with very large programs
116 in the mega128. The mega128 has 128K instruction bytes (64K words),
117 thus the Most Significant Bit is 0x10000 which gets masked off my
118 AVR_MEM_MASK.
119
120 The problem manifests itself when trying to set a breakpoint in a
121 function which resides in the upper half of the instruction space and
122 thus requires a 17-bit address.
123
124 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
125 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
126 but could be for some remote targets by just adding the correct offset
127 to the address and letting the remote target handle the low-level
128 details of actually accessing the eeprom. */
129
130 AVR_IMEM_START = 0x00000000, /* INSN memory */
131 AVR_SMEM_START = 0x00800000, /* SRAM memory */
132 #if 1
133 /* No eeprom mask defined */
134 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
135 #else
136 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
137 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
138 #endif
139 };
140
141 /* Prologue types:
142
143 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
144 causes the generation of the CALL type prologues). */
145
146 enum {
147 AVR_PROLOGUE_NONE, /* No prologue */
148 AVR_PROLOGUE_NORMAL,
149 AVR_PROLOGUE_CALL, /* -mcall-prologues */
150 AVR_PROLOGUE_MAIN,
151 AVR_PROLOGUE_INTR, /* interrupt handler */
152 AVR_PROLOGUE_SIG, /* signal handler */
153 };
154
155 /* Any function with a frame looks like this
156 ....... <-SP POINTS HERE
157 LOCALS1 <-FP POINTS HERE
158 LOCALS0
159 SAVED FP
160 SAVED R3
161 SAVED R2
162 RET PC
163 FIRST ARG
164 SECOND ARG */
165
166 struct avr_unwind_cache
167 {
168 /* The previous frame's inner most stack address. Used as this
169 frame ID's stack_addr. */
170 CORE_ADDR prev_sp;
171 /* The frame's base, optionally used by the high-level debug info. */
172 CORE_ADDR base;
173 int size;
174 int prologue_type;
175 /* Table indicating the location of each and every register. */
176 struct trad_frame_saved_reg *saved_regs;
177 };
178
179 struct gdbarch_tdep
180 {
181 /* Number of bytes stored to the stack by call instructions.
182 2 bytes for avr1-5, 3 bytes for avr6. */
183 int call_length;
184
185 /* Type for void. */
186 struct type *void_type;
187 /* Type for a function returning void. */
188 struct type *func_void_type;
189 /* Type for a pointer to a function. Used for the type of PC. */
190 struct type *pc_type;
191 };
192
193 /* Lookup the name of a register given it's number. */
194
195 static const char *
196 avr_register_name (struct gdbarch *gdbarch, int regnum)
197 {
198 static const char * const register_names[] = {
199 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
200 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
201 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
202 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
203 "SREG", "SP", "PC2",
204 "pc"
205 };
206 if (regnum < 0)
207 return NULL;
208 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
209 return NULL;
210 return register_names[regnum];
211 }
212
213 /* Return the GDB type object for the "standard" data type
214 of data in register N. */
215
216 static struct type *
217 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
218 {
219 if (reg_nr == AVR_PC_REGNUM)
220 return builtin_type (gdbarch)->builtin_uint32;
221 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
222 return gdbarch_tdep (gdbarch)->pc_type;
223 if (reg_nr == AVR_SP_REGNUM)
224 return builtin_type (gdbarch)->builtin_data_ptr;
225 return builtin_type (gdbarch)->builtin_uint8;
226 }
227
228 /* Instruction address checks and convertions. */
229
230 static CORE_ADDR
231 avr_make_iaddr (CORE_ADDR x)
232 {
233 return ((x) | AVR_IMEM_START);
234 }
235
236 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
237 devices are already up to 128KBytes of flash space.
238
239 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
240
241 static CORE_ADDR
242 avr_convert_iaddr_to_raw (CORE_ADDR x)
243 {
244 return ((x) & 0xffffffff);
245 }
246
247 /* SRAM address checks and convertions. */
248
249 static CORE_ADDR
250 avr_make_saddr (CORE_ADDR x)
251 {
252 /* Return 0 for NULL. */
253 if (x == 0)
254 return 0;
255
256 return ((x) | AVR_SMEM_START);
257 }
258
259 static CORE_ADDR
260 avr_convert_saddr_to_raw (CORE_ADDR x)
261 {
262 return ((x) & 0xffffffff);
263 }
264
265 /* EEPROM address checks and convertions. I don't know if these will ever
266 actually be used, but I've added them just the same. TRoth */
267
268 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
269 programs in the mega128. */
270
271 /* static CORE_ADDR */
272 /* avr_make_eaddr (CORE_ADDR x) */
273 /* { */
274 /* return ((x) | AVR_EMEM_START); */
275 /* } */
276
277 /* static int */
278 /* avr_eaddr_p (CORE_ADDR x) */
279 /* { */
280 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
281 /* } */
282
283 /* static CORE_ADDR */
284 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
285 /* { */
286 /* return ((x) & 0xffffffff); */
287 /* } */
288
289 /* Convert from address to pointer and vice-versa. */
290
291 static void
292 avr_address_to_pointer (struct gdbarch *gdbarch,
293 struct type *type, gdb_byte *buf, CORE_ADDR addr)
294 {
295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
296
297 /* Is it a code address? */
298 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
299 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
300 {
301 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
302 avr_convert_iaddr_to_raw (addr >> 1));
303 }
304 else
305 {
306 /* Strip off any upper segment bits. */
307 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
308 avr_convert_saddr_to_raw (addr));
309 }
310 }
311
312 static CORE_ADDR
313 avr_pointer_to_address (struct gdbarch *gdbarch,
314 struct type *type, const gdb_byte *buf)
315 {
316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
317 CORE_ADDR addr
318 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
319
320 /* Is it a code address? */
321 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
322 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
323 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
324 return avr_make_iaddr (addr << 1);
325 else
326 return avr_make_saddr (addr);
327 }
328
329 static CORE_ADDR
330 avr_integer_to_address (struct gdbarch *gdbarch,
331 struct type *type, const gdb_byte *buf)
332 {
333 ULONGEST addr = unpack_long (type, buf);
334
335 return avr_make_saddr (addr);
336 }
337
338 static CORE_ADDR
339 avr_read_pc (struct regcache *regcache)
340 {
341 ULONGEST pc;
342 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
343 return avr_make_iaddr (pc);
344 }
345
346 static void
347 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
348 {
349 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
350 avr_convert_iaddr_to_raw (val));
351 }
352
353 static enum register_status
354 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
355 int regnum, gdb_byte *buf)
356 {
357 ULONGEST val;
358 enum register_status status;
359
360 switch (regnum)
361 {
362 case AVR_PSEUDO_PC_REGNUM:
363 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
364 if (status != REG_VALID)
365 return status;
366 val >>= 1;
367 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
368 return status;
369 default:
370 internal_error (__FILE__, __LINE__, _("invalid regnum"));
371 }
372 }
373
374 static void
375 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
376 int regnum, const gdb_byte *buf)
377 {
378 ULONGEST val;
379
380 switch (regnum)
381 {
382 case AVR_PSEUDO_PC_REGNUM:
383 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
384 val <<= 1;
385 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
386 break;
387 default:
388 internal_error (__FILE__, __LINE__, _("invalid regnum"));
389 }
390 }
391
392 /* Function: avr_scan_prologue
393
394 This function decodes an AVR function prologue to determine:
395 1) the size of the stack frame
396 2) which registers are saved on it
397 3) the offsets of saved regs
398 This information is stored in the avr_unwind_cache structure.
399
400 Some devices lack the sbiw instruction, so on those replace this:
401 sbiw r28, XX
402 with this:
403 subi r28,lo8(XX)
404 sbci r29,hi8(XX)
405
406 A typical AVR function prologue with a frame pointer might look like this:
407 push rXX ; saved regs
408 ...
409 push r28
410 push r29
411 in r28,__SP_L__
412 in r29,__SP_H__
413 sbiw r28,<LOCALS_SIZE>
414 in __tmp_reg__,__SREG__
415 cli
416 out __SP_H__,r29
417 out __SREG__,__tmp_reg__
418 out __SP_L__,r28
419
420 A typical AVR function prologue without a frame pointer might look like
421 this:
422 push rXX ; saved regs
423 ...
424
425 A main function prologue looks like this:
426 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
427 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
428 out __SP_H__,r29
429 out __SP_L__,r28
430
431 A signal handler prologue looks like this:
432 push __zero_reg__
433 push __tmp_reg__
434 in __tmp_reg__, __SREG__
435 push __tmp_reg__
436 clr __zero_reg__
437 push rXX ; save registers r18:r27, r30:r31
438 ...
439 push r28 ; save frame pointer
440 push r29
441 in r28, __SP_L__
442 in r29, __SP_H__
443 sbiw r28, <LOCALS_SIZE>
444 out __SP_H__, r29
445 out __SP_L__, r28
446
447 A interrupt handler prologue looks like this:
448 sei
449 push __zero_reg__
450 push __tmp_reg__
451 in __tmp_reg__, __SREG__
452 push __tmp_reg__
453 clr __zero_reg__
454 push rXX ; save registers r18:r27, r30:r31
455 ...
456 push r28 ; save frame pointer
457 push r29
458 in r28, __SP_L__
459 in r29, __SP_H__
460 sbiw r28, <LOCALS_SIZE>
461 cli
462 out __SP_H__, r29
463 sei
464 out __SP_L__, r28
465
466 A `-mcall-prologues' prologue looks like this (Note that the megas use a
467 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
468 32 bit insn and rjmp is a 16 bit insn):
469 ldi r26,lo8(<LOCALS_SIZE>)
470 ldi r27,hi8(<LOCALS_SIZE>)
471 ldi r30,pm_lo8(.L_foo_body)
472 ldi r31,pm_hi8(.L_foo_body)
473 rjmp __prologue_saves__+RRR
474 .L_foo_body: */
475
476 /* Not really part of a prologue, but still need to scan for it, is when a
477 function prologue moves values passed via registers as arguments to new
478 registers. In this case, all local variables live in registers, so there
479 may be some register saves. This is what it looks like:
480 movw rMM, rNN
481 ...
482
483 There could be multiple movw's. If the target doesn't have a movw insn, it
484 will use two mov insns. This could be done after any of the above prologue
485 types. */
486
487 static CORE_ADDR
488 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
489 struct avr_unwind_cache *info)
490 {
491 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
492 int i;
493 unsigned short insn;
494 int scan_stage = 0;
495 struct bound_minimal_symbol msymbol;
496 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
497 int vpc = 0;
498 int len;
499
500 len = pc_end - pc_beg;
501 if (len > AVR_MAX_PROLOGUE_SIZE)
502 len = AVR_MAX_PROLOGUE_SIZE;
503
504 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
505 reading in the bytes of the prologue. The problem is that the figuring
506 out where the end of the prologue is is a bit difficult. The old code
507 tried to do that, but failed quite often. */
508 read_memory (pc_beg, prologue, len);
509
510 /* Scanning main()'s prologue
511 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
512 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
513 out __SP_H__,r29
514 out __SP_L__,r28 */
515
516 if (len >= 4)
517 {
518 CORE_ADDR locals;
519 static const unsigned char img[] = {
520 0xde, 0xbf, /* out __SP_H__,r29 */
521 0xcd, 0xbf /* out __SP_L__,r28 */
522 };
523
524 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
525 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
526 if ((insn & 0xf0f0) == 0xe0c0)
527 {
528 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
529 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
530 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
531 if ((insn & 0xf0f0) == 0xe0d0)
532 {
533 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
534 if (vpc + 4 + sizeof (img) < len
535 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
536 {
537 info->prologue_type = AVR_PROLOGUE_MAIN;
538 info->base = locals;
539 return pc_beg + 4;
540 }
541 }
542 }
543 }
544
545 /* Scanning `-mcall-prologues' prologue
546 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
547
548 while (1) /* Using a while to avoid many goto's */
549 {
550 int loc_size;
551 int body_addr;
552 unsigned num_pushes;
553 int pc_offset = 0;
554
555 /* At least the fifth instruction must have been executed to
556 modify frame shape. */
557 if (len < 10)
558 break;
559
560 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
561 /* ldi r26,<LOCALS_SIZE> */
562 if ((insn & 0xf0f0) != 0xe0a0)
563 break;
564 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
565 pc_offset += 2;
566
567 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
568 /* ldi r27,<LOCALS_SIZE> / 256 */
569 if ((insn & 0xf0f0) != 0xe0b0)
570 break;
571 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
572 pc_offset += 2;
573
574 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
575 /* ldi r30,pm_lo8(.L_foo_body) */
576 if ((insn & 0xf0f0) != 0xe0e0)
577 break;
578 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
579 pc_offset += 2;
580
581 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
582 /* ldi r31,pm_hi8(.L_foo_body) */
583 if ((insn & 0xf0f0) != 0xe0f0)
584 break;
585 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
586 pc_offset += 2;
587
588 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
589 if (!msymbol.minsym)
590 break;
591
592 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
593 /* rjmp __prologue_saves__+RRR */
594 if ((insn & 0xf000) == 0xc000)
595 {
596 /* Extract PC relative offset from RJMP */
597 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
598 /* Convert offset to byte addressable mode */
599 i *= 2;
600 /* Destination address */
601 i += pc_beg + 10;
602
603 if (body_addr != (pc_beg + 10)/2)
604 break;
605
606 pc_offset += 2;
607 }
608 else if ((insn & 0xfe0e) == 0x940c)
609 {
610 /* Extract absolute PC address from JMP */
611 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
612 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
613 & 0xffff));
614 /* Convert address to byte addressable mode */
615 i *= 2;
616
617 if (body_addr != (pc_beg + 12)/2)
618 break;
619
620 pc_offset += 4;
621 }
622 else
623 break;
624
625 /* Resolve offset (in words) from __prologue_saves__ symbol.
626 Which is a pushes count in `-mcall-prologues' mode */
627 num_pushes = (AVR_MAX_PUSHES
628 - (i - MSYMBOL_VALUE_ADDRESS (msymbol.minsym)) / 2);
629
630 if (num_pushes > AVR_MAX_PUSHES)
631 {
632 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
633 num_pushes);
634 num_pushes = 0;
635 }
636
637 if (num_pushes)
638 {
639 int from;
640
641 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
642 if (num_pushes >= 2)
643 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
644
645 i = 0;
646 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
647 from <= AVR_LAST_PUSHED_REGNUM; ++from)
648 info->saved_regs [from].addr = ++i;
649 }
650 info->size = loc_size + num_pushes;
651 info->prologue_type = AVR_PROLOGUE_CALL;
652
653 return pc_beg + pc_offset;
654 }
655
656 /* Scan for the beginning of the prologue for an interrupt or signal
657 function. Note that we have to set the prologue type here since the
658 third stage of the prologue may not be present (e.g. no saved registered
659 or changing of the SP register). */
660
661 if (1)
662 {
663 static const unsigned char img[] = {
664 0x78, 0x94, /* sei */
665 0x1f, 0x92, /* push r1 */
666 0x0f, 0x92, /* push r0 */
667 0x0f, 0xb6, /* in r0,0x3f SREG */
668 0x0f, 0x92, /* push r0 */
669 0x11, 0x24 /* clr r1 */
670 };
671 if (len >= sizeof (img)
672 && memcmp (prologue, img, sizeof (img)) == 0)
673 {
674 info->prologue_type = AVR_PROLOGUE_INTR;
675 vpc += sizeof (img);
676 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
677 info->saved_regs[0].addr = 2;
678 info->saved_regs[1].addr = 1;
679 info->size += 3;
680 }
681 else if (len >= sizeof (img) - 2
682 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
683 {
684 info->prologue_type = AVR_PROLOGUE_SIG;
685 vpc += sizeof (img) - 2;
686 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
687 info->saved_regs[0].addr = 2;
688 info->saved_regs[1].addr = 1;
689 info->size += 2;
690 }
691 }
692
693 /* First stage of the prologue scanning.
694 Scan pushes (saved registers) */
695
696 for (; vpc < len; vpc += 2)
697 {
698 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
699 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
700 {
701 /* Bits 4-9 contain a mask for registers R0-R32. */
702 int regno = (insn & 0x1f0) >> 4;
703 info->size++;
704 info->saved_regs[regno].addr = info->size;
705 scan_stage = 1;
706 }
707 else
708 break;
709 }
710
711 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
712
713 /* Handle static small stack allocation using rcall or push. */
714
715 while (scan_stage == 1 && vpc < len)
716 {
717 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
718 if (insn == 0xd000) /* rcall .+0 */
719 {
720 info->size += gdbarch_tdep (gdbarch)->call_length;
721 vpc += 2;
722 }
723 else if (insn == 0x920f) /* push r0 */
724 {
725 info->size += 1;
726 vpc += 2;
727 }
728 else
729 break;
730 }
731
732 /* Second stage of the prologue scanning.
733 Scan:
734 in r28,__SP_L__
735 in r29,__SP_H__ */
736
737 if (scan_stage == 1 && vpc < len)
738 {
739 static const unsigned char img[] = {
740 0xcd, 0xb7, /* in r28,__SP_L__ */
741 0xde, 0xb7 /* in r29,__SP_H__ */
742 };
743
744 if (vpc + sizeof (img) < len
745 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
746 {
747 vpc += 4;
748 scan_stage = 2;
749 }
750 }
751
752 /* Third stage of the prologue scanning. (Really two stages).
753 Scan for:
754 sbiw r28,XX or subi r28,lo8(XX)
755 sbci r29,hi8(XX)
756 in __tmp_reg__,__SREG__
757 cli
758 out __SP_H__,r29
759 out __SREG__,__tmp_reg__
760 out __SP_L__,r28 */
761
762 if (scan_stage == 2 && vpc < len)
763 {
764 int locals_size = 0;
765 static const unsigned char img[] = {
766 0x0f, 0xb6, /* in r0,0x3f */
767 0xf8, 0x94, /* cli */
768 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
769 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
770 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
771 };
772 static const unsigned char img_sig[] = {
773 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
774 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
775 };
776 static const unsigned char img_int[] = {
777 0xf8, 0x94, /* cli */
778 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
779 0x78, 0x94, /* sei */
780 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
781 };
782
783 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
784 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
785 {
786 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
787 vpc += 2;
788 }
789 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
790 {
791 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
792 vpc += 2;
793 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
794 vpc += 2;
795 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
796 }
797 else
798 return pc_beg + vpc;
799
800 /* Scan the last part of the prologue. May not be present for interrupt
801 or signal handler functions, which is why we set the prologue type
802 when we saw the beginning of the prologue previously. */
803
804 if (vpc + sizeof (img_sig) < len
805 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
806 {
807 vpc += sizeof (img_sig);
808 }
809 else if (vpc + sizeof (img_int) < len
810 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
811 {
812 vpc += sizeof (img_int);
813 }
814 if (vpc + sizeof (img) < len
815 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
816 {
817 info->prologue_type = AVR_PROLOGUE_NORMAL;
818 vpc += sizeof (img);
819 }
820
821 info->size += locals_size;
822
823 /* Fall through. */
824 }
825
826 /* If we got this far, we could not scan the prologue, so just return the pc
827 of the frame plus an adjustment for argument move insns. */
828
829 for (; vpc < len; vpc += 2)
830 {
831 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
832 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
833 continue;
834 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
835 continue;
836 else
837 break;
838 }
839
840 return pc_beg + vpc;
841 }
842
843 static CORE_ADDR
844 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
845 {
846 CORE_ADDR func_addr, func_end;
847 CORE_ADDR post_prologue_pc;
848
849 /* See what the symbol table says */
850
851 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
852 return pc;
853
854 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
855 if (post_prologue_pc != 0)
856 return max (pc, post_prologue_pc);
857
858 {
859 CORE_ADDR prologue_end = pc;
860 struct avr_unwind_cache info = {0};
861 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
862
863 info.saved_regs = saved_regs;
864
865 /* Need to run the prologue scanner to figure out if the function has a
866 prologue and possibly skip over moving arguments passed via registers
867 to other registers. */
868
869 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
870
871 if (info.prologue_type != AVR_PROLOGUE_NONE)
872 return prologue_end;
873 }
874
875 /* Either we didn't find the start of this function (nothing we can do),
876 or there's no line info, or the line after the prologue is after
877 the end of the function (there probably isn't a prologue). */
878
879 return pc;
880 }
881
882 /* Not all avr devices support the BREAK insn. Those that don't should treat
883 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
884 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
885
886 static const unsigned char *
887 avr_breakpoint_from_pc (struct gdbarch *gdbarch,
888 CORE_ADDR *pcptr, int *lenptr)
889 {
890 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
891 *lenptr = sizeof (avr_break_insn);
892 return avr_break_insn;
893 }
894
895 /* Determine, for architecture GDBARCH, how a return value of TYPE
896 should be returned. If it is supposed to be returned in registers,
897 and READBUF is non-zero, read the appropriate value from REGCACHE,
898 and copy it into READBUF. If WRITEBUF is non-zero, write the value
899 from WRITEBUF into REGCACHE. */
900
901 static enum return_value_convention
902 avr_return_value (struct gdbarch *gdbarch, struct value *function,
903 struct type *valtype, struct regcache *regcache,
904 gdb_byte *readbuf, const gdb_byte *writebuf)
905 {
906 int i;
907 /* Single byte are returned in r24.
908 Otherwise, the MSB of the return value is always in r25, calculate which
909 register holds the LSB. */
910 int lsb_reg;
911
912 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
913 || TYPE_CODE (valtype) == TYPE_CODE_UNION
914 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
915 && TYPE_LENGTH (valtype) > 8)
916 return RETURN_VALUE_STRUCT_CONVENTION;
917
918 if (TYPE_LENGTH (valtype) <= 2)
919 lsb_reg = 24;
920 else if (TYPE_LENGTH (valtype) <= 4)
921 lsb_reg = 22;
922 else if (TYPE_LENGTH (valtype) <= 8)
923 lsb_reg = 18;
924 else
925 gdb_assert_not_reached ("unexpected type length");
926
927 if (writebuf != NULL)
928 {
929 for (i = 0; i < TYPE_LENGTH (valtype); i++)
930 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
931 }
932
933 if (readbuf != NULL)
934 {
935 for (i = 0; i < TYPE_LENGTH (valtype); i++)
936 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
937 }
938
939 return RETURN_VALUE_REGISTER_CONVENTION;
940 }
941
942
943 /* Put here the code to store, into fi->saved_regs, the addresses of
944 the saved registers of frame described by FRAME_INFO. This
945 includes special registers such as pc and fp saved in special ways
946 in the stack frame. sp is even more special: the address we return
947 for it IS the sp for the next frame. */
948
949 static struct avr_unwind_cache *
950 avr_frame_unwind_cache (struct frame_info *this_frame,
951 void **this_prologue_cache)
952 {
953 CORE_ADDR start_pc, current_pc;
954 ULONGEST prev_sp;
955 ULONGEST this_base;
956 struct avr_unwind_cache *info;
957 struct gdbarch *gdbarch;
958 struct gdbarch_tdep *tdep;
959 int i;
960
961 if (*this_prologue_cache)
962 return *this_prologue_cache;
963
964 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
965 *this_prologue_cache = info;
966 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
967
968 info->size = 0;
969 info->prologue_type = AVR_PROLOGUE_NONE;
970
971 start_pc = get_frame_func (this_frame);
972 current_pc = get_frame_pc (this_frame);
973 if ((start_pc > 0) && (start_pc <= current_pc))
974 avr_scan_prologue (get_frame_arch (this_frame),
975 start_pc, current_pc, info);
976
977 if ((info->prologue_type != AVR_PROLOGUE_NONE)
978 && (info->prologue_type != AVR_PROLOGUE_MAIN))
979 {
980 ULONGEST high_base; /* High byte of FP */
981
982 /* The SP was moved to the FP. This indicates that a new frame
983 was created. Get THIS frame's FP value by unwinding it from
984 the next frame. */
985 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
986 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
987 this_base += (high_base << 8);
988
989 /* The FP points at the last saved register. Adjust the FP back
990 to before the first saved register giving the SP. */
991 prev_sp = this_base + info->size;
992 }
993 else
994 {
995 /* Assume that the FP is this frame's SP but with that pushed
996 stack space added back. */
997 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
998 prev_sp = this_base + info->size;
999 }
1000
1001 /* Add 1 here to adjust for the post-decrement nature of the push
1002 instruction.*/
1003 info->prev_sp = avr_make_saddr (prev_sp + 1);
1004 info->base = avr_make_saddr (this_base);
1005
1006 gdbarch = get_frame_arch (this_frame);
1007
1008 /* Adjust all the saved registers so that they contain addresses and not
1009 offsets. */
1010 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1011 if (info->saved_regs[i].addr > 0)
1012 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1013
1014 /* Except for the main and startup code, the return PC is always saved on
1015 the stack and is at the base of the frame. */
1016
1017 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1018 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1019
1020 /* The previous frame's SP needed to be computed. Save the computed
1021 value. */
1022 tdep = gdbarch_tdep (gdbarch);
1023 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1024 info->prev_sp - 1 + tdep->call_length);
1025
1026 return info;
1027 }
1028
1029 static CORE_ADDR
1030 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1031 {
1032 ULONGEST pc;
1033
1034 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1035
1036 return avr_make_iaddr (pc);
1037 }
1038
1039 static CORE_ADDR
1040 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1041 {
1042 ULONGEST sp;
1043
1044 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1045
1046 return avr_make_saddr (sp);
1047 }
1048
1049 /* Given a GDB frame, determine the address of the calling function's
1050 frame. This will be used to create a new GDB frame struct. */
1051
1052 static void
1053 avr_frame_this_id (struct frame_info *this_frame,
1054 void **this_prologue_cache,
1055 struct frame_id *this_id)
1056 {
1057 struct avr_unwind_cache *info
1058 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1059 CORE_ADDR base;
1060 CORE_ADDR func;
1061 struct frame_id id;
1062
1063 /* The FUNC is easy. */
1064 func = get_frame_func (this_frame);
1065
1066 /* Hopefully the prologue analysis either correctly determined the
1067 frame's base (which is the SP from the previous frame), or set
1068 that base to "NULL". */
1069 base = info->prev_sp;
1070 if (base == 0)
1071 return;
1072
1073 id = frame_id_build (base, func);
1074 (*this_id) = id;
1075 }
1076
1077 static struct value *
1078 avr_frame_prev_register (struct frame_info *this_frame,
1079 void **this_prologue_cache, int regnum)
1080 {
1081 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1082 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1083 struct avr_unwind_cache *info
1084 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1085
1086 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1087 {
1088 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1089 {
1090 /* Reading the return PC from the PC register is slightly
1091 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1092 but in reality, only two bytes (3 in upcoming mega256) are
1093 stored on the stack.
1094
1095 Also, note that the value on the stack is an addr to a word
1096 not a byte, so we will need to multiply it by two at some
1097 point.
1098
1099 And to confuse matters even more, the return address stored
1100 on the stack is in big endian byte order, even though most
1101 everything else about the avr is little endian. Ick! */
1102 ULONGEST pc;
1103 int i;
1104 gdb_byte buf[3];
1105 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1106 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1107
1108 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1109 buf, tdep->call_length);
1110
1111 /* Extract the PC read from memory as a big-endian. */
1112 pc = 0;
1113 for (i = 0; i < tdep->call_length; i++)
1114 pc = (pc << 8) | buf[i];
1115
1116 if (regnum == AVR_PC_REGNUM)
1117 pc <<= 1;
1118
1119 return frame_unwind_got_constant (this_frame, regnum, pc);
1120 }
1121
1122 return frame_unwind_got_optimized (this_frame, regnum);
1123 }
1124
1125 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1126 }
1127
1128 static const struct frame_unwind avr_frame_unwind = {
1129 NORMAL_FRAME,
1130 default_frame_unwind_stop_reason,
1131 avr_frame_this_id,
1132 avr_frame_prev_register,
1133 NULL,
1134 default_frame_sniffer
1135 };
1136
1137 static CORE_ADDR
1138 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1139 {
1140 struct avr_unwind_cache *info
1141 = avr_frame_unwind_cache (this_frame, this_cache);
1142
1143 return info->base;
1144 }
1145
1146 static const struct frame_base avr_frame_base = {
1147 &avr_frame_unwind,
1148 avr_frame_base_address,
1149 avr_frame_base_address,
1150 avr_frame_base_address
1151 };
1152
1153 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1154 frame. The frame ID's base needs to match the TOS value saved by
1155 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1156
1157 static struct frame_id
1158 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1159 {
1160 ULONGEST base;
1161
1162 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1163 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1164 }
1165
1166 /* When arguments must be pushed onto the stack, they go on in reverse
1167 order. The below implements a FILO (stack) to do this. */
1168
1169 struct stack_item
1170 {
1171 int len;
1172 struct stack_item *prev;
1173 void *data;
1174 };
1175
1176 static struct stack_item *
1177 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1178 {
1179 struct stack_item *si;
1180 si = xmalloc (sizeof (struct stack_item));
1181 si->data = xmalloc (len);
1182 si->len = len;
1183 si->prev = prev;
1184 memcpy (si->data, contents, len);
1185 return si;
1186 }
1187
1188 static struct stack_item *pop_stack_item (struct stack_item *si);
1189 static struct stack_item *
1190 pop_stack_item (struct stack_item *si)
1191 {
1192 struct stack_item *dead = si;
1193 si = si->prev;
1194 xfree (dead->data);
1195 xfree (dead);
1196 return si;
1197 }
1198
1199 /* Setup the function arguments for calling a function in the inferior.
1200
1201 On the AVR architecture, there are 18 registers (R25 to R8) which are
1202 dedicated for passing function arguments. Up to the first 18 arguments
1203 (depending on size) may go into these registers. The rest go on the stack.
1204
1205 All arguments are aligned to start in even-numbered registers (odd-sized
1206 arguments, including char, have one free register above them). For example,
1207 an int in arg1 and a char in arg2 would be passed as such:
1208
1209 arg1 -> r25:r24
1210 arg2 -> r22
1211
1212 Arguments that are larger than 2 bytes will be split between two or more
1213 registers as available, but will NOT be split between a register and the
1214 stack. Arguments that go onto the stack are pushed last arg first (this is
1215 similar to the d10v). */
1216
1217 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1218 inaccurate.
1219
1220 An exceptional case exists for struct arguments (and possibly other
1221 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1222 not a multiple of WORDSIZE bytes. In this case the argument is never split
1223 between the registers and the stack, but instead is copied in its entirety
1224 onto the stack, AND also copied into as many registers as there is room
1225 for. In other words, space in registers permitting, two copies of the same
1226 argument are passed in. As far as I can tell, only the one on the stack is
1227 used, although that may be a function of the level of compiler
1228 optimization. I suspect this is a compiler bug. Arguments of these odd
1229 sizes are left-justified within the word (as opposed to arguments smaller
1230 than WORDSIZE bytes, which are right-justified).
1231
1232 If the function is to return an aggregate type such as a struct, the caller
1233 must allocate space into which the callee will copy the return value. In
1234 this case, a pointer to the return value location is passed into the callee
1235 in register R0, which displaces one of the other arguments passed in via
1236 registers R0 to R2. */
1237
1238 static CORE_ADDR
1239 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1240 struct regcache *regcache, CORE_ADDR bp_addr,
1241 int nargs, struct value **args, CORE_ADDR sp,
1242 int struct_return, CORE_ADDR struct_addr)
1243 {
1244 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1245 int i;
1246 gdb_byte buf[3];
1247 int call_length = gdbarch_tdep (gdbarch)->call_length;
1248 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1249 int regnum = AVR_ARGN_REGNUM;
1250 struct stack_item *si = NULL;
1251
1252 if (struct_return)
1253 {
1254 regcache_cooked_write_unsigned
1255 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1256 regcache_cooked_write_unsigned
1257 (regcache, regnum--, struct_addr & 0xff);
1258 /* SP being post decremented, we need to reserve one byte so that the
1259 return address won't overwrite the result (or vice-versa). */
1260 if (sp == struct_addr)
1261 sp--;
1262 }
1263
1264 for (i = 0; i < nargs; i++)
1265 {
1266 int last_regnum;
1267 int j;
1268 struct value *arg = args[i];
1269 struct type *type = check_typedef (value_type (arg));
1270 const bfd_byte *contents = value_contents (arg);
1271 int len = TYPE_LENGTH (type);
1272
1273 /* Calculate the potential last register needed. */
1274 last_regnum = regnum - (len + (len & 1));
1275
1276 /* If there are registers available, use them. Once we start putting
1277 stuff on the stack, all subsequent args go on stack. */
1278 if ((si == NULL) && (last_regnum >= 8))
1279 {
1280 ULONGEST val;
1281
1282 /* Skip a register for odd length args. */
1283 if (len & 1)
1284 regnum--;
1285
1286 val = extract_unsigned_integer (contents, len, byte_order);
1287 for (j = 0; j < len; j++)
1288 regcache_cooked_write_unsigned
1289 (regcache, regnum--, val >> (8 * (len - j - 1)));
1290 }
1291 /* No registers available, push the args onto the stack. */
1292 else
1293 {
1294 /* From here on, we don't care about regnum. */
1295 si = push_stack_item (si, contents, len);
1296 }
1297 }
1298
1299 /* Push args onto the stack. */
1300 while (si)
1301 {
1302 sp -= si->len;
1303 /* Add 1 to sp here to account for post decr nature of pushes. */
1304 write_memory (sp + 1, si->data, si->len);
1305 si = pop_stack_item (si);
1306 }
1307
1308 /* Set the return address. For the avr, the return address is the BP_ADDR.
1309 Need to push the return address onto the stack noting that it needs to be
1310 in big-endian order on the stack. */
1311 for (i = 1; i <= call_length; i++)
1312 {
1313 buf[call_length - i] = return_pc & 0xff;
1314 return_pc >>= 8;
1315 }
1316
1317 sp -= call_length;
1318 /* Use 'sp + 1' since pushes are post decr ops. */
1319 write_memory (sp + 1, buf, call_length);
1320
1321 /* Finally, update the SP register. */
1322 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1323 avr_convert_saddr_to_raw (sp));
1324
1325 /* Return SP value for the dummy frame, where the return address hasn't been
1326 pushed. */
1327 return sp + call_length;
1328 }
1329
1330 /* Unfortunately dwarf2 register for SP is 32. */
1331
1332 static int
1333 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1334 {
1335 if (reg >= 0 && reg < 32)
1336 return reg;
1337 if (reg == 32)
1338 return AVR_SP_REGNUM;
1339
1340 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1341
1342 return -1;
1343 }
1344
1345 /* Initialize the gdbarch structure for the AVR's. */
1346
1347 static struct gdbarch *
1348 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1349 {
1350 struct gdbarch *gdbarch;
1351 struct gdbarch_tdep *tdep;
1352 struct gdbarch_list *best_arch;
1353 int call_length;
1354
1355 /* Avr-6 call instructions save 3 bytes. */
1356 switch (info.bfd_arch_info->mach)
1357 {
1358 case bfd_mach_avr1:
1359 case bfd_mach_avr2:
1360 case bfd_mach_avr3:
1361 case bfd_mach_avr4:
1362 case bfd_mach_avr5:
1363 default:
1364 call_length = 2;
1365 break;
1366 case bfd_mach_avr6:
1367 call_length = 3;
1368 break;
1369 }
1370
1371 /* If there is already a candidate, use it. */
1372 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1373 best_arch != NULL;
1374 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1375 {
1376 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1377 return best_arch->gdbarch;
1378 }
1379
1380 /* None found, create a new architecture from the information provided. */
1381 tdep = XNEW (struct gdbarch_tdep);
1382 gdbarch = gdbarch_alloc (&info, tdep);
1383
1384 tdep->call_length = call_length;
1385
1386 /* Create a type for PC. We can't use builtin types here, as they may not
1387 be defined. */
1388 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1389 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1390 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1391 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1392 TYPE_UNSIGNED (tdep->pc_type) = 1;
1393
1394 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1395 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1396 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1397 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1398 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1399 set_gdbarch_addr_bit (gdbarch, 32);
1400
1401 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1402 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1403 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1404
1405 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1406 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1407 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1408
1409 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1410 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1411
1412 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1413
1414 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1415 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1416
1417 set_gdbarch_register_name (gdbarch, avr_register_name);
1418 set_gdbarch_register_type (gdbarch, avr_register_type);
1419
1420 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1421 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1422 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1423
1424 set_gdbarch_return_value (gdbarch, avr_return_value);
1425 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1426
1427 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1428
1429 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1430
1431 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1432 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1433 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1434
1435 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1436 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1437
1438 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1439
1440 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1441 frame_base_set_default (gdbarch, &avr_frame_base);
1442
1443 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1444
1445 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1446 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1447
1448 return gdbarch;
1449 }
1450
1451 /* Send a query request to the avr remote target asking for values of the io
1452 registers. If args parameter is not NULL, then the user has requested info
1453 on a specific io register [This still needs implemented and is ignored for
1454 now]. The query string should be one of these forms:
1455
1456 "Ravr.io_reg" -> reply is "NN" number of io registers
1457
1458 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1459 registers to be read. The reply should be "<NAME>,VV;" for each io register
1460 where, <NAME> is a string, and VV is the hex value of the register.
1461
1462 All io registers are 8-bit. */
1463
1464 static void
1465 avr_io_reg_read_command (char *args, int from_tty)
1466 {
1467 LONGEST bufsiz = 0;
1468 gdb_byte *buf;
1469 const char *bufstr;
1470 char query[400];
1471 const char *p;
1472 unsigned int nreg = 0;
1473 unsigned int val;
1474 int i, j, k, step;
1475
1476 /* Find out how many io registers the target has. */
1477 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1478 "avr.io_reg", &buf);
1479 bufstr = (const char *) buf;
1480
1481 if (bufsiz <= 0)
1482 {
1483 fprintf_unfiltered (gdb_stderr,
1484 _("ERR: info io_registers NOT supported "
1485 "by current target\n"));
1486 return;
1487 }
1488
1489 if (sscanf (bufstr, "%x", &nreg) != 1)
1490 {
1491 fprintf_unfiltered (gdb_stderr,
1492 _("Error fetching number of io registers\n"));
1493 xfree (buf);
1494 return;
1495 }
1496
1497 xfree (buf);
1498
1499 reinitialize_more_filter ();
1500
1501 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1502
1503 /* only fetch up to 8 registers at a time to keep the buffer small */
1504 step = 8;
1505
1506 for (i = 0; i < nreg; i += step)
1507 {
1508 /* how many registers this round? */
1509 j = step;
1510 if ((i+j) >= nreg)
1511 j = nreg - i; /* last block is less than 8 registers */
1512
1513 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1514 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1515 query, &buf);
1516
1517 p = (const char *) buf;
1518 for (k = i; k < (i + j); k++)
1519 {
1520 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1521 {
1522 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1523 while ((*p != ';') && (*p != '\0'))
1524 p++;
1525 p++; /* skip over ';' */
1526 if (*p == '\0')
1527 break;
1528 }
1529 }
1530
1531 xfree (buf);
1532 }
1533 }
1534
1535 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1536
1537 void
1538 _initialize_avr_tdep (void)
1539 {
1540 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1541
1542 /* Add a new command to allow the user to query the avr remote target for
1543 the values of the io space registers in a saner way than just using
1544 `x/NNNb ADDR`. */
1545
1546 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1547 io_registers' to signify it is not available on other platforms. */
1548
1549 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1550 _("query remote avr target for io space register values"),
1551 &infolist);
1552 }
This page took 0.120346 seconds and 5 git commands to generate.