update copyright year range in GDB files
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
21
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdbtypes.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include <algorithm>
40
41 /* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72 /* Constants: prefixed with AVR_ to avoid name space clashes */
73
74 /* Address space flags */
75
76 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
77 space. */
78
79 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
80 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
81 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
82
83
84 enum
85 {
86 AVR_REG_W = 24,
87 AVR_REG_X = 26,
88 AVR_REG_Y = 28,
89 AVR_FP_REGNUM = 28,
90 AVR_REG_Z = 30,
91
92 AVR_SREG_REGNUM = 32,
93 AVR_SP_REGNUM = 33,
94 AVR_PC_REGNUM = 34,
95
96 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
97 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
98
99 /* Pseudo registers. */
100 AVR_PSEUDO_PC_REGNUM = 35,
101 AVR_NUM_PSEUDO_REGS = 1,
102
103 AVR_PC_REG_INDEX = 35, /* index into array of registers */
104
105 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
106
107 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
108 AVR_MAX_PUSHES = 18,
109
110 /* Number of the last pushed register. r17 for current avr-gcc */
111 AVR_LAST_PUSHED_REGNUM = 17,
112
113 AVR_ARG1_REGNUM = 24, /* Single byte argument */
114 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
115 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
116
117 AVR_RET1_REGNUM = 24, /* Single byte return value */
118 AVR_RETN_REGNUM = 25, /* Multi byte return value */
119
120 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
121 bits? Do these have to match the bfd vma values? It sure would make
122 things easier in the future if they didn't need to match.
123
124 Note: I chose these values so as to be consistent with bfd vma
125 addresses.
126
127 TRoth/2002-04-08: There is already a conflict with very large programs
128 in the mega128. The mega128 has 128K instruction bytes (64K words),
129 thus the Most Significant Bit is 0x10000 which gets masked off my
130 AVR_MEM_MASK.
131
132 The problem manifests itself when trying to set a breakpoint in a
133 function which resides in the upper half of the instruction space and
134 thus requires a 17-bit address.
135
136 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
137 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
138 but could be for some remote targets by just adding the correct offset
139 to the address and letting the remote target handle the low-level
140 details of actually accessing the eeprom. */
141
142 AVR_IMEM_START = 0x00000000, /* INSN memory */
143 AVR_SMEM_START = 0x00800000, /* SRAM memory */
144 #if 1
145 /* No eeprom mask defined */
146 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
147 #else
148 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
149 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
150 #endif
151 };
152
153 /* Prologue types:
154
155 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
156 causes the generation of the CALL type prologues). */
157
158 enum {
159 AVR_PROLOGUE_NONE, /* No prologue */
160 AVR_PROLOGUE_NORMAL,
161 AVR_PROLOGUE_CALL, /* -mcall-prologues */
162 AVR_PROLOGUE_MAIN,
163 AVR_PROLOGUE_INTR, /* interrupt handler */
164 AVR_PROLOGUE_SIG, /* signal handler */
165 };
166
167 /* Any function with a frame looks like this
168 ....... <-SP POINTS HERE
169 LOCALS1 <-FP POINTS HERE
170 LOCALS0
171 SAVED FP
172 SAVED R3
173 SAVED R2
174 RET PC
175 FIRST ARG
176 SECOND ARG */
177
178 struct avr_unwind_cache
179 {
180 /* The previous frame's inner most stack address. Used as this
181 frame ID's stack_addr. */
182 CORE_ADDR prev_sp;
183 /* The frame's base, optionally used by the high-level debug info. */
184 CORE_ADDR base;
185 int size;
186 int prologue_type;
187 /* Table indicating the location of each and every register. */
188 struct trad_frame_saved_reg *saved_regs;
189 };
190
191 struct gdbarch_tdep
192 {
193 /* Number of bytes stored to the stack by call instructions.
194 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
195 int call_length;
196
197 /* Type for void. */
198 struct type *void_type;
199 /* Type for a function returning void. */
200 struct type *func_void_type;
201 /* Type for a pointer to a function. Used for the type of PC. */
202 struct type *pc_type;
203 };
204
205 /* Lookup the name of a register given it's number. */
206
207 static const char *
208 avr_register_name (struct gdbarch *gdbarch, int regnum)
209 {
210 static const char * const register_names[] = {
211 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
212 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
213 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
214 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
215 "SREG", "SP", "PC2",
216 "pc"
217 };
218 if (regnum < 0)
219 return NULL;
220 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
221 return NULL;
222 return register_names[regnum];
223 }
224
225 /* Return the GDB type object for the "standard" data type
226 of data in register N. */
227
228 static struct type *
229 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
230 {
231 if (reg_nr == AVR_PC_REGNUM)
232 return builtin_type (gdbarch)->builtin_uint32;
233 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
234 return gdbarch_tdep (gdbarch)->pc_type;
235 if (reg_nr == AVR_SP_REGNUM)
236 return builtin_type (gdbarch)->builtin_data_ptr;
237 return builtin_type (gdbarch)->builtin_uint8;
238 }
239
240 /* Instruction address checks and convertions. */
241
242 static CORE_ADDR
243 avr_make_iaddr (CORE_ADDR x)
244 {
245 return ((x) | AVR_IMEM_START);
246 }
247
248 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
249 devices are already up to 128KBytes of flash space.
250
251 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
252
253 static CORE_ADDR
254 avr_convert_iaddr_to_raw (CORE_ADDR x)
255 {
256 return ((x) & 0xffffffff);
257 }
258
259 /* SRAM address checks and convertions. */
260
261 static CORE_ADDR
262 avr_make_saddr (CORE_ADDR x)
263 {
264 /* Return 0 for NULL. */
265 if (x == 0)
266 return 0;
267
268 return ((x) | AVR_SMEM_START);
269 }
270
271 static CORE_ADDR
272 avr_convert_saddr_to_raw (CORE_ADDR x)
273 {
274 return ((x) & 0xffffffff);
275 }
276
277 /* EEPROM address checks and convertions. I don't know if these will ever
278 actually be used, but I've added them just the same. TRoth */
279
280 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
281 programs in the mega128. */
282
283 /* static CORE_ADDR */
284 /* avr_make_eaddr (CORE_ADDR x) */
285 /* { */
286 /* return ((x) | AVR_EMEM_START); */
287 /* } */
288
289 /* static int */
290 /* avr_eaddr_p (CORE_ADDR x) */
291 /* { */
292 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
293 /* } */
294
295 /* static CORE_ADDR */
296 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
297 /* { */
298 /* return ((x) & 0xffffffff); */
299 /* } */
300
301 /* Convert from address to pointer and vice-versa. */
302
303 static void
304 avr_address_to_pointer (struct gdbarch *gdbarch,
305 struct type *type, gdb_byte *buf, CORE_ADDR addr)
306 {
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308
309 /* Is it a data address in flash? */
310 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
311 {
312 /* A data pointer in flash is byte addressed. */
313 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
314 avr_convert_iaddr_to_raw (addr));
315 }
316 /* Is it a code address? */
317 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
318 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
319 {
320 /* A code pointer is word (16 bits) addressed. We shift the address down
321 by 1 bit to convert it to a pointer. */
322 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
323 avr_convert_iaddr_to_raw (addr >> 1));
324 }
325 else
326 {
327 /* Strip off any upper segment bits. */
328 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
329 avr_convert_saddr_to_raw (addr));
330 }
331 }
332
333 static CORE_ADDR
334 avr_pointer_to_address (struct gdbarch *gdbarch,
335 struct type *type, const gdb_byte *buf)
336 {
337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338 CORE_ADDR addr
339 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
340
341 /* Is it a data address in flash? */
342 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
343 {
344 /* A data pointer in flash is already byte addressed. */
345 return avr_make_iaddr (addr);
346 }
347 /* Is it a code address? */
348 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
349 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
350 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
351 {
352 /* A code pointer is word (16 bits) addressed so we shift it up
353 by 1 bit to convert it to an address. */
354 return avr_make_iaddr (addr << 1);
355 }
356 else
357 return avr_make_saddr (addr);
358 }
359
360 static CORE_ADDR
361 avr_integer_to_address (struct gdbarch *gdbarch,
362 struct type *type, const gdb_byte *buf)
363 {
364 ULONGEST addr = unpack_long (type, buf);
365
366 return avr_make_saddr (addr);
367 }
368
369 static CORE_ADDR
370 avr_read_pc (struct regcache *regcache)
371 {
372 ULONGEST pc;
373 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
374 return avr_make_iaddr (pc);
375 }
376
377 static void
378 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
379 {
380 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
381 avr_convert_iaddr_to_raw (val));
382 }
383
384 static enum register_status
385 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
386 int regnum, gdb_byte *buf)
387 {
388 ULONGEST val;
389 enum register_status status;
390
391 switch (regnum)
392 {
393 case AVR_PSEUDO_PC_REGNUM:
394 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
395 if (status != REG_VALID)
396 return status;
397 val >>= 1;
398 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
399 return status;
400 default:
401 internal_error (__FILE__, __LINE__, _("invalid regnum"));
402 }
403 }
404
405 static void
406 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
407 int regnum, const gdb_byte *buf)
408 {
409 ULONGEST val;
410
411 switch (regnum)
412 {
413 case AVR_PSEUDO_PC_REGNUM:
414 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
415 val <<= 1;
416 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
417 break;
418 default:
419 internal_error (__FILE__, __LINE__, _("invalid regnum"));
420 }
421 }
422
423 /* Function: avr_scan_prologue
424
425 This function decodes an AVR function prologue to determine:
426 1) the size of the stack frame
427 2) which registers are saved on it
428 3) the offsets of saved regs
429 This information is stored in the avr_unwind_cache structure.
430
431 Some devices lack the sbiw instruction, so on those replace this:
432 sbiw r28, XX
433 with this:
434 subi r28,lo8(XX)
435 sbci r29,hi8(XX)
436
437 A typical AVR function prologue with a frame pointer might look like this:
438 push rXX ; saved regs
439 ...
440 push r28
441 push r29
442 in r28,__SP_L__
443 in r29,__SP_H__
444 sbiw r28,<LOCALS_SIZE>
445 in __tmp_reg__,__SREG__
446 cli
447 out __SP_H__,r29
448 out __SREG__,__tmp_reg__
449 out __SP_L__,r28
450
451 A typical AVR function prologue without a frame pointer might look like
452 this:
453 push rXX ; saved regs
454 ...
455
456 A main function prologue looks like this:
457 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
458 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
459 out __SP_H__,r29
460 out __SP_L__,r28
461
462 A signal handler prologue looks like this:
463 push __zero_reg__
464 push __tmp_reg__
465 in __tmp_reg__, __SREG__
466 push __tmp_reg__
467 clr __zero_reg__
468 push rXX ; save registers r18:r27, r30:r31
469 ...
470 push r28 ; save frame pointer
471 push r29
472 in r28, __SP_L__
473 in r29, __SP_H__
474 sbiw r28, <LOCALS_SIZE>
475 out __SP_H__, r29
476 out __SP_L__, r28
477
478 A interrupt handler prologue looks like this:
479 sei
480 push __zero_reg__
481 push __tmp_reg__
482 in __tmp_reg__, __SREG__
483 push __tmp_reg__
484 clr __zero_reg__
485 push rXX ; save registers r18:r27, r30:r31
486 ...
487 push r28 ; save frame pointer
488 push r29
489 in r28, __SP_L__
490 in r29, __SP_H__
491 sbiw r28, <LOCALS_SIZE>
492 cli
493 out __SP_H__, r29
494 sei
495 out __SP_L__, r28
496
497 A `-mcall-prologues' prologue looks like this (Note that the megas use a
498 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
499 32 bit insn and rjmp is a 16 bit insn):
500 ldi r26,lo8(<LOCALS_SIZE>)
501 ldi r27,hi8(<LOCALS_SIZE>)
502 ldi r30,pm_lo8(.L_foo_body)
503 ldi r31,pm_hi8(.L_foo_body)
504 rjmp __prologue_saves__+RRR
505 .L_foo_body: */
506
507 /* Not really part of a prologue, but still need to scan for it, is when a
508 function prologue moves values passed via registers as arguments to new
509 registers. In this case, all local variables live in registers, so there
510 may be some register saves. This is what it looks like:
511 movw rMM, rNN
512 ...
513
514 There could be multiple movw's. If the target doesn't have a movw insn, it
515 will use two mov insns. This could be done after any of the above prologue
516 types. */
517
518 static CORE_ADDR
519 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
520 struct avr_unwind_cache *info)
521 {
522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
523 int i;
524 unsigned short insn;
525 int scan_stage = 0;
526 struct bound_minimal_symbol msymbol;
527 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
528 int vpc = 0;
529 int len;
530
531 len = pc_end - pc_beg;
532 if (len > AVR_MAX_PROLOGUE_SIZE)
533 len = AVR_MAX_PROLOGUE_SIZE;
534
535 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
536 reading in the bytes of the prologue. The problem is that the figuring
537 out where the end of the prologue is is a bit difficult. The old code
538 tried to do that, but failed quite often. */
539 read_memory (pc_beg, prologue, len);
540
541 /* Scanning main()'s prologue
542 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
543 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
544 out __SP_H__,r29
545 out __SP_L__,r28 */
546
547 if (len >= 4)
548 {
549 CORE_ADDR locals;
550 static const unsigned char img[] = {
551 0xde, 0xbf, /* out __SP_H__,r29 */
552 0xcd, 0xbf /* out __SP_L__,r28 */
553 };
554
555 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
556 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
557 if ((insn & 0xf0f0) == 0xe0c0)
558 {
559 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
560 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
561 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
562 if ((insn & 0xf0f0) == 0xe0d0)
563 {
564 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
565 if (vpc + 4 + sizeof (img) < len
566 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
567 {
568 info->prologue_type = AVR_PROLOGUE_MAIN;
569 info->base = locals;
570 return pc_beg + 4;
571 }
572 }
573 }
574 }
575
576 /* Scanning `-mcall-prologues' prologue
577 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
578
579 while (1) /* Using a while to avoid many goto's */
580 {
581 int loc_size;
582 int body_addr;
583 unsigned num_pushes;
584 int pc_offset = 0;
585
586 /* At least the fifth instruction must have been executed to
587 modify frame shape. */
588 if (len < 10)
589 break;
590
591 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
592 /* ldi r26,<LOCALS_SIZE> */
593 if ((insn & 0xf0f0) != 0xe0a0)
594 break;
595 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
596 pc_offset += 2;
597
598 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
599 /* ldi r27,<LOCALS_SIZE> / 256 */
600 if ((insn & 0xf0f0) != 0xe0b0)
601 break;
602 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
603 pc_offset += 2;
604
605 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
606 /* ldi r30,pm_lo8(.L_foo_body) */
607 if ((insn & 0xf0f0) != 0xe0e0)
608 break;
609 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
610 pc_offset += 2;
611
612 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
613 /* ldi r31,pm_hi8(.L_foo_body) */
614 if ((insn & 0xf0f0) != 0xe0f0)
615 break;
616 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
617 pc_offset += 2;
618
619 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
620 if (!msymbol.minsym)
621 break;
622
623 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
624 /* rjmp __prologue_saves__+RRR */
625 if ((insn & 0xf000) == 0xc000)
626 {
627 /* Extract PC relative offset from RJMP */
628 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
629 /* Convert offset to byte addressable mode */
630 i *= 2;
631 /* Destination address */
632 i += pc_beg + 10;
633
634 if (body_addr != (pc_beg + 10)/2)
635 break;
636
637 pc_offset += 2;
638 }
639 else if ((insn & 0xfe0e) == 0x940c)
640 {
641 /* Extract absolute PC address from JMP */
642 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
643 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
644 & 0xffff));
645 /* Convert address to byte addressable mode */
646 i *= 2;
647
648 if (body_addr != (pc_beg + 12)/2)
649 break;
650
651 pc_offset += 4;
652 }
653 else
654 break;
655
656 /* Resolve offset (in words) from __prologue_saves__ symbol.
657 Which is a pushes count in `-mcall-prologues' mode */
658 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
659
660 if (num_pushes > AVR_MAX_PUSHES)
661 {
662 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
663 num_pushes);
664 num_pushes = 0;
665 }
666
667 if (num_pushes)
668 {
669 int from;
670
671 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
672 if (num_pushes >= 2)
673 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
674
675 i = 0;
676 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
677 from <= AVR_LAST_PUSHED_REGNUM; ++from)
678 info->saved_regs [from].addr = ++i;
679 }
680 info->size = loc_size + num_pushes;
681 info->prologue_type = AVR_PROLOGUE_CALL;
682
683 return pc_beg + pc_offset;
684 }
685
686 /* Scan for the beginning of the prologue for an interrupt or signal
687 function. Note that we have to set the prologue type here since the
688 third stage of the prologue may not be present (e.g. no saved registered
689 or changing of the SP register). */
690
691 if (1)
692 {
693 static const unsigned char img[] = {
694 0x78, 0x94, /* sei */
695 0x1f, 0x92, /* push r1 */
696 0x0f, 0x92, /* push r0 */
697 0x0f, 0xb6, /* in r0,0x3f SREG */
698 0x0f, 0x92, /* push r0 */
699 0x11, 0x24 /* clr r1 */
700 };
701 if (len >= sizeof (img)
702 && memcmp (prologue, img, sizeof (img)) == 0)
703 {
704 info->prologue_type = AVR_PROLOGUE_INTR;
705 vpc += sizeof (img);
706 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
707 info->saved_regs[0].addr = 2;
708 info->saved_regs[1].addr = 1;
709 info->size += 3;
710 }
711 else if (len >= sizeof (img) - 2
712 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
713 {
714 info->prologue_type = AVR_PROLOGUE_SIG;
715 vpc += sizeof (img) - 2;
716 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
717 info->saved_regs[0].addr = 2;
718 info->saved_regs[1].addr = 1;
719 info->size += 2;
720 }
721 }
722
723 /* First stage of the prologue scanning.
724 Scan pushes (saved registers) */
725
726 for (; vpc < len; vpc += 2)
727 {
728 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
729 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
730 {
731 /* Bits 4-9 contain a mask for registers R0-R32. */
732 int regno = (insn & 0x1f0) >> 4;
733 info->size++;
734 info->saved_regs[regno].addr = info->size;
735 scan_stage = 1;
736 }
737 else
738 break;
739 }
740
741 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
742
743 /* Handle static small stack allocation using rcall or push. */
744
745 while (scan_stage == 1 && vpc < len)
746 {
747 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
748 if (insn == 0xd000) /* rcall .+0 */
749 {
750 info->size += gdbarch_tdep (gdbarch)->call_length;
751 vpc += 2;
752 }
753 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
754 {
755 info->size += 1;
756 vpc += 2;
757 }
758 else
759 break;
760 }
761
762 /* Second stage of the prologue scanning.
763 Scan:
764 in r28,__SP_L__
765 in r29,__SP_H__ */
766
767 if (scan_stage == 1 && vpc < len)
768 {
769 static const unsigned char img[] = {
770 0xcd, 0xb7, /* in r28,__SP_L__ */
771 0xde, 0xb7 /* in r29,__SP_H__ */
772 };
773
774 if (vpc + sizeof (img) < len
775 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
776 {
777 vpc += 4;
778 scan_stage = 2;
779 }
780 }
781
782 /* Third stage of the prologue scanning. (Really two stages).
783 Scan for:
784 sbiw r28,XX or subi r28,lo8(XX)
785 sbci r29,hi8(XX)
786 in __tmp_reg__,__SREG__
787 cli
788 out __SP_H__,r29
789 out __SREG__,__tmp_reg__
790 out __SP_L__,r28 */
791
792 if (scan_stage == 2 && vpc < len)
793 {
794 int locals_size = 0;
795 static const unsigned char img[] = {
796 0x0f, 0xb6, /* in r0,0x3f */
797 0xf8, 0x94, /* cli */
798 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
799 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
800 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
801 };
802 static const unsigned char img_sig[] = {
803 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
804 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
805 };
806 static const unsigned char img_int[] = {
807 0xf8, 0x94, /* cli */
808 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
809 0x78, 0x94, /* sei */
810 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
811 };
812
813 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
814 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
815 {
816 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
817 vpc += 2;
818 }
819 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
820 {
821 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
822 vpc += 2;
823 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
824 vpc += 2;
825 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
826 }
827 else
828 return pc_beg + vpc;
829
830 /* Scan the last part of the prologue. May not be present for interrupt
831 or signal handler functions, which is why we set the prologue type
832 when we saw the beginning of the prologue previously. */
833
834 if (vpc + sizeof (img_sig) < len
835 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
836 {
837 vpc += sizeof (img_sig);
838 }
839 else if (vpc + sizeof (img_int) < len
840 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
841 {
842 vpc += sizeof (img_int);
843 }
844 if (vpc + sizeof (img) < len
845 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
846 {
847 info->prologue_type = AVR_PROLOGUE_NORMAL;
848 vpc += sizeof (img);
849 }
850
851 info->size += locals_size;
852
853 /* Fall through. */
854 }
855
856 /* If we got this far, we could not scan the prologue, so just return the pc
857 of the frame plus an adjustment for argument move insns. */
858
859 for (; vpc < len; vpc += 2)
860 {
861 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
862 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
863 continue;
864 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
865 continue;
866 else
867 break;
868 }
869
870 return pc_beg + vpc;
871 }
872
873 static CORE_ADDR
874 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
875 {
876 CORE_ADDR func_addr, func_end;
877 CORE_ADDR post_prologue_pc;
878
879 /* See what the symbol table says */
880
881 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
882 return pc;
883
884 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
885 if (post_prologue_pc != 0)
886 return std::max (pc, post_prologue_pc);
887
888 {
889 CORE_ADDR prologue_end = pc;
890 struct avr_unwind_cache info = {0};
891 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
892
893 info.saved_regs = saved_regs;
894
895 /* Need to run the prologue scanner to figure out if the function has a
896 prologue and possibly skip over moving arguments passed via registers
897 to other registers. */
898
899 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
900
901 if (info.prologue_type != AVR_PROLOGUE_NONE)
902 return prologue_end;
903 }
904
905 /* Either we didn't find the start of this function (nothing we can do),
906 or there's no line info, or the line after the prologue is after
907 the end of the function (there probably isn't a prologue). */
908
909 return pc;
910 }
911
912 /* Not all avr devices support the BREAK insn. Those that don't should treat
913 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
914 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
915
916 constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 };
917
918 typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint;
919
920 /* Determine, for architecture GDBARCH, how a return value of TYPE
921 should be returned. If it is supposed to be returned in registers,
922 and READBUF is non-zero, read the appropriate value from REGCACHE,
923 and copy it into READBUF. If WRITEBUF is non-zero, write the value
924 from WRITEBUF into REGCACHE. */
925
926 static enum return_value_convention
927 avr_return_value (struct gdbarch *gdbarch, struct value *function,
928 struct type *valtype, struct regcache *regcache,
929 gdb_byte *readbuf, const gdb_byte *writebuf)
930 {
931 int i;
932 /* Single byte are returned in r24.
933 Otherwise, the MSB of the return value is always in r25, calculate which
934 register holds the LSB. */
935 int lsb_reg;
936
937 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
938 || TYPE_CODE (valtype) == TYPE_CODE_UNION
939 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
940 && TYPE_LENGTH (valtype) > 8)
941 return RETURN_VALUE_STRUCT_CONVENTION;
942
943 if (TYPE_LENGTH (valtype) <= 2)
944 lsb_reg = 24;
945 else if (TYPE_LENGTH (valtype) <= 4)
946 lsb_reg = 22;
947 else if (TYPE_LENGTH (valtype) <= 8)
948 lsb_reg = 18;
949 else
950 gdb_assert_not_reached ("unexpected type length");
951
952 if (writebuf != NULL)
953 {
954 for (i = 0; i < TYPE_LENGTH (valtype); i++)
955 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
956 }
957
958 if (readbuf != NULL)
959 {
960 for (i = 0; i < TYPE_LENGTH (valtype); i++)
961 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
962 }
963
964 return RETURN_VALUE_REGISTER_CONVENTION;
965 }
966
967
968 /* Put here the code to store, into fi->saved_regs, the addresses of
969 the saved registers of frame described by FRAME_INFO. This
970 includes special registers such as pc and fp saved in special ways
971 in the stack frame. sp is even more special: the address we return
972 for it IS the sp for the next frame. */
973
974 static struct avr_unwind_cache *
975 avr_frame_unwind_cache (struct frame_info *this_frame,
976 void **this_prologue_cache)
977 {
978 CORE_ADDR start_pc, current_pc;
979 ULONGEST prev_sp;
980 ULONGEST this_base;
981 struct avr_unwind_cache *info;
982 struct gdbarch *gdbarch;
983 struct gdbarch_tdep *tdep;
984 int i;
985
986 if (*this_prologue_cache)
987 return (struct avr_unwind_cache *) *this_prologue_cache;
988
989 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
990 *this_prologue_cache = info;
991 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
992
993 info->size = 0;
994 info->prologue_type = AVR_PROLOGUE_NONE;
995
996 start_pc = get_frame_func (this_frame);
997 current_pc = get_frame_pc (this_frame);
998 if ((start_pc > 0) && (start_pc <= current_pc))
999 avr_scan_prologue (get_frame_arch (this_frame),
1000 start_pc, current_pc, info);
1001
1002 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1003 && (info->prologue_type != AVR_PROLOGUE_MAIN))
1004 {
1005 ULONGEST high_base; /* High byte of FP */
1006
1007 /* The SP was moved to the FP. This indicates that a new frame
1008 was created. Get THIS frame's FP value by unwinding it from
1009 the next frame. */
1010 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
1011 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
1012 this_base += (high_base << 8);
1013
1014 /* The FP points at the last saved register. Adjust the FP back
1015 to before the first saved register giving the SP. */
1016 prev_sp = this_base + info->size;
1017 }
1018 else
1019 {
1020 /* Assume that the FP is this frame's SP but with that pushed
1021 stack space added back. */
1022 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1023 prev_sp = this_base + info->size;
1024 }
1025
1026 /* Add 1 here to adjust for the post-decrement nature of the push
1027 instruction.*/
1028 info->prev_sp = avr_make_saddr (prev_sp + 1);
1029 info->base = avr_make_saddr (this_base);
1030
1031 gdbarch = get_frame_arch (this_frame);
1032
1033 /* Adjust all the saved registers so that they contain addresses and not
1034 offsets. */
1035 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1036 if (info->saved_regs[i].addr > 0)
1037 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1038
1039 /* Except for the main and startup code, the return PC is always saved on
1040 the stack and is at the base of the frame. */
1041
1042 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1043 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1044
1045 /* The previous frame's SP needed to be computed. Save the computed
1046 value. */
1047 tdep = gdbarch_tdep (gdbarch);
1048 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1049 info->prev_sp - 1 + tdep->call_length);
1050
1051 return info;
1052 }
1053
1054 static CORE_ADDR
1055 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1056 {
1057 ULONGEST pc;
1058
1059 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1060
1061 return avr_make_iaddr (pc);
1062 }
1063
1064 static CORE_ADDR
1065 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1066 {
1067 ULONGEST sp;
1068
1069 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1070
1071 return avr_make_saddr (sp);
1072 }
1073
1074 /* Given a GDB frame, determine the address of the calling function's
1075 frame. This will be used to create a new GDB frame struct. */
1076
1077 static void
1078 avr_frame_this_id (struct frame_info *this_frame,
1079 void **this_prologue_cache,
1080 struct frame_id *this_id)
1081 {
1082 struct avr_unwind_cache *info
1083 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1084 CORE_ADDR base;
1085 CORE_ADDR func;
1086 struct frame_id id;
1087
1088 /* The FUNC is easy. */
1089 func = get_frame_func (this_frame);
1090
1091 /* Hopefully the prologue analysis either correctly determined the
1092 frame's base (which is the SP from the previous frame), or set
1093 that base to "NULL". */
1094 base = info->prev_sp;
1095 if (base == 0)
1096 return;
1097
1098 id = frame_id_build (base, func);
1099 (*this_id) = id;
1100 }
1101
1102 static struct value *
1103 avr_frame_prev_register (struct frame_info *this_frame,
1104 void **this_prologue_cache, int regnum)
1105 {
1106 struct avr_unwind_cache *info
1107 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1108
1109 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1110 {
1111 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1112 {
1113 /* Reading the return PC from the PC register is slightly
1114 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1115 but in reality, only two bytes (3 in upcoming mega256) are
1116 stored on the stack.
1117
1118 Also, note that the value on the stack is an addr to a word
1119 not a byte, so we will need to multiply it by two at some
1120 point.
1121
1122 And to confuse matters even more, the return address stored
1123 on the stack is in big endian byte order, even though most
1124 everything else about the avr is little endian. Ick! */
1125 ULONGEST pc;
1126 int i;
1127 gdb_byte buf[3];
1128 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1130
1131 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1132 buf, tdep->call_length);
1133
1134 /* Extract the PC read from memory as a big-endian. */
1135 pc = 0;
1136 for (i = 0; i < tdep->call_length; i++)
1137 pc = (pc << 8) | buf[i];
1138
1139 if (regnum == AVR_PC_REGNUM)
1140 pc <<= 1;
1141
1142 return frame_unwind_got_constant (this_frame, regnum, pc);
1143 }
1144
1145 return frame_unwind_got_optimized (this_frame, regnum);
1146 }
1147
1148 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1149 }
1150
1151 static const struct frame_unwind avr_frame_unwind = {
1152 NORMAL_FRAME,
1153 default_frame_unwind_stop_reason,
1154 avr_frame_this_id,
1155 avr_frame_prev_register,
1156 NULL,
1157 default_frame_sniffer
1158 };
1159
1160 static CORE_ADDR
1161 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1162 {
1163 struct avr_unwind_cache *info
1164 = avr_frame_unwind_cache (this_frame, this_cache);
1165
1166 return info->base;
1167 }
1168
1169 static const struct frame_base avr_frame_base = {
1170 &avr_frame_unwind,
1171 avr_frame_base_address,
1172 avr_frame_base_address,
1173 avr_frame_base_address
1174 };
1175
1176 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1177 frame. The frame ID's base needs to match the TOS value saved by
1178 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1179
1180 static struct frame_id
1181 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1182 {
1183 ULONGEST base;
1184
1185 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1186 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1187 }
1188
1189 /* When arguments must be pushed onto the stack, they go on in reverse
1190 order. The below implements a FILO (stack) to do this. */
1191
1192 struct stack_item
1193 {
1194 int len;
1195 struct stack_item *prev;
1196 gdb_byte *data;
1197 };
1198
1199 static struct stack_item *
1200 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1201 {
1202 struct stack_item *si;
1203 si = XNEW (struct stack_item);
1204 si->data = (gdb_byte *) xmalloc (len);
1205 si->len = len;
1206 si->prev = prev;
1207 memcpy (si->data, contents, len);
1208 return si;
1209 }
1210
1211 static struct stack_item *pop_stack_item (struct stack_item *si);
1212 static struct stack_item *
1213 pop_stack_item (struct stack_item *si)
1214 {
1215 struct stack_item *dead = si;
1216 si = si->prev;
1217 xfree (dead->data);
1218 xfree (dead);
1219 return si;
1220 }
1221
1222 /* Setup the function arguments for calling a function in the inferior.
1223
1224 On the AVR architecture, there are 18 registers (R25 to R8) which are
1225 dedicated for passing function arguments. Up to the first 18 arguments
1226 (depending on size) may go into these registers. The rest go on the stack.
1227
1228 All arguments are aligned to start in even-numbered registers (odd-sized
1229 arguments, including char, have one free register above them). For example,
1230 an int in arg1 and a char in arg2 would be passed as such:
1231
1232 arg1 -> r25:r24
1233 arg2 -> r22
1234
1235 Arguments that are larger than 2 bytes will be split between two or more
1236 registers as available, but will NOT be split between a register and the
1237 stack. Arguments that go onto the stack are pushed last arg first (this is
1238 similar to the d10v). */
1239
1240 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1241 inaccurate.
1242
1243 An exceptional case exists for struct arguments (and possibly other
1244 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1245 not a multiple of WORDSIZE bytes. In this case the argument is never split
1246 between the registers and the stack, but instead is copied in its entirety
1247 onto the stack, AND also copied into as many registers as there is room
1248 for. In other words, space in registers permitting, two copies of the same
1249 argument are passed in. As far as I can tell, only the one on the stack is
1250 used, although that may be a function of the level of compiler
1251 optimization. I suspect this is a compiler bug. Arguments of these odd
1252 sizes are left-justified within the word (as opposed to arguments smaller
1253 than WORDSIZE bytes, which are right-justified).
1254
1255 If the function is to return an aggregate type such as a struct, the caller
1256 must allocate space into which the callee will copy the return value. In
1257 this case, a pointer to the return value location is passed into the callee
1258 in register R0, which displaces one of the other arguments passed in via
1259 registers R0 to R2. */
1260
1261 static CORE_ADDR
1262 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1263 struct regcache *regcache, CORE_ADDR bp_addr,
1264 int nargs, struct value **args, CORE_ADDR sp,
1265 int struct_return, CORE_ADDR struct_addr)
1266 {
1267 int i;
1268 gdb_byte buf[3];
1269 int call_length = gdbarch_tdep (gdbarch)->call_length;
1270 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1271 int regnum = AVR_ARGN_REGNUM;
1272 struct stack_item *si = NULL;
1273
1274 if (struct_return)
1275 {
1276 regcache_cooked_write_unsigned
1277 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1278 regcache_cooked_write_unsigned
1279 (regcache, regnum--, struct_addr & 0xff);
1280 /* SP being post decremented, we need to reserve one byte so that the
1281 return address won't overwrite the result (or vice-versa). */
1282 if (sp == struct_addr)
1283 sp--;
1284 }
1285
1286 for (i = 0; i < nargs; i++)
1287 {
1288 int last_regnum;
1289 int j;
1290 struct value *arg = args[i];
1291 struct type *type = check_typedef (value_type (arg));
1292 const bfd_byte *contents = value_contents (arg);
1293 int len = TYPE_LENGTH (type);
1294
1295 /* Calculate the potential last register needed.
1296 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1297 shall be used. So, last needed register will be regnum-1(24). */
1298 last_regnum = regnum - (len + (len & 1)) + 1;
1299
1300 /* If there are registers available, use them. Once we start putting
1301 stuff on the stack, all subsequent args go on stack. */
1302 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
1303 {
1304 /* Skip a register for odd length args. */
1305 if (len & 1)
1306 regnum--;
1307
1308 /* Write MSB of argument into register and subsequent bytes in
1309 decreasing register numbers. */
1310 for (j = 0; j < len; j++)
1311 regcache_cooked_write_unsigned
1312 (regcache, regnum--, contents[len - j - 1]);
1313 }
1314 /* No registers available, push the args onto the stack. */
1315 else
1316 {
1317 /* From here on, we don't care about regnum. */
1318 si = push_stack_item (si, contents, len);
1319 }
1320 }
1321
1322 /* Push args onto the stack. */
1323 while (si)
1324 {
1325 sp -= si->len;
1326 /* Add 1 to sp here to account for post decr nature of pushes. */
1327 write_memory (sp + 1, si->data, si->len);
1328 si = pop_stack_item (si);
1329 }
1330
1331 /* Set the return address. For the avr, the return address is the BP_ADDR.
1332 Need to push the return address onto the stack noting that it needs to be
1333 in big-endian order on the stack. */
1334 for (i = 1; i <= call_length; i++)
1335 {
1336 buf[call_length - i] = return_pc & 0xff;
1337 return_pc >>= 8;
1338 }
1339
1340 sp -= call_length;
1341 /* Use 'sp + 1' since pushes are post decr ops. */
1342 write_memory (sp + 1, buf, call_length);
1343
1344 /* Finally, update the SP register. */
1345 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1346 avr_convert_saddr_to_raw (sp));
1347
1348 /* Return SP value for the dummy frame, where the return address hasn't been
1349 pushed. */
1350 return sp + call_length;
1351 }
1352
1353 /* Unfortunately dwarf2 register for SP is 32. */
1354
1355 static int
1356 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1357 {
1358 if (reg >= 0 && reg < 32)
1359 return reg;
1360 if (reg == 32)
1361 return AVR_SP_REGNUM;
1362 return -1;
1363 }
1364
1365 /* Implementation of `address_class_type_flags' gdbarch method.
1366
1367 This method maps DW_AT_address_class attributes to a
1368 type_instance_flag_value. */
1369
1370 static int
1371 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1372 {
1373 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1374 __flash qualifier. Note that this attribute is only valid with
1375 pointer types and therefore the flag is set to the pointer type and
1376 not its target type. */
1377 if (dwarf2_addr_class == 1 && byte_size == 2)
1378 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1379 return 0;
1380 }
1381
1382 /* Implementation of `address_class_type_flags_to_name' gdbarch method.
1383
1384 Convert a type_instance_flag_value to an address space qualifier. */
1385
1386 static const char*
1387 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1388 {
1389 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1390 return "flash";
1391 else
1392 return NULL;
1393 }
1394
1395 /* Implementation of `address_class_name_to_type_flags' gdbarch method.
1396
1397 Convert an address space qualifier to a type_instance_flag_value. */
1398
1399 static int
1400 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1401 const char* name,
1402 int *type_flags_ptr)
1403 {
1404 if (strcmp (name, "flash") == 0)
1405 {
1406 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1407 return 1;
1408 }
1409 else
1410 return 0;
1411 }
1412
1413 /* Initialize the gdbarch structure for the AVR's. */
1414
1415 static struct gdbarch *
1416 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1417 {
1418 struct gdbarch *gdbarch;
1419 struct gdbarch_tdep *tdep;
1420 struct gdbarch_list *best_arch;
1421 int call_length;
1422
1423 /* Avr-6 call instructions save 3 bytes. */
1424 switch (info.bfd_arch_info->mach)
1425 {
1426 case bfd_mach_avr1:
1427 case bfd_mach_avrxmega1:
1428 case bfd_mach_avr2:
1429 case bfd_mach_avrxmega2:
1430 case bfd_mach_avr3:
1431 case bfd_mach_avrxmega3:
1432 case bfd_mach_avr4:
1433 case bfd_mach_avrxmega4:
1434 case bfd_mach_avr5:
1435 case bfd_mach_avrxmega5:
1436 default:
1437 call_length = 2;
1438 break;
1439 case bfd_mach_avr6:
1440 case bfd_mach_avrxmega6:
1441 case bfd_mach_avrxmega7:
1442 call_length = 3;
1443 break;
1444 }
1445
1446 /* If there is already a candidate, use it. */
1447 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1448 best_arch != NULL;
1449 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1450 {
1451 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1452 return best_arch->gdbarch;
1453 }
1454
1455 /* None found, create a new architecture from the information provided. */
1456 tdep = XNEW (struct gdbarch_tdep);
1457 gdbarch = gdbarch_alloc (&info, tdep);
1458
1459 tdep->call_length = call_length;
1460
1461 /* Create a type for PC. We can't use builtin types here, as they may not
1462 be defined. */
1463 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1464 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1465 tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
1466 tdep->func_void_type);
1467
1468 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1469 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1470 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1471 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1472 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1473 set_gdbarch_addr_bit (gdbarch, 32);
1474
1475 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1476 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1477 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1478
1479 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1480 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1481 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1482
1483 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1484 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1485
1486 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1487
1488 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1489 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1490
1491 set_gdbarch_register_name (gdbarch, avr_register_name);
1492 set_gdbarch_register_type (gdbarch, avr_register_type);
1493
1494 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1495 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1496 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1497
1498 set_gdbarch_return_value (gdbarch, avr_return_value);
1499 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1500
1501 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1502
1503 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1504
1505 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1506 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1507 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1508
1509 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1510 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1511
1512 set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc);
1513 set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind);
1514
1515 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1516 frame_base_set_default (gdbarch, &avr_frame_base);
1517
1518 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1519
1520 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1521 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1522
1523 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1524 set_gdbarch_address_class_name_to_type_flags
1525 (gdbarch, avr_address_class_name_to_type_flags);
1526 set_gdbarch_address_class_type_flags_to_name
1527 (gdbarch, avr_address_class_type_flags_to_name);
1528
1529 return gdbarch;
1530 }
1531
1532 /* Send a query request to the avr remote target asking for values of the io
1533 registers. If args parameter is not NULL, then the user has requested info
1534 on a specific io register [This still needs implemented and is ignored for
1535 now]. The query string should be one of these forms:
1536
1537 "Ravr.io_reg" -> reply is "NN" number of io registers
1538
1539 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1540 registers to be read. The reply should be "<NAME>,VV;" for each io register
1541 where, <NAME> is a string, and VV is the hex value of the register.
1542
1543 All io registers are 8-bit. */
1544
1545 static void
1546 avr_io_reg_read_command (char *args, int from_tty)
1547 {
1548 LONGEST bufsiz = 0;
1549 gdb_byte *buf;
1550 const char *bufstr;
1551 char query[400];
1552 const char *p;
1553 unsigned int nreg = 0;
1554 unsigned int val;
1555 int i, j, k, step;
1556
1557 /* Find out how many io registers the target has. */
1558 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1559 "avr.io_reg", &buf);
1560 bufstr = (const char *) buf;
1561
1562 if (bufsiz <= 0)
1563 {
1564 fprintf_unfiltered (gdb_stderr,
1565 _("ERR: info io_registers NOT supported "
1566 "by current target\n"));
1567 return;
1568 }
1569
1570 if (sscanf (bufstr, "%x", &nreg) != 1)
1571 {
1572 fprintf_unfiltered (gdb_stderr,
1573 _("Error fetching number of io registers\n"));
1574 xfree (buf);
1575 return;
1576 }
1577
1578 xfree (buf);
1579
1580 reinitialize_more_filter ();
1581
1582 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1583
1584 /* only fetch up to 8 registers at a time to keep the buffer small */
1585 step = 8;
1586
1587 for (i = 0; i < nreg; i += step)
1588 {
1589 /* how many registers this round? */
1590 j = step;
1591 if ((i+j) >= nreg)
1592 j = nreg - i; /* last block is less than 8 registers */
1593
1594 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1595 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1596 query, &buf);
1597
1598 p = (const char *) buf;
1599 for (k = i; k < (i + j); k++)
1600 {
1601 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1602 {
1603 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1604 while ((*p != ';') && (*p != '\0'))
1605 p++;
1606 p++; /* skip over ';' */
1607 if (*p == '\0')
1608 break;
1609 }
1610 }
1611
1612 xfree (buf);
1613 }
1614 }
1615
1616 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1617
1618 void
1619 _initialize_avr_tdep (void)
1620 {
1621 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1622
1623 /* Add a new command to allow the user to query the avr remote target for
1624 the values of the io space registers in a saner way than just using
1625 `x/NNNb ADDR`. */
1626
1627 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1628 io_registers' to signify it is not available on other platforms. */
1629
1630 add_info ("io_registers", avr_io_reg_read_command,
1631 _("query remote avr target for io space register values"));
1632 }
This page took 0.06163 seconds and 5 git commands to generate.