Fix argument passing for call
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
21
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdbtypes.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39
40 /* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
70
71 /* Constants: prefixed with AVR_ to avoid name space clashes */
72
73 /* Address space flags */
74
75 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
76 space. */
77
78 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
79 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
80 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
81
82
83 enum
84 {
85 AVR_REG_W = 24,
86 AVR_REG_X = 26,
87 AVR_REG_Y = 28,
88 AVR_FP_REGNUM = 28,
89 AVR_REG_Z = 30,
90
91 AVR_SREG_REGNUM = 32,
92 AVR_SP_REGNUM = 33,
93 AVR_PC_REGNUM = 34,
94
95 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
96 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
97
98 /* Pseudo registers. */
99 AVR_PSEUDO_PC_REGNUM = 35,
100 AVR_NUM_PSEUDO_REGS = 1,
101
102 AVR_PC_REG_INDEX = 35, /* index into array of registers */
103
104 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
105
106 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
107 AVR_MAX_PUSHES = 18,
108
109 /* Number of the last pushed register. r17 for current avr-gcc */
110 AVR_LAST_PUSHED_REGNUM = 17,
111
112 AVR_ARG1_REGNUM = 24, /* Single byte argument */
113 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
114 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
115
116 AVR_RET1_REGNUM = 24, /* Single byte return value */
117 AVR_RETN_REGNUM = 25, /* Multi byte return value */
118
119 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
120 bits? Do these have to match the bfd vma values? It sure would make
121 things easier in the future if they didn't need to match.
122
123 Note: I chose these values so as to be consistent with bfd vma
124 addresses.
125
126 TRoth/2002-04-08: There is already a conflict with very large programs
127 in the mega128. The mega128 has 128K instruction bytes (64K words),
128 thus the Most Significant Bit is 0x10000 which gets masked off my
129 AVR_MEM_MASK.
130
131 The problem manifests itself when trying to set a breakpoint in a
132 function which resides in the upper half of the instruction space and
133 thus requires a 17-bit address.
134
135 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
136 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
137 but could be for some remote targets by just adding the correct offset
138 to the address and letting the remote target handle the low-level
139 details of actually accessing the eeprom. */
140
141 AVR_IMEM_START = 0x00000000, /* INSN memory */
142 AVR_SMEM_START = 0x00800000, /* SRAM memory */
143 #if 1
144 /* No eeprom mask defined */
145 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
146 #else
147 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
148 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
149 #endif
150 };
151
152 /* Prologue types:
153
154 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
155 causes the generation of the CALL type prologues). */
156
157 enum {
158 AVR_PROLOGUE_NONE, /* No prologue */
159 AVR_PROLOGUE_NORMAL,
160 AVR_PROLOGUE_CALL, /* -mcall-prologues */
161 AVR_PROLOGUE_MAIN,
162 AVR_PROLOGUE_INTR, /* interrupt handler */
163 AVR_PROLOGUE_SIG, /* signal handler */
164 };
165
166 /* Any function with a frame looks like this
167 ....... <-SP POINTS HERE
168 LOCALS1 <-FP POINTS HERE
169 LOCALS0
170 SAVED FP
171 SAVED R3
172 SAVED R2
173 RET PC
174 FIRST ARG
175 SECOND ARG */
176
177 struct avr_unwind_cache
178 {
179 /* The previous frame's inner most stack address. Used as this
180 frame ID's stack_addr. */
181 CORE_ADDR prev_sp;
182 /* The frame's base, optionally used by the high-level debug info. */
183 CORE_ADDR base;
184 int size;
185 int prologue_type;
186 /* Table indicating the location of each and every register. */
187 struct trad_frame_saved_reg *saved_regs;
188 };
189
190 struct gdbarch_tdep
191 {
192 /* Number of bytes stored to the stack by call instructions.
193 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
194 int call_length;
195
196 /* Type for void. */
197 struct type *void_type;
198 /* Type for a function returning void. */
199 struct type *func_void_type;
200 /* Type for a pointer to a function. Used for the type of PC. */
201 struct type *pc_type;
202 };
203
204 /* Lookup the name of a register given it's number. */
205
206 static const char *
207 avr_register_name (struct gdbarch *gdbarch, int regnum)
208 {
209 static const char * const register_names[] = {
210 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
211 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
212 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
213 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
214 "SREG", "SP", "PC2",
215 "pc"
216 };
217 if (regnum < 0)
218 return NULL;
219 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
220 return NULL;
221 return register_names[regnum];
222 }
223
224 /* Return the GDB type object for the "standard" data type
225 of data in register N. */
226
227 static struct type *
228 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
229 {
230 if (reg_nr == AVR_PC_REGNUM)
231 return builtin_type (gdbarch)->builtin_uint32;
232 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
233 return gdbarch_tdep (gdbarch)->pc_type;
234 if (reg_nr == AVR_SP_REGNUM)
235 return builtin_type (gdbarch)->builtin_data_ptr;
236 return builtin_type (gdbarch)->builtin_uint8;
237 }
238
239 /* Instruction address checks and convertions. */
240
241 static CORE_ADDR
242 avr_make_iaddr (CORE_ADDR x)
243 {
244 return ((x) | AVR_IMEM_START);
245 }
246
247 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
248 devices are already up to 128KBytes of flash space.
249
250 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
251
252 static CORE_ADDR
253 avr_convert_iaddr_to_raw (CORE_ADDR x)
254 {
255 return ((x) & 0xffffffff);
256 }
257
258 /* SRAM address checks and convertions. */
259
260 static CORE_ADDR
261 avr_make_saddr (CORE_ADDR x)
262 {
263 /* Return 0 for NULL. */
264 if (x == 0)
265 return 0;
266
267 return ((x) | AVR_SMEM_START);
268 }
269
270 static CORE_ADDR
271 avr_convert_saddr_to_raw (CORE_ADDR x)
272 {
273 return ((x) & 0xffffffff);
274 }
275
276 /* EEPROM address checks and convertions. I don't know if these will ever
277 actually be used, but I've added them just the same. TRoth */
278
279 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
280 programs in the mega128. */
281
282 /* static CORE_ADDR */
283 /* avr_make_eaddr (CORE_ADDR x) */
284 /* { */
285 /* return ((x) | AVR_EMEM_START); */
286 /* } */
287
288 /* static int */
289 /* avr_eaddr_p (CORE_ADDR x) */
290 /* { */
291 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
292 /* } */
293
294 /* static CORE_ADDR */
295 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
296 /* { */
297 /* return ((x) & 0xffffffff); */
298 /* } */
299
300 /* Convert from address to pointer and vice-versa. */
301
302 static void
303 avr_address_to_pointer (struct gdbarch *gdbarch,
304 struct type *type, gdb_byte *buf, CORE_ADDR addr)
305 {
306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
307
308 /* Is it a data address in flash? */
309 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
310 {
311 /* A data pointer in flash is byte addressed. */
312 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
313 avr_convert_iaddr_to_raw (addr));
314 }
315 /* Is it a code address? */
316 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
317 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
318 {
319 /* A code pointer is word (16 bits) addressed. We shift the address down
320 by 1 bit to convert it to a pointer. */
321 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
322 avr_convert_iaddr_to_raw (addr >> 1));
323 }
324 else
325 {
326 /* Strip off any upper segment bits. */
327 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
328 avr_convert_saddr_to_raw (addr));
329 }
330 }
331
332 static CORE_ADDR
333 avr_pointer_to_address (struct gdbarch *gdbarch,
334 struct type *type, const gdb_byte *buf)
335 {
336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
337 CORE_ADDR addr
338 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
339
340 /* Is it a data address in flash? */
341 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
342 {
343 /* A data pointer in flash is already byte addressed. */
344 return avr_make_iaddr (addr);
345 }
346 /* Is it a code address? */
347 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
348 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
349 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
350 {
351 /* A code pointer is word (16 bits) addressed so we shift it up
352 by 1 bit to convert it to an address. */
353 return avr_make_iaddr (addr << 1);
354 }
355 else
356 return avr_make_saddr (addr);
357 }
358
359 static CORE_ADDR
360 avr_integer_to_address (struct gdbarch *gdbarch,
361 struct type *type, const gdb_byte *buf)
362 {
363 ULONGEST addr = unpack_long (type, buf);
364
365 return avr_make_saddr (addr);
366 }
367
368 static CORE_ADDR
369 avr_read_pc (struct regcache *regcache)
370 {
371 ULONGEST pc;
372 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
373 return avr_make_iaddr (pc);
374 }
375
376 static void
377 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
378 {
379 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
380 avr_convert_iaddr_to_raw (val));
381 }
382
383 static enum register_status
384 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
385 int regnum, gdb_byte *buf)
386 {
387 ULONGEST val;
388 enum register_status status;
389
390 switch (regnum)
391 {
392 case AVR_PSEUDO_PC_REGNUM:
393 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
394 if (status != REG_VALID)
395 return status;
396 val >>= 1;
397 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
398 return status;
399 default:
400 internal_error (__FILE__, __LINE__, _("invalid regnum"));
401 }
402 }
403
404 static void
405 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
406 int regnum, const gdb_byte *buf)
407 {
408 ULONGEST val;
409
410 switch (regnum)
411 {
412 case AVR_PSEUDO_PC_REGNUM:
413 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
414 val <<= 1;
415 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
416 break;
417 default:
418 internal_error (__FILE__, __LINE__, _("invalid regnum"));
419 }
420 }
421
422 /* Function: avr_scan_prologue
423
424 This function decodes an AVR function prologue to determine:
425 1) the size of the stack frame
426 2) which registers are saved on it
427 3) the offsets of saved regs
428 This information is stored in the avr_unwind_cache structure.
429
430 Some devices lack the sbiw instruction, so on those replace this:
431 sbiw r28, XX
432 with this:
433 subi r28,lo8(XX)
434 sbci r29,hi8(XX)
435
436 A typical AVR function prologue with a frame pointer might look like this:
437 push rXX ; saved regs
438 ...
439 push r28
440 push r29
441 in r28,__SP_L__
442 in r29,__SP_H__
443 sbiw r28,<LOCALS_SIZE>
444 in __tmp_reg__,__SREG__
445 cli
446 out __SP_H__,r29
447 out __SREG__,__tmp_reg__
448 out __SP_L__,r28
449
450 A typical AVR function prologue without a frame pointer might look like
451 this:
452 push rXX ; saved regs
453 ...
454
455 A main function prologue looks like this:
456 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
457 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
458 out __SP_H__,r29
459 out __SP_L__,r28
460
461 A signal handler prologue looks like this:
462 push __zero_reg__
463 push __tmp_reg__
464 in __tmp_reg__, __SREG__
465 push __tmp_reg__
466 clr __zero_reg__
467 push rXX ; save registers r18:r27, r30:r31
468 ...
469 push r28 ; save frame pointer
470 push r29
471 in r28, __SP_L__
472 in r29, __SP_H__
473 sbiw r28, <LOCALS_SIZE>
474 out __SP_H__, r29
475 out __SP_L__, r28
476
477 A interrupt handler prologue looks like this:
478 sei
479 push __zero_reg__
480 push __tmp_reg__
481 in __tmp_reg__, __SREG__
482 push __tmp_reg__
483 clr __zero_reg__
484 push rXX ; save registers r18:r27, r30:r31
485 ...
486 push r28 ; save frame pointer
487 push r29
488 in r28, __SP_L__
489 in r29, __SP_H__
490 sbiw r28, <LOCALS_SIZE>
491 cli
492 out __SP_H__, r29
493 sei
494 out __SP_L__, r28
495
496 A `-mcall-prologues' prologue looks like this (Note that the megas use a
497 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
498 32 bit insn and rjmp is a 16 bit insn):
499 ldi r26,lo8(<LOCALS_SIZE>)
500 ldi r27,hi8(<LOCALS_SIZE>)
501 ldi r30,pm_lo8(.L_foo_body)
502 ldi r31,pm_hi8(.L_foo_body)
503 rjmp __prologue_saves__+RRR
504 .L_foo_body: */
505
506 /* Not really part of a prologue, but still need to scan for it, is when a
507 function prologue moves values passed via registers as arguments to new
508 registers. In this case, all local variables live in registers, so there
509 may be some register saves. This is what it looks like:
510 movw rMM, rNN
511 ...
512
513 There could be multiple movw's. If the target doesn't have a movw insn, it
514 will use two mov insns. This could be done after any of the above prologue
515 types. */
516
517 static CORE_ADDR
518 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
519 struct avr_unwind_cache *info)
520 {
521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
522 int i;
523 unsigned short insn;
524 int scan_stage = 0;
525 struct bound_minimal_symbol msymbol;
526 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
527 int vpc = 0;
528 int len;
529
530 len = pc_end - pc_beg;
531 if (len > AVR_MAX_PROLOGUE_SIZE)
532 len = AVR_MAX_PROLOGUE_SIZE;
533
534 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
535 reading in the bytes of the prologue. The problem is that the figuring
536 out where the end of the prologue is is a bit difficult. The old code
537 tried to do that, but failed quite often. */
538 read_memory (pc_beg, prologue, len);
539
540 /* Scanning main()'s prologue
541 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
542 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
543 out __SP_H__,r29
544 out __SP_L__,r28 */
545
546 if (len >= 4)
547 {
548 CORE_ADDR locals;
549 static const unsigned char img[] = {
550 0xde, 0xbf, /* out __SP_H__,r29 */
551 0xcd, 0xbf /* out __SP_L__,r28 */
552 };
553
554 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
555 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
556 if ((insn & 0xf0f0) == 0xe0c0)
557 {
558 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
559 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
560 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
561 if ((insn & 0xf0f0) == 0xe0d0)
562 {
563 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
564 if (vpc + 4 + sizeof (img) < len
565 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
566 {
567 info->prologue_type = AVR_PROLOGUE_MAIN;
568 info->base = locals;
569 return pc_beg + 4;
570 }
571 }
572 }
573 }
574
575 /* Scanning `-mcall-prologues' prologue
576 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
577
578 while (1) /* Using a while to avoid many goto's */
579 {
580 int loc_size;
581 int body_addr;
582 unsigned num_pushes;
583 int pc_offset = 0;
584
585 /* At least the fifth instruction must have been executed to
586 modify frame shape. */
587 if (len < 10)
588 break;
589
590 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
591 /* ldi r26,<LOCALS_SIZE> */
592 if ((insn & 0xf0f0) != 0xe0a0)
593 break;
594 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
595 pc_offset += 2;
596
597 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
598 /* ldi r27,<LOCALS_SIZE> / 256 */
599 if ((insn & 0xf0f0) != 0xe0b0)
600 break;
601 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
602 pc_offset += 2;
603
604 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
605 /* ldi r30,pm_lo8(.L_foo_body) */
606 if ((insn & 0xf0f0) != 0xe0e0)
607 break;
608 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
609 pc_offset += 2;
610
611 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
612 /* ldi r31,pm_hi8(.L_foo_body) */
613 if ((insn & 0xf0f0) != 0xe0f0)
614 break;
615 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
616 pc_offset += 2;
617
618 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
619 if (!msymbol.minsym)
620 break;
621
622 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
623 /* rjmp __prologue_saves__+RRR */
624 if ((insn & 0xf000) == 0xc000)
625 {
626 /* Extract PC relative offset from RJMP */
627 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
628 /* Convert offset to byte addressable mode */
629 i *= 2;
630 /* Destination address */
631 i += pc_beg + 10;
632
633 if (body_addr != (pc_beg + 10)/2)
634 break;
635
636 pc_offset += 2;
637 }
638 else if ((insn & 0xfe0e) == 0x940c)
639 {
640 /* Extract absolute PC address from JMP */
641 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
642 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
643 & 0xffff));
644 /* Convert address to byte addressable mode */
645 i *= 2;
646
647 if (body_addr != (pc_beg + 12)/2)
648 break;
649
650 pc_offset += 4;
651 }
652 else
653 break;
654
655 /* Resolve offset (in words) from __prologue_saves__ symbol.
656 Which is a pushes count in `-mcall-prologues' mode */
657 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
658
659 if (num_pushes > AVR_MAX_PUSHES)
660 {
661 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
662 num_pushes);
663 num_pushes = 0;
664 }
665
666 if (num_pushes)
667 {
668 int from;
669
670 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
671 if (num_pushes >= 2)
672 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
673
674 i = 0;
675 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
676 from <= AVR_LAST_PUSHED_REGNUM; ++from)
677 info->saved_regs [from].addr = ++i;
678 }
679 info->size = loc_size + num_pushes;
680 info->prologue_type = AVR_PROLOGUE_CALL;
681
682 return pc_beg + pc_offset;
683 }
684
685 /* Scan for the beginning of the prologue for an interrupt or signal
686 function. Note that we have to set the prologue type here since the
687 third stage of the prologue may not be present (e.g. no saved registered
688 or changing of the SP register). */
689
690 if (1)
691 {
692 static const unsigned char img[] = {
693 0x78, 0x94, /* sei */
694 0x1f, 0x92, /* push r1 */
695 0x0f, 0x92, /* push r0 */
696 0x0f, 0xb6, /* in r0,0x3f SREG */
697 0x0f, 0x92, /* push r0 */
698 0x11, 0x24 /* clr r1 */
699 };
700 if (len >= sizeof (img)
701 && memcmp (prologue, img, sizeof (img)) == 0)
702 {
703 info->prologue_type = AVR_PROLOGUE_INTR;
704 vpc += sizeof (img);
705 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
706 info->saved_regs[0].addr = 2;
707 info->saved_regs[1].addr = 1;
708 info->size += 3;
709 }
710 else if (len >= sizeof (img) - 2
711 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
712 {
713 info->prologue_type = AVR_PROLOGUE_SIG;
714 vpc += sizeof (img) - 2;
715 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
716 info->saved_regs[0].addr = 2;
717 info->saved_regs[1].addr = 1;
718 info->size += 2;
719 }
720 }
721
722 /* First stage of the prologue scanning.
723 Scan pushes (saved registers) */
724
725 for (; vpc < len; vpc += 2)
726 {
727 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
728 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
729 {
730 /* Bits 4-9 contain a mask for registers R0-R32. */
731 int regno = (insn & 0x1f0) >> 4;
732 info->size++;
733 info->saved_regs[regno].addr = info->size;
734 scan_stage = 1;
735 }
736 else
737 break;
738 }
739
740 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
741
742 /* Handle static small stack allocation using rcall or push. */
743
744 while (scan_stage == 1 && vpc < len)
745 {
746 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
747 if (insn == 0xd000) /* rcall .+0 */
748 {
749 info->size += gdbarch_tdep (gdbarch)->call_length;
750 vpc += 2;
751 }
752 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
753 {
754 info->size += 1;
755 vpc += 2;
756 }
757 else
758 break;
759 }
760
761 /* Second stage of the prologue scanning.
762 Scan:
763 in r28,__SP_L__
764 in r29,__SP_H__ */
765
766 if (scan_stage == 1 && vpc < len)
767 {
768 static const unsigned char img[] = {
769 0xcd, 0xb7, /* in r28,__SP_L__ */
770 0xde, 0xb7 /* in r29,__SP_H__ */
771 };
772
773 if (vpc + sizeof (img) < len
774 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
775 {
776 vpc += 4;
777 scan_stage = 2;
778 }
779 }
780
781 /* Third stage of the prologue scanning. (Really two stages).
782 Scan for:
783 sbiw r28,XX or subi r28,lo8(XX)
784 sbci r29,hi8(XX)
785 in __tmp_reg__,__SREG__
786 cli
787 out __SP_H__,r29
788 out __SREG__,__tmp_reg__
789 out __SP_L__,r28 */
790
791 if (scan_stage == 2 && vpc < len)
792 {
793 int locals_size = 0;
794 static const unsigned char img[] = {
795 0x0f, 0xb6, /* in r0,0x3f */
796 0xf8, 0x94, /* cli */
797 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
798 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
799 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
800 };
801 static const unsigned char img_sig[] = {
802 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
803 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
804 };
805 static const unsigned char img_int[] = {
806 0xf8, 0x94, /* cli */
807 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
808 0x78, 0x94, /* sei */
809 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
810 };
811
812 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
813 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
814 {
815 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
816 vpc += 2;
817 }
818 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
819 {
820 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
821 vpc += 2;
822 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
823 vpc += 2;
824 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
825 }
826 else
827 return pc_beg + vpc;
828
829 /* Scan the last part of the prologue. May not be present for interrupt
830 or signal handler functions, which is why we set the prologue type
831 when we saw the beginning of the prologue previously. */
832
833 if (vpc + sizeof (img_sig) < len
834 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
835 {
836 vpc += sizeof (img_sig);
837 }
838 else if (vpc + sizeof (img_int) < len
839 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
840 {
841 vpc += sizeof (img_int);
842 }
843 if (vpc + sizeof (img) < len
844 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
845 {
846 info->prologue_type = AVR_PROLOGUE_NORMAL;
847 vpc += sizeof (img);
848 }
849
850 info->size += locals_size;
851
852 /* Fall through. */
853 }
854
855 /* If we got this far, we could not scan the prologue, so just return the pc
856 of the frame plus an adjustment for argument move insns. */
857
858 for (; vpc < len; vpc += 2)
859 {
860 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
861 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
862 continue;
863 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
864 continue;
865 else
866 break;
867 }
868
869 return pc_beg + vpc;
870 }
871
872 static CORE_ADDR
873 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
874 {
875 CORE_ADDR func_addr, func_end;
876 CORE_ADDR post_prologue_pc;
877
878 /* See what the symbol table says */
879
880 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
881 return pc;
882
883 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
884 if (post_prologue_pc != 0)
885 return max (pc, post_prologue_pc);
886
887 {
888 CORE_ADDR prologue_end = pc;
889 struct avr_unwind_cache info = {0};
890 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
891
892 info.saved_regs = saved_regs;
893
894 /* Need to run the prologue scanner to figure out if the function has a
895 prologue and possibly skip over moving arguments passed via registers
896 to other registers. */
897
898 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
899
900 if (info.prologue_type != AVR_PROLOGUE_NONE)
901 return prologue_end;
902 }
903
904 /* Either we didn't find the start of this function (nothing we can do),
905 or there's no line info, or the line after the prologue is after
906 the end of the function (there probably isn't a prologue). */
907
908 return pc;
909 }
910
911 /* Not all avr devices support the BREAK insn. Those that don't should treat
912 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
913 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
914
915 static const unsigned char *
916 avr_breakpoint_from_pc (struct gdbarch *gdbarch,
917 CORE_ADDR *pcptr, int *lenptr)
918 {
919 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
920 *lenptr = sizeof (avr_break_insn);
921 return avr_break_insn;
922 }
923
924 /* Determine, for architecture GDBARCH, how a return value of TYPE
925 should be returned. If it is supposed to be returned in registers,
926 and READBUF is non-zero, read the appropriate value from REGCACHE,
927 and copy it into READBUF. If WRITEBUF is non-zero, write the value
928 from WRITEBUF into REGCACHE. */
929
930 static enum return_value_convention
931 avr_return_value (struct gdbarch *gdbarch, struct value *function,
932 struct type *valtype, struct regcache *regcache,
933 gdb_byte *readbuf, const gdb_byte *writebuf)
934 {
935 int i;
936 /* Single byte are returned in r24.
937 Otherwise, the MSB of the return value is always in r25, calculate which
938 register holds the LSB. */
939 int lsb_reg;
940
941 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
942 || TYPE_CODE (valtype) == TYPE_CODE_UNION
943 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
944 && TYPE_LENGTH (valtype) > 8)
945 return RETURN_VALUE_STRUCT_CONVENTION;
946
947 if (TYPE_LENGTH (valtype) <= 2)
948 lsb_reg = 24;
949 else if (TYPE_LENGTH (valtype) <= 4)
950 lsb_reg = 22;
951 else if (TYPE_LENGTH (valtype) <= 8)
952 lsb_reg = 18;
953 else
954 gdb_assert_not_reached ("unexpected type length");
955
956 if (writebuf != NULL)
957 {
958 for (i = 0; i < TYPE_LENGTH (valtype); i++)
959 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
960 }
961
962 if (readbuf != NULL)
963 {
964 for (i = 0; i < TYPE_LENGTH (valtype); i++)
965 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
966 }
967
968 return RETURN_VALUE_REGISTER_CONVENTION;
969 }
970
971
972 /* Put here the code to store, into fi->saved_regs, the addresses of
973 the saved registers of frame described by FRAME_INFO. This
974 includes special registers such as pc and fp saved in special ways
975 in the stack frame. sp is even more special: the address we return
976 for it IS the sp for the next frame. */
977
978 static struct avr_unwind_cache *
979 avr_frame_unwind_cache (struct frame_info *this_frame,
980 void **this_prologue_cache)
981 {
982 CORE_ADDR start_pc, current_pc;
983 ULONGEST prev_sp;
984 ULONGEST this_base;
985 struct avr_unwind_cache *info;
986 struct gdbarch *gdbarch;
987 struct gdbarch_tdep *tdep;
988 int i;
989
990 if (*this_prologue_cache)
991 return (struct avr_unwind_cache *) *this_prologue_cache;
992
993 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
994 *this_prologue_cache = info;
995 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
996
997 info->size = 0;
998 info->prologue_type = AVR_PROLOGUE_NONE;
999
1000 start_pc = get_frame_func (this_frame);
1001 current_pc = get_frame_pc (this_frame);
1002 if ((start_pc > 0) && (start_pc <= current_pc))
1003 avr_scan_prologue (get_frame_arch (this_frame),
1004 start_pc, current_pc, info);
1005
1006 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1007 && (info->prologue_type != AVR_PROLOGUE_MAIN))
1008 {
1009 ULONGEST high_base; /* High byte of FP */
1010
1011 /* The SP was moved to the FP. This indicates that a new frame
1012 was created. Get THIS frame's FP value by unwinding it from
1013 the next frame. */
1014 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
1015 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
1016 this_base += (high_base << 8);
1017
1018 /* The FP points at the last saved register. Adjust the FP back
1019 to before the first saved register giving the SP. */
1020 prev_sp = this_base + info->size;
1021 }
1022 else
1023 {
1024 /* Assume that the FP is this frame's SP but with that pushed
1025 stack space added back. */
1026 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1027 prev_sp = this_base + info->size;
1028 }
1029
1030 /* Add 1 here to adjust for the post-decrement nature of the push
1031 instruction.*/
1032 info->prev_sp = avr_make_saddr (prev_sp + 1);
1033 info->base = avr_make_saddr (this_base);
1034
1035 gdbarch = get_frame_arch (this_frame);
1036
1037 /* Adjust all the saved registers so that they contain addresses and not
1038 offsets. */
1039 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1040 if (info->saved_regs[i].addr > 0)
1041 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1042
1043 /* Except for the main and startup code, the return PC is always saved on
1044 the stack and is at the base of the frame. */
1045
1046 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1047 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1048
1049 /* The previous frame's SP needed to be computed. Save the computed
1050 value. */
1051 tdep = gdbarch_tdep (gdbarch);
1052 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1053 info->prev_sp - 1 + tdep->call_length);
1054
1055 return info;
1056 }
1057
1058 static CORE_ADDR
1059 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1060 {
1061 ULONGEST pc;
1062
1063 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1064
1065 return avr_make_iaddr (pc);
1066 }
1067
1068 static CORE_ADDR
1069 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1070 {
1071 ULONGEST sp;
1072
1073 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1074
1075 return avr_make_saddr (sp);
1076 }
1077
1078 /* Given a GDB frame, determine the address of the calling function's
1079 frame. This will be used to create a new GDB frame struct. */
1080
1081 static void
1082 avr_frame_this_id (struct frame_info *this_frame,
1083 void **this_prologue_cache,
1084 struct frame_id *this_id)
1085 {
1086 struct avr_unwind_cache *info
1087 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1088 CORE_ADDR base;
1089 CORE_ADDR func;
1090 struct frame_id id;
1091
1092 /* The FUNC is easy. */
1093 func = get_frame_func (this_frame);
1094
1095 /* Hopefully the prologue analysis either correctly determined the
1096 frame's base (which is the SP from the previous frame), or set
1097 that base to "NULL". */
1098 base = info->prev_sp;
1099 if (base == 0)
1100 return;
1101
1102 id = frame_id_build (base, func);
1103 (*this_id) = id;
1104 }
1105
1106 static struct value *
1107 avr_frame_prev_register (struct frame_info *this_frame,
1108 void **this_prologue_cache, int regnum)
1109 {
1110 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1111 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1112 struct avr_unwind_cache *info
1113 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1114
1115 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1116 {
1117 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1118 {
1119 /* Reading the return PC from the PC register is slightly
1120 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1121 but in reality, only two bytes (3 in upcoming mega256) are
1122 stored on the stack.
1123
1124 Also, note that the value on the stack is an addr to a word
1125 not a byte, so we will need to multiply it by two at some
1126 point.
1127
1128 And to confuse matters even more, the return address stored
1129 on the stack is in big endian byte order, even though most
1130 everything else about the avr is little endian. Ick! */
1131 ULONGEST pc;
1132 int i;
1133 gdb_byte buf[3];
1134 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1135 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1136
1137 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1138 buf, tdep->call_length);
1139
1140 /* Extract the PC read from memory as a big-endian. */
1141 pc = 0;
1142 for (i = 0; i < tdep->call_length; i++)
1143 pc = (pc << 8) | buf[i];
1144
1145 if (regnum == AVR_PC_REGNUM)
1146 pc <<= 1;
1147
1148 return frame_unwind_got_constant (this_frame, regnum, pc);
1149 }
1150
1151 return frame_unwind_got_optimized (this_frame, regnum);
1152 }
1153
1154 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1155 }
1156
1157 static const struct frame_unwind avr_frame_unwind = {
1158 NORMAL_FRAME,
1159 default_frame_unwind_stop_reason,
1160 avr_frame_this_id,
1161 avr_frame_prev_register,
1162 NULL,
1163 default_frame_sniffer
1164 };
1165
1166 static CORE_ADDR
1167 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1168 {
1169 struct avr_unwind_cache *info
1170 = avr_frame_unwind_cache (this_frame, this_cache);
1171
1172 return info->base;
1173 }
1174
1175 static const struct frame_base avr_frame_base = {
1176 &avr_frame_unwind,
1177 avr_frame_base_address,
1178 avr_frame_base_address,
1179 avr_frame_base_address
1180 };
1181
1182 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1183 frame. The frame ID's base needs to match the TOS value saved by
1184 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1185
1186 static struct frame_id
1187 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1188 {
1189 ULONGEST base;
1190
1191 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1192 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1193 }
1194
1195 /* When arguments must be pushed onto the stack, they go on in reverse
1196 order. The below implements a FILO (stack) to do this. */
1197
1198 struct stack_item
1199 {
1200 int len;
1201 struct stack_item *prev;
1202 gdb_byte *data;
1203 };
1204
1205 static struct stack_item *
1206 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1207 {
1208 struct stack_item *si;
1209 si = XNEW (struct stack_item);
1210 si->data = (gdb_byte *) xmalloc (len);
1211 si->len = len;
1212 si->prev = prev;
1213 memcpy (si->data, contents, len);
1214 return si;
1215 }
1216
1217 static struct stack_item *pop_stack_item (struct stack_item *si);
1218 static struct stack_item *
1219 pop_stack_item (struct stack_item *si)
1220 {
1221 struct stack_item *dead = si;
1222 si = si->prev;
1223 xfree (dead->data);
1224 xfree (dead);
1225 return si;
1226 }
1227
1228 /* Setup the function arguments for calling a function in the inferior.
1229
1230 On the AVR architecture, there are 18 registers (R25 to R8) which are
1231 dedicated for passing function arguments. Up to the first 18 arguments
1232 (depending on size) may go into these registers. The rest go on the stack.
1233
1234 All arguments are aligned to start in even-numbered registers (odd-sized
1235 arguments, including char, have one free register above them). For example,
1236 an int in arg1 and a char in arg2 would be passed as such:
1237
1238 arg1 -> r25:r24
1239 arg2 -> r22
1240
1241 Arguments that are larger than 2 bytes will be split between two or more
1242 registers as available, but will NOT be split between a register and the
1243 stack. Arguments that go onto the stack are pushed last arg first (this is
1244 similar to the d10v). */
1245
1246 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1247 inaccurate.
1248
1249 An exceptional case exists for struct arguments (and possibly other
1250 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1251 not a multiple of WORDSIZE bytes. In this case the argument is never split
1252 between the registers and the stack, but instead is copied in its entirety
1253 onto the stack, AND also copied into as many registers as there is room
1254 for. In other words, space in registers permitting, two copies of the same
1255 argument are passed in. As far as I can tell, only the one on the stack is
1256 used, although that may be a function of the level of compiler
1257 optimization. I suspect this is a compiler bug. Arguments of these odd
1258 sizes are left-justified within the word (as opposed to arguments smaller
1259 than WORDSIZE bytes, which are right-justified).
1260
1261 If the function is to return an aggregate type such as a struct, the caller
1262 must allocate space into which the callee will copy the return value. In
1263 this case, a pointer to the return value location is passed into the callee
1264 in register R0, which displaces one of the other arguments passed in via
1265 registers R0 to R2. */
1266
1267 static CORE_ADDR
1268 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1269 struct regcache *regcache, CORE_ADDR bp_addr,
1270 int nargs, struct value **args, CORE_ADDR sp,
1271 int struct_return, CORE_ADDR struct_addr)
1272 {
1273 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1274 int i;
1275 gdb_byte buf[3];
1276 int call_length = gdbarch_tdep (gdbarch)->call_length;
1277 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1278 int regnum = AVR_ARGN_REGNUM;
1279 struct stack_item *si = NULL;
1280
1281 if (struct_return)
1282 {
1283 regcache_cooked_write_unsigned
1284 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1285 regcache_cooked_write_unsigned
1286 (regcache, regnum--, struct_addr & 0xff);
1287 /* SP being post decremented, we need to reserve one byte so that the
1288 return address won't overwrite the result (or vice-versa). */
1289 if (sp == struct_addr)
1290 sp--;
1291 }
1292
1293 for (i = 0; i < nargs; i++)
1294 {
1295 int last_regnum;
1296 int j;
1297 struct value *arg = args[i];
1298 struct type *type = check_typedef (value_type (arg));
1299 const bfd_byte *contents = value_contents (arg);
1300 int len = TYPE_LENGTH (type);
1301
1302 /* Calculate the potential last register needed.
1303 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1304 shall be used. So, last needed register will be regnum-1(24). */
1305 last_regnum = regnum - (len + (len & 1)) + 1;
1306
1307 /* If there are registers available, use them. Once we start putting
1308 stuff on the stack, all subsequent args go on stack. */
1309 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
1310 {
1311 /* Skip a register for odd length args. */
1312 if (len & 1)
1313 regnum--;
1314
1315 /* Write MSB of argument into register and subsequent bytes in
1316 decreasing register numbers. */
1317 for (j = 0; j < len; j++)
1318 regcache_cooked_write_unsigned
1319 (regcache, regnum--, contents[len - j - 1]);
1320 }
1321 /* No registers available, push the args onto the stack. */
1322 else
1323 {
1324 /* From here on, we don't care about regnum. */
1325 si = push_stack_item (si, contents, len);
1326 }
1327 }
1328
1329 /* Push args onto the stack. */
1330 while (si)
1331 {
1332 sp -= si->len;
1333 /* Add 1 to sp here to account for post decr nature of pushes. */
1334 write_memory (sp + 1, si->data, si->len);
1335 si = pop_stack_item (si);
1336 }
1337
1338 /* Set the return address. For the avr, the return address is the BP_ADDR.
1339 Need to push the return address onto the stack noting that it needs to be
1340 in big-endian order on the stack. */
1341 for (i = 1; i <= call_length; i++)
1342 {
1343 buf[call_length - i] = return_pc & 0xff;
1344 return_pc >>= 8;
1345 }
1346
1347 sp -= call_length;
1348 /* Use 'sp + 1' since pushes are post decr ops. */
1349 write_memory (sp + 1, buf, call_length);
1350
1351 /* Finally, update the SP register. */
1352 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1353 avr_convert_saddr_to_raw (sp));
1354
1355 /* Return SP value for the dummy frame, where the return address hasn't been
1356 pushed. */
1357 return sp + call_length;
1358 }
1359
1360 /* Unfortunately dwarf2 register for SP is 32. */
1361
1362 static int
1363 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1364 {
1365 if (reg >= 0 && reg < 32)
1366 return reg;
1367 if (reg == 32)
1368 return AVR_SP_REGNUM;
1369 return -1;
1370 }
1371
1372 /* Implementation of `address_class_type_flags' gdbarch method.
1373
1374 This method maps DW_AT_address_class attributes to a
1375 type_instance_flag_value. */
1376
1377 static int
1378 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1379 {
1380 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1381 __flash qualifier. Note that this attribute is only valid with
1382 pointer types and therefore the flag is set to the pointer type and
1383 not its target type. */
1384 if (dwarf2_addr_class == 1 && byte_size == 2)
1385 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1386 return 0;
1387 }
1388
1389 /* Implementation of `address_class_type_flags_to_name' gdbarch method.
1390
1391 Convert a type_instance_flag_value to an address space qualifier. */
1392
1393 static const char*
1394 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1395 {
1396 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1397 return "flash";
1398 else
1399 return NULL;
1400 }
1401
1402 /* Implementation of `address_class_name_to_type_flags' gdbarch method.
1403
1404 Convert an address space qualifier to a type_instance_flag_value. */
1405
1406 static int
1407 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1408 const char* name,
1409 int *type_flags_ptr)
1410 {
1411 if (strcmp (name, "flash") == 0)
1412 {
1413 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1414 return 1;
1415 }
1416 else
1417 return 0;
1418 }
1419
1420 /* Initialize the gdbarch structure for the AVR's. */
1421
1422 static struct gdbarch *
1423 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1424 {
1425 struct gdbarch *gdbarch;
1426 struct gdbarch_tdep *tdep;
1427 struct gdbarch_list *best_arch;
1428 int call_length;
1429
1430 /* Avr-6 call instructions save 3 bytes. */
1431 switch (info.bfd_arch_info->mach)
1432 {
1433 case bfd_mach_avr1:
1434 case bfd_mach_avrxmega1:
1435 case bfd_mach_avr2:
1436 case bfd_mach_avrxmega2:
1437 case bfd_mach_avr3:
1438 case bfd_mach_avrxmega3:
1439 case bfd_mach_avr4:
1440 case bfd_mach_avrxmega4:
1441 case bfd_mach_avr5:
1442 case bfd_mach_avrxmega5:
1443 default:
1444 call_length = 2;
1445 break;
1446 case bfd_mach_avr6:
1447 case bfd_mach_avrxmega6:
1448 case bfd_mach_avrxmega7:
1449 call_length = 3;
1450 break;
1451 }
1452
1453 /* If there is already a candidate, use it. */
1454 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1455 best_arch != NULL;
1456 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1457 {
1458 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1459 return best_arch->gdbarch;
1460 }
1461
1462 /* None found, create a new architecture from the information provided. */
1463 tdep = XNEW (struct gdbarch_tdep);
1464 gdbarch = gdbarch_alloc (&info, tdep);
1465
1466 tdep->call_length = call_length;
1467
1468 /* Create a type for PC. We can't use builtin types here, as they may not
1469 be defined. */
1470 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1471 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1472 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1473 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1474 TYPE_UNSIGNED (tdep->pc_type) = 1;
1475
1476 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1477 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1478 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1479 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1480 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1481 set_gdbarch_addr_bit (gdbarch, 32);
1482
1483 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1484 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1485 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1486
1487 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1488 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1489 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1490
1491 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1492 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1493
1494 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1495
1496 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1497 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1498
1499 set_gdbarch_register_name (gdbarch, avr_register_name);
1500 set_gdbarch_register_type (gdbarch, avr_register_type);
1501
1502 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1503 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1504 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1505
1506 set_gdbarch_return_value (gdbarch, avr_return_value);
1507 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1508
1509 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1510
1511 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1512
1513 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1514 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1515 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1516
1517 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1518 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1519
1520 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1521
1522 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1523 frame_base_set_default (gdbarch, &avr_frame_base);
1524
1525 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1526
1527 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1528 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1529
1530 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1531 set_gdbarch_address_class_name_to_type_flags
1532 (gdbarch, avr_address_class_name_to_type_flags);
1533 set_gdbarch_address_class_type_flags_to_name
1534 (gdbarch, avr_address_class_type_flags_to_name);
1535
1536 return gdbarch;
1537 }
1538
1539 /* Send a query request to the avr remote target asking for values of the io
1540 registers. If args parameter is not NULL, then the user has requested info
1541 on a specific io register [This still needs implemented and is ignored for
1542 now]. The query string should be one of these forms:
1543
1544 "Ravr.io_reg" -> reply is "NN" number of io registers
1545
1546 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1547 registers to be read. The reply should be "<NAME>,VV;" for each io register
1548 where, <NAME> is a string, and VV is the hex value of the register.
1549
1550 All io registers are 8-bit. */
1551
1552 static void
1553 avr_io_reg_read_command (char *args, int from_tty)
1554 {
1555 LONGEST bufsiz = 0;
1556 gdb_byte *buf;
1557 const char *bufstr;
1558 char query[400];
1559 const char *p;
1560 unsigned int nreg = 0;
1561 unsigned int val;
1562 int i, j, k, step;
1563
1564 /* Find out how many io registers the target has. */
1565 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1566 "avr.io_reg", &buf);
1567 bufstr = (const char *) buf;
1568
1569 if (bufsiz <= 0)
1570 {
1571 fprintf_unfiltered (gdb_stderr,
1572 _("ERR: info io_registers NOT supported "
1573 "by current target\n"));
1574 return;
1575 }
1576
1577 if (sscanf (bufstr, "%x", &nreg) != 1)
1578 {
1579 fprintf_unfiltered (gdb_stderr,
1580 _("Error fetching number of io registers\n"));
1581 xfree (buf);
1582 return;
1583 }
1584
1585 xfree (buf);
1586
1587 reinitialize_more_filter ();
1588
1589 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1590
1591 /* only fetch up to 8 registers at a time to keep the buffer small */
1592 step = 8;
1593
1594 for (i = 0; i < nreg; i += step)
1595 {
1596 /* how many registers this round? */
1597 j = step;
1598 if ((i+j) >= nreg)
1599 j = nreg - i; /* last block is less than 8 registers */
1600
1601 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1602 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1603 query, &buf);
1604
1605 p = (const char *) buf;
1606 for (k = i; k < (i + j); k++)
1607 {
1608 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1609 {
1610 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1611 while ((*p != ';') && (*p != '\0'))
1612 p++;
1613 p++; /* skip over ';' */
1614 if (*p == '\0')
1615 break;
1616 }
1617 }
1618
1619 xfree (buf);
1620 }
1621 }
1622
1623 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1624
1625 void
1626 _initialize_avr_tdep (void)
1627 {
1628 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1629
1630 /* Add a new command to allow the user to query the avr remote target for
1631 the values of the io space registers in a saner way than just using
1632 `x/NNNb ADDR`. */
1633
1634 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1635 io_registers' to signify it is not available on other platforms. */
1636
1637 add_info ("io_registers", avr_io_reg_read_command,
1638 _("query remote avr target for io space register values"));
1639 }
This page took 0.064998 seconds and 5 git commands to generate.