2007-05-31 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /* Contributed by Theodore A. Roth, troth@openavr.org */
24
25 /* Portions of this file were taken from the original gdb-4.18 patch developed
26 by Denis Chertykov, denisc@overta.ru */
27
28 #include "defs.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "inferior.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "gdb_string.h"
41 #include "dis-asm.h"
42
43 /* AVR Background:
44
45 (AVR micros are pure Harvard Architecture processors.)
46
47 The AVR family of microcontrollers have three distinctly different memory
48 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
49 the most part to store program instructions. The sram is 8 bits wide and is
50 used for the stack and the heap. Some devices lack sram and some can have
51 an additional external sram added on as a peripheral.
52
53 The eeprom is 8 bits wide and is used to store data when the device is
54 powered down. Eeprom is not directly accessible, it can only be accessed
55 via io-registers using a special algorithm. Accessing eeprom via gdb's
56 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
57 not included at this time.
58
59 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
60 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
61 work, the remote target must be able to handle eeprom accesses and perform
62 the address translation.]
63
64 All three memory spaces have physical addresses beginning at 0x0. In
65 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
66 bytes instead of the 16 bit wide words used by the real device for the
67 Program Counter.
68
69 In order for remote targets to work correctly, extra bits must be added to
70 addresses before they are send to the target or received from the target
71 via the remote serial protocol. The extra bits are the MSBs and are used to
72 decode which memory space the address is referring to. */
73
74 #undef XMALLOC
75 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
76
77 #undef EXTRACT_INSN
78 #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
79
80 /* Constants: prefixed with AVR_ to avoid name space clashes */
81
82 enum
83 {
84 AVR_REG_W = 24,
85 AVR_REG_X = 26,
86 AVR_REG_Y = 28,
87 AVR_FP_REGNUM = 28,
88 AVR_REG_Z = 30,
89
90 AVR_SREG_REGNUM = 32,
91 AVR_SP_REGNUM = 33,
92 AVR_PC_REGNUM = 34,
93
94 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
95 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
96
97 AVR_PC_REG_INDEX = 35, /* index into array of registers */
98
99 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
100
101 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
102 AVR_MAX_PUSHES = 18,
103
104 /* Number of the last pushed register. r17 for current avr-gcc */
105 AVR_LAST_PUSHED_REGNUM = 17,
106
107 AVR_ARG1_REGNUM = 24, /* Single byte argument */
108 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
109
110 AVR_RET1_REGNUM = 24, /* Single byte return value */
111 AVR_RETN_REGNUM = 25, /* Multi byte return value */
112
113 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
114 bits? Do these have to match the bfd vma values?. It sure would make
115 things easier in the future if they didn't need to match.
116
117 Note: I chose these values so as to be consistent with bfd vma
118 addresses.
119
120 TRoth/2002-04-08: There is already a conflict with very large programs
121 in the mega128. The mega128 has 128K instruction bytes (64K words),
122 thus the Most Significant Bit is 0x10000 which gets masked off my
123 AVR_MEM_MASK.
124
125 The problem manifests itself when trying to set a breakpoint in a
126 function which resides in the upper half of the instruction space and
127 thus requires a 17-bit address.
128
129 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
130 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
131 but could be for some remote targets by just adding the correct offset
132 to the address and letting the remote target handle the low-level
133 details of actually accessing the eeprom. */
134
135 AVR_IMEM_START = 0x00000000, /* INSN memory */
136 AVR_SMEM_START = 0x00800000, /* SRAM memory */
137 #if 1
138 /* No eeprom mask defined */
139 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
140 #else
141 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
142 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
143 #endif
144 };
145
146 /* Prologue types:
147
148 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
149 causes the generation of the CALL type prologues). */
150
151 enum {
152 AVR_PROLOGUE_NONE, /* No prologue */
153 AVR_PROLOGUE_NORMAL,
154 AVR_PROLOGUE_CALL, /* -mcall-prologues */
155 AVR_PROLOGUE_MAIN,
156 AVR_PROLOGUE_INTR, /* interrupt handler */
157 AVR_PROLOGUE_SIG, /* signal handler */
158 };
159
160 /* Any function with a frame looks like this
161 ....... <-SP POINTS HERE
162 LOCALS1 <-FP POINTS HERE
163 LOCALS0
164 SAVED FP
165 SAVED R3
166 SAVED R2
167 RET PC
168 FIRST ARG
169 SECOND ARG */
170
171 struct avr_unwind_cache
172 {
173 /* The previous frame's inner most stack address. Used as this
174 frame ID's stack_addr. */
175 CORE_ADDR prev_sp;
176 /* The frame's base, optionally used by the high-level debug info. */
177 CORE_ADDR base;
178 int size;
179 int prologue_type;
180 /* Table indicating the location of each and every register. */
181 struct trad_frame_saved_reg *saved_regs;
182 };
183
184 struct gdbarch_tdep
185 {
186 /* FIXME: TRoth: is there anything to put here? */
187 int foo;
188 };
189
190 /* Lookup the name of a register given it's number. */
191
192 static const char *
193 avr_register_name (int regnum)
194 {
195 static char *register_names[] = {
196 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
197 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
198 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
199 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
200 "SREG", "SP", "PC"
201 };
202 if (regnum < 0)
203 return NULL;
204 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
205 return NULL;
206 return register_names[regnum];
207 }
208
209 /* Return the GDB type object for the "standard" data type
210 of data in register N. */
211
212 static struct type *
213 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
214 {
215 if (reg_nr == AVR_PC_REGNUM)
216 return builtin_type_uint32;
217 if (reg_nr == AVR_SP_REGNUM)
218 return builtin_type_void_data_ptr;
219 else
220 return builtin_type_uint8;
221 }
222
223 /* Instruction address checks and convertions. */
224
225 static CORE_ADDR
226 avr_make_iaddr (CORE_ADDR x)
227 {
228 return ((x) | AVR_IMEM_START);
229 }
230
231 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
232 devices are already up to 128KBytes of flash space.
233
234 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
235
236 static CORE_ADDR
237 avr_convert_iaddr_to_raw (CORE_ADDR x)
238 {
239 return ((x) & 0xffffffff);
240 }
241
242 /* SRAM address checks and convertions. */
243
244 static CORE_ADDR
245 avr_make_saddr (CORE_ADDR x)
246 {
247 return ((x) | AVR_SMEM_START);
248 }
249
250 static CORE_ADDR
251 avr_convert_saddr_to_raw (CORE_ADDR x)
252 {
253 return ((x) & 0xffffffff);
254 }
255
256 /* EEPROM address checks and convertions. I don't know if these will ever
257 actually be used, but I've added them just the same. TRoth */
258
259 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
260 programs in the mega128. */
261
262 /* static CORE_ADDR */
263 /* avr_make_eaddr (CORE_ADDR x) */
264 /* { */
265 /* return ((x) | AVR_EMEM_START); */
266 /* } */
267
268 /* static int */
269 /* avr_eaddr_p (CORE_ADDR x) */
270 /* { */
271 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
272 /* } */
273
274 /* static CORE_ADDR */
275 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
276 /* { */
277 /* return ((x) & 0xffffffff); */
278 /* } */
279
280 /* Convert from address to pointer and vice-versa. */
281
282 static void
283 avr_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
284 {
285 /* Is it a code address? */
286 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
287 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
288 {
289 store_unsigned_integer (buf, TYPE_LENGTH (type),
290 avr_convert_iaddr_to_raw (addr >> 1));
291 }
292 else
293 {
294 /* Strip off any upper segment bits. */
295 store_unsigned_integer (buf, TYPE_LENGTH (type),
296 avr_convert_saddr_to_raw (addr));
297 }
298 }
299
300 static CORE_ADDR
301 avr_pointer_to_address (struct type *type, const gdb_byte *buf)
302 {
303 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
304
305 /* Is it a code address? */
306 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
307 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
308 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
309 return avr_make_iaddr (addr << 1);
310 else
311 return avr_make_saddr (addr);
312 }
313
314 static CORE_ADDR
315 avr_read_pc (ptid_t ptid)
316 {
317 ptid_t save_ptid;
318 ULONGEST pc;
319 CORE_ADDR retval;
320
321 save_ptid = inferior_ptid;
322 inferior_ptid = ptid;
323 regcache_cooked_read_unsigned (current_regcache, AVR_PC_REGNUM, &pc);
324 inferior_ptid = save_ptid;
325 retval = avr_make_iaddr (pc);
326 return retval;
327 }
328
329 static void
330 avr_write_pc (CORE_ADDR val, ptid_t ptid)
331 {
332 ptid_t save_ptid;
333
334 save_ptid = inferior_ptid;
335 inferior_ptid = ptid;
336 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
337 inferior_ptid = save_ptid;
338 }
339
340 static int
341 avr_scan_arg_moves (int vpc, unsigned char *prologue)
342 {
343 unsigned short insn;
344
345 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
346 {
347 insn = EXTRACT_INSN (&prologue[vpc]);
348 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
349 continue;
350 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
351 continue;
352 else
353 break;
354 }
355
356 return vpc;
357 }
358
359 /* Function: avr_scan_prologue
360
361 This function decodes an AVR function prologue to determine:
362 1) the size of the stack frame
363 2) which registers are saved on it
364 3) the offsets of saved regs
365 This information is stored in the avr_unwind_cache structure.
366
367 Some devices lack the sbiw instruction, so on those replace this:
368 sbiw r28, XX
369 with this:
370 subi r28,lo8(XX)
371 sbci r29,hi8(XX)
372
373 A typical AVR function prologue with a frame pointer might look like this:
374 push rXX ; saved regs
375 ...
376 push r28
377 push r29
378 in r28,__SP_L__
379 in r29,__SP_H__
380 sbiw r28,<LOCALS_SIZE>
381 in __tmp_reg__,__SREG__
382 cli
383 out __SP_H__,r29
384 out __SREG__,__tmp_reg__
385 out __SP_L__,r28
386
387 A typical AVR function prologue without a frame pointer might look like
388 this:
389 push rXX ; saved regs
390 ...
391
392 A main function prologue looks like this:
393 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
394 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
395 out __SP_H__,r29
396 out __SP_L__,r28
397
398 A signal handler prologue looks like this:
399 push __zero_reg__
400 push __tmp_reg__
401 in __tmp_reg__, __SREG__
402 push __tmp_reg__
403 clr __zero_reg__
404 push rXX ; save registers r18:r27, r30:r31
405 ...
406 push r28 ; save frame pointer
407 push r29
408 in r28, __SP_L__
409 in r29, __SP_H__
410 sbiw r28, <LOCALS_SIZE>
411 out __SP_H__, r29
412 out __SP_L__, r28
413
414 A interrupt handler prologue looks like this:
415 sei
416 push __zero_reg__
417 push __tmp_reg__
418 in __tmp_reg__, __SREG__
419 push __tmp_reg__
420 clr __zero_reg__
421 push rXX ; save registers r18:r27, r30:r31
422 ...
423 push r28 ; save frame pointer
424 push r29
425 in r28, __SP_L__
426 in r29, __SP_H__
427 sbiw r28, <LOCALS_SIZE>
428 cli
429 out __SP_H__, r29
430 sei
431 out __SP_L__, r28
432
433 A `-mcall-prologues' prologue looks like this (Note that the megas use a
434 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
435 32 bit insn and rjmp is a 16 bit insn):
436 ldi r26,lo8(<LOCALS_SIZE>)
437 ldi r27,hi8(<LOCALS_SIZE>)
438 ldi r30,pm_lo8(.L_foo_body)
439 ldi r31,pm_hi8(.L_foo_body)
440 rjmp __prologue_saves__+RRR
441 .L_foo_body: */
442
443 /* Not really part of a prologue, but still need to scan for it, is when a
444 function prologue moves values passed via registers as arguments to new
445 registers. In this case, all local variables live in registers, so there
446 may be some register saves. This is what it looks like:
447 movw rMM, rNN
448 ...
449
450 There could be multiple movw's. If the target doesn't have a movw insn, it
451 will use two mov insns. This could be done after any of the above prologue
452 types. */
453
454 static CORE_ADDR
455 avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
456 {
457 int i;
458 unsigned short insn;
459 int scan_stage = 0;
460 struct minimal_symbol *msymbol;
461 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
462 int vpc = 0;
463
464 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
465 reading in the bytes of the prologue. The problem is that the figuring
466 out where the end of the prologue is is a bit difficult. The old code
467 tried to do that, but failed quite often. */
468 read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
469
470 /* Scanning main()'s prologue
471 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
472 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
473 out __SP_H__,r29
474 out __SP_L__,r28 */
475
476 if (1)
477 {
478 CORE_ADDR locals;
479 unsigned char img[] = {
480 0xde, 0xbf, /* out __SP_H__,r29 */
481 0xcd, 0xbf /* out __SP_L__,r28 */
482 };
483
484 insn = EXTRACT_INSN (&prologue[vpc]);
485 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
486 if ((insn & 0xf0f0) == 0xe0c0)
487 {
488 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
489 insn = EXTRACT_INSN (&prologue[vpc + 2]);
490 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
491 if ((insn & 0xf0f0) == 0xe0d0)
492 {
493 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
494 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
495 {
496 info->prologue_type = AVR_PROLOGUE_MAIN;
497 info->base = locals;
498 return pc + 4;
499 }
500 }
501 }
502 }
503
504 /* Scanning `-mcall-prologues' prologue
505 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
506
507 while (1) /* Using a while to avoid many goto's */
508 {
509 int loc_size;
510 int body_addr;
511 unsigned num_pushes;
512 int pc_offset = 0;
513
514 insn = EXTRACT_INSN (&prologue[vpc]);
515 /* ldi r26,<LOCALS_SIZE> */
516 if ((insn & 0xf0f0) != 0xe0a0)
517 break;
518 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
519 pc_offset += 2;
520
521 insn = EXTRACT_INSN (&prologue[vpc + 2]);
522 /* ldi r27,<LOCALS_SIZE> / 256 */
523 if ((insn & 0xf0f0) != 0xe0b0)
524 break;
525 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
526 pc_offset += 2;
527
528 insn = EXTRACT_INSN (&prologue[vpc + 4]);
529 /* ldi r30,pm_lo8(.L_foo_body) */
530 if ((insn & 0xf0f0) != 0xe0e0)
531 break;
532 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
533 pc_offset += 2;
534
535 insn = EXTRACT_INSN (&prologue[vpc + 6]);
536 /* ldi r31,pm_hi8(.L_foo_body) */
537 if ((insn & 0xf0f0) != 0xe0f0)
538 break;
539 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
540 pc_offset += 2;
541
542 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
543 if (!msymbol)
544 break;
545
546 insn = EXTRACT_INSN (&prologue[vpc + 8]);
547 /* rjmp __prologue_saves__+RRR */
548 if ((insn & 0xf000) == 0xc000)
549 {
550 /* Extract PC relative offset from RJMP */
551 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
552 /* Convert offset to byte addressable mode */
553 i *= 2;
554 /* Destination address */
555 i += pc + 10;
556
557 if (body_addr != (pc + 10)/2)
558 break;
559
560 pc_offset += 2;
561 }
562 else if ((insn & 0xfe0e) == 0x940c)
563 {
564 /* Extract absolute PC address from JMP */
565 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
566 | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
567 /* Convert address to byte addressable mode */
568 i *= 2;
569
570 if (body_addr != (pc + 12)/2)
571 break;
572
573 pc_offset += 4;
574 }
575 else
576 break;
577
578 /* Resolve offset (in words) from __prologue_saves__ symbol.
579 Which is a pushes count in `-mcall-prologues' mode */
580 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
581
582 if (num_pushes > AVR_MAX_PUSHES)
583 {
584 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
585 num_pushes);
586 num_pushes = 0;
587 }
588
589 if (num_pushes)
590 {
591 int from;
592
593 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
594 if (num_pushes >= 2)
595 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
596
597 i = 0;
598 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
599 from <= AVR_LAST_PUSHED_REGNUM; ++from)
600 info->saved_regs [from].addr = ++i;
601 }
602 info->size = loc_size + num_pushes;
603 info->prologue_type = AVR_PROLOGUE_CALL;
604
605 return pc + pc_offset;
606 }
607
608 /* Scan for the beginning of the prologue for an interrupt or signal
609 function. Note that we have to set the prologue type here since the
610 third stage of the prologue may not be present (e.g. no saved registered
611 or changing of the SP register). */
612
613 if (1)
614 {
615 unsigned char img[] = {
616 0x78, 0x94, /* sei */
617 0x1f, 0x92, /* push r1 */
618 0x0f, 0x92, /* push r0 */
619 0x0f, 0xb6, /* in r0,0x3f SREG */
620 0x0f, 0x92, /* push r0 */
621 0x11, 0x24 /* clr r1 */
622 };
623 if (memcmp (prologue, img, sizeof (img)) == 0)
624 {
625 info->prologue_type = AVR_PROLOGUE_INTR;
626 vpc += sizeof (img);
627 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
628 info->saved_regs[0].addr = 2;
629 info->saved_regs[1].addr = 1;
630 info->size += 3;
631 }
632 else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
633 {
634 info->prologue_type = AVR_PROLOGUE_SIG;
635 vpc += sizeof (img) - 2;
636 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
637 info->saved_regs[0].addr = 2;
638 info->saved_regs[1].addr = 1;
639 info->size += 3;
640 }
641 }
642
643 /* First stage of the prologue scanning.
644 Scan pushes (saved registers) */
645
646 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
647 {
648 insn = EXTRACT_INSN (&prologue[vpc]);
649 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
650 {
651 /* Bits 4-9 contain a mask for registers R0-R32. */
652 int regno = (insn & 0x1f0) >> 4;
653 info->size++;
654 info->saved_regs[regno].addr = info->size;
655 scan_stage = 1;
656 }
657 else
658 break;
659 }
660
661 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
662 fprintf_unfiltered (gdb_stderr,
663 _("Hit end of prologue while scanning pushes\n"));
664
665 /* Second stage of the prologue scanning.
666 Scan:
667 in r28,__SP_L__
668 in r29,__SP_H__ */
669
670 if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
671 {
672 unsigned char img[] = {
673 0xcd, 0xb7, /* in r28,__SP_L__ */
674 0xde, 0xb7 /* in r29,__SP_H__ */
675 };
676 unsigned short insn1;
677
678 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
679 {
680 vpc += 4;
681 scan_stage = 2;
682 }
683 }
684
685 /* Third stage of the prologue scanning. (Really two stages)
686 Scan for:
687 sbiw r28,XX or subi r28,lo8(XX)
688 sbci r29,hi8(XX)
689 in __tmp_reg__,__SREG__
690 cli
691 out __SP_H__,r29
692 out __SREG__,__tmp_reg__
693 out __SP_L__,r28 */
694
695 if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
696 {
697 int locals_size = 0;
698 unsigned char img[] = {
699 0x0f, 0xb6, /* in r0,0x3f */
700 0xf8, 0x94, /* cli */
701 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
702 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
703 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
704 };
705 unsigned char img_sig[] = {
706 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
707 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
708 };
709 unsigned char img_int[] = {
710 0xf8, 0x94, /* cli */
711 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
712 0x78, 0x94, /* sei */
713 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
714 };
715
716 insn = EXTRACT_INSN (&prologue[vpc]);
717 vpc += 2;
718 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
719 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
720 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
721 {
722 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
723 insn = EXTRACT_INSN (&prologue[vpc]);
724 vpc += 2;
725 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
726 }
727 else
728 return pc + vpc;
729
730 /* Scan the last part of the prologue. May not be present for interrupt
731 or signal handler functions, which is why we set the prologue type
732 when we saw the beginning of the prologue previously. */
733
734 if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
735 {
736 vpc += sizeof (img_sig);
737 }
738 else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
739 {
740 vpc += sizeof (img_int);
741 }
742 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
743 {
744 info->prologue_type = AVR_PROLOGUE_NORMAL;
745 vpc += sizeof (img);
746 }
747
748 info->size += locals_size;
749
750 return pc + avr_scan_arg_moves (vpc, prologue);
751 }
752
753 /* If we got this far, we could not scan the prologue, so just return the pc
754 of the frame plus an adjustment for argument move insns. */
755
756 return pc + avr_scan_arg_moves (vpc, prologue);;
757 }
758
759 static CORE_ADDR
760 avr_skip_prologue (CORE_ADDR pc)
761 {
762 CORE_ADDR func_addr, func_end;
763 CORE_ADDR prologue_end = pc;
764
765 /* See what the symbol table says */
766
767 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
768 {
769 struct symtab_and_line sal;
770 struct avr_unwind_cache info = {0};
771 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
772
773 info.saved_regs = saved_regs;
774
775 /* Need to run the prologue scanner to figure out if the function has a
776 prologue and possibly skip over moving arguments passed via registers
777 to other registers. */
778
779 prologue_end = avr_scan_prologue (pc, &info);
780
781 if (info.prologue_type == AVR_PROLOGUE_NONE)
782 return pc;
783 else
784 {
785 sal = find_pc_line (func_addr, 0);
786
787 if (sal.line != 0 && sal.end < func_end)
788 return sal.end;
789 }
790 }
791
792 /* Either we didn't find the start of this function (nothing we can do),
793 or there's no line info, or the line after the prologue is after
794 the end of the function (there probably isn't a prologue). */
795
796 return prologue_end;
797 }
798
799 /* Not all avr devices support the BREAK insn. Those that don't should treat
800 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
801 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
802
803 static const unsigned char *
804 avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
805 {
806 static unsigned char avr_break_insn [] = { 0x98, 0x95 };
807 *lenptr = sizeof (avr_break_insn);
808 return avr_break_insn;
809 }
810
811 /* Given a return value in `regbuf' with a type `valtype',
812 extract and copy its value into `valbuf'.
813
814 Return values are always passed via registers r25:r24:... */
815
816 static void
817 avr_extract_return_value (struct type *type, struct regcache *regcache,
818 gdb_byte *valbuf)
819 {
820 ULONGEST r24, r25;
821 ULONGEST c;
822 int len;
823 if (TYPE_LENGTH (type) == 1)
824 {
825 regcache_cooked_read_unsigned (regcache, 24, &c);
826 store_unsigned_integer (valbuf, 1, c);
827 }
828 else
829 {
830 int i;
831 /* The MSB of the return value is always in r25, calculate which
832 register holds the LSB. */
833 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
834
835 for (i=0; i< TYPE_LENGTH (type); i++)
836 {
837 regcache_cooked_read (regcache, lsb_reg + i,
838 (bfd_byte *) valbuf + i);
839 }
840 }
841 }
842
843 /* Put here the code to store, into fi->saved_regs, the addresses of
844 the saved registers of frame described by FRAME_INFO. This
845 includes special registers such as pc and fp saved in special ways
846 in the stack frame. sp is even more special: the address we return
847 for it IS the sp for the next frame. */
848
849 struct avr_unwind_cache *
850 avr_frame_unwind_cache (struct frame_info *next_frame,
851 void **this_prologue_cache)
852 {
853 CORE_ADDR pc;
854 ULONGEST prev_sp;
855 ULONGEST this_base;
856 struct avr_unwind_cache *info;
857 int i;
858
859 if ((*this_prologue_cache))
860 return (*this_prologue_cache);
861
862 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
863 (*this_prologue_cache) = info;
864 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
865
866 info->size = 0;
867 info->prologue_type = AVR_PROLOGUE_NONE;
868
869 pc = frame_func_unwind (next_frame, NORMAL_FRAME);
870
871 if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
872 avr_scan_prologue (pc, info);
873
874 if ((info->prologue_type != AVR_PROLOGUE_NONE)
875 && (info->prologue_type != AVR_PROLOGUE_MAIN))
876 {
877 ULONGEST high_base; /* High byte of FP */
878
879 /* The SP was moved to the FP. This indicates that a new frame
880 was created. Get THIS frame's FP value by unwinding it from
881 the next frame. */
882 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM, &this_base);
883 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM+1, &high_base);
884 this_base += (high_base << 8);
885
886 /* The FP points at the last saved register. Adjust the FP back
887 to before the first saved register giving the SP. */
888 prev_sp = this_base + info->size;
889 }
890 else
891 {
892 /* Assume that the FP is this frame's SP but with that pushed
893 stack space added back. */
894 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &this_base);
895 prev_sp = this_base + info->size;
896 }
897
898 /* Add 1 here to adjust for the post-decrement nature of the push
899 instruction.*/
900 info->prev_sp = avr_make_saddr (prev_sp+1);
901
902 info->base = avr_make_saddr (this_base);
903
904 /* Adjust all the saved registers so that they contain addresses and not
905 offsets. */
906 for (i = 0; i < gdbarch_num_regs (current_gdbarch) - 1; i++)
907 if (info->saved_regs[i].addr)
908 {
909 info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
910 }
911
912 /* Except for the main and startup code, the return PC is always saved on
913 the stack and is at the base of the frame. */
914
915 if (info->prologue_type != AVR_PROLOGUE_MAIN)
916 {
917 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
918 }
919
920 /* The previous frame's SP needed to be computed. Save the computed
921 value. */
922 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, info->prev_sp+1);
923
924 return info;
925 }
926
927 static CORE_ADDR
928 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
929 {
930 ULONGEST pc;
931
932 frame_unwind_unsigned_register (next_frame, AVR_PC_REGNUM, &pc);
933
934 return avr_make_iaddr (pc);
935 }
936
937 static CORE_ADDR
938 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
939 {
940 ULONGEST sp;
941
942 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &sp);
943
944 return avr_make_saddr (sp);
945 }
946
947 /* Given a GDB frame, determine the address of the calling function's
948 frame. This will be used to create a new GDB frame struct. */
949
950 static void
951 avr_frame_this_id (struct frame_info *next_frame,
952 void **this_prologue_cache,
953 struct frame_id *this_id)
954 {
955 struct avr_unwind_cache *info
956 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
957 CORE_ADDR base;
958 CORE_ADDR func;
959 struct frame_id id;
960
961 /* The FUNC is easy. */
962 func = frame_func_unwind (next_frame, NORMAL_FRAME);
963
964 /* Hopefully the prologue analysis either correctly determined the
965 frame's base (which is the SP from the previous frame), or set
966 that base to "NULL". */
967 base = info->prev_sp;
968 if (base == 0)
969 return;
970
971 id = frame_id_build (base, func);
972 (*this_id) = id;
973 }
974
975 static void
976 avr_frame_prev_register (struct frame_info *next_frame,
977 void **this_prologue_cache,
978 int regnum, int *optimizedp,
979 enum lval_type *lvalp, CORE_ADDR *addrp,
980 int *realnump, gdb_byte *bufferp)
981 {
982 struct avr_unwind_cache *info
983 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
984
985 if (regnum == AVR_PC_REGNUM)
986 {
987 if (trad_frame_addr_p (info->saved_regs, regnum))
988 {
989 *optimizedp = 0;
990 *lvalp = lval_memory;
991 *addrp = info->saved_regs[regnum].addr;
992 *realnump = -1;
993 if (bufferp != NULL)
994 {
995 /* Reading the return PC from the PC register is slightly
996 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
997 but in reality, only two bytes (3 in upcoming mega256) are
998 stored on the stack.
999
1000 Also, note that the value on the stack is an addr to a word
1001 not a byte, so we will need to multiply it by two at some
1002 point.
1003
1004 And to confuse matters even more, the return address stored
1005 on the stack is in big endian byte order, even though most
1006 everything else about the avr is little endian. Ick! */
1007
1008 /* FIXME: number of bytes read here will need updated for the
1009 mega256 when it is available. */
1010
1011 ULONGEST pc;
1012 unsigned char tmp;
1013 unsigned char buf[2];
1014
1015 read_memory (info->saved_regs[regnum].addr, buf, 2);
1016
1017 /* Convert the PC read from memory as a big-endian to
1018 little-endian order. */
1019 tmp = buf[0];
1020 buf[0] = buf[1];
1021 buf[1] = tmp;
1022
1023 pc = (extract_unsigned_integer (buf, 2) * 2);
1024 store_unsigned_integer (bufferp,
1025 register_size (current_gdbarch, regnum),
1026 pc);
1027 }
1028 }
1029 }
1030 else
1031 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1032 optimizedp, lvalp, addrp, realnump, bufferp);
1033 }
1034
1035 static const struct frame_unwind avr_frame_unwind = {
1036 NORMAL_FRAME,
1037 avr_frame_this_id,
1038 avr_frame_prev_register
1039 };
1040
1041 const struct frame_unwind *
1042 avr_frame_sniffer (struct frame_info *next_frame)
1043 {
1044 return &avr_frame_unwind;
1045 }
1046
1047 static CORE_ADDR
1048 avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
1049 {
1050 struct avr_unwind_cache *info
1051 = avr_frame_unwind_cache (next_frame, this_cache);
1052
1053 return info->base;
1054 }
1055
1056 static const struct frame_base avr_frame_base = {
1057 &avr_frame_unwind,
1058 avr_frame_base_address,
1059 avr_frame_base_address,
1060 avr_frame_base_address
1061 };
1062
1063 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1064 dummy frame. The frame ID's base needs to match the TOS value
1065 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1066 breakpoint. */
1067
1068 static struct frame_id
1069 avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1070 {
1071 ULONGEST base;
1072
1073 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &base);
1074 return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
1075 }
1076
1077 /* When arguments must be pushed onto the stack, they go on in reverse
1078 order. The below implements a FILO (stack) to do this. */
1079
1080 struct stack_item
1081 {
1082 int len;
1083 struct stack_item *prev;
1084 void *data;
1085 };
1086
1087 static struct stack_item *
1088 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1089 {
1090 struct stack_item *si;
1091 si = xmalloc (sizeof (struct stack_item));
1092 si->data = xmalloc (len);
1093 si->len = len;
1094 si->prev = prev;
1095 memcpy (si->data, contents, len);
1096 return si;
1097 }
1098
1099 static struct stack_item *pop_stack_item (struct stack_item *si);
1100 static struct stack_item *
1101 pop_stack_item (struct stack_item *si)
1102 {
1103 struct stack_item *dead = si;
1104 si = si->prev;
1105 xfree (dead->data);
1106 xfree (dead);
1107 return si;
1108 }
1109
1110 /* Setup the function arguments for calling a function in the inferior.
1111
1112 On the AVR architecture, there are 18 registers (R25 to R8) which are
1113 dedicated for passing function arguments. Up to the first 18 arguments
1114 (depending on size) may go into these registers. The rest go on the stack.
1115
1116 All arguments are aligned to start in even-numbered registers (odd-sized
1117 arguments, including char, have one free register above them). For example,
1118 an int in arg1 and a char in arg2 would be passed as such:
1119
1120 arg1 -> r25:r24
1121 arg2 -> r22
1122
1123 Arguments that are larger than 2 bytes will be split between two or more
1124 registers as available, but will NOT be split between a register and the
1125 stack. Arguments that go onto the stack are pushed last arg first (this is
1126 similar to the d10v). */
1127
1128 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1129 inaccurate.
1130
1131 An exceptional case exists for struct arguments (and possibly other
1132 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1133 not a multiple of WORDSIZE bytes. In this case the argument is never split
1134 between the registers and the stack, but instead is copied in its entirety
1135 onto the stack, AND also copied into as many registers as there is room
1136 for. In other words, space in registers permitting, two copies of the same
1137 argument are passed in. As far as I can tell, only the one on the stack is
1138 used, although that may be a function of the level of compiler
1139 optimization. I suspect this is a compiler bug. Arguments of these odd
1140 sizes are left-justified within the word (as opposed to arguments smaller
1141 than WORDSIZE bytes, which are right-justified).
1142
1143 If the function is to return an aggregate type such as a struct, the caller
1144 must allocate space into which the callee will copy the return value. In
1145 this case, a pointer to the return value location is passed into the callee
1146 in register R0, which displaces one of the other arguments passed in via
1147 registers R0 to R2. */
1148
1149 static CORE_ADDR
1150 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1151 struct regcache *regcache, CORE_ADDR bp_addr,
1152 int nargs, struct value **args, CORE_ADDR sp,
1153 int struct_return, CORE_ADDR struct_addr)
1154 {
1155 int i;
1156 unsigned char buf[2];
1157 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1158 int regnum = AVR_ARGN_REGNUM;
1159 struct stack_item *si = NULL;
1160
1161 #if 0
1162 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1163 if (struct_return)
1164 {
1165 fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1166 write_register (argreg--, struct_addr & 0xff);
1167 write_register (argreg--, (struct_addr >>8) & 0xff);
1168 }
1169 #endif
1170
1171 for (i = 0; i < nargs; i++)
1172 {
1173 int last_regnum;
1174 int j;
1175 struct value *arg = args[i];
1176 struct type *type = check_typedef (value_type (arg));
1177 const bfd_byte *contents = value_contents (arg);
1178 int len = TYPE_LENGTH (type);
1179
1180 /* Calculate the potential last register needed. */
1181 last_regnum = regnum - (len + (len & 1));
1182
1183 /* If there are registers available, use them. Once we start putting
1184 stuff on the stack, all subsequent args go on stack. */
1185 if ((si == NULL) && (last_regnum >= 8))
1186 {
1187 ULONGEST val;
1188
1189 /* Skip a register for odd length args. */
1190 if (len & 1)
1191 regnum--;
1192
1193 val = extract_unsigned_integer (contents, len);
1194 for (j=0; j<len; j++)
1195 {
1196 regcache_cooked_write_unsigned (regcache, regnum--,
1197 val >> (8*(len-j-1)));
1198 }
1199 }
1200 /* No registers available, push the args onto the stack. */
1201 else
1202 {
1203 /* From here on, we don't care about regnum. */
1204 si = push_stack_item (si, contents, len);
1205 }
1206 }
1207
1208 /* Push args onto the stack. */
1209 while (si)
1210 {
1211 sp -= si->len;
1212 /* Add 1 to sp here to account for post decr nature of pushes. */
1213 write_memory (sp+1, si->data, si->len);
1214 si = pop_stack_item (si);
1215 }
1216
1217 /* Set the return address. For the avr, the return address is the BP_ADDR.
1218 Need to push the return address onto the stack noting that it needs to be
1219 in big-endian order on the stack. */
1220 buf[0] = (return_pc >> 8) & 0xff;
1221 buf[1] = return_pc & 0xff;
1222
1223 sp -= 2;
1224 write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */
1225
1226 /* Finally, update the SP register. */
1227 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1228 avr_convert_saddr_to_raw (sp));
1229
1230 return sp;
1231 }
1232
1233 /* Initialize the gdbarch structure for the AVR's. */
1234
1235 static struct gdbarch *
1236 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1237 {
1238 struct gdbarch *gdbarch;
1239 struct gdbarch_tdep *tdep;
1240
1241 /* Find a candidate among the list of pre-declared architectures. */
1242 arches = gdbarch_list_lookup_by_info (arches, &info);
1243 if (arches != NULL)
1244 return arches->gdbarch;
1245
1246 /* None found, create a new architecture from the information provided. */
1247 tdep = XMALLOC (struct gdbarch_tdep);
1248 gdbarch = gdbarch_alloc (&info, tdep);
1249
1250 /* If we ever need to differentiate the device types, do it here. */
1251 switch (info.bfd_arch_info->mach)
1252 {
1253 case bfd_mach_avr1:
1254 case bfd_mach_avr2:
1255 case bfd_mach_avr3:
1256 case bfd_mach_avr4:
1257 case bfd_mach_avr5:
1258 break;
1259 }
1260
1261 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1262 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1263 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1264 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1265 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1266 set_gdbarch_addr_bit (gdbarch, 32);
1267
1268 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1269 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1270 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1271
1272 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1273 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1274 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1275
1276 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1277 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1278
1279 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1280
1281 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1282 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1283
1284 set_gdbarch_register_name (gdbarch, avr_register_name);
1285 set_gdbarch_register_type (gdbarch, avr_register_type);
1286
1287 set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
1288 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1289
1290 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1291
1292 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1293 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1294
1295 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1296 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1297
1298 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1299
1300 frame_unwind_append_sniffer (gdbarch, avr_frame_sniffer);
1301 frame_base_set_default (gdbarch, &avr_frame_base);
1302
1303 set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
1304
1305 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1306 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1307
1308 return gdbarch;
1309 }
1310
1311 /* Send a query request to the avr remote target asking for values of the io
1312 registers. If args parameter is not NULL, then the user has requested info
1313 on a specific io register [This still needs implemented and is ignored for
1314 now]. The query string should be one of these forms:
1315
1316 "Ravr.io_reg" -> reply is "NN" number of io registers
1317
1318 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1319 registers to be read. The reply should be "<NAME>,VV;" for each io register
1320 where, <NAME> is a string, and VV is the hex value of the register.
1321
1322 All io registers are 8-bit. */
1323
1324 static void
1325 avr_io_reg_read_command (char *args, int from_tty)
1326 {
1327 LONGEST bufsiz = 0;
1328 gdb_byte *buf;
1329 char query[400];
1330 char *p;
1331 unsigned int nreg = 0;
1332 unsigned int val;
1333 int i, j, k, step;
1334
1335 /* Find out how many io registers the target has. */
1336 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1337 "avr.io_reg", &buf);
1338
1339 if (bufsiz <= 0)
1340 {
1341 fprintf_unfiltered (gdb_stderr,
1342 _("ERR: info io_registers NOT supported "
1343 "by current target\n"));
1344 return;
1345 }
1346
1347 if (sscanf (buf, "%x", &nreg) != 1)
1348 {
1349 fprintf_unfiltered (gdb_stderr,
1350 _("Error fetching number of io registers\n"));
1351 xfree (buf);
1352 return;
1353 }
1354
1355 xfree (buf);
1356
1357 reinitialize_more_filter ();
1358
1359 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1360
1361 /* only fetch up to 8 registers at a time to keep the buffer small */
1362 step = 8;
1363
1364 for (i = 0; i < nreg; i += step)
1365 {
1366 /* how many registers this round? */
1367 j = step;
1368 if ((i+j) >= nreg)
1369 j = nreg - i; /* last block is less than 8 registers */
1370
1371 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1372 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1373 query, &buf);
1374
1375 p = buf;
1376 for (k = i; k < (i + j); k++)
1377 {
1378 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1379 {
1380 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1381 while ((*p != ';') && (*p != '\0'))
1382 p++;
1383 p++; /* skip over ';' */
1384 if (*p == '\0')
1385 break;
1386 }
1387 }
1388
1389 xfree (buf);
1390 }
1391 }
1392
1393 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1394
1395 void
1396 _initialize_avr_tdep (void)
1397 {
1398 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1399
1400 /* Add a new command to allow the user to query the avr remote target for
1401 the values of the io space registers in a saner way than just using
1402 `x/NNNb ADDR`. */
1403
1404 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1405 io_registers' to signify it is not available on other platforms. */
1406
1407 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1408 _("query remote avr target for io space register values"),
1409 &infolist);
1410 }
This page took 0.100393 seconds and 5 git commands to generate.