2009-11-13 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* Contributed by Theodore A. Roth, troth@openavr.org */
22
23 /* Portions of this file were taken from the original gdb-4.18 patch developed
24 by Denis Chertykov, denisc@overta.ru */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "trad-frame.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "gdb_string.h"
39 #include "dis-asm.h"
40
41 /* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72 #undef XMALLOC
73 #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74
75 /* Constants: prefixed with AVR_ to avoid name space clashes */
76
77 enum
78 {
79 AVR_REG_W = 24,
80 AVR_REG_X = 26,
81 AVR_REG_Y = 28,
82 AVR_FP_REGNUM = 28,
83 AVR_REG_Z = 30,
84
85 AVR_SREG_REGNUM = 32,
86 AVR_SP_REGNUM = 33,
87 AVR_PC_REGNUM = 34,
88
89 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
90 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
91
92 /* Pseudo registers. */
93 AVR_PSEUDO_PC_REGNUM = 35,
94 AVR_NUM_PSEUDO_REGS = 1,
95
96 AVR_PC_REG_INDEX = 35, /* index into array of registers */
97
98 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
99
100 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
101 AVR_MAX_PUSHES = 18,
102
103 /* Number of the last pushed register. r17 for current avr-gcc */
104 AVR_LAST_PUSHED_REGNUM = 17,
105
106 AVR_ARG1_REGNUM = 24, /* Single byte argument */
107 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
108
109 AVR_RET1_REGNUM = 24, /* Single byte return value */
110 AVR_RETN_REGNUM = 25, /* Multi byte return value */
111
112 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
113 bits? Do these have to match the bfd vma values?. It sure would make
114 things easier in the future if they didn't need to match.
115
116 Note: I chose these values so as to be consistent with bfd vma
117 addresses.
118
119 TRoth/2002-04-08: There is already a conflict with very large programs
120 in the mega128. The mega128 has 128K instruction bytes (64K words),
121 thus the Most Significant Bit is 0x10000 which gets masked off my
122 AVR_MEM_MASK.
123
124 The problem manifests itself when trying to set a breakpoint in a
125 function which resides in the upper half of the instruction space and
126 thus requires a 17-bit address.
127
128 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
129 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
130 but could be for some remote targets by just adding the correct offset
131 to the address and letting the remote target handle the low-level
132 details of actually accessing the eeprom. */
133
134 AVR_IMEM_START = 0x00000000, /* INSN memory */
135 AVR_SMEM_START = 0x00800000, /* SRAM memory */
136 #if 1
137 /* No eeprom mask defined */
138 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
139 #else
140 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
141 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
142 #endif
143 };
144
145 /* Prologue types:
146
147 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
148 causes the generation of the CALL type prologues). */
149
150 enum {
151 AVR_PROLOGUE_NONE, /* No prologue */
152 AVR_PROLOGUE_NORMAL,
153 AVR_PROLOGUE_CALL, /* -mcall-prologues */
154 AVR_PROLOGUE_MAIN,
155 AVR_PROLOGUE_INTR, /* interrupt handler */
156 AVR_PROLOGUE_SIG, /* signal handler */
157 };
158
159 /* Any function with a frame looks like this
160 ....... <-SP POINTS HERE
161 LOCALS1 <-FP POINTS HERE
162 LOCALS0
163 SAVED FP
164 SAVED R3
165 SAVED R2
166 RET PC
167 FIRST ARG
168 SECOND ARG */
169
170 struct avr_unwind_cache
171 {
172 /* The previous frame's inner most stack address. Used as this
173 frame ID's stack_addr. */
174 CORE_ADDR prev_sp;
175 /* The frame's base, optionally used by the high-level debug info. */
176 CORE_ADDR base;
177 int size;
178 int prologue_type;
179 /* Table indicating the location of each and every register. */
180 struct trad_frame_saved_reg *saved_regs;
181 };
182
183 struct gdbarch_tdep
184 {
185 /* Number of bytes stored to the stack by call instructions.
186 2 bytes for avr1-5, 3 bytes for avr6. */
187 int call_length;
188
189 /* Type for void. */
190 struct type *void_type;
191 /* Type for a function returning void. */
192 struct type *func_void_type;
193 /* Type for a pointer to a function. Used for the type of PC. */
194 struct type *pc_type;
195 };
196
197 /* Lookup the name of a register given it's number. */
198
199 static const char *
200 avr_register_name (struct gdbarch *gdbarch, int regnum)
201 {
202 static const char * const register_names[] = {
203 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
204 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
205 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
206 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
207 "SREG", "SP", "PC2",
208 "pc"
209 };
210 if (regnum < 0)
211 return NULL;
212 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
213 return NULL;
214 return register_names[regnum];
215 }
216
217 /* Return the GDB type object for the "standard" data type
218 of data in register N. */
219
220 static struct type *
221 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
222 {
223 if (reg_nr == AVR_PC_REGNUM)
224 return builtin_type (gdbarch)->builtin_uint32;
225 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
226 return gdbarch_tdep (gdbarch)->pc_type;
227 if (reg_nr == AVR_SP_REGNUM)
228 return builtin_type (gdbarch)->builtin_data_ptr;
229 return builtin_type (gdbarch)->builtin_uint8;
230 }
231
232 /* Instruction address checks and convertions. */
233
234 static CORE_ADDR
235 avr_make_iaddr (CORE_ADDR x)
236 {
237 return ((x) | AVR_IMEM_START);
238 }
239
240 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
241 devices are already up to 128KBytes of flash space.
242
243 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
244
245 static CORE_ADDR
246 avr_convert_iaddr_to_raw (CORE_ADDR x)
247 {
248 return ((x) & 0xffffffff);
249 }
250
251 /* SRAM address checks and convertions. */
252
253 static CORE_ADDR
254 avr_make_saddr (CORE_ADDR x)
255 {
256 /* Return 0 for NULL. */
257 if (x == 0)
258 return 0;
259
260 return ((x) | AVR_SMEM_START);
261 }
262
263 static CORE_ADDR
264 avr_convert_saddr_to_raw (CORE_ADDR x)
265 {
266 return ((x) & 0xffffffff);
267 }
268
269 /* EEPROM address checks and convertions. I don't know if these will ever
270 actually be used, but I've added them just the same. TRoth */
271
272 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
273 programs in the mega128. */
274
275 /* static CORE_ADDR */
276 /* avr_make_eaddr (CORE_ADDR x) */
277 /* { */
278 /* return ((x) | AVR_EMEM_START); */
279 /* } */
280
281 /* static int */
282 /* avr_eaddr_p (CORE_ADDR x) */
283 /* { */
284 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
285 /* } */
286
287 /* static CORE_ADDR */
288 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
289 /* { */
290 /* return ((x) & 0xffffffff); */
291 /* } */
292
293 /* Convert from address to pointer and vice-versa. */
294
295 static void
296 avr_address_to_pointer (struct gdbarch *gdbarch,
297 struct type *type, gdb_byte *buf, CORE_ADDR addr)
298 {
299 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
300
301 /* Is it a code address? */
302 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
303 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
304 {
305 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
306 avr_convert_iaddr_to_raw (addr >> 1));
307 }
308 else
309 {
310 /* Strip off any upper segment bits. */
311 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
312 avr_convert_saddr_to_raw (addr));
313 }
314 }
315
316 static CORE_ADDR
317 avr_pointer_to_address (struct gdbarch *gdbarch,
318 struct type *type, const gdb_byte *buf)
319 {
320 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
321 CORE_ADDR addr
322 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
323
324 /* Is it a code address? */
325 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
326 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
327 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
328 return avr_make_iaddr (addr << 1);
329 else
330 return avr_make_saddr (addr);
331 }
332
333 static CORE_ADDR
334 avr_integer_to_address (struct gdbarch *gdbarch,
335 struct type *type, const gdb_byte *buf)
336 {
337 ULONGEST addr = unpack_long (type, buf);
338
339 return avr_make_saddr (addr);
340 }
341
342 static CORE_ADDR
343 avr_read_pc (struct regcache *regcache)
344 {
345 ULONGEST pc;
346 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
347 return avr_make_iaddr (pc);
348 }
349
350 static void
351 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
352 {
353 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
354 avr_convert_iaddr_to_raw (val));
355 }
356
357 static void
358 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
359 int regnum, gdb_byte *buf)
360 {
361 ULONGEST val;
362
363 switch (regnum)
364 {
365 case AVR_PSEUDO_PC_REGNUM:
366 regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
367 val >>= 1;
368 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
369 break;
370 default:
371 internal_error (__FILE__, __LINE__, _("invalid regnum"));
372 }
373 }
374
375 static void
376 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
377 int regnum, const gdb_byte *buf)
378 {
379 ULONGEST val;
380
381 switch (regnum)
382 {
383 case AVR_PSEUDO_PC_REGNUM:
384 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
385 val <<= 1;
386 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
387 break;
388 default:
389 internal_error (__FILE__, __LINE__, _("invalid regnum"));
390 }
391 }
392
393 /* Function: avr_scan_prologue
394
395 This function decodes an AVR function prologue to determine:
396 1) the size of the stack frame
397 2) which registers are saved on it
398 3) the offsets of saved regs
399 This information is stored in the avr_unwind_cache structure.
400
401 Some devices lack the sbiw instruction, so on those replace this:
402 sbiw r28, XX
403 with this:
404 subi r28,lo8(XX)
405 sbci r29,hi8(XX)
406
407 A typical AVR function prologue with a frame pointer might look like this:
408 push rXX ; saved regs
409 ...
410 push r28
411 push r29
412 in r28,__SP_L__
413 in r29,__SP_H__
414 sbiw r28,<LOCALS_SIZE>
415 in __tmp_reg__,__SREG__
416 cli
417 out __SP_H__,r29
418 out __SREG__,__tmp_reg__
419 out __SP_L__,r28
420
421 A typical AVR function prologue without a frame pointer might look like
422 this:
423 push rXX ; saved regs
424 ...
425
426 A main function prologue looks like this:
427 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
428 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
429 out __SP_H__,r29
430 out __SP_L__,r28
431
432 A signal handler prologue looks like this:
433 push __zero_reg__
434 push __tmp_reg__
435 in __tmp_reg__, __SREG__
436 push __tmp_reg__
437 clr __zero_reg__
438 push rXX ; save registers r18:r27, r30:r31
439 ...
440 push r28 ; save frame pointer
441 push r29
442 in r28, __SP_L__
443 in r29, __SP_H__
444 sbiw r28, <LOCALS_SIZE>
445 out __SP_H__, r29
446 out __SP_L__, r28
447
448 A interrupt handler prologue looks like this:
449 sei
450 push __zero_reg__
451 push __tmp_reg__
452 in __tmp_reg__, __SREG__
453 push __tmp_reg__
454 clr __zero_reg__
455 push rXX ; save registers r18:r27, r30:r31
456 ...
457 push r28 ; save frame pointer
458 push r29
459 in r28, __SP_L__
460 in r29, __SP_H__
461 sbiw r28, <LOCALS_SIZE>
462 cli
463 out __SP_H__, r29
464 sei
465 out __SP_L__, r28
466
467 A `-mcall-prologues' prologue looks like this (Note that the megas use a
468 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
469 32 bit insn and rjmp is a 16 bit insn):
470 ldi r26,lo8(<LOCALS_SIZE>)
471 ldi r27,hi8(<LOCALS_SIZE>)
472 ldi r30,pm_lo8(.L_foo_body)
473 ldi r31,pm_hi8(.L_foo_body)
474 rjmp __prologue_saves__+RRR
475 .L_foo_body: */
476
477 /* Not really part of a prologue, but still need to scan for it, is when a
478 function prologue moves values passed via registers as arguments to new
479 registers. In this case, all local variables live in registers, so there
480 may be some register saves. This is what it looks like:
481 movw rMM, rNN
482 ...
483
484 There could be multiple movw's. If the target doesn't have a movw insn, it
485 will use two mov insns. This could be done after any of the above prologue
486 types. */
487
488 static CORE_ADDR
489 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
490 struct avr_unwind_cache *info)
491 {
492 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
493 int i;
494 unsigned short insn;
495 int scan_stage = 0;
496 struct minimal_symbol *msymbol;
497 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
498 int vpc = 0;
499 int len;
500
501 len = pc_end - pc_beg;
502 if (len > AVR_MAX_PROLOGUE_SIZE)
503 len = AVR_MAX_PROLOGUE_SIZE;
504
505 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
506 reading in the bytes of the prologue. The problem is that the figuring
507 out where the end of the prologue is is a bit difficult. The old code
508 tried to do that, but failed quite often. */
509 read_memory (pc_beg, prologue, len);
510
511 /* Scanning main()'s prologue
512 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
513 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
514 out __SP_H__,r29
515 out __SP_L__,r28 */
516
517 if (len >= 4)
518 {
519 CORE_ADDR locals;
520 static const unsigned char img[] = {
521 0xde, 0xbf, /* out __SP_H__,r29 */
522 0xcd, 0xbf /* out __SP_L__,r28 */
523 };
524
525 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
526 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
527 if ((insn & 0xf0f0) == 0xe0c0)
528 {
529 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
530 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
531 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
532 if ((insn & 0xf0f0) == 0xe0d0)
533 {
534 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
535 if (vpc + 4 + sizeof (img) < len
536 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
537 {
538 info->prologue_type = AVR_PROLOGUE_MAIN;
539 info->base = locals;
540 return pc_beg + 4;
541 }
542 }
543 }
544 }
545
546 /* Scanning `-mcall-prologues' prologue
547 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
548
549 while (1) /* Using a while to avoid many goto's */
550 {
551 int loc_size;
552 int body_addr;
553 unsigned num_pushes;
554 int pc_offset = 0;
555
556 /* At least the fifth instruction must have been executed to
557 modify frame shape. */
558 if (len < 10)
559 break;
560
561 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
562 /* ldi r26,<LOCALS_SIZE> */
563 if ((insn & 0xf0f0) != 0xe0a0)
564 break;
565 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
566 pc_offset += 2;
567
568 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
569 /* ldi r27,<LOCALS_SIZE> / 256 */
570 if ((insn & 0xf0f0) != 0xe0b0)
571 break;
572 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
573 pc_offset += 2;
574
575 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
576 /* ldi r30,pm_lo8(.L_foo_body) */
577 if ((insn & 0xf0f0) != 0xe0e0)
578 break;
579 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
580 pc_offset += 2;
581
582 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
583 /* ldi r31,pm_hi8(.L_foo_body) */
584 if ((insn & 0xf0f0) != 0xe0f0)
585 break;
586 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
587 pc_offset += 2;
588
589 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
590 if (!msymbol)
591 break;
592
593 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
594 /* rjmp __prologue_saves__+RRR */
595 if ((insn & 0xf000) == 0xc000)
596 {
597 /* Extract PC relative offset from RJMP */
598 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
599 /* Convert offset to byte addressable mode */
600 i *= 2;
601 /* Destination address */
602 i += pc_beg + 10;
603
604 if (body_addr != (pc_beg + 10)/2)
605 break;
606
607 pc_offset += 2;
608 }
609 else if ((insn & 0xfe0e) == 0x940c)
610 {
611 /* Extract absolute PC address from JMP */
612 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
613 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
614 & 0xffff));
615 /* Convert address to byte addressable mode */
616 i *= 2;
617
618 if (body_addr != (pc_beg + 12)/2)
619 break;
620
621 pc_offset += 4;
622 }
623 else
624 break;
625
626 /* Resolve offset (in words) from __prologue_saves__ symbol.
627 Which is a pushes count in `-mcall-prologues' mode */
628 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
629
630 if (num_pushes > AVR_MAX_PUSHES)
631 {
632 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
633 num_pushes);
634 num_pushes = 0;
635 }
636
637 if (num_pushes)
638 {
639 int from;
640
641 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
642 if (num_pushes >= 2)
643 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
644
645 i = 0;
646 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
647 from <= AVR_LAST_PUSHED_REGNUM; ++from)
648 info->saved_regs [from].addr = ++i;
649 }
650 info->size = loc_size + num_pushes;
651 info->prologue_type = AVR_PROLOGUE_CALL;
652
653 return pc_beg + pc_offset;
654 }
655
656 /* Scan for the beginning of the prologue for an interrupt or signal
657 function. Note that we have to set the prologue type here since the
658 third stage of the prologue may not be present (e.g. no saved registered
659 or changing of the SP register). */
660
661 if (1)
662 {
663 static const unsigned char img[] = {
664 0x78, 0x94, /* sei */
665 0x1f, 0x92, /* push r1 */
666 0x0f, 0x92, /* push r0 */
667 0x0f, 0xb6, /* in r0,0x3f SREG */
668 0x0f, 0x92, /* push r0 */
669 0x11, 0x24 /* clr r1 */
670 };
671 if (len >= sizeof (img)
672 && memcmp (prologue, img, sizeof (img)) == 0)
673 {
674 info->prologue_type = AVR_PROLOGUE_INTR;
675 vpc += sizeof (img);
676 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
677 info->saved_regs[0].addr = 2;
678 info->saved_regs[1].addr = 1;
679 info->size += 3;
680 }
681 else if (len >= sizeof (img) - 2
682 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
683 {
684 info->prologue_type = AVR_PROLOGUE_SIG;
685 vpc += sizeof (img) - 2;
686 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
687 info->saved_regs[0].addr = 2;
688 info->saved_regs[1].addr = 1;
689 info->size += 3;
690 }
691 }
692
693 /* First stage of the prologue scanning.
694 Scan pushes (saved registers) */
695
696 for (; vpc < len; vpc += 2)
697 {
698 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
699 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
700 {
701 /* Bits 4-9 contain a mask for registers R0-R32. */
702 int regno = (insn & 0x1f0) >> 4;
703 info->size++;
704 info->saved_regs[regno].addr = info->size;
705 scan_stage = 1;
706 }
707 else
708 break;
709 }
710
711 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
712 fprintf_unfiltered (gdb_stderr,
713 _("Hit end of prologue while scanning pushes\n"));
714
715 /* Handle static small stack allocation using rcall or push. */
716
717 while (scan_stage == 1 && vpc < len)
718 {
719 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
720 if (insn == 0xd000) /* rcall .+0 */
721 {
722 info->size += gdbarch_tdep (gdbarch)->call_length;
723 vpc += 2;
724 }
725 else if (insn == 0x920f) /* push r0 */
726 {
727 info->size += 1;
728 vpc += 2;
729 }
730 else
731 break;
732 }
733
734 /* Second stage of the prologue scanning.
735 Scan:
736 in r28,__SP_L__
737 in r29,__SP_H__ */
738
739 if (scan_stage == 1 && vpc < len)
740 {
741 static const unsigned char img[] = {
742 0xcd, 0xb7, /* in r28,__SP_L__ */
743 0xde, 0xb7 /* in r29,__SP_H__ */
744 };
745 unsigned short insn1;
746
747 if (vpc + sizeof (img) < len
748 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
749 {
750 vpc += 4;
751 scan_stage = 2;
752 }
753 }
754
755 /* Third stage of the prologue scanning. (Really two stages)
756 Scan for:
757 sbiw r28,XX or subi r28,lo8(XX)
758 sbci r29,hi8(XX)
759 in __tmp_reg__,__SREG__
760 cli
761 out __SP_H__,r29
762 out __SREG__,__tmp_reg__
763 out __SP_L__,r28 */
764
765 if (scan_stage == 2 && vpc < len)
766 {
767 int locals_size = 0;
768 static const unsigned char img[] = {
769 0x0f, 0xb6, /* in r0,0x3f */
770 0xf8, 0x94, /* cli */
771 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
772 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
773 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
774 };
775 static const unsigned char img_sig[] = {
776 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
777 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
778 };
779 static const unsigned char img_int[] = {
780 0xf8, 0x94, /* cli */
781 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
782 0x78, 0x94, /* sei */
783 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
784 };
785
786 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
787 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
788 {
789 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
790 vpc += 2;
791 }
792 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
793 {
794 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
795 vpc += 2;
796 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
797 vpc += 2;
798 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
799 }
800 else
801 return pc_beg + vpc;
802
803 /* Scan the last part of the prologue. May not be present for interrupt
804 or signal handler functions, which is why we set the prologue type
805 when we saw the beginning of the prologue previously. */
806
807 if (vpc + sizeof (img_sig) < len
808 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
809 {
810 vpc += sizeof (img_sig);
811 }
812 else if (vpc + sizeof (img_int) < len
813 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
814 {
815 vpc += sizeof (img_int);
816 }
817 if (vpc + sizeof (img) < len
818 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
819 {
820 info->prologue_type = AVR_PROLOGUE_NORMAL;
821 vpc += sizeof (img);
822 }
823
824 info->size += locals_size;
825
826 /* Fall through. */
827 }
828
829 /* If we got this far, we could not scan the prologue, so just return the pc
830 of the frame plus an adjustment for argument move insns. */
831
832 for (; vpc < len; vpc += 2)
833 {
834 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
835 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
836 continue;
837 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
838 continue;
839 else
840 break;
841 }
842
843 return pc_beg + vpc;
844 }
845
846 static CORE_ADDR
847 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
848 {
849 CORE_ADDR func_addr, func_end;
850 CORE_ADDR post_prologue_pc;
851
852 /* See what the symbol table says */
853
854 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
855 return pc;
856
857 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
858 if (post_prologue_pc != 0)
859 return max (pc, post_prologue_pc);
860
861 {
862 CORE_ADDR prologue_end = pc;
863 struct avr_unwind_cache info = {0};
864 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
865
866 info.saved_regs = saved_regs;
867
868 /* Need to run the prologue scanner to figure out if the function has a
869 prologue and possibly skip over moving arguments passed via registers
870 to other registers. */
871
872 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
873
874 if (info.prologue_type != AVR_PROLOGUE_NONE)
875 return prologue_end;
876 }
877
878 /* Either we didn't find the start of this function (nothing we can do),
879 or there's no line info, or the line after the prologue is after
880 the end of the function (there probably isn't a prologue). */
881
882 return pc;
883 }
884
885 /* Not all avr devices support the BREAK insn. Those that don't should treat
886 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
887 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
888
889 static const unsigned char *
890 avr_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
891 {
892 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
893 *lenptr = sizeof (avr_break_insn);
894 return avr_break_insn;
895 }
896
897 /* Determine, for architecture GDBARCH, how a return value of TYPE
898 should be returned. If it is supposed to be returned in registers,
899 and READBUF is non-zero, read the appropriate value from REGCACHE,
900 and copy it into READBUF. If WRITEBUF is non-zero, write the value
901 from WRITEBUF into REGCACHE. */
902
903 static enum return_value_convention
904 avr_return_value (struct gdbarch *gdbarch, struct type *func_type,
905 struct type *valtype, struct regcache *regcache,
906 gdb_byte *readbuf, const gdb_byte *writebuf)
907 {
908 int i;
909 /* Single byte are returned in r24.
910 Otherwise, the MSB of the return value is always in r25, calculate which
911 register holds the LSB. */
912 int lsb_reg;
913
914 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
915 || TYPE_CODE (valtype) == TYPE_CODE_UNION
916 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
917 && TYPE_LENGTH (valtype) > 8)
918 return RETURN_VALUE_STRUCT_CONVENTION;
919
920 if (TYPE_LENGTH (valtype) <= 2)
921 lsb_reg = 24;
922 else if (TYPE_LENGTH (valtype) <= 4)
923 lsb_reg = 22;
924 else if (TYPE_LENGTH (valtype) <= 8)
925 lsb_reg = 18;
926 else
927 gdb_assert (0);
928
929 if (writebuf != NULL)
930 {
931 for (i = 0; i < TYPE_LENGTH (valtype); i++)
932 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
933 }
934
935 if (readbuf != NULL)
936 {
937 for (i = 0; i < TYPE_LENGTH (valtype); i++)
938 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
939 }
940
941 return RETURN_VALUE_REGISTER_CONVENTION;
942 }
943
944
945 /* Put here the code to store, into fi->saved_regs, the addresses of
946 the saved registers of frame described by FRAME_INFO. This
947 includes special registers such as pc and fp saved in special ways
948 in the stack frame. sp is even more special: the address we return
949 for it IS the sp for the next frame. */
950
951 static struct avr_unwind_cache *
952 avr_frame_unwind_cache (struct frame_info *this_frame,
953 void **this_prologue_cache)
954 {
955 CORE_ADDR start_pc, current_pc;
956 ULONGEST prev_sp;
957 ULONGEST this_base;
958 struct avr_unwind_cache *info;
959 struct gdbarch *gdbarch;
960 struct gdbarch_tdep *tdep;
961 int i;
962
963 if (*this_prologue_cache)
964 return *this_prologue_cache;
965
966 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
967 *this_prologue_cache = info;
968 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
969
970 info->size = 0;
971 info->prologue_type = AVR_PROLOGUE_NONE;
972
973 start_pc = get_frame_func (this_frame);
974 current_pc = get_frame_pc (this_frame);
975 if ((start_pc > 0) && (start_pc <= current_pc))
976 avr_scan_prologue (get_frame_arch (this_frame),
977 start_pc, current_pc, info);
978
979 if ((info->prologue_type != AVR_PROLOGUE_NONE)
980 && (info->prologue_type != AVR_PROLOGUE_MAIN))
981 {
982 ULONGEST high_base; /* High byte of FP */
983
984 /* The SP was moved to the FP. This indicates that a new frame
985 was created. Get THIS frame's FP value by unwinding it from
986 the next frame. */
987 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
988 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
989 this_base += (high_base << 8);
990
991 /* The FP points at the last saved register. Adjust the FP back
992 to before the first saved register giving the SP. */
993 prev_sp = this_base + info->size;
994 }
995 else
996 {
997 /* Assume that the FP is this frame's SP but with that pushed
998 stack space added back. */
999 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1000 prev_sp = this_base + info->size;
1001 }
1002
1003 /* Add 1 here to adjust for the post-decrement nature of the push
1004 instruction.*/
1005 info->prev_sp = avr_make_saddr (prev_sp + 1);
1006 info->base = avr_make_saddr (this_base);
1007
1008 gdbarch = get_frame_arch (this_frame);
1009
1010 /* Adjust all the saved registers so that they contain addresses and not
1011 offsets. */
1012 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1013 if (info->saved_regs[i].addr > 0)
1014 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1015
1016 /* Except for the main and startup code, the return PC is always saved on
1017 the stack and is at the base of the frame. */
1018
1019 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1020 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1021
1022 /* The previous frame's SP needed to be computed. Save the computed
1023 value. */
1024 tdep = gdbarch_tdep (gdbarch);
1025 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1026 info->prev_sp - 1 + tdep->call_length);
1027
1028 return info;
1029 }
1030
1031 static CORE_ADDR
1032 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1033 {
1034 ULONGEST pc;
1035
1036 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1037
1038 return avr_make_iaddr (pc);
1039 }
1040
1041 static CORE_ADDR
1042 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1043 {
1044 ULONGEST sp;
1045
1046 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1047
1048 return avr_make_saddr (sp);
1049 }
1050
1051 /* Given a GDB frame, determine the address of the calling function's
1052 frame. This will be used to create a new GDB frame struct. */
1053
1054 static void
1055 avr_frame_this_id (struct frame_info *this_frame,
1056 void **this_prologue_cache,
1057 struct frame_id *this_id)
1058 {
1059 struct avr_unwind_cache *info
1060 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1061 CORE_ADDR base;
1062 CORE_ADDR func;
1063 struct frame_id id;
1064
1065 /* The FUNC is easy. */
1066 func = get_frame_func (this_frame);
1067
1068 /* Hopefully the prologue analysis either correctly determined the
1069 frame's base (which is the SP from the previous frame), or set
1070 that base to "NULL". */
1071 base = info->prev_sp;
1072 if (base == 0)
1073 return;
1074
1075 id = frame_id_build (base, func);
1076 (*this_id) = id;
1077 }
1078
1079 static struct value *
1080 avr_frame_prev_register (struct frame_info *this_frame,
1081 void **this_prologue_cache, int regnum)
1082 {
1083 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1084 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1085 struct avr_unwind_cache *info
1086 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1087
1088 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1089 {
1090 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1091 {
1092 /* Reading the return PC from the PC register is slightly
1093 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1094 but in reality, only two bytes (3 in upcoming mega256) are
1095 stored on the stack.
1096
1097 Also, note that the value on the stack is an addr to a word
1098 not a byte, so we will need to multiply it by two at some
1099 point.
1100
1101 And to confuse matters even more, the return address stored
1102 on the stack is in big endian byte order, even though most
1103 everything else about the avr is little endian. Ick! */
1104 ULONGEST pc;
1105 int i;
1106 unsigned char buf[3];
1107 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1108 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1109
1110 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1111 buf, tdep->call_length);
1112
1113 /* Extract the PC read from memory as a big-endian. */
1114 pc = 0;
1115 for (i = 0; i < tdep->call_length; i++)
1116 pc = (pc << 8) | buf[i];
1117
1118 if (regnum == AVR_PC_REGNUM)
1119 pc <<= 1;
1120
1121 return frame_unwind_got_constant (this_frame, regnum, pc);
1122 }
1123
1124 return frame_unwind_got_optimized (this_frame, regnum);
1125 }
1126
1127 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1128 }
1129
1130 static const struct frame_unwind avr_frame_unwind = {
1131 NORMAL_FRAME,
1132 avr_frame_this_id,
1133 avr_frame_prev_register,
1134 NULL,
1135 default_frame_sniffer
1136 };
1137
1138 static CORE_ADDR
1139 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1140 {
1141 struct avr_unwind_cache *info
1142 = avr_frame_unwind_cache (this_frame, this_cache);
1143
1144 return info->base;
1145 }
1146
1147 static const struct frame_base avr_frame_base = {
1148 &avr_frame_unwind,
1149 avr_frame_base_address,
1150 avr_frame_base_address,
1151 avr_frame_base_address
1152 };
1153
1154 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1155 frame. The frame ID's base needs to match the TOS value saved by
1156 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1157
1158 static struct frame_id
1159 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1160 {
1161 ULONGEST base;
1162
1163 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1164 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1165 }
1166
1167 /* When arguments must be pushed onto the stack, they go on in reverse
1168 order. The below implements a FILO (stack) to do this. */
1169
1170 struct stack_item
1171 {
1172 int len;
1173 struct stack_item *prev;
1174 void *data;
1175 };
1176
1177 static struct stack_item *
1178 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1179 {
1180 struct stack_item *si;
1181 si = xmalloc (sizeof (struct stack_item));
1182 si->data = xmalloc (len);
1183 si->len = len;
1184 si->prev = prev;
1185 memcpy (si->data, contents, len);
1186 return si;
1187 }
1188
1189 static struct stack_item *pop_stack_item (struct stack_item *si);
1190 static struct stack_item *
1191 pop_stack_item (struct stack_item *si)
1192 {
1193 struct stack_item *dead = si;
1194 si = si->prev;
1195 xfree (dead->data);
1196 xfree (dead);
1197 return si;
1198 }
1199
1200 /* Setup the function arguments for calling a function in the inferior.
1201
1202 On the AVR architecture, there are 18 registers (R25 to R8) which are
1203 dedicated for passing function arguments. Up to the first 18 arguments
1204 (depending on size) may go into these registers. The rest go on the stack.
1205
1206 All arguments are aligned to start in even-numbered registers (odd-sized
1207 arguments, including char, have one free register above them). For example,
1208 an int in arg1 and a char in arg2 would be passed as such:
1209
1210 arg1 -> r25:r24
1211 arg2 -> r22
1212
1213 Arguments that are larger than 2 bytes will be split between two or more
1214 registers as available, but will NOT be split between a register and the
1215 stack. Arguments that go onto the stack are pushed last arg first (this is
1216 similar to the d10v). */
1217
1218 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1219 inaccurate.
1220
1221 An exceptional case exists for struct arguments (and possibly other
1222 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1223 not a multiple of WORDSIZE bytes. In this case the argument is never split
1224 between the registers and the stack, but instead is copied in its entirety
1225 onto the stack, AND also copied into as many registers as there is room
1226 for. In other words, space in registers permitting, two copies of the same
1227 argument are passed in. As far as I can tell, only the one on the stack is
1228 used, although that may be a function of the level of compiler
1229 optimization. I suspect this is a compiler bug. Arguments of these odd
1230 sizes are left-justified within the word (as opposed to arguments smaller
1231 than WORDSIZE bytes, which are right-justified).
1232
1233 If the function is to return an aggregate type such as a struct, the caller
1234 must allocate space into which the callee will copy the return value. In
1235 this case, a pointer to the return value location is passed into the callee
1236 in register R0, which displaces one of the other arguments passed in via
1237 registers R0 to R2. */
1238
1239 static CORE_ADDR
1240 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1241 struct regcache *regcache, CORE_ADDR bp_addr,
1242 int nargs, struct value **args, CORE_ADDR sp,
1243 int struct_return, CORE_ADDR struct_addr)
1244 {
1245 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1246 int i;
1247 unsigned char buf[3];
1248 int call_length = gdbarch_tdep (gdbarch)->call_length;
1249 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1250 int regnum = AVR_ARGN_REGNUM;
1251 struct stack_item *si = NULL;
1252
1253 if (struct_return)
1254 {
1255 regcache_cooked_write_unsigned
1256 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1257 regcache_cooked_write_unsigned
1258 (regcache, regnum--, struct_addr & 0xff);
1259 /* SP being post decremented, we need to reserve one byte so that the
1260 return address won't overwrite the result (or vice-versa). */
1261 if (sp == struct_addr)
1262 sp--;
1263 }
1264
1265 for (i = 0; i < nargs; i++)
1266 {
1267 int last_regnum;
1268 int j;
1269 struct value *arg = args[i];
1270 struct type *type = check_typedef (value_type (arg));
1271 const bfd_byte *contents = value_contents (arg);
1272 int len = TYPE_LENGTH (type);
1273
1274 /* Calculate the potential last register needed. */
1275 last_regnum = regnum - (len + (len & 1));
1276
1277 /* If there are registers available, use them. Once we start putting
1278 stuff on the stack, all subsequent args go on stack. */
1279 if ((si == NULL) && (last_regnum >= 8))
1280 {
1281 ULONGEST val;
1282
1283 /* Skip a register for odd length args. */
1284 if (len & 1)
1285 regnum--;
1286
1287 val = extract_unsigned_integer (contents, len, byte_order);
1288 for (j = 0; j < len; j++)
1289 regcache_cooked_write_unsigned
1290 (regcache, regnum--, val >> (8 * (len - j - 1)));
1291 }
1292 /* No registers available, push the args onto the stack. */
1293 else
1294 {
1295 /* From here on, we don't care about regnum. */
1296 si = push_stack_item (si, contents, len);
1297 }
1298 }
1299
1300 /* Push args onto the stack. */
1301 while (si)
1302 {
1303 sp -= si->len;
1304 /* Add 1 to sp here to account for post decr nature of pushes. */
1305 write_memory (sp + 1, si->data, si->len);
1306 si = pop_stack_item (si);
1307 }
1308
1309 /* Set the return address. For the avr, the return address is the BP_ADDR.
1310 Need to push the return address onto the stack noting that it needs to be
1311 in big-endian order on the stack. */
1312 for (i = 1; i <= call_length; i++)
1313 {
1314 buf[call_length - i] = return_pc & 0xff;
1315 return_pc >>= 8;
1316 }
1317
1318 sp -= call_length;
1319 /* Use 'sp + 1' since pushes are post decr ops. */
1320 write_memory (sp + 1, buf, call_length);
1321
1322 /* Finally, update the SP register. */
1323 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1324 avr_convert_saddr_to_raw (sp));
1325
1326 /* Return SP value for the dummy frame, where the return address hasn't been
1327 pushed. */
1328 return sp + call_length;
1329 }
1330
1331 /* Unfortunately dwarf2 register for SP is 32. */
1332
1333 static int
1334 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1335 {
1336 if (reg >= 0 && reg < 32)
1337 return reg;
1338 if (reg == 32)
1339 return AVR_SP_REGNUM;
1340
1341 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1342
1343 return -1;
1344 }
1345
1346 /* Initialize the gdbarch structure for the AVR's. */
1347
1348 static struct gdbarch *
1349 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1350 {
1351 struct gdbarch *gdbarch;
1352 struct gdbarch_tdep *tdep;
1353 struct gdbarch_list *best_arch;
1354 int call_length;
1355
1356 /* Avr-6 call instructions save 3 bytes. */
1357 switch (info.bfd_arch_info->mach)
1358 {
1359 case bfd_mach_avr1:
1360 case bfd_mach_avr2:
1361 case bfd_mach_avr3:
1362 case bfd_mach_avr4:
1363 case bfd_mach_avr5:
1364 default:
1365 call_length = 2;
1366 break;
1367 case bfd_mach_avr6:
1368 call_length = 3;
1369 break;
1370 }
1371
1372 /* If there is already a candidate, use it. */
1373 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1374 best_arch != NULL;
1375 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1376 {
1377 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1378 return best_arch->gdbarch;
1379 }
1380
1381 /* None found, create a new architecture from the information provided. */
1382 tdep = XMALLOC (struct gdbarch_tdep);
1383 gdbarch = gdbarch_alloc (&info, tdep);
1384
1385 tdep->call_length = call_length;
1386
1387 /* Create a type for PC. We can't use builtin types here, as they may not
1388 be defined. */
1389 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1390 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1391 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1392 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1393 TYPE_UNSIGNED (tdep->pc_type) = 1;
1394
1395 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1396 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1397 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1398 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1399 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1400 set_gdbarch_addr_bit (gdbarch, 32);
1401
1402 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1403 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1404 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1405
1406 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1407 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1408 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1409
1410 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1411 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1412
1413 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1414
1415 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1416 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1417
1418 set_gdbarch_register_name (gdbarch, avr_register_name);
1419 set_gdbarch_register_type (gdbarch, avr_register_type);
1420
1421 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1422 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1423 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1424
1425 set_gdbarch_return_value (gdbarch, avr_return_value);
1426 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1427
1428 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1429
1430 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1431
1432 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1433 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1434 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1435
1436 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1437 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1438
1439 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
1440
1441 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1442 frame_base_set_default (gdbarch, &avr_frame_base);
1443
1444 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1445
1446 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1447 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1448
1449 return gdbarch;
1450 }
1451
1452 /* Send a query request to the avr remote target asking for values of the io
1453 registers. If args parameter is not NULL, then the user has requested info
1454 on a specific io register [This still needs implemented and is ignored for
1455 now]. The query string should be one of these forms:
1456
1457 "Ravr.io_reg" -> reply is "NN" number of io registers
1458
1459 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1460 registers to be read. The reply should be "<NAME>,VV;" for each io register
1461 where, <NAME> is a string, and VV is the hex value of the register.
1462
1463 All io registers are 8-bit. */
1464
1465 static void
1466 avr_io_reg_read_command (char *args, int from_tty)
1467 {
1468 LONGEST bufsiz = 0;
1469 gdb_byte *buf;
1470 char query[400];
1471 char *p;
1472 unsigned int nreg = 0;
1473 unsigned int val;
1474 int i, j, k, step;
1475
1476 /* Find out how many io registers the target has. */
1477 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1478 "avr.io_reg", &buf);
1479
1480 if (bufsiz <= 0)
1481 {
1482 fprintf_unfiltered (gdb_stderr,
1483 _("ERR: info io_registers NOT supported "
1484 "by current target\n"));
1485 return;
1486 }
1487
1488 if (sscanf (buf, "%x", &nreg) != 1)
1489 {
1490 fprintf_unfiltered (gdb_stderr,
1491 _("Error fetching number of io registers\n"));
1492 xfree (buf);
1493 return;
1494 }
1495
1496 xfree (buf);
1497
1498 reinitialize_more_filter ();
1499
1500 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1501
1502 /* only fetch up to 8 registers at a time to keep the buffer small */
1503 step = 8;
1504
1505 for (i = 0; i < nreg; i += step)
1506 {
1507 /* how many registers this round? */
1508 j = step;
1509 if ((i+j) >= nreg)
1510 j = nreg - i; /* last block is less than 8 registers */
1511
1512 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1513 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1514 query, &buf);
1515
1516 p = buf;
1517 for (k = i; k < (i + j); k++)
1518 {
1519 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1520 {
1521 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1522 while ((*p != ';') && (*p != '\0'))
1523 p++;
1524 p++; /* skip over ';' */
1525 if (*p == '\0')
1526 break;
1527 }
1528 }
1529
1530 xfree (buf);
1531 }
1532 }
1533
1534 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1535
1536 void
1537 _initialize_avr_tdep (void)
1538 {
1539 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1540
1541 /* Add a new command to allow the user to query the avr remote target for
1542 the values of the io space registers in a saner way than just using
1543 `x/NNNb ADDR`. */
1544
1545 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1546 io_registers' to signify it is not available on other platforms. */
1547
1548 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1549 _("query remote avr target for io space register values"),
1550 &infolist);
1551 }
This page took 0.07336 seconds and 5 git commands to generate.