2011-01-05 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
1 /* GDB-specific functions for operating on agent expressions.
2
3 Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdbtypes.h"
25 #include "language.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "ax.h"
33 #include "ax-gdb.h"
34 #include "gdb_string.h"
35 #include "block.h"
36 #include "regcache.h"
37 #include "user-regs.h"
38 #include "language.h"
39 #include "dictionary.h"
40 #include "breakpoint.h"
41 #include "tracepoint.h"
42 #include "cp-support.h"
43
44 /* To make sense of this file, you should read doc/agentexpr.texi.
45 Then look at the types and enums in ax-gdb.h. For the code itself,
46 look at gen_expr, towards the bottom; that's the main function that
47 looks at the GDB expressions and calls everything else to generate
48 code.
49
50 I'm beginning to wonder whether it wouldn't be nicer to internally
51 generate trees, with types, and then spit out the bytecode in
52 linear form afterwards; we could generate fewer `swap', `ext', and
53 `zero_ext' bytecodes that way; it would make good constant folding
54 easier, too. But at the moment, I think we should be willing to
55 pay for the simplicity of this code with less-than-optimal bytecode
56 strings.
57
58 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
59 \f
60
61
62 /* Prototypes for local functions. */
63
64 /* There's a standard order to the arguments of these functions:
65 union exp_element ** --- pointer into expression
66 struct agent_expr * --- agent expression buffer to generate code into
67 struct axs_value * --- describes value left on top of stack */
68
69 static struct value *const_var_ref (struct symbol *var);
70 static struct value *const_expr (union exp_element **pc);
71 static struct value *maybe_const_expr (union exp_element **pc);
72
73 static void gen_traced_pop (struct gdbarch *, struct agent_expr *,
74 struct axs_value *);
75
76 static void gen_sign_extend (struct agent_expr *, struct type *);
77 static void gen_extend (struct agent_expr *, struct type *);
78 static void gen_fetch (struct agent_expr *, struct type *);
79 static void gen_left_shift (struct agent_expr *, int);
80
81
82 static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
83 static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
84 static void gen_offset (struct agent_expr *ax, int offset);
85 static void gen_sym_offset (struct agent_expr *, struct symbol *);
86 static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
87 struct axs_value *value, struct symbol *var);
88
89
90 static void gen_int_literal (struct agent_expr *ax,
91 struct axs_value *value,
92 LONGEST k, struct type *type);
93
94
95 static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
96 static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
97 struct axs_value *value);
98 static int type_wider_than (struct type *type1, struct type *type2);
99 static struct type *max_type (struct type *type1, struct type *type2);
100 static void gen_conversion (struct agent_expr *ax,
101 struct type *from, struct type *to);
102 static int is_nontrivial_conversion (struct type *from, struct type *to);
103 static void gen_usual_arithmetic (struct expression *exp,
104 struct agent_expr *ax,
105 struct axs_value *value1,
106 struct axs_value *value2);
107 static void gen_integral_promotions (struct expression *exp,
108 struct agent_expr *ax,
109 struct axs_value *value);
110 static void gen_cast (struct agent_expr *ax,
111 struct axs_value *value, struct type *type);
112 static void gen_scale (struct agent_expr *ax,
113 enum agent_op op, struct type *type);
114 static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
115 struct axs_value *value1, struct axs_value *value2);
116 static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
117 struct axs_value *value1, struct axs_value *value2);
118 static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
119 struct axs_value *value1, struct axs_value *value2,
120 struct type *result_type);
121 static void gen_binop (struct agent_expr *ax,
122 struct axs_value *value,
123 struct axs_value *value1,
124 struct axs_value *value2,
125 enum agent_op op,
126 enum agent_op op_unsigned, int may_carry, char *name);
127 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
128 struct type *result_type);
129 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
130 static void gen_deref (struct agent_expr *, struct axs_value *);
131 static void gen_address_of (struct agent_expr *, struct axs_value *);
132 static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
133 struct axs_value *value,
134 struct type *type, int start, int end);
135 static void gen_primitive_field (struct expression *exp,
136 struct agent_expr *ax,
137 struct axs_value *value,
138 int offset, int fieldno, struct type *type);
139 static int gen_struct_ref_recursive (struct expression *exp,
140 struct agent_expr *ax,
141 struct axs_value *value,
142 char *field, int offset,
143 struct type *type);
144 static void gen_struct_ref (struct expression *exp, struct agent_expr *ax,
145 struct axs_value *value,
146 char *field,
147 char *operator_name, char *operand_name);
148 static void gen_static_field (struct gdbarch *gdbarch,
149 struct agent_expr *ax, struct axs_value *value,
150 struct type *type, int fieldno);
151 static void gen_repeat (struct expression *exp, union exp_element **pc,
152 struct agent_expr *ax, struct axs_value *value);
153 static void gen_sizeof (struct expression *exp, union exp_element **pc,
154 struct agent_expr *ax, struct axs_value *value,
155 struct type *size_type);
156 static void gen_expr (struct expression *exp, union exp_element **pc,
157 struct agent_expr *ax, struct axs_value *value);
158 static void gen_expr_binop_rest (struct expression *exp,
159 enum exp_opcode op, union exp_element **pc,
160 struct agent_expr *ax,
161 struct axs_value *value,
162 struct axs_value *value1,
163 struct axs_value *value2);
164
165 static void agent_command (char *exp, int from_tty);
166 \f
167
168 /* Detecting constant expressions. */
169
170 /* If the variable reference at *PC is a constant, return its value.
171 Otherwise, return zero.
172
173 Hey, Wally! How can a variable reference be a constant?
174
175 Well, Beav, this function really handles the OP_VAR_VALUE operator,
176 not specifically variable references. GDB uses OP_VAR_VALUE to
177 refer to any kind of symbolic reference: function names, enum
178 elements, and goto labels are all handled through the OP_VAR_VALUE
179 operator, even though they're constants. It makes sense given the
180 situation.
181
182 Gee, Wally, don'cha wonder sometimes if data representations that
183 subvert commonly accepted definitions of terms in favor of heavily
184 context-specific interpretations are really just a tool of the
185 programming hegemony to preserve their power and exclude the
186 proletariat? */
187
188 static struct value *
189 const_var_ref (struct symbol *var)
190 {
191 struct type *type = SYMBOL_TYPE (var);
192
193 switch (SYMBOL_CLASS (var))
194 {
195 case LOC_CONST:
196 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
197
198 case LOC_LABEL:
199 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
200
201 default:
202 return 0;
203 }
204 }
205
206
207 /* If the expression starting at *PC has a constant value, return it.
208 Otherwise, return zero. If we return a value, then *PC will be
209 advanced to the end of it. If we return zero, *PC could be
210 anywhere. */
211 static struct value *
212 const_expr (union exp_element **pc)
213 {
214 enum exp_opcode op = (*pc)->opcode;
215 struct value *v1;
216
217 switch (op)
218 {
219 case OP_LONG:
220 {
221 struct type *type = (*pc)[1].type;
222 LONGEST k = (*pc)[2].longconst;
223
224 (*pc) += 4;
225 return value_from_longest (type, k);
226 }
227
228 case OP_VAR_VALUE:
229 {
230 struct value *v = const_var_ref ((*pc)[2].symbol);
231
232 (*pc) += 4;
233 return v;
234 }
235
236 /* We could add more operators in here. */
237
238 case UNOP_NEG:
239 (*pc)++;
240 v1 = const_expr (pc);
241 if (v1)
242 return value_neg (v1);
243 else
244 return 0;
245
246 default:
247 return 0;
248 }
249 }
250
251
252 /* Like const_expr, but guarantee also that *PC is undisturbed if the
253 expression is not constant. */
254 static struct value *
255 maybe_const_expr (union exp_element **pc)
256 {
257 union exp_element *tentative_pc = *pc;
258 struct value *v = const_expr (&tentative_pc);
259
260 /* If we got a value, then update the real PC. */
261 if (v)
262 *pc = tentative_pc;
263
264 return v;
265 }
266 \f
267
268 /* Generating bytecode from GDB expressions: general assumptions */
269
270 /* Here are a few general assumptions made throughout the code; if you
271 want to make a change that contradicts one of these, then you'd
272 better scan things pretty thoroughly.
273
274 - We assume that all values occupy one stack element. For example,
275 sometimes we'll swap to get at the left argument to a binary
276 operator. If we decide that void values should occupy no stack
277 elements, or that synthetic arrays (whose size is determined at
278 run time, created by the `@' operator) should occupy two stack
279 elements (address and length), then this will cause trouble.
280
281 - We assume the stack elements are infinitely wide, and that we
282 don't have to worry what happens if the user requests an
283 operation that is wider than the actual interpreter's stack.
284 That is, it's up to the interpreter to handle directly all the
285 integer widths the user has access to. (Woe betide the language
286 with bignums!)
287
288 - We don't support side effects. Thus, we don't have to worry about
289 GCC's generalized lvalues, function calls, etc.
290
291 - We don't support floating point. Many places where we switch on
292 some type don't bother to include cases for floating point; there
293 may be even more subtle ways this assumption exists. For
294 example, the arguments to % must be integers.
295
296 - We assume all subexpressions have a static, unchanging type. If
297 we tried to support convenience variables, this would be a
298 problem.
299
300 - All values on the stack should always be fully zero- or
301 sign-extended.
302
303 (I wasn't sure whether to choose this or its opposite --- that
304 only addresses are assumed extended --- but it turns out that
305 neither convention completely eliminates spurious extend
306 operations (if everything is always extended, then you have to
307 extend after add, because it could overflow; if nothing is
308 extended, then you end up producing extends whenever you change
309 sizes), and this is simpler.) */
310 \f
311
312 /* Generating bytecode from GDB expressions: the `trace' kludge */
313
314 /* The compiler in this file is a general-purpose mechanism for
315 translating GDB expressions into bytecode. One ought to be able to
316 find a million and one uses for it.
317
318 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
319 of expediency. Let he who is without sin cast the first stone.
320
321 For the data tracing facility, we need to insert `trace' bytecodes
322 before each data fetch; this records all the memory that the
323 expression touches in the course of evaluation, so that memory will
324 be available when the user later tries to evaluate the expression
325 in GDB.
326
327 This should be done (I think) in a post-processing pass, that walks
328 an arbitrary agent expression and inserts `trace' operations at the
329 appropriate points. But it's much faster to just hack them
330 directly into the code. And since we're in a crunch, that's what
331 I've done.
332
333 Setting the flag trace_kludge to non-zero enables the code that
334 emits the trace bytecodes at the appropriate points. */
335 int trace_kludge;
336
337 /* Scan for all static fields in the given class, including any base
338 classes, and generate tracing bytecodes for each. */
339
340 static void
341 gen_trace_static_fields (struct gdbarch *gdbarch,
342 struct agent_expr *ax,
343 struct type *type)
344 {
345 int i, nbases = TYPE_N_BASECLASSES (type);
346 struct axs_value value;
347
348 CHECK_TYPEDEF (type);
349
350 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
351 {
352 if (field_is_static (&TYPE_FIELD (type, i)))
353 {
354 gen_static_field (gdbarch, ax, &value, type, i);
355 if (value.optimized_out)
356 continue;
357 switch (value.kind)
358 {
359 case axs_lvalue_memory:
360 {
361 int length = TYPE_LENGTH (check_typedef (value.type));
362
363 ax_const_l (ax, length);
364 ax_simple (ax, aop_trace);
365 }
366 break;
367
368 case axs_lvalue_register:
369 /* We don't actually need the register's value to be pushed,
370 just note that we need it to be collected. */
371 ax_reg_mask (ax, value.u.reg);
372
373 default:
374 break;
375 }
376 }
377 }
378
379 /* Now scan through base classes recursively. */
380 for (i = 0; i < nbases; i++)
381 {
382 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
383
384 gen_trace_static_fields (gdbarch, ax, basetype);
385 }
386 }
387
388 /* Trace the lvalue on the stack, if it needs it. In either case, pop
389 the value. Useful on the left side of a comma, and at the end of
390 an expression being used for tracing. */
391 static void
392 gen_traced_pop (struct gdbarch *gdbarch,
393 struct agent_expr *ax, struct axs_value *value)
394 {
395 if (trace_kludge)
396 switch (value->kind)
397 {
398 case axs_rvalue:
399 /* We don't trace rvalues, just the lvalues necessary to
400 produce them. So just dispose of this value. */
401 ax_simple (ax, aop_pop);
402 break;
403
404 case axs_lvalue_memory:
405 {
406 int length = TYPE_LENGTH (check_typedef (value->type));
407
408 /* There's no point in trying to use a trace_quick bytecode
409 here, since "trace_quick SIZE pop" is three bytes, whereas
410 "const8 SIZE trace" is also three bytes, does the same
411 thing, and the simplest code which generates that will also
412 work correctly for objects with large sizes. */
413 ax_const_l (ax, length);
414 ax_simple (ax, aop_trace);
415 }
416 break;
417
418 case axs_lvalue_register:
419 /* We don't actually need the register's value to be on the
420 stack, and the target will get heartburn if the register is
421 larger than will fit in a stack, so just mark it for
422 collection and be done with it. */
423 ax_reg_mask (ax, value->u.reg);
424 break;
425 }
426 else
427 /* If we're not tracing, just pop the value. */
428 ax_simple (ax, aop_pop);
429
430 /* To trace C++ classes with static fields stored elsewhere. */
431 if (trace_kludge
432 && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT
433 || TYPE_CODE (value->type) == TYPE_CODE_UNION))
434 gen_trace_static_fields (gdbarch, ax, value->type);
435 }
436 \f
437
438
439 /* Generating bytecode from GDB expressions: helper functions */
440
441 /* Assume that the lower bits of the top of the stack is a value of
442 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
443 static void
444 gen_sign_extend (struct agent_expr *ax, struct type *type)
445 {
446 /* Do we need to sign-extend this? */
447 if (!TYPE_UNSIGNED (type))
448 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
449 }
450
451
452 /* Assume the lower bits of the top of the stack hold a value of type
453 TYPE, and the upper bits are garbage. Sign-extend or truncate as
454 needed. */
455 static void
456 gen_extend (struct agent_expr *ax, struct type *type)
457 {
458 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
459
460 /* I just had to. */
461 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
462 }
463
464
465 /* Assume that the top of the stack contains a value of type "pointer
466 to TYPE"; generate code to fetch its value. Note that TYPE is the
467 target type, not the pointer type. */
468 static void
469 gen_fetch (struct agent_expr *ax, struct type *type)
470 {
471 if (trace_kludge)
472 {
473 /* Record the area of memory we're about to fetch. */
474 ax_trace_quick (ax, TYPE_LENGTH (type));
475 }
476
477 switch (TYPE_CODE (type))
478 {
479 case TYPE_CODE_PTR:
480 case TYPE_CODE_REF:
481 case TYPE_CODE_ENUM:
482 case TYPE_CODE_INT:
483 case TYPE_CODE_CHAR:
484 case TYPE_CODE_BOOL:
485 /* It's a scalar value, so we know how to dereference it. How
486 many bytes long is it? */
487 switch (TYPE_LENGTH (type))
488 {
489 case 8 / TARGET_CHAR_BIT:
490 ax_simple (ax, aop_ref8);
491 break;
492 case 16 / TARGET_CHAR_BIT:
493 ax_simple (ax, aop_ref16);
494 break;
495 case 32 / TARGET_CHAR_BIT:
496 ax_simple (ax, aop_ref32);
497 break;
498 case 64 / TARGET_CHAR_BIT:
499 ax_simple (ax, aop_ref64);
500 break;
501
502 /* Either our caller shouldn't have asked us to dereference
503 that pointer (other code's fault), or we're not
504 implementing something we should be (this code's fault).
505 In any case, it's a bug the user shouldn't see. */
506 default:
507 internal_error (__FILE__, __LINE__,
508 _("gen_fetch: strange size"));
509 }
510
511 gen_sign_extend (ax, type);
512 break;
513
514 default:
515 /* Either our caller shouldn't have asked us to dereference that
516 pointer (other code's fault), or we're not implementing
517 something we should be (this code's fault). In any case,
518 it's a bug the user shouldn't see. */
519 internal_error (__FILE__, __LINE__,
520 _("gen_fetch: bad type code"));
521 }
522 }
523
524
525 /* Generate code to left shift the top of the stack by DISTANCE bits, or
526 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
527 unsigned (logical) right shifts. */
528 static void
529 gen_left_shift (struct agent_expr *ax, int distance)
530 {
531 if (distance > 0)
532 {
533 ax_const_l (ax, distance);
534 ax_simple (ax, aop_lsh);
535 }
536 else if (distance < 0)
537 {
538 ax_const_l (ax, -distance);
539 ax_simple (ax, aop_rsh_unsigned);
540 }
541 }
542 \f
543
544
545 /* Generating bytecode from GDB expressions: symbol references */
546
547 /* Generate code to push the base address of the argument portion of
548 the top stack frame. */
549 static void
550 gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
551 {
552 int frame_reg;
553 LONGEST frame_offset;
554
555 gdbarch_virtual_frame_pointer (gdbarch,
556 ax->scope, &frame_reg, &frame_offset);
557 ax_reg (ax, frame_reg);
558 gen_offset (ax, frame_offset);
559 }
560
561
562 /* Generate code to push the base address of the locals portion of the
563 top stack frame. */
564 static void
565 gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
566 {
567 int frame_reg;
568 LONGEST frame_offset;
569
570 gdbarch_virtual_frame_pointer (gdbarch,
571 ax->scope, &frame_reg, &frame_offset);
572 ax_reg (ax, frame_reg);
573 gen_offset (ax, frame_offset);
574 }
575
576
577 /* Generate code to add OFFSET to the top of the stack. Try to
578 generate short and readable code. We use this for getting to
579 variables on the stack, and structure members. If we were
580 programming in ML, it would be clearer why these are the same
581 thing. */
582 static void
583 gen_offset (struct agent_expr *ax, int offset)
584 {
585 /* It would suffice to simply push the offset and add it, but this
586 makes it easier to read positive and negative offsets in the
587 bytecode. */
588 if (offset > 0)
589 {
590 ax_const_l (ax, offset);
591 ax_simple (ax, aop_add);
592 }
593 else if (offset < 0)
594 {
595 ax_const_l (ax, -offset);
596 ax_simple (ax, aop_sub);
597 }
598 }
599
600
601 /* In many cases, a symbol's value is the offset from some other
602 address (stack frame, base register, etc.) Generate code to add
603 VAR's value to the top of the stack. */
604 static void
605 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
606 {
607 gen_offset (ax, SYMBOL_VALUE (var));
608 }
609
610
611 /* Generate code for a variable reference to AX. The variable is the
612 symbol VAR. Set VALUE to describe the result. */
613
614 static void
615 gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
616 struct axs_value *value, struct symbol *var)
617 {
618 /* Dereference any typedefs. */
619 value->type = check_typedef (SYMBOL_TYPE (var));
620 value->optimized_out = 0;
621
622 /* I'm imitating the code in read_var_value. */
623 switch (SYMBOL_CLASS (var))
624 {
625 case LOC_CONST: /* A constant, like an enum value. */
626 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
627 value->kind = axs_rvalue;
628 break;
629
630 case LOC_LABEL: /* A goto label, being used as a value. */
631 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
632 value->kind = axs_rvalue;
633 break;
634
635 case LOC_CONST_BYTES:
636 internal_error (__FILE__, __LINE__,
637 _("gen_var_ref: LOC_CONST_BYTES "
638 "symbols are not supported"));
639
640 /* Variable at a fixed location in memory. Easy. */
641 case LOC_STATIC:
642 /* Push the address of the variable. */
643 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
644 value->kind = axs_lvalue_memory;
645 break;
646
647 case LOC_ARG: /* var lives in argument area of frame */
648 gen_frame_args_address (gdbarch, ax);
649 gen_sym_offset (ax, var);
650 value->kind = axs_lvalue_memory;
651 break;
652
653 case LOC_REF_ARG: /* As above, but the frame slot really
654 holds the address of the variable. */
655 gen_frame_args_address (gdbarch, ax);
656 gen_sym_offset (ax, var);
657 /* Don't assume any particular pointer size. */
658 gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
659 value->kind = axs_lvalue_memory;
660 break;
661
662 case LOC_LOCAL: /* var lives in locals area of frame */
663 gen_frame_locals_address (gdbarch, ax);
664 gen_sym_offset (ax, var);
665 value->kind = axs_lvalue_memory;
666 break;
667
668 case LOC_TYPEDEF:
669 error (_("Cannot compute value of typedef `%s'."),
670 SYMBOL_PRINT_NAME (var));
671 break;
672
673 case LOC_BLOCK:
674 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
675 value->kind = axs_rvalue;
676 break;
677
678 case LOC_REGISTER:
679 /* Don't generate any code at all; in the process of treating
680 this as an lvalue or rvalue, the caller will generate the
681 right code. */
682 value->kind = axs_lvalue_register;
683 value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
684 break;
685
686 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
687 register, not on the stack. Simpler than LOC_REGISTER
688 because it's just like any other case where the thing
689 has a real address. */
690 case LOC_REGPARM_ADDR:
691 ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
692 value->kind = axs_lvalue_memory;
693 break;
694
695 case LOC_UNRESOLVED:
696 {
697 struct minimal_symbol *msym
698 = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
699
700 if (!msym)
701 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
702
703 /* Push the address of the variable. */
704 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
705 value->kind = axs_lvalue_memory;
706 }
707 break;
708
709 case LOC_COMPUTED:
710 /* FIXME: cagney/2004-01-26: It should be possible to
711 unconditionally call the SYMBOL_COMPUTED_OPS method when available.
712 Unfortunately DWARF 2 stores the frame-base (instead of the
713 function) location in a function's symbol. Oops! For the
714 moment enable this when/where applicable. */
715 SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
716 break;
717
718 case LOC_OPTIMIZED_OUT:
719 /* Flag this, but don't say anything; leave it up to callers to
720 warn the user. */
721 value->optimized_out = 1;
722 break;
723
724 default:
725 error (_("Cannot find value of botched symbol `%s'."),
726 SYMBOL_PRINT_NAME (var));
727 break;
728 }
729 }
730 \f
731
732
733 /* Generating bytecode from GDB expressions: literals */
734
735 static void
736 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
737 struct type *type)
738 {
739 ax_const_l (ax, k);
740 value->kind = axs_rvalue;
741 value->type = check_typedef (type);
742 }
743 \f
744
745
746 /* Generating bytecode from GDB expressions: unary conversions, casts */
747
748 /* Take what's on the top of the stack (as described by VALUE), and
749 try to make an rvalue out of it. Signal an error if we can't do
750 that. */
751 static void
752 require_rvalue (struct agent_expr *ax, struct axs_value *value)
753 {
754 /* Only deal with scalars, structs and such may be too large
755 to fit in a stack entry. */
756 value->type = check_typedef (value->type);
757 if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY
758 || TYPE_CODE (value->type) == TYPE_CODE_STRUCT
759 || TYPE_CODE (value->type) == TYPE_CODE_UNION
760 || TYPE_CODE (value->type) == TYPE_CODE_FUNC)
761 error (_("Value not scalar: cannot be an rvalue."));
762
763 switch (value->kind)
764 {
765 case axs_rvalue:
766 /* It's already an rvalue. */
767 break;
768
769 case axs_lvalue_memory:
770 /* The top of stack is the address of the object. Dereference. */
771 gen_fetch (ax, value->type);
772 break;
773
774 case axs_lvalue_register:
775 /* There's nothing on the stack, but value->u.reg is the
776 register number containing the value.
777
778 When we add floating-point support, this is going to have to
779 change. What about SPARC register pairs, for example? */
780 ax_reg (ax, value->u.reg);
781 gen_extend (ax, value->type);
782 break;
783 }
784
785 value->kind = axs_rvalue;
786 }
787
788
789 /* Assume the top of the stack is described by VALUE, and perform the
790 usual unary conversions. This is motivated by ANSI 6.2.2, but of
791 course GDB expressions are not ANSI; they're the mishmash union of
792 a bunch of languages. Rah.
793
794 NOTE! This function promises to produce an rvalue only when the
795 incoming value is of an appropriate type. In other words, the
796 consumer of the value this function produces may assume the value
797 is an rvalue only after checking its type.
798
799 The immediate issue is that if the user tries to use a structure or
800 union as an operand of, say, the `+' operator, we don't want to try
801 to convert that structure to an rvalue; require_rvalue will bomb on
802 structs and unions. Rather, we want to simply pass the struct
803 lvalue through unchanged, and let `+' raise an error. */
804
805 static void
806 gen_usual_unary (struct expression *exp, struct agent_expr *ax,
807 struct axs_value *value)
808 {
809 /* We don't have to generate any code for the usual integral
810 conversions, since values are always represented as full-width on
811 the stack. Should we tweak the type? */
812
813 /* Some types require special handling. */
814 switch (TYPE_CODE (value->type))
815 {
816 /* Functions get converted to a pointer to the function. */
817 case TYPE_CODE_FUNC:
818 value->type = lookup_pointer_type (value->type);
819 value->kind = axs_rvalue; /* Should always be true, but just in case. */
820 break;
821
822 /* Arrays get converted to a pointer to their first element, and
823 are no longer an lvalue. */
824 case TYPE_CODE_ARRAY:
825 {
826 struct type *elements = TYPE_TARGET_TYPE (value->type);
827
828 value->type = lookup_pointer_type (elements);
829 value->kind = axs_rvalue;
830 /* We don't need to generate any code; the address of the array
831 is also the address of its first element. */
832 }
833 break;
834
835 /* Don't try to convert structures and unions to rvalues. Let the
836 consumer signal an error. */
837 case TYPE_CODE_STRUCT:
838 case TYPE_CODE_UNION:
839 return;
840
841 /* If the value is an enum or a bool, call it an integer. */
842 case TYPE_CODE_ENUM:
843 case TYPE_CODE_BOOL:
844 value->type = builtin_type (exp->gdbarch)->builtin_int;
845 break;
846 }
847
848 /* If the value is an lvalue, dereference it. */
849 require_rvalue (ax, value);
850 }
851
852
853 /* Return non-zero iff the type TYPE1 is considered "wider" than the
854 type TYPE2, according to the rules described in gen_usual_arithmetic. */
855 static int
856 type_wider_than (struct type *type1, struct type *type2)
857 {
858 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
859 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
860 && TYPE_UNSIGNED (type1)
861 && !TYPE_UNSIGNED (type2)));
862 }
863
864
865 /* Return the "wider" of the two types TYPE1 and TYPE2. */
866 static struct type *
867 max_type (struct type *type1, struct type *type2)
868 {
869 return type_wider_than (type1, type2) ? type1 : type2;
870 }
871
872
873 /* Generate code to convert a scalar value of type FROM to type TO. */
874 static void
875 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
876 {
877 /* Perhaps there is a more graceful way to state these rules. */
878
879 /* If we're converting to a narrower type, then we need to clear out
880 the upper bits. */
881 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
882 gen_extend (ax, from);
883
884 /* If the two values have equal width, but different signednesses,
885 then we need to extend. */
886 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
887 {
888 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
889 gen_extend (ax, to);
890 }
891
892 /* If we're converting to a wider type, and becoming unsigned, then
893 we need to zero out any possible sign bits. */
894 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
895 {
896 if (TYPE_UNSIGNED (to))
897 gen_extend (ax, to);
898 }
899 }
900
901
902 /* Return non-zero iff the type FROM will require any bytecodes to be
903 emitted to be converted to the type TO. */
904 static int
905 is_nontrivial_conversion (struct type *from, struct type *to)
906 {
907 struct agent_expr *ax = new_agent_expr (NULL, 0);
908 int nontrivial;
909
910 /* Actually generate the code, and see if anything came out. At the
911 moment, it would be trivial to replicate the code in
912 gen_conversion here, but in the future, when we're supporting
913 floating point and the like, it may not be. Doing things this
914 way allows this function to be independent of the logic in
915 gen_conversion. */
916 gen_conversion (ax, from, to);
917 nontrivial = ax->len > 0;
918 free_agent_expr (ax);
919 return nontrivial;
920 }
921
922
923 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
924 6.2.1.5) for the two operands of an arithmetic operator. This
925 effectively finds a "least upper bound" type for the two arguments,
926 and promotes each argument to that type. *VALUE1 and *VALUE2
927 describe the values as they are passed in, and as they are left. */
928 static void
929 gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
930 struct axs_value *value1, struct axs_value *value2)
931 {
932 /* Do the usual binary conversions. */
933 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
934 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
935 {
936 /* The ANSI integral promotions seem to work this way: Order the
937 integer types by size, and then by signedness: an n-bit
938 unsigned type is considered "wider" than an n-bit signed
939 type. Promote to the "wider" of the two types, and always
940 promote at least to int. */
941 struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
942 max_type (value1->type, value2->type));
943
944 /* Deal with value2, on the top of the stack. */
945 gen_conversion (ax, value2->type, target);
946
947 /* Deal with value1, not on the top of the stack. Don't
948 generate the `swap' instructions if we're not actually going
949 to do anything. */
950 if (is_nontrivial_conversion (value1->type, target))
951 {
952 ax_simple (ax, aop_swap);
953 gen_conversion (ax, value1->type, target);
954 ax_simple (ax, aop_swap);
955 }
956
957 value1->type = value2->type = check_typedef (target);
958 }
959 }
960
961
962 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
963 the value on the top of the stack, as described by VALUE. Assume
964 the value has integral type. */
965 static void
966 gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
967 struct axs_value *value)
968 {
969 const struct builtin_type *builtin = builtin_type (exp->gdbarch);
970
971 if (!type_wider_than (value->type, builtin->builtin_int))
972 {
973 gen_conversion (ax, value->type, builtin->builtin_int);
974 value->type = builtin->builtin_int;
975 }
976 else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
977 {
978 gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
979 value->type = builtin->builtin_unsigned_int;
980 }
981 }
982
983
984 /* Generate code for a cast to TYPE. */
985 static void
986 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
987 {
988 /* GCC does allow casts to yield lvalues, so this should be fixed
989 before merging these changes into the trunk. */
990 require_rvalue (ax, value);
991 /* Dereference typedefs. */
992 type = check_typedef (type);
993
994 switch (TYPE_CODE (type))
995 {
996 case TYPE_CODE_PTR:
997 case TYPE_CODE_REF:
998 /* It's implementation-defined, and I'll bet this is what GCC
999 does. */
1000 break;
1001
1002 case TYPE_CODE_ARRAY:
1003 case TYPE_CODE_STRUCT:
1004 case TYPE_CODE_UNION:
1005 case TYPE_CODE_FUNC:
1006 error (_("Invalid type cast: intended type must be scalar."));
1007
1008 case TYPE_CODE_ENUM:
1009 case TYPE_CODE_BOOL:
1010 /* We don't have to worry about the size of the value, because
1011 all our integral values are fully sign-extended, and when
1012 casting pointers we can do anything we like. Is there any
1013 way for us to know what GCC actually does with a cast like
1014 this? */
1015 break;
1016
1017 case TYPE_CODE_INT:
1018 gen_conversion (ax, value->type, type);
1019 break;
1020
1021 case TYPE_CODE_VOID:
1022 /* We could pop the value, and rely on everyone else to check
1023 the type and notice that this value doesn't occupy a stack
1024 slot. But for now, leave the value on the stack, and
1025 preserve the "value == stack element" assumption. */
1026 break;
1027
1028 default:
1029 error (_("Casts to requested type are not yet implemented."));
1030 }
1031
1032 value->type = type;
1033 }
1034 \f
1035
1036
1037 /* Generating bytecode from GDB expressions: arithmetic */
1038
1039 /* Scale the integer on the top of the stack by the size of the target
1040 of the pointer type TYPE. */
1041 static void
1042 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
1043 {
1044 struct type *element = TYPE_TARGET_TYPE (type);
1045
1046 if (TYPE_LENGTH (element) != 1)
1047 {
1048 ax_const_l (ax, TYPE_LENGTH (element));
1049 ax_simple (ax, op);
1050 }
1051 }
1052
1053
1054 /* Generate code for pointer arithmetic PTR + INT. */
1055 static void
1056 gen_ptradd (struct agent_expr *ax, struct axs_value *value,
1057 struct axs_value *value1, struct axs_value *value2)
1058 {
1059 gdb_assert (pointer_type (value1->type));
1060 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1061
1062 gen_scale (ax, aop_mul, value1->type);
1063 ax_simple (ax, aop_add);
1064 gen_extend (ax, value1->type); /* Catch overflow. */
1065 value->type = value1->type;
1066 value->kind = axs_rvalue;
1067 }
1068
1069
1070 /* Generate code for pointer arithmetic PTR - INT. */
1071 static void
1072 gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
1073 struct axs_value *value1, struct axs_value *value2)
1074 {
1075 gdb_assert (pointer_type (value1->type));
1076 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1077
1078 gen_scale (ax, aop_mul, value1->type);
1079 ax_simple (ax, aop_sub);
1080 gen_extend (ax, value1->type); /* Catch overflow. */
1081 value->type = value1->type;
1082 value->kind = axs_rvalue;
1083 }
1084
1085
1086 /* Generate code for pointer arithmetic PTR - PTR. */
1087 static void
1088 gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
1089 struct axs_value *value1, struct axs_value *value2,
1090 struct type *result_type)
1091 {
1092 gdb_assert (pointer_type (value1->type));
1093 gdb_assert (pointer_type (value2->type));
1094
1095 if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1096 != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
1097 error (_("First argument of `-' is a pointer, but second argument "
1098 "is neither\nan integer nor a pointer of the same type."));
1099
1100 ax_simple (ax, aop_sub);
1101 gen_scale (ax, aop_div_unsigned, value1->type);
1102 value->type = result_type;
1103 value->kind = axs_rvalue;
1104 }
1105
1106 static void
1107 gen_equal (struct agent_expr *ax, struct axs_value *value,
1108 struct axs_value *value1, struct axs_value *value2,
1109 struct type *result_type)
1110 {
1111 if (pointer_type (value1->type) || pointer_type (value2->type))
1112 ax_simple (ax, aop_equal);
1113 else
1114 gen_binop (ax, value, value1, value2,
1115 aop_equal, aop_equal, 0, "equal");
1116 value->type = result_type;
1117 value->kind = axs_rvalue;
1118 }
1119
1120 static void
1121 gen_less (struct agent_expr *ax, struct axs_value *value,
1122 struct axs_value *value1, struct axs_value *value2,
1123 struct type *result_type)
1124 {
1125 if (pointer_type (value1->type) || pointer_type (value2->type))
1126 ax_simple (ax, aop_less_unsigned);
1127 else
1128 gen_binop (ax, value, value1, value2,
1129 aop_less_signed, aop_less_unsigned, 0, "less than");
1130 value->type = result_type;
1131 value->kind = axs_rvalue;
1132 }
1133
1134 /* Generate code for a binary operator that doesn't do pointer magic.
1135 We set VALUE to describe the result value; we assume VALUE1 and
1136 VALUE2 describe the two operands, and that they've undergone the
1137 usual binary conversions. MAY_CARRY should be non-zero iff the
1138 result needs to be extended. NAME is the English name of the
1139 operator, used in error messages */
1140 static void
1141 gen_binop (struct agent_expr *ax, struct axs_value *value,
1142 struct axs_value *value1, struct axs_value *value2,
1143 enum agent_op op, enum agent_op op_unsigned,
1144 int may_carry, char *name)
1145 {
1146 /* We only handle INT op INT. */
1147 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1148 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1149 error (_("Invalid combination of types in %s."), name);
1150
1151 ax_simple (ax,
1152 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1153 if (may_carry)
1154 gen_extend (ax, value1->type); /* catch overflow */
1155 value->type = value1->type;
1156 value->kind = axs_rvalue;
1157 }
1158
1159
1160 static void
1161 gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1162 struct type *result_type)
1163 {
1164 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1165 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1166 error (_("Invalid type of operand to `!'."));
1167
1168 ax_simple (ax, aop_log_not);
1169 value->type = result_type;
1170 }
1171
1172
1173 static void
1174 gen_complement (struct agent_expr *ax, struct axs_value *value)
1175 {
1176 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1177 error (_("Invalid type of operand to `~'."));
1178
1179 ax_simple (ax, aop_bit_not);
1180 gen_extend (ax, value->type);
1181 }
1182 \f
1183
1184
1185 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1186
1187 /* Dereference the value on the top of the stack. */
1188 static void
1189 gen_deref (struct agent_expr *ax, struct axs_value *value)
1190 {
1191 /* The caller should check the type, because several operators use
1192 this, and we don't know what error message to generate. */
1193 if (!pointer_type (value->type))
1194 internal_error (__FILE__, __LINE__,
1195 _("gen_deref: expected a pointer"));
1196
1197 /* We've got an rvalue now, which is a pointer. We want to yield an
1198 lvalue, whose address is exactly that pointer. So we don't
1199 actually emit any code; we just change the type from "Pointer to
1200 T" to "T", and mark the value as an lvalue in memory. Leave it
1201 to the consumer to actually dereference it. */
1202 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1203 if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
1204 error (_("Attempt to dereference a generic pointer."));
1205 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1206 ? axs_rvalue : axs_lvalue_memory);
1207 }
1208
1209
1210 /* Produce the address of the lvalue on the top of the stack. */
1211 static void
1212 gen_address_of (struct agent_expr *ax, struct axs_value *value)
1213 {
1214 /* Special case for taking the address of a function. The ANSI
1215 standard describes this as a special case, too, so this
1216 arrangement is not without motivation. */
1217 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1218 /* The value's already an rvalue on the stack, so we just need to
1219 change the type. */
1220 value->type = lookup_pointer_type (value->type);
1221 else
1222 switch (value->kind)
1223 {
1224 case axs_rvalue:
1225 error (_("Operand of `&' is an rvalue, which has no address."));
1226
1227 case axs_lvalue_register:
1228 error (_("Operand of `&' is in a register, and has no address."));
1229
1230 case axs_lvalue_memory:
1231 value->kind = axs_rvalue;
1232 value->type = lookup_pointer_type (value->type);
1233 break;
1234 }
1235 }
1236
1237 /* Generate code to push the value of a bitfield of a structure whose
1238 address is on the top of the stack. START and END give the
1239 starting and one-past-ending *bit* numbers of the field within the
1240 structure. */
1241 static void
1242 gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
1243 struct axs_value *value, struct type *type,
1244 int start, int end)
1245 {
1246 /* Note that ops[i] fetches 8 << i bits. */
1247 static enum agent_op ops[]
1248 = {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1249 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1250
1251 /* We don't want to touch any byte that the bitfield doesn't
1252 actually occupy; we shouldn't make any accesses we're not
1253 explicitly permitted to. We rely here on the fact that the
1254 bytecode `ref' operators work on unaligned addresses.
1255
1256 It takes some fancy footwork to get the stack to work the way
1257 we'd like. Say we're retrieving a bitfield that requires three
1258 fetches. Initially, the stack just contains the address:
1259 addr
1260 For the first fetch, we duplicate the address
1261 addr addr
1262 then add the byte offset, do the fetch, and shift and mask as
1263 needed, yielding a fragment of the value, properly aligned for
1264 the final bitwise or:
1265 addr frag1
1266 then we swap, and repeat the process:
1267 frag1 addr --- address on top
1268 frag1 addr addr --- duplicate it
1269 frag1 addr frag2 --- get second fragment
1270 frag1 frag2 addr --- swap again
1271 frag1 frag2 frag3 --- get third fragment
1272 Notice that, since the third fragment is the last one, we don't
1273 bother duplicating the address this time. Now we have all the
1274 fragments on the stack, and we can simply `or' them together,
1275 yielding the final value of the bitfield. */
1276
1277 /* The first and one-after-last bits in the field, but rounded down
1278 and up to byte boundaries. */
1279 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1280 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1281 / TARGET_CHAR_BIT)
1282 * TARGET_CHAR_BIT);
1283
1284 /* current bit offset within the structure */
1285 int offset;
1286
1287 /* The index in ops of the opcode we're considering. */
1288 int op;
1289
1290 /* The number of fragments we generated in the process. Probably
1291 equal to the number of `one' bits in bytesize, but who cares? */
1292 int fragment_count;
1293
1294 /* Dereference any typedefs. */
1295 type = check_typedef (type);
1296
1297 /* Can we fetch the number of bits requested at all? */
1298 if ((end - start) > ((1 << num_ops) * 8))
1299 internal_error (__FILE__, __LINE__,
1300 _("gen_bitfield_ref: bitfield too wide"));
1301
1302 /* Note that we know here that we only need to try each opcode once.
1303 That may not be true on machines with weird byte sizes. */
1304 offset = bound_start;
1305 fragment_count = 0;
1306 for (op = num_ops - 1; op >= 0; op--)
1307 {
1308 /* number of bits that ops[op] would fetch */
1309 int op_size = 8 << op;
1310
1311 /* The stack at this point, from bottom to top, contains zero or
1312 more fragments, then the address. */
1313
1314 /* Does this fetch fit within the bitfield? */
1315 if (offset + op_size <= bound_end)
1316 {
1317 /* Is this the last fragment? */
1318 int last_frag = (offset + op_size == bound_end);
1319
1320 if (!last_frag)
1321 ax_simple (ax, aop_dup); /* keep a copy of the address */
1322
1323 /* Add the offset. */
1324 gen_offset (ax, offset / TARGET_CHAR_BIT);
1325
1326 if (trace_kludge)
1327 {
1328 /* Record the area of memory we're about to fetch. */
1329 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1330 }
1331
1332 /* Perform the fetch. */
1333 ax_simple (ax, ops[op]);
1334
1335 /* Shift the bits we have to their proper position.
1336 gen_left_shift will generate right shifts when the operand
1337 is negative.
1338
1339 A big-endian field diagram to ponder:
1340 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1341 +------++------++------++------++------++------++------++------+
1342 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1343 ^ ^ ^ ^
1344 bit number 16 32 48 53
1345 These are bit numbers as supplied by GDB. Note that the
1346 bit numbers run from right to left once you've fetched the
1347 value!
1348
1349 A little-endian field diagram to ponder:
1350 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1351 +------++------++------++------++------++------++------++------+
1352 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1353 ^ ^ ^ ^ ^
1354 bit number 48 32 16 4 0
1355
1356 In both cases, the most significant end is on the left
1357 (i.e. normal numeric writing order), which means that you
1358 don't go crazy thinking about `left' and `right' shifts.
1359
1360 We don't have to worry about masking yet:
1361 - If they contain garbage off the least significant end, then we
1362 must be looking at the low end of the field, and the right
1363 shift will wipe them out.
1364 - If they contain garbage off the most significant end, then we
1365 must be looking at the most significant end of the word, and
1366 the sign/zero extension will wipe them out.
1367 - If we're in the interior of the word, then there is no garbage
1368 on either end, because the ref operators zero-extend. */
1369 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
1370 gen_left_shift (ax, end - (offset + op_size));
1371 else
1372 gen_left_shift (ax, offset - start);
1373
1374 if (!last_frag)
1375 /* Bring the copy of the address up to the top. */
1376 ax_simple (ax, aop_swap);
1377
1378 offset += op_size;
1379 fragment_count++;
1380 }
1381 }
1382
1383 /* Generate enough bitwise `or' operations to combine all the
1384 fragments we left on the stack. */
1385 while (fragment_count-- > 1)
1386 ax_simple (ax, aop_bit_or);
1387
1388 /* Sign- or zero-extend the value as appropriate. */
1389 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1390
1391 /* This is *not* an lvalue. Ugh. */
1392 value->kind = axs_rvalue;
1393 value->type = type;
1394 }
1395
1396 /* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
1397 is an accumulated offset (in bytes), will be nonzero for objects
1398 embedded in other objects, like C++ base classes. Behavior should
1399 generally follow value_primitive_field. */
1400
1401 static void
1402 gen_primitive_field (struct expression *exp,
1403 struct agent_expr *ax, struct axs_value *value,
1404 int offset, int fieldno, struct type *type)
1405 {
1406 /* Is this a bitfield? */
1407 if (TYPE_FIELD_PACKED (type, fieldno))
1408 gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, fieldno),
1409 (offset * TARGET_CHAR_BIT
1410 + TYPE_FIELD_BITPOS (type, fieldno)),
1411 (offset * TARGET_CHAR_BIT
1412 + TYPE_FIELD_BITPOS (type, fieldno)
1413 + TYPE_FIELD_BITSIZE (type, fieldno)));
1414 else
1415 {
1416 gen_offset (ax, offset
1417 + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
1418 value->kind = axs_lvalue_memory;
1419 value->type = TYPE_FIELD_TYPE (type, fieldno);
1420 }
1421 }
1422
1423 /* Search for the given field in either the given type or one of its
1424 base classes. Return 1 if found, 0 if not. */
1425
1426 static int
1427 gen_struct_ref_recursive (struct expression *exp, struct agent_expr *ax,
1428 struct axs_value *value,
1429 char *field, int offset, struct type *type)
1430 {
1431 int i, rslt;
1432 int nbases = TYPE_N_BASECLASSES (type);
1433
1434 CHECK_TYPEDEF (type);
1435
1436 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1437 {
1438 char *this_name = TYPE_FIELD_NAME (type, i);
1439
1440 if (this_name)
1441 {
1442 if (strcmp (field, this_name) == 0)
1443 {
1444 /* Note that bytecodes for the struct's base (aka
1445 "this") will have been generated already, which will
1446 be unnecessary but not harmful if the static field is
1447 being handled as a global. */
1448 if (field_is_static (&TYPE_FIELD (type, i)))
1449 {
1450 gen_static_field (exp->gdbarch, ax, value, type, i);
1451 if (value->optimized_out)
1452 error (_("static field `%s' has been "
1453 "optimized out, cannot use"),
1454 field);
1455 return 1;
1456 }
1457
1458 gen_primitive_field (exp, ax, value, offset, i, type);
1459 return 1;
1460 }
1461 #if 0 /* is this right? */
1462 if (this_name[0] == '\0')
1463 internal_error (__FILE__, __LINE__,
1464 _("find_field: anonymous unions not supported"));
1465 #endif
1466 }
1467 }
1468
1469 /* Now scan through base classes recursively. */
1470 for (i = 0; i < nbases; i++)
1471 {
1472 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1473
1474 rslt = gen_struct_ref_recursive (exp, ax, value, field,
1475 offset + TYPE_BASECLASS_BITPOS (type, i)
1476 / TARGET_CHAR_BIT,
1477 basetype);
1478 if (rslt)
1479 return 1;
1480 }
1481
1482 /* Not found anywhere, flag so caller can complain. */
1483 return 0;
1484 }
1485
1486 /* Generate code to reference the member named FIELD of a structure or
1487 union. The top of the stack, as described by VALUE, should have
1488 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1489 the operator being compiled, and OPERAND_NAME is the kind of thing
1490 it operates on; we use them in error messages. */
1491 static void
1492 gen_struct_ref (struct expression *exp, struct agent_expr *ax,
1493 struct axs_value *value, char *field,
1494 char *operator_name, char *operand_name)
1495 {
1496 struct type *type;
1497 int found;
1498
1499 /* Follow pointers until we reach a non-pointer. These aren't the C
1500 semantics, but they're what the normal GDB evaluator does, so we
1501 should at least be consistent. */
1502 while (pointer_type (value->type))
1503 {
1504 require_rvalue (ax, value);
1505 gen_deref (ax, value);
1506 }
1507 type = check_typedef (value->type);
1508
1509 /* This must yield a structure or a union. */
1510 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1511 && TYPE_CODE (type) != TYPE_CODE_UNION)
1512 error (_("The left operand of `%s' is not a %s."),
1513 operator_name, operand_name);
1514
1515 /* And it must be in memory; we don't deal with structure rvalues,
1516 or structures living in registers. */
1517 if (value->kind != axs_lvalue_memory)
1518 error (_("Structure does not live in memory."));
1519
1520 /* Search through fields and base classes recursively. */
1521 found = gen_struct_ref_recursive (exp, ax, value, field, 0, type);
1522
1523 if (!found)
1524 error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
1525 field, TYPE_TAG_NAME (type));
1526 }
1527
1528 static int
1529 gen_namespace_elt (struct expression *exp,
1530 struct agent_expr *ax, struct axs_value *value,
1531 const struct type *curtype, char *name);
1532 static int
1533 gen_maybe_namespace_elt (struct expression *exp,
1534 struct agent_expr *ax, struct axs_value *value,
1535 const struct type *curtype, char *name);
1536
1537 static void
1538 gen_static_field (struct gdbarch *gdbarch,
1539 struct agent_expr *ax, struct axs_value *value,
1540 struct type *type, int fieldno)
1541 {
1542 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1543 {
1544 ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1545 value->kind = axs_lvalue_memory;
1546 value->type = TYPE_FIELD_TYPE (type, fieldno);
1547 value->optimized_out = 0;
1548 }
1549 else
1550 {
1551 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1552 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1553
1554 if (sym)
1555 {
1556 gen_var_ref (gdbarch, ax, value, sym);
1557
1558 /* Don't error if the value was optimized out, we may be
1559 scanning all static fields and just want to pass over this
1560 and continue with the rest. */
1561 }
1562 else
1563 {
1564 /* Silently assume this was optimized out; class printing
1565 will let the user know why the data is missing. */
1566 value->optimized_out = 1;
1567 }
1568 }
1569 }
1570
1571 static int
1572 gen_struct_elt_for_reference (struct expression *exp,
1573 struct agent_expr *ax, struct axs_value *value,
1574 struct type *type, char *fieldname)
1575 {
1576 struct type *t = type;
1577 int i;
1578
1579 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1580 && TYPE_CODE (t) != TYPE_CODE_UNION)
1581 internal_error (__FILE__, __LINE__,
1582 _("non-aggregate type to gen_struct_elt_for_reference"));
1583
1584 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1585 {
1586 char *t_field_name = TYPE_FIELD_NAME (t, i);
1587
1588 if (t_field_name && strcmp (t_field_name, fieldname) == 0)
1589 {
1590 if (field_is_static (&TYPE_FIELD (t, i)))
1591 {
1592 gen_static_field (exp->gdbarch, ax, value, t, i);
1593 if (value->optimized_out)
1594 error (_("static field `%s' has been "
1595 "optimized out, cannot use"),
1596 fieldname);
1597 return 1;
1598 }
1599 if (TYPE_FIELD_PACKED (t, i))
1600 error (_("pointers to bitfield members not allowed"));
1601
1602 /* FIXME we need a way to do "want_address" equivalent */
1603
1604 error (_("Cannot reference non-static field \"%s\""), fieldname);
1605 }
1606 }
1607
1608 /* FIXME add other scoped-reference cases here */
1609
1610 /* Do a last-ditch lookup. */
1611 return gen_maybe_namespace_elt (exp, ax, value, type, fieldname);
1612 }
1613
1614 /* C++: Return the member NAME of the namespace given by the type
1615 CURTYPE. */
1616
1617 static int
1618 gen_namespace_elt (struct expression *exp,
1619 struct agent_expr *ax, struct axs_value *value,
1620 const struct type *curtype, char *name)
1621 {
1622 int found = gen_maybe_namespace_elt (exp, ax, value, curtype, name);
1623
1624 if (!found)
1625 error (_("No symbol \"%s\" in namespace \"%s\"."),
1626 name, TYPE_TAG_NAME (curtype));
1627
1628 return found;
1629 }
1630
1631 /* A helper function used by value_namespace_elt and
1632 value_struct_elt_for_reference. It looks up NAME inside the
1633 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
1634 is a class and NAME refers to a type in CURTYPE itself (as opposed
1635 to, say, some base class of CURTYPE). */
1636
1637 static int
1638 gen_maybe_namespace_elt (struct expression *exp,
1639 struct agent_expr *ax, struct axs_value *value,
1640 const struct type *curtype, char *name)
1641 {
1642 const char *namespace_name = TYPE_TAG_NAME (curtype);
1643 struct symbol *sym;
1644
1645 sym = cp_lookup_symbol_namespace (namespace_name, name,
1646 block_for_pc (ax->scope),
1647 VAR_DOMAIN);
1648
1649 if (sym == NULL)
1650 return 0;
1651
1652 gen_var_ref (exp->gdbarch, ax, value, sym);
1653
1654 if (value->optimized_out)
1655 error (_("`%s' has been optimized out, cannot use"),
1656 SYMBOL_PRINT_NAME (sym));
1657
1658 return 1;
1659 }
1660
1661
1662 static int
1663 gen_aggregate_elt_ref (struct expression *exp,
1664 struct agent_expr *ax, struct axs_value *value,
1665 struct type *type, char *field,
1666 char *operator_name, char *operand_name)
1667 {
1668 switch (TYPE_CODE (type))
1669 {
1670 case TYPE_CODE_STRUCT:
1671 case TYPE_CODE_UNION:
1672 return gen_struct_elt_for_reference (exp, ax, value, type, field);
1673 break;
1674 case TYPE_CODE_NAMESPACE:
1675 return gen_namespace_elt (exp, ax, value, type, field);
1676 break;
1677 default:
1678 internal_error (__FILE__, __LINE__,
1679 _("non-aggregate type in gen_aggregate_elt_ref"));
1680 }
1681
1682 return 0;
1683 }
1684
1685 /* Generate code for GDB's magical `repeat' operator.
1686 LVALUE @ INT creates an array INT elements long, and whose elements
1687 have the same type as LVALUE, located in memory so that LVALUE is
1688 its first element. For example, argv[0]@argc gives you the array
1689 of command-line arguments.
1690
1691 Unfortunately, because we have to know the types before we actually
1692 have a value for the expression, we can't implement this perfectly
1693 without changing the type system, having values that occupy two
1694 stack slots, doing weird things with sizeof, etc. So we require
1695 the right operand to be a constant expression. */
1696 static void
1697 gen_repeat (struct expression *exp, union exp_element **pc,
1698 struct agent_expr *ax, struct axs_value *value)
1699 {
1700 struct axs_value value1;
1701
1702 /* We don't want to turn this into an rvalue, so no conversions
1703 here. */
1704 gen_expr (exp, pc, ax, &value1);
1705 if (value1.kind != axs_lvalue_memory)
1706 error (_("Left operand of `@' must be an object in memory."));
1707
1708 /* Evaluate the length; it had better be a constant. */
1709 {
1710 struct value *v = const_expr (pc);
1711 int length;
1712
1713 if (!v)
1714 error (_("Right operand of `@' must be a "
1715 "constant, in agent expressions."));
1716 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
1717 error (_("Right operand of `@' must be an integer."));
1718 length = value_as_long (v);
1719 if (length <= 0)
1720 error (_("Right operand of `@' must be positive."));
1721
1722 /* The top of the stack is already the address of the object, so
1723 all we need to do is frob the type of the lvalue. */
1724 {
1725 /* FIXME-type-allocation: need a way to free this type when we are
1726 done with it. */
1727 struct type *array
1728 = lookup_array_range_type (value1.type, 0, length - 1);
1729
1730 value->kind = axs_lvalue_memory;
1731 value->type = array;
1732 }
1733 }
1734 }
1735
1736
1737 /* Emit code for the `sizeof' operator.
1738 *PC should point at the start of the operand expression; we advance it
1739 to the first instruction after the operand. */
1740 static void
1741 gen_sizeof (struct expression *exp, union exp_element **pc,
1742 struct agent_expr *ax, struct axs_value *value,
1743 struct type *size_type)
1744 {
1745 /* We don't care about the value of the operand expression; we only
1746 care about its type. However, in the current arrangement, the
1747 only way to find an expression's type is to generate code for it.
1748 So we generate code for the operand, and then throw it away,
1749 replacing it with code that simply pushes its size. */
1750 int start = ax->len;
1751
1752 gen_expr (exp, pc, ax, value);
1753
1754 /* Throw away the code we just generated. */
1755 ax->len = start;
1756
1757 ax_const_l (ax, TYPE_LENGTH (value->type));
1758 value->kind = axs_rvalue;
1759 value->type = size_type;
1760 }
1761 \f
1762
1763 /* Generating bytecode from GDB expressions: general recursive thingy */
1764
1765 /* XXX: i18n */
1766 /* A gen_expr function written by a Gen-X'er guy.
1767 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1768 static void
1769 gen_expr (struct expression *exp, union exp_element **pc,
1770 struct agent_expr *ax, struct axs_value *value)
1771 {
1772 /* Used to hold the descriptions of operand expressions. */
1773 struct axs_value value1, value2, value3;
1774 enum exp_opcode op = (*pc)[0].opcode, op2;
1775 int if1, go1, if2, go2, end;
1776 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
1777
1778 /* If we're looking at a constant expression, just push its value. */
1779 {
1780 struct value *v = maybe_const_expr (pc);
1781
1782 if (v)
1783 {
1784 ax_const_l (ax, value_as_long (v));
1785 value->kind = axs_rvalue;
1786 value->type = check_typedef (value_type (v));
1787 return;
1788 }
1789 }
1790
1791 /* Otherwise, go ahead and generate code for it. */
1792 switch (op)
1793 {
1794 /* Binary arithmetic operators. */
1795 case BINOP_ADD:
1796 case BINOP_SUB:
1797 case BINOP_MUL:
1798 case BINOP_DIV:
1799 case BINOP_REM:
1800 case BINOP_LSH:
1801 case BINOP_RSH:
1802 case BINOP_SUBSCRIPT:
1803 case BINOP_BITWISE_AND:
1804 case BINOP_BITWISE_IOR:
1805 case BINOP_BITWISE_XOR:
1806 case BINOP_EQUAL:
1807 case BINOP_NOTEQUAL:
1808 case BINOP_LESS:
1809 case BINOP_GTR:
1810 case BINOP_LEQ:
1811 case BINOP_GEQ:
1812 (*pc)++;
1813 gen_expr (exp, pc, ax, &value1);
1814 gen_usual_unary (exp, ax, &value1);
1815 gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
1816 break;
1817
1818 case BINOP_LOGICAL_AND:
1819 (*pc)++;
1820 /* Generate the obvious sequence of tests and jumps. */
1821 gen_expr (exp, pc, ax, &value1);
1822 gen_usual_unary (exp, ax, &value1);
1823 if1 = ax_goto (ax, aop_if_goto);
1824 go1 = ax_goto (ax, aop_goto);
1825 ax_label (ax, if1, ax->len);
1826 gen_expr (exp, pc, ax, &value2);
1827 gen_usual_unary (exp, ax, &value2);
1828 if2 = ax_goto (ax, aop_if_goto);
1829 go2 = ax_goto (ax, aop_goto);
1830 ax_label (ax, if2, ax->len);
1831 ax_const_l (ax, 1);
1832 end = ax_goto (ax, aop_goto);
1833 ax_label (ax, go1, ax->len);
1834 ax_label (ax, go2, ax->len);
1835 ax_const_l (ax, 0);
1836 ax_label (ax, end, ax->len);
1837 value->kind = axs_rvalue;
1838 value->type = int_type;
1839 break;
1840
1841 case BINOP_LOGICAL_OR:
1842 (*pc)++;
1843 /* Generate the obvious sequence of tests and jumps. */
1844 gen_expr (exp, pc, ax, &value1);
1845 gen_usual_unary (exp, ax, &value1);
1846 if1 = ax_goto (ax, aop_if_goto);
1847 gen_expr (exp, pc, ax, &value2);
1848 gen_usual_unary (exp, ax, &value2);
1849 if2 = ax_goto (ax, aop_if_goto);
1850 ax_const_l (ax, 0);
1851 end = ax_goto (ax, aop_goto);
1852 ax_label (ax, if1, ax->len);
1853 ax_label (ax, if2, ax->len);
1854 ax_const_l (ax, 1);
1855 ax_label (ax, end, ax->len);
1856 value->kind = axs_rvalue;
1857 value->type = int_type;
1858 break;
1859
1860 case TERNOP_COND:
1861 (*pc)++;
1862 gen_expr (exp, pc, ax, &value1);
1863 gen_usual_unary (exp, ax, &value1);
1864 /* For (A ? B : C), it's easiest to generate subexpression
1865 bytecodes in order, but if_goto jumps on true, so we invert
1866 the sense of A. Then we can do B by dropping through, and
1867 jump to do C. */
1868 gen_logical_not (ax, &value1, int_type);
1869 if1 = ax_goto (ax, aop_if_goto);
1870 gen_expr (exp, pc, ax, &value2);
1871 gen_usual_unary (exp, ax, &value2);
1872 end = ax_goto (ax, aop_goto);
1873 ax_label (ax, if1, ax->len);
1874 gen_expr (exp, pc, ax, &value3);
1875 gen_usual_unary (exp, ax, &value3);
1876 ax_label (ax, end, ax->len);
1877 /* This is arbitary - what if B and C are incompatible types? */
1878 value->type = value2.type;
1879 value->kind = value2.kind;
1880 break;
1881
1882 case BINOP_ASSIGN:
1883 (*pc)++;
1884 if ((*pc)[0].opcode == OP_INTERNALVAR)
1885 {
1886 char *name = internalvar_name ((*pc)[1].internalvar);
1887 struct trace_state_variable *tsv;
1888
1889 (*pc) += 3;
1890 gen_expr (exp, pc, ax, value);
1891 tsv = find_trace_state_variable (name);
1892 if (tsv)
1893 {
1894 ax_tsv (ax, aop_setv, tsv->number);
1895 if (trace_kludge)
1896 ax_tsv (ax, aop_tracev, tsv->number);
1897 }
1898 else
1899 error (_("$%s is not a trace state variable, "
1900 "may not assign to it"), name);
1901 }
1902 else
1903 error (_("May only assign to trace state variables"));
1904 break;
1905
1906 case BINOP_ASSIGN_MODIFY:
1907 (*pc)++;
1908 op2 = (*pc)[0].opcode;
1909 (*pc)++;
1910 (*pc)++;
1911 if ((*pc)[0].opcode == OP_INTERNALVAR)
1912 {
1913 char *name = internalvar_name ((*pc)[1].internalvar);
1914 struct trace_state_variable *tsv;
1915
1916 (*pc) += 3;
1917 tsv = find_trace_state_variable (name);
1918 if (tsv)
1919 {
1920 /* The tsv will be the left half of the binary operation. */
1921 ax_tsv (ax, aop_getv, tsv->number);
1922 if (trace_kludge)
1923 ax_tsv (ax, aop_tracev, tsv->number);
1924 /* Trace state variables are always 64-bit integers. */
1925 value1.kind = axs_rvalue;
1926 value1.type = builtin_type (exp->gdbarch)->builtin_long_long;
1927 /* Now do right half of expression. */
1928 gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
1929 /* We have a result of the binary op, set the tsv. */
1930 ax_tsv (ax, aop_setv, tsv->number);
1931 if (trace_kludge)
1932 ax_tsv (ax, aop_tracev, tsv->number);
1933 }
1934 else
1935 error (_("$%s is not a trace state variable, "
1936 "may not assign to it"), name);
1937 }
1938 else
1939 error (_("May only assign to trace state variables"));
1940 break;
1941
1942 /* Note that we need to be a little subtle about generating code
1943 for comma. In C, we can do some optimizations here because
1944 we know the left operand is only being evaluated for effect.
1945 However, if the tracing kludge is in effect, then we always
1946 need to evaluate the left hand side fully, so that all the
1947 variables it mentions get traced. */
1948 case BINOP_COMMA:
1949 (*pc)++;
1950 gen_expr (exp, pc, ax, &value1);
1951 /* Don't just dispose of the left operand. We might be tracing,
1952 in which case we want to emit code to trace it if it's an
1953 lvalue. */
1954 gen_traced_pop (exp->gdbarch, ax, &value1);
1955 gen_expr (exp, pc, ax, value);
1956 /* It's the consumer's responsibility to trace the right operand. */
1957 break;
1958
1959 case OP_LONG: /* some integer constant */
1960 {
1961 struct type *type = (*pc)[1].type;
1962 LONGEST k = (*pc)[2].longconst;
1963
1964 (*pc) += 4;
1965 gen_int_literal (ax, value, k, type);
1966 }
1967 break;
1968
1969 case OP_VAR_VALUE:
1970 gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
1971
1972 if (value->optimized_out)
1973 error (_("`%s' has been optimized out, cannot use"),
1974 SYMBOL_PRINT_NAME ((*pc)[2].symbol));
1975
1976 (*pc) += 4;
1977 break;
1978
1979 case OP_REGISTER:
1980 {
1981 const char *name = &(*pc)[2].string;
1982 int reg;
1983
1984 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
1985 reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
1986 if (reg == -1)
1987 internal_error (__FILE__, __LINE__,
1988 _("Register $%s not available"), name);
1989 /* No support for tracing user registers yet. */
1990 if (reg >= gdbarch_num_regs (exp->gdbarch)
1991 + gdbarch_num_pseudo_regs (exp->gdbarch))
1992 error (_("'%s' is a user-register; "
1993 "GDB cannot yet trace user-register contents."),
1994 name);
1995 value->kind = axs_lvalue_register;
1996 value->u.reg = reg;
1997 value->type = register_type (exp->gdbarch, reg);
1998 }
1999 break;
2000
2001 case OP_INTERNALVAR:
2002 {
2003 const char *name = internalvar_name ((*pc)[1].internalvar);
2004 struct trace_state_variable *tsv;
2005
2006 (*pc) += 3;
2007 tsv = find_trace_state_variable (name);
2008 if (tsv)
2009 {
2010 ax_tsv (ax, aop_getv, tsv->number);
2011 if (trace_kludge)
2012 ax_tsv (ax, aop_tracev, tsv->number);
2013 /* Trace state variables are always 64-bit integers. */
2014 value->kind = axs_rvalue;
2015 value->type = builtin_type (exp->gdbarch)->builtin_long_long;
2016 }
2017 else
2018 error (_("$%s is not a trace state variable; GDB agent "
2019 "expressions cannot use convenience variables."), name);
2020 }
2021 break;
2022
2023 /* Weirdo operator: see comments for gen_repeat for details. */
2024 case BINOP_REPEAT:
2025 /* Note that gen_repeat handles its own argument evaluation. */
2026 (*pc)++;
2027 gen_repeat (exp, pc, ax, value);
2028 break;
2029
2030 case UNOP_CAST:
2031 {
2032 struct type *type = (*pc)[1].type;
2033
2034 (*pc) += 3;
2035 gen_expr (exp, pc, ax, value);
2036 gen_cast (ax, value, type);
2037 }
2038 break;
2039
2040 case UNOP_MEMVAL:
2041 {
2042 struct type *type = check_typedef ((*pc)[1].type);
2043
2044 (*pc) += 3;
2045 gen_expr (exp, pc, ax, value);
2046 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
2047 it's just a hack for dealing with minsyms; you take some
2048 integer constant, pretend it's the address of an lvalue of
2049 the given type, and dereference it. */
2050 if (value->kind != axs_rvalue)
2051 /* This would be weird. */
2052 internal_error (__FILE__, __LINE__,
2053 _("gen_expr: OP_MEMVAL operand isn't an rvalue???"));
2054 value->type = type;
2055 value->kind = axs_lvalue_memory;
2056 }
2057 break;
2058
2059 case UNOP_PLUS:
2060 (*pc)++;
2061 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
2062 gen_expr (exp, pc, ax, value);
2063 gen_usual_unary (exp, ax, value);
2064 break;
2065
2066 case UNOP_NEG:
2067 (*pc)++;
2068 /* -FOO is equivalent to 0 - FOO. */
2069 gen_int_literal (ax, &value1, 0,
2070 builtin_type (exp->gdbarch)->builtin_int);
2071 gen_usual_unary (exp, ax, &value1); /* shouldn't do much */
2072 gen_expr (exp, pc, ax, &value2);
2073 gen_usual_unary (exp, ax, &value2);
2074 gen_usual_arithmetic (exp, ax, &value1, &value2);
2075 gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
2076 break;
2077
2078 case UNOP_LOGICAL_NOT:
2079 (*pc)++;
2080 gen_expr (exp, pc, ax, value);
2081 gen_usual_unary (exp, ax, value);
2082 gen_logical_not (ax, value, int_type);
2083 break;
2084
2085 case UNOP_COMPLEMENT:
2086 (*pc)++;
2087 gen_expr (exp, pc, ax, value);
2088 gen_usual_unary (exp, ax, value);
2089 gen_integral_promotions (exp, ax, value);
2090 gen_complement (ax, value);
2091 break;
2092
2093 case UNOP_IND:
2094 (*pc)++;
2095 gen_expr (exp, pc, ax, value);
2096 gen_usual_unary (exp, ax, value);
2097 if (!pointer_type (value->type))
2098 error (_("Argument of unary `*' is not a pointer."));
2099 gen_deref (ax, value);
2100 break;
2101
2102 case UNOP_ADDR:
2103 (*pc)++;
2104 gen_expr (exp, pc, ax, value);
2105 gen_address_of (ax, value);
2106 break;
2107
2108 case UNOP_SIZEOF:
2109 (*pc)++;
2110 /* Notice that gen_sizeof handles its own operand, unlike most
2111 of the other unary operator functions. This is because we
2112 have to throw away the code we generate. */
2113 gen_sizeof (exp, pc, ax, value,
2114 builtin_type (exp->gdbarch)->builtin_int);
2115 break;
2116
2117 case STRUCTOP_STRUCT:
2118 case STRUCTOP_PTR:
2119 {
2120 int length = (*pc)[1].longconst;
2121 char *name = &(*pc)[2].string;
2122
2123 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
2124 gen_expr (exp, pc, ax, value);
2125 if (op == STRUCTOP_STRUCT)
2126 gen_struct_ref (exp, ax, value, name, ".", "structure or union");
2127 else if (op == STRUCTOP_PTR)
2128 gen_struct_ref (exp, ax, value, name, "->",
2129 "pointer to a structure or union");
2130 else
2131 /* If this `if' chain doesn't handle it, then the case list
2132 shouldn't mention it, and we shouldn't be here. */
2133 internal_error (__FILE__, __LINE__,
2134 _("gen_expr: unhandled struct case"));
2135 }
2136 break;
2137
2138 case OP_THIS:
2139 {
2140 char *this_name;
2141 struct symbol *func, *sym;
2142 struct block *b;
2143
2144 func = block_linkage_function (block_for_pc (ax->scope));
2145 this_name = language_def (SYMBOL_LANGUAGE (func))->la_name_of_this;
2146 b = SYMBOL_BLOCK_VALUE (func);
2147
2148 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
2149 symbol instead of the LOC_ARG one (if both exist). */
2150 sym = lookup_block_symbol (b, this_name, VAR_DOMAIN);
2151 if (!sym)
2152 error (_("no `%s' found"), this_name);
2153
2154 gen_var_ref (exp->gdbarch, ax, value, sym);
2155
2156 if (value->optimized_out)
2157 error (_("`%s' has been optimized out, cannot use"),
2158 SYMBOL_PRINT_NAME (sym));
2159
2160 (*pc) += 2;
2161 }
2162 break;
2163
2164 case OP_SCOPE:
2165 {
2166 struct type *type = (*pc)[1].type;
2167 int length = longest_to_int ((*pc)[2].longconst);
2168 char *name = &(*pc)[3].string;
2169 int found;
2170
2171 found = gen_aggregate_elt_ref (exp, ax, value, type, name,
2172 "?", "??");
2173 if (!found)
2174 error (_("There is no field named %s"), name);
2175 (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
2176 }
2177 break;
2178
2179 case OP_TYPE:
2180 error (_("Attempt to use a type name as an expression."));
2181
2182 default:
2183 error (_("Unsupported operator %s (%d) in expression."),
2184 op_string (op), op);
2185 }
2186 }
2187
2188 /* This handles the middle-to-right-side of code generation for binary
2189 expressions, which is shared between regular binary operations and
2190 assign-modify (+= and friends) expressions. */
2191
2192 static void
2193 gen_expr_binop_rest (struct expression *exp,
2194 enum exp_opcode op, union exp_element **pc,
2195 struct agent_expr *ax, struct axs_value *value,
2196 struct axs_value *value1, struct axs_value *value2)
2197 {
2198 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
2199
2200 gen_expr (exp, pc, ax, value2);
2201 gen_usual_unary (exp, ax, value2);
2202 gen_usual_arithmetic (exp, ax, value1, value2);
2203 switch (op)
2204 {
2205 case BINOP_ADD:
2206 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
2207 && pointer_type (value2->type))
2208 {
2209 /* Swap the values and proceed normally. */
2210 ax_simple (ax, aop_swap);
2211 gen_ptradd (ax, value, value2, value1);
2212 }
2213 else if (pointer_type (value1->type)
2214 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2215 gen_ptradd (ax, value, value1, value2);
2216 else
2217 gen_binop (ax, value, value1, value2,
2218 aop_add, aop_add, 1, "addition");
2219 break;
2220 case BINOP_SUB:
2221 if (pointer_type (value1->type)
2222 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2223 gen_ptrsub (ax,value, value1, value2);
2224 else if (pointer_type (value1->type)
2225 && pointer_type (value2->type))
2226 /* FIXME --- result type should be ptrdiff_t */
2227 gen_ptrdiff (ax, value, value1, value2,
2228 builtin_type (exp->gdbarch)->builtin_long);
2229 else
2230 gen_binop (ax, value, value1, value2,
2231 aop_sub, aop_sub, 1, "subtraction");
2232 break;
2233 case BINOP_MUL:
2234 gen_binop (ax, value, value1, value2,
2235 aop_mul, aop_mul, 1, "multiplication");
2236 break;
2237 case BINOP_DIV:
2238 gen_binop (ax, value, value1, value2,
2239 aop_div_signed, aop_div_unsigned, 1, "division");
2240 break;
2241 case BINOP_REM:
2242 gen_binop (ax, value, value1, value2,
2243 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
2244 break;
2245 case BINOP_LSH:
2246 gen_binop (ax, value, value1, value2,
2247 aop_lsh, aop_lsh, 1, "left shift");
2248 break;
2249 case BINOP_RSH:
2250 gen_binop (ax, value, value1, value2,
2251 aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
2252 break;
2253 case BINOP_SUBSCRIPT:
2254 {
2255 struct type *type;
2256
2257 if (binop_types_user_defined_p (op, value1->type, value2->type))
2258 {
2259 error (_("cannot subscript requested type: "
2260 "cannot call user defined functions"));
2261 }
2262 else
2263 {
2264 /* If the user attempts to subscript something that is not
2265 an array or pointer type (like a plain int variable for
2266 example), then report this as an error. */
2267 type = check_typedef (value1->type);
2268 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2269 && TYPE_CODE (type) != TYPE_CODE_PTR)
2270 {
2271 if (TYPE_NAME (type))
2272 error (_("cannot subscript something of type `%s'"),
2273 TYPE_NAME (type));
2274 else
2275 error (_("cannot subscript requested type"));
2276 }
2277 }
2278
2279 if (!is_integral_type (value2->type))
2280 error (_("Argument to arithmetic operation "
2281 "not a number or boolean."));
2282
2283 gen_ptradd (ax, value, value1, value2);
2284 gen_deref (ax, value);
2285 break;
2286 }
2287 case BINOP_BITWISE_AND:
2288 gen_binop (ax, value, value1, value2,
2289 aop_bit_and, aop_bit_and, 0, "bitwise and");
2290 break;
2291
2292 case BINOP_BITWISE_IOR:
2293 gen_binop (ax, value, value1, value2,
2294 aop_bit_or, aop_bit_or, 0, "bitwise or");
2295 break;
2296
2297 case BINOP_BITWISE_XOR:
2298 gen_binop (ax, value, value1, value2,
2299 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
2300 break;
2301
2302 case BINOP_EQUAL:
2303 gen_equal (ax, value, value1, value2, int_type);
2304 break;
2305
2306 case BINOP_NOTEQUAL:
2307 gen_equal (ax, value, value1, value2, int_type);
2308 gen_logical_not (ax, value, int_type);
2309 break;
2310
2311 case BINOP_LESS:
2312 gen_less (ax, value, value1, value2, int_type);
2313 break;
2314
2315 case BINOP_GTR:
2316 ax_simple (ax, aop_swap);
2317 gen_less (ax, value, value1, value2, int_type);
2318 break;
2319
2320 case BINOP_LEQ:
2321 ax_simple (ax, aop_swap);
2322 gen_less (ax, value, value1, value2, int_type);
2323 gen_logical_not (ax, value, int_type);
2324 break;
2325
2326 case BINOP_GEQ:
2327 gen_less (ax, value, value1, value2, int_type);
2328 gen_logical_not (ax, value, int_type);
2329 break;
2330
2331 default:
2332 /* We should only list operators in the outer case statement
2333 that we actually handle in the inner case statement. */
2334 internal_error (__FILE__, __LINE__,
2335 _("gen_expr: op case sets don't match"));
2336 }
2337 }
2338 \f
2339
2340 /* Given a single variable and a scope, generate bytecodes to trace
2341 its value. This is for use in situations where we have only a
2342 variable's name, and no parsed expression; for instance, when the
2343 name comes from a list of local variables of a function. */
2344
2345 struct agent_expr *
2346 gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
2347 struct symbol *var)
2348 {
2349 struct cleanup *old_chain = 0;
2350 struct agent_expr *ax = new_agent_expr (gdbarch, scope);
2351 struct axs_value value;
2352
2353 old_chain = make_cleanup_free_agent_expr (ax);
2354
2355 trace_kludge = 1;
2356 gen_var_ref (gdbarch, ax, &value, var);
2357
2358 /* If there is no actual variable to trace, flag it by returning
2359 an empty agent expression. */
2360 if (value.optimized_out)
2361 {
2362 do_cleanups (old_chain);
2363 return NULL;
2364 }
2365
2366 /* Make sure we record the final object, and get rid of it. */
2367 gen_traced_pop (gdbarch, ax, &value);
2368
2369 /* Oh, and terminate. */
2370 ax_simple (ax, aop_end);
2371
2372 /* We have successfully built the agent expr, so cancel the cleanup
2373 request. If we add more cleanups that we always want done, this
2374 will have to get more complicated. */
2375 discard_cleanups (old_chain);
2376 return ax;
2377 }
2378
2379 /* Generating bytecode from GDB expressions: driver */
2380
2381 /* Given a GDB expression EXPR, return bytecode to trace its value.
2382 The result will use the `trace' and `trace_quick' bytecodes to
2383 record the value of all memory touched by the expression. The
2384 caller can then use the ax_reqs function to discover which
2385 registers it relies upon. */
2386 struct agent_expr *
2387 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
2388 {
2389 struct cleanup *old_chain = 0;
2390 struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
2391 union exp_element *pc;
2392 struct axs_value value;
2393
2394 old_chain = make_cleanup_free_agent_expr (ax);
2395
2396 pc = expr->elts;
2397 trace_kludge = 1;
2398 value.optimized_out = 0;
2399 gen_expr (expr, &pc, ax, &value);
2400
2401 /* Make sure we record the final object, and get rid of it. */
2402 gen_traced_pop (expr->gdbarch, ax, &value);
2403
2404 /* Oh, and terminate. */
2405 ax_simple (ax, aop_end);
2406
2407 /* We have successfully built the agent expr, so cancel the cleanup
2408 request. If we add more cleanups that we always want done, this
2409 will have to get more complicated. */
2410 discard_cleanups (old_chain);
2411 return ax;
2412 }
2413
2414 /* Given a GDB expression EXPR, return a bytecode sequence that will
2415 evaluate and return a result. The bytecodes will do a direct
2416 evaluation, using the current data on the target, rather than
2417 recording blocks of memory and registers for later use, as
2418 gen_trace_for_expr does. The generated bytecode sequence leaves
2419 the result of expression evaluation on the top of the stack. */
2420
2421 struct agent_expr *
2422 gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
2423 {
2424 struct cleanup *old_chain = 0;
2425 struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
2426 union exp_element *pc;
2427 struct axs_value value;
2428
2429 old_chain = make_cleanup_free_agent_expr (ax);
2430
2431 pc = expr->elts;
2432 trace_kludge = 0;
2433 value.optimized_out = 0;
2434 gen_expr (expr, &pc, ax, &value);
2435
2436 require_rvalue (ax, &value);
2437
2438 /* Oh, and terminate. */
2439 ax_simple (ax, aop_end);
2440
2441 /* We have successfully built the agent expr, so cancel the cleanup
2442 request. If we add more cleanups that we always want done, this
2443 will have to get more complicated. */
2444 discard_cleanups (old_chain);
2445 return ax;
2446 }
2447
2448 static void
2449 agent_command (char *exp, int from_tty)
2450 {
2451 struct cleanup *old_chain = 0;
2452 struct expression *expr;
2453 struct agent_expr *agent;
2454 struct frame_info *fi = get_current_frame (); /* need current scope */
2455
2456 /* We don't deal with overlay debugging at the moment. We need to
2457 think more carefully about this. If you copy this code into
2458 another command, change the error message; the user shouldn't
2459 have to know anything about agent expressions. */
2460 if (overlay_debugging)
2461 error (_("GDB can't do agent expression translation with overlays."));
2462
2463 if (exp == 0)
2464 error_no_arg (_("expression to translate"));
2465
2466 expr = parse_expression (exp);
2467 old_chain = make_cleanup (free_current_contents, &expr);
2468 agent = gen_trace_for_expr (get_frame_pc (fi), expr);
2469 make_cleanup_free_agent_expr (agent);
2470 ax_reqs (agent);
2471 ax_print (gdb_stdout, agent);
2472
2473 /* It would be nice to call ax_reqs here to gather some general info
2474 about the expression, and then print out the result. */
2475
2476 do_cleanups (old_chain);
2477 dont_repeat ();
2478 }
2479
2480 /* Parse the given expression, compile it into an agent expression
2481 that does direct evaluation, and display the resulting
2482 expression. */
2483
2484 static void
2485 agent_eval_command (char *exp, int from_tty)
2486 {
2487 struct cleanup *old_chain = 0;
2488 struct expression *expr;
2489 struct agent_expr *agent;
2490 struct frame_info *fi = get_current_frame (); /* need current scope */
2491
2492 /* We don't deal with overlay debugging at the moment. We need to
2493 think more carefully about this. If you copy this code into
2494 another command, change the error message; the user shouldn't
2495 have to know anything about agent expressions. */
2496 if (overlay_debugging)
2497 error (_("GDB can't do agent expression translation with overlays."));
2498
2499 if (exp == 0)
2500 error_no_arg (_("expression to translate"));
2501
2502 expr = parse_expression (exp);
2503 old_chain = make_cleanup (free_current_contents, &expr);
2504 agent = gen_eval_for_expr (get_frame_pc (fi), expr);
2505 make_cleanup_free_agent_expr (agent);
2506 ax_reqs (agent);
2507 ax_print (gdb_stdout, agent);
2508
2509 /* It would be nice to call ax_reqs here to gather some general info
2510 about the expression, and then print out the result. */
2511
2512 do_cleanups (old_chain);
2513 dont_repeat ();
2514 }
2515 \f
2516
2517 /* Initialization code. */
2518
2519 void _initialize_ax_gdb (void);
2520 void
2521 _initialize_ax_gdb (void)
2522 {
2523 add_cmd ("agent", class_maintenance, agent_command,
2524 _("Translate an expression into "
2525 "remote agent bytecode for tracing."),
2526 &maintenancelist);
2527
2528 add_cmd ("agent-eval", class_maintenance, agent_eval_command,
2529 _("Translate an expression into remote "
2530 "agent bytecode for evaluation."),
2531 &maintenancelist);
2532 }
This page took 0.109488 seconds and 4 git commands to generate.