Convert lvalue reference type check to general reference type check
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
1 /* GDB-specific functions for operating on agent expressions.
2
3 Copyright (C) 1998-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "symfile.h"
23 #include "gdbtypes.h"
24 #include "language.h"
25 #include "value.h"
26 #include "expression.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "ax.h"
32 #include "ax-gdb.h"
33 #include "block.h"
34 #include "regcache.h"
35 #include "user-regs.h"
36 #include "dictionary.h"
37 #include "breakpoint.h"
38 #include "tracepoint.h"
39 #include "cp-support.h"
40 #include "arch-utils.h"
41 #include "cli/cli-utils.h"
42 #include "linespec.h"
43 #include "location.h"
44 #include "objfiles.h"
45
46 #include "valprint.h"
47 #include "c-lang.h"
48
49 #include "format.h"
50
51 /* To make sense of this file, you should read doc/agentexpr.texi.
52 Then look at the types and enums in ax-gdb.h. For the code itself,
53 look at gen_expr, towards the bottom; that's the main function that
54 looks at the GDB expressions and calls everything else to generate
55 code.
56
57 I'm beginning to wonder whether it wouldn't be nicer to internally
58 generate trees, with types, and then spit out the bytecode in
59 linear form afterwards; we could generate fewer `swap', `ext', and
60 `zero_ext' bytecodes that way; it would make good constant folding
61 easier, too. But at the moment, I think we should be willing to
62 pay for the simplicity of this code with less-than-optimal bytecode
63 strings.
64
65 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
66 \f
67
68
69 /* Prototypes for local functions. */
70
71 /* There's a standard order to the arguments of these functions:
72 union exp_element ** --- pointer into expression
73 struct agent_expr * --- agent expression buffer to generate code into
74 struct axs_value * --- describes value left on top of stack */
75
76 static struct value *const_var_ref (struct symbol *var);
77 static struct value *const_expr (union exp_element **pc);
78 static struct value *maybe_const_expr (union exp_element **pc);
79
80 static void gen_traced_pop (struct gdbarch *, struct agent_expr *,
81 struct axs_value *);
82
83 static void gen_sign_extend (struct agent_expr *, struct type *);
84 static void gen_extend (struct agent_expr *, struct type *);
85 static void gen_fetch (struct agent_expr *, struct type *);
86 static void gen_left_shift (struct agent_expr *, int);
87
88
89 static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
90 static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
91 static void gen_offset (struct agent_expr *ax, int offset);
92 static void gen_sym_offset (struct agent_expr *, struct symbol *);
93 static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
94 struct axs_value *value, struct symbol *var);
95
96
97 static void gen_int_literal (struct agent_expr *ax,
98 struct axs_value *value,
99 LONGEST k, struct type *type);
100
101 static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
102 struct axs_value *value);
103 static int type_wider_than (struct type *type1, struct type *type2);
104 static struct type *max_type (struct type *type1, struct type *type2);
105 static void gen_conversion (struct agent_expr *ax,
106 struct type *from, struct type *to);
107 static int is_nontrivial_conversion (struct type *from, struct type *to);
108 static void gen_usual_arithmetic (struct expression *exp,
109 struct agent_expr *ax,
110 struct axs_value *value1,
111 struct axs_value *value2);
112 static void gen_integral_promotions (struct expression *exp,
113 struct agent_expr *ax,
114 struct axs_value *value);
115 static void gen_cast (struct agent_expr *ax,
116 struct axs_value *value, struct type *type);
117 static void gen_scale (struct agent_expr *ax,
118 enum agent_op op, struct type *type);
119 static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
120 struct axs_value *value1, struct axs_value *value2);
121 static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
122 struct axs_value *value1, struct axs_value *value2);
123 static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
124 struct axs_value *value1, struct axs_value *value2,
125 struct type *result_type);
126 static void gen_binop (struct agent_expr *ax,
127 struct axs_value *value,
128 struct axs_value *value1,
129 struct axs_value *value2,
130 enum agent_op op,
131 enum agent_op op_unsigned, int may_carry, char *name);
132 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
133 struct type *result_type);
134 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
135 static void gen_deref (struct agent_expr *, struct axs_value *);
136 static void gen_address_of (struct agent_expr *, struct axs_value *);
137 static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
138 struct axs_value *value,
139 struct type *type, int start, int end);
140 static void gen_primitive_field (struct expression *exp,
141 struct agent_expr *ax,
142 struct axs_value *value,
143 int offset, int fieldno, struct type *type);
144 static int gen_struct_ref_recursive (struct expression *exp,
145 struct agent_expr *ax,
146 struct axs_value *value,
147 char *field, int offset,
148 struct type *type);
149 static void gen_struct_ref (struct expression *exp, struct agent_expr *ax,
150 struct axs_value *value,
151 char *field,
152 char *operator_name, char *operand_name);
153 static void gen_static_field (struct gdbarch *gdbarch,
154 struct agent_expr *ax, struct axs_value *value,
155 struct type *type, int fieldno);
156 static void gen_repeat (struct expression *exp, union exp_element **pc,
157 struct agent_expr *ax, struct axs_value *value);
158 static void gen_sizeof (struct expression *exp, union exp_element **pc,
159 struct agent_expr *ax, struct axs_value *value,
160 struct type *size_type);
161 static void gen_expr_binop_rest (struct expression *exp,
162 enum exp_opcode op, union exp_element **pc,
163 struct agent_expr *ax,
164 struct axs_value *value,
165 struct axs_value *value1,
166 struct axs_value *value2);
167
168 static void agent_command (char *exp, int from_tty);
169 \f
170
171 /* Detecting constant expressions. */
172
173 /* If the variable reference at *PC is a constant, return its value.
174 Otherwise, return zero.
175
176 Hey, Wally! How can a variable reference be a constant?
177
178 Well, Beav, this function really handles the OP_VAR_VALUE operator,
179 not specifically variable references. GDB uses OP_VAR_VALUE to
180 refer to any kind of symbolic reference: function names, enum
181 elements, and goto labels are all handled through the OP_VAR_VALUE
182 operator, even though they're constants. It makes sense given the
183 situation.
184
185 Gee, Wally, don'cha wonder sometimes if data representations that
186 subvert commonly accepted definitions of terms in favor of heavily
187 context-specific interpretations are really just a tool of the
188 programming hegemony to preserve their power and exclude the
189 proletariat? */
190
191 static struct value *
192 const_var_ref (struct symbol *var)
193 {
194 struct type *type = SYMBOL_TYPE (var);
195
196 switch (SYMBOL_CLASS (var))
197 {
198 case LOC_CONST:
199 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
200
201 case LOC_LABEL:
202 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
203
204 default:
205 return 0;
206 }
207 }
208
209
210 /* If the expression starting at *PC has a constant value, return it.
211 Otherwise, return zero. If we return a value, then *PC will be
212 advanced to the end of it. If we return zero, *PC could be
213 anywhere. */
214 static struct value *
215 const_expr (union exp_element **pc)
216 {
217 enum exp_opcode op = (*pc)->opcode;
218 struct value *v1;
219
220 switch (op)
221 {
222 case OP_LONG:
223 {
224 struct type *type = (*pc)[1].type;
225 LONGEST k = (*pc)[2].longconst;
226
227 (*pc) += 4;
228 return value_from_longest (type, k);
229 }
230
231 case OP_VAR_VALUE:
232 {
233 struct value *v = const_var_ref ((*pc)[2].symbol);
234
235 (*pc) += 4;
236 return v;
237 }
238
239 /* We could add more operators in here. */
240
241 case UNOP_NEG:
242 (*pc)++;
243 v1 = const_expr (pc);
244 if (v1)
245 return value_neg (v1);
246 else
247 return 0;
248
249 default:
250 return 0;
251 }
252 }
253
254
255 /* Like const_expr, but guarantee also that *PC is undisturbed if the
256 expression is not constant. */
257 static struct value *
258 maybe_const_expr (union exp_element **pc)
259 {
260 union exp_element *tentative_pc = *pc;
261 struct value *v = const_expr (&tentative_pc);
262
263 /* If we got a value, then update the real PC. */
264 if (v)
265 *pc = tentative_pc;
266
267 return v;
268 }
269 \f
270
271 /* Generating bytecode from GDB expressions: general assumptions */
272
273 /* Here are a few general assumptions made throughout the code; if you
274 want to make a change that contradicts one of these, then you'd
275 better scan things pretty thoroughly.
276
277 - We assume that all values occupy one stack element. For example,
278 sometimes we'll swap to get at the left argument to a binary
279 operator. If we decide that void values should occupy no stack
280 elements, or that synthetic arrays (whose size is determined at
281 run time, created by the `@' operator) should occupy two stack
282 elements (address and length), then this will cause trouble.
283
284 - We assume the stack elements are infinitely wide, and that we
285 don't have to worry what happens if the user requests an
286 operation that is wider than the actual interpreter's stack.
287 That is, it's up to the interpreter to handle directly all the
288 integer widths the user has access to. (Woe betide the language
289 with bignums!)
290
291 - We don't support side effects. Thus, we don't have to worry about
292 GCC's generalized lvalues, function calls, etc.
293
294 - We don't support floating point. Many places where we switch on
295 some type don't bother to include cases for floating point; there
296 may be even more subtle ways this assumption exists. For
297 example, the arguments to % must be integers.
298
299 - We assume all subexpressions have a static, unchanging type. If
300 we tried to support convenience variables, this would be a
301 problem.
302
303 - All values on the stack should always be fully zero- or
304 sign-extended.
305
306 (I wasn't sure whether to choose this or its opposite --- that
307 only addresses are assumed extended --- but it turns out that
308 neither convention completely eliminates spurious extend
309 operations (if everything is always extended, then you have to
310 extend after add, because it could overflow; if nothing is
311 extended, then you end up producing extends whenever you change
312 sizes), and this is simpler.) */
313 \f
314
315 /* Scan for all static fields in the given class, including any base
316 classes, and generate tracing bytecodes for each. */
317
318 static void
319 gen_trace_static_fields (struct gdbarch *gdbarch,
320 struct agent_expr *ax,
321 struct type *type)
322 {
323 int i, nbases = TYPE_N_BASECLASSES (type);
324 struct axs_value value;
325
326 type = check_typedef (type);
327
328 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
329 {
330 if (field_is_static (&TYPE_FIELD (type, i)))
331 {
332 gen_static_field (gdbarch, ax, &value, type, i);
333 if (value.optimized_out)
334 continue;
335 switch (value.kind)
336 {
337 case axs_lvalue_memory:
338 {
339 /* Initialize the TYPE_LENGTH if it is a typedef. */
340 check_typedef (value.type);
341 ax_const_l (ax, TYPE_LENGTH (value.type));
342 ax_simple (ax, aop_trace);
343 }
344 break;
345
346 case axs_lvalue_register:
347 /* We don't actually need the register's value to be pushed,
348 just note that we need it to be collected. */
349 ax_reg_mask (ax, value.u.reg);
350
351 default:
352 break;
353 }
354 }
355 }
356
357 /* Now scan through base classes recursively. */
358 for (i = 0; i < nbases; i++)
359 {
360 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
361
362 gen_trace_static_fields (gdbarch, ax, basetype);
363 }
364 }
365
366 /* Trace the lvalue on the stack, if it needs it. In either case, pop
367 the value. Useful on the left side of a comma, and at the end of
368 an expression being used for tracing. */
369 static void
370 gen_traced_pop (struct gdbarch *gdbarch,
371 struct agent_expr *ax, struct axs_value *value)
372 {
373 int string_trace = 0;
374 if (ax->trace_string
375 && TYPE_CODE (value->type) == TYPE_CODE_PTR
376 && c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)),
377 's'))
378 string_trace = 1;
379
380 if (ax->tracing)
381 switch (value->kind)
382 {
383 case axs_rvalue:
384 if (string_trace)
385 {
386 ax_const_l (ax, ax->trace_string);
387 ax_simple (ax, aop_tracenz);
388 }
389 else
390 /* We don't trace rvalues, just the lvalues necessary to
391 produce them. So just dispose of this value. */
392 ax_simple (ax, aop_pop);
393 break;
394
395 case axs_lvalue_memory:
396 {
397 /* Initialize the TYPE_LENGTH if it is a typedef. */
398 check_typedef (value->type);
399
400 if (string_trace)
401 {
402 gen_fetch (ax, value->type);
403 ax_const_l (ax, ax->trace_string);
404 ax_simple (ax, aop_tracenz);
405 }
406 else
407 {
408 /* There's no point in trying to use a trace_quick bytecode
409 here, since "trace_quick SIZE pop" is three bytes, whereas
410 "const8 SIZE trace" is also three bytes, does the same
411 thing, and the simplest code which generates that will also
412 work correctly for objects with large sizes. */
413 ax_const_l (ax, TYPE_LENGTH (value->type));
414 ax_simple (ax, aop_trace);
415 }
416 }
417 break;
418
419 case axs_lvalue_register:
420 /* We don't actually need the register's value to be on the
421 stack, and the target will get heartburn if the register is
422 larger than will fit in a stack, so just mark it for
423 collection and be done with it. */
424 ax_reg_mask (ax, value->u.reg);
425
426 /* But if the register points to a string, assume the value
427 will fit on the stack and push it anyway. */
428 if (string_trace)
429 {
430 ax_reg (ax, value->u.reg);
431 ax_const_l (ax, ax->trace_string);
432 ax_simple (ax, aop_tracenz);
433 }
434 break;
435 }
436 else
437 /* If we're not tracing, just pop the value. */
438 ax_simple (ax, aop_pop);
439
440 /* To trace C++ classes with static fields stored elsewhere. */
441 if (ax->tracing
442 && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT
443 || TYPE_CODE (value->type) == TYPE_CODE_UNION))
444 gen_trace_static_fields (gdbarch, ax, value->type);
445 }
446 \f
447
448
449 /* Generating bytecode from GDB expressions: helper functions */
450
451 /* Assume that the lower bits of the top of the stack is a value of
452 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
453 static void
454 gen_sign_extend (struct agent_expr *ax, struct type *type)
455 {
456 /* Do we need to sign-extend this? */
457 if (!TYPE_UNSIGNED (type))
458 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
459 }
460
461
462 /* Assume the lower bits of the top of the stack hold a value of type
463 TYPE, and the upper bits are garbage. Sign-extend or truncate as
464 needed. */
465 static void
466 gen_extend (struct agent_expr *ax, struct type *type)
467 {
468 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
469
470 /* I just had to. */
471 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
472 }
473
474
475 /* Assume that the top of the stack contains a value of type "pointer
476 to TYPE"; generate code to fetch its value. Note that TYPE is the
477 target type, not the pointer type. */
478 static void
479 gen_fetch (struct agent_expr *ax, struct type *type)
480 {
481 if (ax->tracing)
482 {
483 /* Record the area of memory we're about to fetch. */
484 ax_trace_quick (ax, TYPE_LENGTH (type));
485 }
486
487 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
488 type = TYPE_TARGET_TYPE (type);
489
490 switch (TYPE_CODE (type))
491 {
492 case TYPE_CODE_PTR:
493 case TYPE_CODE_REF:
494 case TYPE_CODE_RVALUE_REF:
495 case TYPE_CODE_ENUM:
496 case TYPE_CODE_INT:
497 case TYPE_CODE_CHAR:
498 case TYPE_CODE_BOOL:
499 /* It's a scalar value, so we know how to dereference it. How
500 many bytes long is it? */
501 switch (TYPE_LENGTH (type))
502 {
503 case 8 / TARGET_CHAR_BIT:
504 ax_simple (ax, aop_ref8);
505 break;
506 case 16 / TARGET_CHAR_BIT:
507 ax_simple (ax, aop_ref16);
508 break;
509 case 32 / TARGET_CHAR_BIT:
510 ax_simple (ax, aop_ref32);
511 break;
512 case 64 / TARGET_CHAR_BIT:
513 ax_simple (ax, aop_ref64);
514 break;
515
516 /* Either our caller shouldn't have asked us to dereference
517 that pointer (other code's fault), or we're not
518 implementing something we should be (this code's fault).
519 In any case, it's a bug the user shouldn't see. */
520 default:
521 internal_error (__FILE__, __LINE__,
522 _("gen_fetch: strange size"));
523 }
524
525 gen_sign_extend (ax, type);
526 break;
527
528 default:
529 /* Our caller requested us to dereference a pointer from an unsupported
530 type. Error out and give callers a chance to handle the failure
531 gracefully. */
532 error (_("gen_fetch: Unsupported type code `%s'."),
533 TYPE_NAME (type));
534 }
535 }
536
537
538 /* Generate code to left shift the top of the stack by DISTANCE bits, or
539 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
540 unsigned (logical) right shifts. */
541 static void
542 gen_left_shift (struct agent_expr *ax, int distance)
543 {
544 if (distance > 0)
545 {
546 ax_const_l (ax, distance);
547 ax_simple (ax, aop_lsh);
548 }
549 else if (distance < 0)
550 {
551 ax_const_l (ax, -distance);
552 ax_simple (ax, aop_rsh_unsigned);
553 }
554 }
555 \f
556
557
558 /* Generating bytecode from GDB expressions: symbol references */
559
560 /* Generate code to push the base address of the argument portion of
561 the top stack frame. */
562 static void
563 gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
564 {
565 int frame_reg;
566 LONGEST frame_offset;
567
568 gdbarch_virtual_frame_pointer (gdbarch,
569 ax->scope, &frame_reg, &frame_offset);
570 ax_reg (ax, frame_reg);
571 gen_offset (ax, frame_offset);
572 }
573
574
575 /* Generate code to push the base address of the locals portion of the
576 top stack frame. */
577 static void
578 gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
579 {
580 int frame_reg;
581 LONGEST frame_offset;
582
583 gdbarch_virtual_frame_pointer (gdbarch,
584 ax->scope, &frame_reg, &frame_offset);
585 ax_reg (ax, frame_reg);
586 gen_offset (ax, frame_offset);
587 }
588
589
590 /* Generate code to add OFFSET to the top of the stack. Try to
591 generate short and readable code. We use this for getting to
592 variables on the stack, and structure members. If we were
593 programming in ML, it would be clearer why these are the same
594 thing. */
595 static void
596 gen_offset (struct agent_expr *ax, int offset)
597 {
598 /* It would suffice to simply push the offset and add it, but this
599 makes it easier to read positive and negative offsets in the
600 bytecode. */
601 if (offset > 0)
602 {
603 ax_const_l (ax, offset);
604 ax_simple (ax, aop_add);
605 }
606 else if (offset < 0)
607 {
608 ax_const_l (ax, -offset);
609 ax_simple (ax, aop_sub);
610 }
611 }
612
613
614 /* In many cases, a symbol's value is the offset from some other
615 address (stack frame, base register, etc.) Generate code to add
616 VAR's value to the top of the stack. */
617 static void
618 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
619 {
620 gen_offset (ax, SYMBOL_VALUE (var));
621 }
622
623
624 /* Generate code for a variable reference to AX. The variable is the
625 symbol VAR. Set VALUE to describe the result. */
626
627 static void
628 gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
629 struct axs_value *value, struct symbol *var)
630 {
631 /* Dereference any typedefs. */
632 value->type = check_typedef (SYMBOL_TYPE (var));
633 value->optimized_out = 0;
634
635 if (SYMBOL_COMPUTED_OPS (var) != NULL)
636 {
637 SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
638 return;
639 }
640
641 /* I'm imitating the code in read_var_value. */
642 switch (SYMBOL_CLASS (var))
643 {
644 case LOC_CONST: /* A constant, like an enum value. */
645 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
646 value->kind = axs_rvalue;
647 break;
648
649 case LOC_LABEL: /* A goto label, being used as a value. */
650 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
651 value->kind = axs_rvalue;
652 break;
653
654 case LOC_CONST_BYTES:
655 internal_error (__FILE__, __LINE__,
656 _("gen_var_ref: LOC_CONST_BYTES "
657 "symbols are not supported"));
658
659 /* Variable at a fixed location in memory. Easy. */
660 case LOC_STATIC:
661 /* Push the address of the variable. */
662 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
663 value->kind = axs_lvalue_memory;
664 break;
665
666 case LOC_ARG: /* var lives in argument area of frame */
667 gen_frame_args_address (gdbarch, ax);
668 gen_sym_offset (ax, var);
669 value->kind = axs_lvalue_memory;
670 break;
671
672 case LOC_REF_ARG: /* As above, but the frame slot really
673 holds the address of the variable. */
674 gen_frame_args_address (gdbarch, ax);
675 gen_sym_offset (ax, var);
676 /* Don't assume any particular pointer size. */
677 gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
678 value->kind = axs_lvalue_memory;
679 break;
680
681 case LOC_LOCAL: /* var lives in locals area of frame */
682 gen_frame_locals_address (gdbarch, ax);
683 gen_sym_offset (ax, var);
684 value->kind = axs_lvalue_memory;
685 break;
686
687 case LOC_TYPEDEF:
688 error (_("Cannot compute value of typedef `%s'."),
689 SYMBOL_PRINT_NAME (var));
690 break;
691
692 case LOC_BLOCK:
693 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
694 value->kind = axs_rvalue;
695 break;
696
697 case LOC_REGISTER:
698 /* Don't generate any code at all; in the process of treating
699 this as an lvalue or rvalue, the caller will generate the
700 right code. */
701 value->kind = axs_lvalue_register;
702 value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
703 break;
704
705 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
706 register, not on the stack. Simpler than LOC_REGISTER
707 because it's just like any other case where the thing
708 has a real address. */
709 case LOC_REGPARM_ADDR:
710 ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
711 value->kind = axs_lvalue_memory;
712 break;
713
714 case LOC_UNRESOLVED:
715 {
716 struct bound_minimal_symbol msym
717 = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
718
719 if (!msym.minsym)
720 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
721
722 /* Push the address of the variable. */
723 ax_const_l (ax, BMSYMBOL_VALUE_ADDRESS (msym));
724 value->kind = axs_lvalue_memory;
725 }
726 break;
727
728 case LOC_COMPUTED:
729 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
730
731 case LOC_OPTIMIZED_OUT:
732 /* Flag this, but don't say anything; leave it up to callers to
733 warn the user. */
734 value->optimized_out = 1;
735 break;
736
737 default:
738 error (_("Cannot find value of botched symbol `%s'."),
739 SYMBOL_PRINT_NAME (var));
740 break;
741 }
742 }
743 \f
744
745
746 /* Generating bytecode from GDB expressions: literals */
747
748 static void
749 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
750 struct type *type)
751 {
752 ax_const_l (ax, k);
753 value->kind = axs_rvalue;
754 value->type = check_typedef (type);
755 }
756 \f
757
758
759 /* Generating bytecode from GDB expressions: unary conversions, casts */
760
761 /* Take what's on the top of the stack (as described by VALUE), and
762 try to make an rvalue out of it. Signal an error if we can't do
763 that. */
764 void
765 require_rvalue (struct agent_expr *ax, struct axs_value *value)
766 {
767 /* Only deal with scalars, structs and such may be too large
768 to fit in a stack entry. */
769 value->type = check_typedef (value->type);
770 if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY
771 || TYPE_CODE (value->type) == TYPE_CODE_STRUCT
772 || TYPE_CODE (value->type) == TYPE_CODE_UNION
773 || TYPE_CODE (value->type) == TYPE_CODE_FUNC)
774 error (_("Value not scalar: cannot be an rvalue."));
775
776 switch (value->kind)
777 {
778 case axs_rvalue:
779 /* It's already an rvalue. */
780 break;
781
782 case axs_lvalue_memory:
783 /* The top of stack is the address of the object. Dereference. */
784 gen_fetch (ax, value->type);
785 break;
786
787 case axs_lvalue_register:
788 /* There's nothing on the stack, but value->u.reg is the
789 register number containing the value.
790
791 When we add floating-point support, this is going to have to
792 change. What about SPARC register pairs, for example? */
793 ax_reg (ax, value->u.reg);
794 gen_extend (ax, value->type);
795 break;
796 }
797
798 value->kind = axs_rvalue;
799 }
800
801
802 /* Assume the top of the stack is described by VALUE, and perform the
803 usual unary conversions. This is motivated by ANSI 6.2.2, but of
804 course GDB expressions are not ANSI; they're the mishmash union of
805 a bunch of languages. Rah.
806
807 NOTE! This function promises to produce an rvalue only when the
808 incoming value is of an appropriate type. In other words, the
809 consumer of the value this function produces may assume the value
810 is an rvalue only after checking its type.
811
812 The immediate issue is that if the user tries to use a structure or
813 union as an operand of, say, the `+' operator, we don't want to try
814 to convert that structure to an rvalue; require_rvalue will bomb on
815 structs and unions. Rather, we want to simply pass the struct
816 lvalue through unchanged, and let `+' raise an error. */
817
818 static void
819 gen_usual_unary (struct expression *exp, struct agent_expr *ax,
820 struct axs_value *value)
821 {
822 /* We don't have to generate any code for the usual integral
823 conversions, since values are always represented as full-width on
824 the stack. Should we tweak the type? */
825
826 /* Some types require special handling. */
827 switch (TYPE_CODE (value->type))
828 {
829 /* Functions get converted to a pointer to the function. */
830 case TYPE_CODE_FUNC:
831 value->type = lookup_pointer_type (value->type);
832 value->kind = axs_rvalue; /* Should always be true, but just in case. */
833 break;
834
835 /* Arrays get converted to a pointer to their first element, and
836 are no longer an lvalue. */
837 case TYPE_CODE_ARRAY:
838 {
839 struct type *elements = TYPE_TARGET_TYPE (value->type);
840
841 value->type = lookup_pointer_type (elements);
842 value->kind = axs_rvalue;
843 /* We don't need to generate any code; the address of the array
844 is also the address of its first element. */
845 }
846 break;
847
848 /* Don't try to convert structures and unions to rvalues. Let the
849 consumer signal an error. */
850 case TYPE_CODE_STRUCT:
851 case TYPE_CODE_UNION:
852 return;
853 }
854
855 /* If the value is an lvalue, dereference it. */
856 require_rvalue (ax, value);
857 }
858
859
860 /* Return non-zero iff the type TYPE1 is considered "wider" than the
861 type TYPE2, according to the rules described in gen_usual_arithmetic. */
862 static int
863 type_wider_than (struct type *type1, struct type *type2)
864 {
865 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
866 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
867 && TYPE_UNSIGNED (type1)
868 && !TYPE_UNSIGNED (type2)));
869 }
870
871
872 /* Return the "wider" of the two types TYPE1 and TYPE2. */
873 static struct type *
874 max_type (struct type *type1, struct type *type2)
875 {
876 return type_wider_than (type1, type2) ? type1 : type2;
877 }
878
879
880 /* Generate code to convert a scalar value of type FROM to type TO. */
881 static void
882 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
883 {
884 /* Perhaps there is a more graceful way to state these rules. */
885
886 /* If we're converting to a narrower type, then we need to clear out
887 the upper bits. */
888 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
889 gen_extend (ax, to);
890
891 /* If the two values have equal width, but different signednesses,
892 then we need to extend. */
893 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
894 {
895 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
896 gen_extend (ax, to);
897 }
898
899 /* If we're converting to a wider type, and becoming unsigned, then
900 we need to zero out any possible sign bits. */
901 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
902 {
903 if (TYPE_UNSIGNED (to))
904 gen_extend (ax, to);
905 }
906 }
907
908
909 /* Return non-zero iff the type FROM will require any bytecodes to be
910 emitted to be converted to the type TO. */
911 static int
912 is_nontrivial_conversion (struct type *from, struct type *to)
913 {
914 agent_expr_up ax (new agent_expr (NULL, 0));
915 int nontrivial;
916
917 /* Actually generate the code, and see if anything came out. At the
918 moment, it would be trivial to replicate the code in
919 gen_conversion here, but in the future, when we're supporting
920 floating point and the like, it may not be. Doing things this
921 way allows this function to be independent of the logic in
922 gen_conversion. */
923 gen_conversion (ax.get (), from, to);
924 nontrivial = ax->len > 0;
925 return nontrivial;
926 }
927
928
929 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
930 6.2.1.5) for the two operands of an arithmetic operator. This
931 effectively finds a "least upper bound" type for the two arguments,
932 and promotes each argument to that type. *VALUE1 and *VALUE2
933 describe the values as they are passed in, and as they are left. */
934 static void
935 gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
936 struct axs_value *value1, struct axs_value *value2)
937 {
938 /* Do the usual binary conversions. */
939 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
940 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
941 {
942 /* The ANSI integral promotions seem to work this way: Order the
943 integer types by size, and then by signedness: an n-bit
944 unsigned type is considered "wider" than an n-bit signed
945 type. Promote to the "wider" of the two types, and always
946 promote at least to int. */
947 struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
948 max_type (value1->type, value2->type));
949
950 /* Deal with value2, on the top of the stack. */
951 gen_conversion (ax, value2->type, target);
952
953 /* Deal with value1, not on the top of the stack. Don't
954 generate the `swap' instructions if we're not actually going
955 to do anything. */
956 if (is_nontrivial_conversion (value1->type, target))
957 {
958 ax_simple (ax, aop_swap);
959 gen_conversion (ax, value1->type, target);
960 ax_simple (ax, aop_swap);
961 }
962
963 value1->type = value2->type = check_typedef (target);
964 }
965 }
966
967
968 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
969 the value on the top of the stack, as described by VALUE. Assume
970 the value has integral type. */
971 static void
972 gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
973 struct axs_value *value)
974 {
975 const struct builtin_type *builtin = builtin_type (exp->gdbarch);
976
977 if (!type_wider_than (value->type, builtin->builtin_int))
978 {
979 gen_conversion (ax, value->type, builtin->builtin_int);
980 value->type = builtin->builtin_int;
981 }
982 else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
983 {
984 gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
985 value->type = builtin->builtin_unsigned_int;
986 }
987 }
988
989
990 /* Generate code for a cast to TYPE. */
991 static void
992 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
993 {
994 /* GCC does allow casts to yield lvalues, so this should be fixed
995 before merging these changes into the trunk. */
996 require_rvalue (ax, value);
997 /* Dereference typedefs. */
998 type = check_typedef (type);
999
1000 switch (TYPE_CODE (type))
1001 {
1002 case TYPE_CODE_PTR:
1003 case TYPE_CODE_REF:
1004 case TYPE_CODE_RVALUE_REF:
1005 /* It's implementation-defined, and I'll bet this is what GCC
1006 does. */
1007 break;
1008
1009 case TYPE_CODE_ARRAY:
1010 case TYPE_CODE_STRUCT:
1011 case TYPE_CODE_UNION:
1012 case TYPE_CODE_FUNC:
1013 error (_("Invalid type cast: intended type must be scalar."));
1014
1015 case TYPE_CODE_ENUM:
1016 case TYPE_CODE_BOOL:
1017 /* We don't have to worry about the size of the value, because
1018 all our integral values are fully sign-extended, and when
1019 casting pointers we can do anything we like. Is there any
1020 way for us to know what GCC actually does with a cast like
1021 this? */
1022 break;
1023
1024 case TYPE_CODE_INT:
1025 gen_conversion (ax, value->type, type);
1026 break;
1027
1028 case TYPE_CODE_VOID:
1029 /* We could pop the value, and rely on everyone else to check
1030 the type and notice that this value doesn't occupy a stack
1031 slot. But for now, leave the value on the stack, and
1032 preserve the "value == stack element" assumption. */
1033 break;
1034
1035 default:
1036 error (_("Casts to requested type are not yet implemented."));
1037 }
1038
1039 value->type = type;
1040 }
1041 \f
1042
1043
1044 /* Generating bytecode from GDB expressions: arithmetic */
1045
1046 /* Scale the integer on the top of the stack by the size of the target
1047 of the pointer type TYPE. */
1048 static void
1049 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
1050 {
1051 struct type *element = TYPE_TARGET_TYPE (type);
1052
1053 if (TYPE_LENGTH (element) != 1)
1054 {
1055 ax_const_l (ax, TYPE_LENGTH (element));
1056 ax_simple (ax, op);
1057 }
1058 }
1059
1060
1061 /* Generate code for pointer arithmetic PTR + INT. */
1062 static void
1063 gen_ptradd (struct agent_expr *ax, struct axs_value *value,
1064 struct axs_value *value1, struct axs_value *value2)
1065 {
1066 gdb_assert (pointer_type (value1->type));
1067 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1068
1069 gen_scale (ax, aop_mul, value1->type);
1070 ax_simple (ax, aop_add);
1071 gen_extend (ax, value1->type); /* Catch overflow. */
1072 value->type = value1->type;
1073 value->kind = axs_rvalue;
1074 }
1075
1076
1077 /* Generate code for pointer arithmetic PTR - INT. */
1078 static void
1079 gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
1080 struct axs_value *value1, struct axs_value *value2)
1081 {
1082 gdb_assert (pointer_type (value1->type));
1083 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1084
1085 gen_scale (ax, aop_mul, value1->type);
1086 ax_simple (ax, aop_sub);
1087 gen_extend (ax, value1->type); /* Catch overflow. */
1088 value->type = value1->type;
1089 value->kind = axs_rvalue;
1090 }
1091
1092
1093 /* Generate code for pointer arithmetic PTR - PTR. */
1094 static void
1095 gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
1096 struct axs_value *value1, struct axs_value *value2,
1097 struct type *result_type)
1098 {
1099 gdb_assert (pointer_type (value1->type));
1100 gdb_assert (pointer_type (value2->type));
1101
1102 if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1103 != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
1104 error (_("\
1105 First argument of `-' is a pointer, but second argument is neither\n\
1106 an integer nor a pointer of the same type."));
1107
1108 ax_simple (ax, aop_sub);
1109 gen_scale (ax, aop_div_unsigned, value1->type);
1110 value->type = result_type;
1111 value->kind = axs_rvalue;
1112 }
1113
1114 static void
1115 gen_equal (struct agent_expr *ax, struct axs_value *value,
1116 struct axs_value *value1, struct axs_value *value2,
1117 struct type *result_type)
1118 {
1119 if (pointer_type (value1->type) || pointer_type (value2->type))
1120 ax_simple (ax, aop_equal);
1121 else
1122 gen_binop (ax, value, value1, value2,
1123 aop_equal, aop_equal, 0, "equal");
1124 value->type = result_type;
1125 value->kind = axs_rvalue;
1126 }
1127
1128 static void
1129 gen_less (struct agent_expr *ax, struct axs_value *value,
1130 struct axs_value *value1, struct axs_value *value2,
1131 struct type *result_type)
1132 {
1133 if (pointer_type (value1->type) || pointer_type (value2->type))
1134 ax_simple (ax, aop_less_unsigned);
1135 else
1136 gen_binop (ax, value, value1, value2,
1137 aop_less_signed, aop_less_unsigned, 0, "less than");
1138 value->type = result_type;
1139 value->kind = axs_rvalue;
1140 }
1141
1142 /* Generate code for a binary operator that doesn't do pointer magic.
1143 We set VALUE to describe the result value; we assume VALUE1 and
1144 VALUE2 describe the two operands, and that they've undergone the
1145 usual binary conversions. MAY_CARRY should be non-zero iff the
1146 result needs to be extended. NAME is the English name of the
1147 operator, used in error messages */
1148 static void
1149 gen_binop (struct agent_expr *ax, struct axs_value *value,
1150 struct axs_value *value1, struct axs_value *value2,
1151 enum agent_op op, enum agent_op op_unsigned,
1152 int may_carry, char *name)
1153 {
1154 /* We only handle INT op INT. */
1155 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1156 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1157 error (_("Invalid combination of types in %s."), name);
1158
1159 ax_simple (ax,
1160 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1161 if (may_carry)
1162 gen_extend (ax, value1->type); /* catch overflow */
1163 value->type = value1->type;
1164 value->kind = axs_rvalue;
1165 }
1166
1167
1168 static void
1169 gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1170 struct type *result_type)
1171 {
1172 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1173 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1174 error (_("Invalid type of operand to `!'."));
1175
1176 ax_simple (ax, aop_log_not);
1177 value->type = result_type;
1178 }
1179
1180
1181 static void
1182 gen_complement (struct agent_expr *ax, struct axs_value *value)
1183 {
1184 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1185 error (_("Invalid type of operand to `~'."));
1186
1187 ax_simple (ax, aop_bit_not);
1188 gen_extend (ax, value->type);
1189 }
1190 \f
1191
1192
1193 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1194
1195 /* Dereference the value on the top of the stack. */
1196 static void
1197 gen_deref (struct agent_expr *ax, struct axs_value *value)
1198 {
1199 /* The caller should check the type, because several operators use
1200 this, and we don't know what error message to generate. */
1201 if (!pointer_type (value->type))
1202 internal_error (__FILE__, __LINE__,
1203 _("gen_deref: expected a pointer"));
1204
1205 /* We've got an rvalue now, which is a pointer. We want to yield an
1206 lvalue, whose address is exactly that pointer. So we don't
1207 actually emit any code; we just change the type from "Pointer to
1208 T" to "T", and mark the value as an lvalue in memory. Leave it
1209 to the consumer to actually dereference it. */
1210 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1211 if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
1212 error (_("Attempt to dereference a generic pointer."));
1213 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1214 ? axs_rvalue : axs_lvalue_memory);
1215 }
1216
1217
1218 /* Produce the address of the lvalue on the top of the stack. */
1219 static void
1220 gen_address_of (struct agent_expr *ax, struct axs_value *value)
1221 {
1222 /* Special case for taking the address of a function. The ANSI
1223 standard describes this as a special case, too, so this
1224 arrangement is not without motivation. */
1225 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1226 /* The value's already an rvalue on the stack, so we just need to
1227 change the type. */
1228 value->type = lookup_pointer_type (value->type);
1229 else
1230 switch (value->kind)
1231 {
1232 case axs_rvalue:
1233 error (_("Operand of `&' is an rvalue, which has no address."));
1234
1235 case axs_lvalue_register:
1236 error (_("Operand of `&' is in a register, and has no address."));
1237
1238 case axs_lvalue_memory:
1239 value->kind = axs_rvalue;
1240 value->type = lookup_pointer_type (value->type);
1241 break;
1242 }
1243 }
1244
1245 /* Generate code to push the value of a bitfield of a structure whose
1246 address is on the top of the stack. START and END give the
1247 starting and one-past-ending *bit* numbers of the field within the
1248 structure. */
1249 static void
1250 gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
1251 struct axs_value *value, struct type *type,
1252 int start, int end)
1253 {
1254 /* Note that ops[i] fetches 8 << i bits. */
1255 static enum agent_op ops[]
1256 = {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1257 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1258
1259 /* We don't want to touch any byte that the bitfield doesn't
1260 actually occupy; we shouldn't make any accesses we're not
1261 explicitly permitted to. We rely here on the fact that the
1262 bytecode `ref' operators work on unaligned addresses.
1263
1264 It takes some fancy footwork to get the stack to work the way
1265 we'd like. Say we're retrieving a bitfield that requires three
1266 fetches. Initially, the stack just contains the address:
1267 addr
1268 For the first fetch, we duplicate the address
1269 addr addr
1270 then add the byte offset, do the fetch, and shift and mask as
1271 needed, yielding a fragment of the value, properly aligned for
1272 the final bitwise or:
1273 addr frag1
1274 then we swap, and repeat the process:
1275 frag1 addr --- address on top
1276 frag1 addr addr --- duplicate it
1277 frag1 addr frag2 --- get second fragment
1278 frag1 frag2 addr --- swap again
1279 frag1 frag2 frag3 --- get third fragment
1280 Notice that, since the third fragment is the last one, we don't
1281 bother duplicating the address this time. Now we have all the
1282 fragments on the stack, and we can simply `or' them together,
1283 yielding the final value of the bitfield. */
1284
1285 /* The first and one-after-last bits in the field, but rounded down
1286 and up to byte boundaries. */
1287 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1288 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1289 / TARGET_CHAR_BIT)
1290 * TARGET_CHAR_BIT);
1291
1292 /* current bit offset within the structure */
1293 int offset;
1294
1295 /* The index in ops of the opcode we're considering. */
1296 int op;
1297
1298 /* The number of fragments we generated in the process. Probably
1299 equal to the number of `one' bits in bytesize, but who cares? */
1300 int fragment_count;
1301
1302 /* Dereference any typedefs. */
1303 type = check_typedef (type);
1304
1305 /* Can we fetch the number of bits requested at all? */
1306 if ((end - start) > ((1 << num_ops) * 8))
1307 internal_error (__FILE__, __LINE__,
1308 _("gen_bitfield_ref: bitfield too wide"));
1309
1310 /* Note that we know here that we only need to try each opcode once.
1311 That may not be true on machines with weird byte sizes. */
1312 offset = bound_start;
1313 fragment_count = 0;
1314 for (op = num_ops - 1; op >= 0; op--)
1315 {
1316 /* number of bits that ops[op] would fetch */
1317 int op_size = 8 << op;
1318
1319 /* The stack at this point, from bottom to top, contains zero or
1320 more fragments, then the address. */
1321
1322 /* Does this fetch fit within the bitfield? */
1323 if (offset + op_size <= bound_end)
1324 {
1325 /* Is this the last fragment? */
1326 int last_frag = (offset + op_size == bound_end);
1327
1328 if (!last_frag)
1329 ax_simple (ax, aop_dup); /* keep a copy of the address */
1330
1331 /* Add the offset. */
1332 gen_offset (ax, offset / TARGET_CHAR_BIT);
1333
1334 if (ax->tracing)
1335 {
1336 /* Record the area of memory we're about to fetch. */
1337 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1338 }
1339
1340 /* Perform the fetch. */
1341 ax_simple (ax, ops[op]);
1342
1343 /* Shift the bits we have to their proper position.
1344 gen_left_shift will generate right shifts when the operand
1345 is negative.
1346
1347 A big-endian field diagram to ponder:
1348 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1349 +------++------++------++------++------++------++------++------+
1350 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1351 ^ ^ ^ ^
1352 bit number 16 32 48 53
1353 These are bit numbers as supplied by GDB. Note that the
1354 bit numbers run from right to left once you've fetched the
1355 value!
1356
1357 A little-endian field diagram to ponder:
1358 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1359 +------++------++------++------++------++------++------++------+
1360 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1361 ^ ^ ^ ^ ^
1362 bit number 48 32 16 4 0
1363
1364 In both cases, the most significant end is on the left
1365 (i.e. normal numeric writing order), which means that you
1366 don't go crazy thinking about `left' and `right' shifts.
1367
1368 We don't have to worry about masking yet:
1369 - If they contain garbage off the least significant end, then we
1370 must be looking at the low end of the field, and the right
1371 shift will wipe them out.
1372 - If they contain garbage off the most significant end, then we
1373 must be looking at the most significant end of the word, and
1374 the sign/zero extension will wipe them out.
1375 - If we're in the interior of the word, then there is no garbage
1376 on either end, because the ref operators zero-extend. */
1377 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
1378 gen_left_shift (ax, end - (offset + op_size));
1379 else
1380 gen_left_shift (ax, offset - start);
1381
1382 if (!last_frag)
1383 /* Bring the copy of the address up to the top. */
1384 ax_simple (ax, aop_swap);
1385
1386 offset += op_size;
1387 fragment_count++;
1388 }
1389 }
1390
1391 /* Generate enough bitwise `or' operations to combine all the
1392 fragments we left on the stack. */
1393 while (fragment_count-- > 1)
1394 ax_simple (ax, aop_bit_or);
1395
1396 /* Sign- or zero-extend the value as appropriate. */
1397 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1398
1399 /* This is *not* an lvalue. Ugh. */
1400 value->kind = axs_rvalue;
1401 value->type = type;
1402 }
1403
1404 /* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
1405 is an accumulated offset (in bytes), will be nonzero for objects
1406 embedded in other objects, like C++ base classes. Behavior should
1407 generally follow value_primitive_field. */
1408
1409 static void
1410 gen_primitive_field (struct expression *exp,
1411 struct agent_expr *ax, struct axs_value *value,
1412 int offset, int fieldno, struct type *type)
1413 {
1414 /* Is this a bitfield? */
1415 if (TYPE_FIELD_PACKED (type, fieldno))
1416 gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, fieldno),
1417 (offset * TARGET_CHAR_BIT
1418 + TYPE_FIELD_BITPOS (type, fieldno)),
1419 (offset * TARGET_CHAR_BIT
1420 + TYPE_FIELD_BITPOS (type, fieldno)
1421 + TYPE_FIELD_BITSIZE (type, fieldno)));
1422 else
1423 {
1424 gen_offset (ax, offset
1425 + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
1426 value->kind = axs_lvalue_memory;
1427 value->type = TYPE_FIELD_TYPE (type, fieldno);
1428 }
1429 }
1430
1431 /* Search for the given field in either the given type or one of its
1432 base classes. Return 1 if found, 0 if not. */
1433
1434 static int
1435 gen_struct_ref_recursive (struct expression *exp, struct agent_expr *ax,
1436 struct axs_value *value,
1437 char *field, int offset, struct type *type)
1438 {
1439 int i, rslt;
1440 int nbases = TYPE_N_BASECLASSES (type);
1441
1442 type = check_typedef (type);
1443
1444 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1445 {
1446 const char *this_name = TYPE_FIELD_NAME (type, i);
1447
1448 if (this_name)
1449 {
1450 if (strcmp (field, this_name) == 0)
1451 {
1452 /* Note that bytecodes for the struct's base (aka
1453 "this") will have been generated already, which will
1454 be unnecessary but not harmful if the static field is
1455 being handled as a global. */
1456 if (field_is_static (&TYPE_FIELD (type, i)))
1457 {
1458 gen_static_field (exp->gdbarch, ax, value, type, i);
1459 if (value->optimized_out)
1460 error (_("static field `%s' has been "
1461 "optimized out, cannot use"),
1462 field);
1463 return 1;
1464 }
1465
1466 gen_primitive_field (exp, ax, value, offset, i, type);
1467 return 1;
1468 }
1469 #if 0 /* is this right? */
1470 if (this_name[0] == '\0')
1471 internal_error (__FILE__, __LINE__,
1472 _("find_field: anonymous unions not supported"));
1473 #endif
1474 }
1475 }
1476
1477 /* Now scan through base classes recursively. */
1478 for (i = 0; i < nbases; i++)
1479 {
1480 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1481
1482 rslt = gen_struct_ref_recursive (exp, ax, value, field,
1483 offset + TYPE_BASECLASS_BITPOS (type, i)
1484 / TARGET_CHAR_BIT,
1485 basetype);
1486 if (rslt)
1487 return 1;
1488 }
1489
1490 /* Not found anywhere, flag so caller can complain. */
1491 return 0;
1492 }
1493
1494 /* Generate code to reference the member named FIELD of a structure or
1495 union. The top of the stack, as described by VALUE, should have
1496 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1497 the operator being compiled, and OPERAND_NAME is the kind of thing
1498 it operates on; we use them in error messages. */
1499 static void
1500 gen_struct_ref (struct expression *exp, struct agent_expr *ax,
1501 struct axs_value *value, char *field,
1502 char *operator_name, char *operand_name)
1503 {
1504 struct type *type;
1505 int found;
1506
1507 /* Follow pointers until we reach a non-pointer. These aren't the C
1508 semantics, but they're what the normal GDB evaluator does, so we
1509 should at least be consistent. */
1510 while (pointer_type (value->type))
1511 {
1512 require_rvalue (ax, value);
1513 gen_deref (ax, value);
1514 }
1515 type = check_typedef (value->type);
1516
1517 /* This must yield a structure or a union. */
1518 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1519 && TYPE_CODE (type) != TYPE_CODE_UNION)
1520 error (_("The left operand of `%s' is not a %s."),
1521 operator_name, operand_name);
1522
1523 /* And it must be in memory; we don't deal with structure rvalues,
1524 or structures living in registers. */
1525 if (value->kind != axs_lvalue_memory)
1526 error (_("Structure does not live in memory."));
1527
1528 /* Search through fields and base classes recursively. */
1529 found = gen_struct_ref_recursive (exp, ax, value, field, 0, type);
1530
1531 if (!found)
1532 error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
1533 field, TYPE_TAG_NAME (type));
1534 }
1535
1536 static int
1537 gen_namespace_elt (struct expression *exp,
1538 struct agent_expr *ax, struct axs_value *value,
1539 const struct type *curtype, char *name);
1540 static int
1541 gen_maybe_namespace_elt (struct expression *exp,
1542 struct agent_expr *ax, struct axs_value *value,
1543 const struct type *curtype, char *name);
1544
1545 static void
1546 gen_static_field (struct gdbarch *gdbarch,
1547 struct agent_expr *ax, struct axs_value *value,
1548 struct type *type, int fieldno)
1549 {
1550 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1551 {
1552 ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1553 value->kind = axs_lvalue_memory;
1554 value->type = TYPE_FIELD_TYPE (type, fieldno);
1555 value->optimized_out = 0;
1556 }
1557 else
1558 {
1559 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1560 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0).symbol;
1561
1562 if (sym)
1563 {
1564 gen_var_ref (gdbarch, ax, value, sym);
1565
1566 /* Don't error if the value was optimized out, we may be
1567 scanning all static fields and just want to pass over this
1568 and continue with the rest. */
1569 }
1570 else
1571 {
1572 /* Silently assume this was optimized out; class printing
1573 will let the user know why the data is missing. */
1574 value->optimized_out = 1;
1575 }
1576 }
1577 }
1578
1579 static int
1580 gen_struct_elt_for_reference (struct expression *exp,
1581 struct agent_expr *ax, struct axs_value *value,
1582 struct type *type, char *fieldname)
1583 {
1584 struct type *t = type;
1585 int i;
1586
1587 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1588 && TYPE_CODE (t) != TYPE_CODE_UNION)
1589 internal_error (__FILE__, __LINE__,
1590 _("non-aggregate type to gen_struct_elt_for_reference"));
1591
1592 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1593 {
1594 const char *t_field_name = TYPE_FIELD_NAME (t, i);
1595
1596 if (t_field_name && strcmp (t_field_name, fieldname) == 0)
1597 {
1598 if (field_is_static (&TYPE_FIELD (t, i)))
1599 {
1600 gen_static_field (exp->gdbarch, ax, value, t, i);
1601 if (value->optimized_out)
1602 error (_("static field `%s' has been "
1603 "optimized out, cannot use"),
1604 fieldname);
1605 return 1;
1606 }
1607 if (TYPE_FIELD_PACKED (t, i))
1608 error (_("pointers to bitfield members not allowed"));
1609
1610 /* FIXME we need a way to do "want_address" equivalent */
1611
1612 error (_("Cannot reference non-static field \"%s\""), fieldname);
1613 }
1614 }
1615
1616 /* FIXME add other scoped-reference cases here */
1617
1618 /* Do a last-ditch lookup. */
1619 return gen_maybe_namespace_elt (exp, ax, value, type, fieldname);
1620 }
1621
1622 /* C++: Return the member NAME of the namespace given by the type
1623 CURTYPE. */
1624
1625 static int
1626 gen_namespace_elt (struct expression *exp,
1627 struct agent_expr *ax, struct axs_value *value,
1628 const struct type *curtype, char *name)
1629 {
1630 int found = gen_maybe_namespace_elt (exp, ax, value, curtype, name);
1631
1632 if (!found)
1633 error (_("No symbol \"%s\" in namespace \"%s\"."),
1634 name, TYPE_TAG_NAME (curtype));
1635
1636 return found;
1637 }
1638
1639 /* A helper function used by value_namespace_elt and
1640 value_struct_elt_for_reference. It looks up NAME inside the
1641 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
1642 is a class and NAME refers to a type in CURTYPE itself (as opposed
1643 to, say, some base class of CURTYPE). */
1644
1645 static int
1646 gen_maybe_namespace_elt (struct expression *exp,
1647 struct agent_expr *ax, struct axs_value *value,
1648 const struct type *curtype, char *name)
1649 {
1650 const char *namespace_name = TYPE_TAG_NAME (curtype);
1651 struct block_symbol sym;
1652
1653 sym = cp_lookup_symbol_namespace (namespace_name, name,
1654 block_for_pc (ax->scope),
1655 VAR_DOMAIN);
1656
1657 if (sym.symbol == NULL)
1658 return 0;
1659
1660 gen_var_ref (exp->gdbarch, ax, value, sym.symbol);
1661
1662 if (value->optimized_out)
1663 error (_("`%s' has been optimized out, cannot use"),
1664 SYMBOL_PRINT_NAME (sym.symbol));
1665
1666 return 1;
1667 }
1668
1669
1670 static int
1671 gen_aggregate_elt_ref (struct expression *exp,
1672 struct agent_expr *ax, struct axs_value *value,
1673 struct type *type, char *field,
1674 char *operator_name, char *operand_name)
1675 {
1676 switch (TYPE_CODE (type))
1677 {
1678 case TYPE_CODE_STRUCT:
1679 case TYPE_CODE_UNION:
1680 return gen_struct_elt_for_reference (exp, ax, value, type, field);
1681 break;
1682 case TYPE_CODE_NAMESPACE:
1683 return gen_namespace_elt (exp, ax, value, type, field);
1684 break;
1685 default:
1686 internal_error (__FILE__, __LINE__,
1687 _("non-aggregate type in gen_aggregate_elt_ref"));
1688 }
1689
1690 return 0;
1691 }
1692
1693 /* Generate code for GDB's magical `repeat' operator.
1694 LVALUE @ INT creates an array INT elements long, and whose elements
1695 have the same type as LVALUE, located in memory so that LVALUE is
1696 its first element. For example, argv[0]@argc gives you the array
1697 of command-line arguments.
1698
1699 Unfortunately, because we have to know the types before we actually
1700 have a value for the expression, we can't implement this perfectly
1701 without changing the type system, having values that occupy two
1702 stack slots, doing weird things with sizeof, etc. So we require
1703 the right operand to be a constant expression. */
1704 static void
1705 gen_repeat (struct expression *exp, union exp_element **pc,
1706 struct agent_expr *ax, struct axs_value *value)
1707 {
1708 struct axs_value value1;
1709
1710 /* We don't want to turn this into an rvalue, so no conversions
1711 here. */
1712 gen_expr (exp, pc, ax, &value1);
1713 if (value1.kind != axs_lvalue_memory)
1714 error (_("Left operand of `@' must be an object in memory."));
1715
1716 /* Evaluate the length; it had better be a constant. */
1717 {
1718 struct value *v = const_expr (pc);
1719 int length;
1720
1721 if (!v)
1722 error (_("Right operand of `@' must be a "
1723 "constant, in agent expressions."));
1724 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
1725 error (_("Right operand of `@' must be an integer."));
1726 length = value_as_long (v);
1727 if (length <= 0)
1728 error (_("Right operand of `@' must be positive."));
1729
1730 /* The top of the stack is already the address of the object, so
1731 all we need to do is frob the type of the lvalue. */
1732 {
1733 /* FIXME-type-allocation: need a way to free this type when we are
1734 done with it. */
1735 struct type *array
1736 = lookup_array_range_type (value1.type, 0, length - 1);
1737
1738 value->kind = axs_lvalue_memory;
1739 value->type = array;
1740 }
1741 }
1742 }
1743
1744
1745 /* Emit code for the `sizeof' operator.
1746 *PC should point at the start of the operand expression; we advance it
1747 to the first instruction after the operand. */
1748 static void
1749 gen_sizeof (struct expression *exp, union exp_element **pc,
1750 struct agent_expr *ax, struct axs_value *value,
1751 struct type *size_type)
1752 {
1753 /* We don't care about the value of the operand expression; we only
1754 care about its type. However, in the current arrangement, the
1755 only way to find an expression's type is to generate code for it.
1756 So we generate code for the operand, and then throw it away,
1757 replacing it with code that simply pushes its size. */
1758 int start = ax->len;
1759
1760 gen_expr (exp, pc, ax, value);
1761
1762 /* Throw away the code we just generated. */
1763 ax->len = start;
1764
1765 ax_const_l (ax, TYPE_LENGTH (value->type));
1766 value->kind = axs_rvalue;
1767 value->type = size_type;
1768 }
1769 \f
1770
1771 /* Generating bytecode from GDB expressions: general recursive thingy */
1772
1773 /* XXX: i18n */
1774 /* A gen_expr function written by a Gen-X'er guy.
1775 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1776 void
1777 gen_expr (struct expression *exp, union exp_element **pc,
1778 struct agent_expr *ax, struct axs_value *value)
1779 {
1780 /* Used to hold the descriptions of operand expressions. */
1781 struct axs_value value1, value2, value3;
1782 enum exp_opcode op = (*pc)[0].opcode, op2;
1783 int if1, go1, if2, go2, end;
1784 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
1785
1786 /* If we're looking at a constant expression, just push its value. */
1787 {
1788 struct value *v = maybe_const_expr (pc);
1789
1790 if (v)
1791 {
1792 ax_const_l (ax, value_as_long (v));
1793 value->kind = axs_rvalue;
1794 value->type = check_typedef (value_type (v));
1795 return;
1796 }
1797 }
1798
1799 /* Otherwise, go ahead and generate code for it. */
1800 switch (op)
1801 {
1802 /* Binary arithmetic operators. */
1803 case BINOP_ADD:
1804 case BINOP_SUB:
1805 case BINOP_MUL:
1806 case BINOP_DIV:
1807 case BINOP_REM:
1808 case BINOP_LSH:
1809 case BINOP_RSH:
1810 case BINOP_SUBSCRIPT:
1811 case BINOP_BITWISE_AND:
1812 case BINOP_BITWISE_IOR:
1813 case BINOP_BITWISE_XOR:
1814 case BINOP_EQUAL:
1815 case BINOP_NOTEQUAL:
1816 case BINOP_LESS:
1817 case BINOP_GTR:
1818 case BINOP_LEQ:
1819 case BINOP_GEQ:
1820 (*pc)++;
1821 gen_expr (exp, pc, ax, &value1);
1822 gen_usual_unary (exp, ax, &value1);
1823 gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
1824 break;
1825
1826 case BINOP_LOGICAL_AND:
1827 (*pc)++;
1828 /* Generate the obvious sequence of tests and jumps. */
1829 gen_expr (exp, pc, ax, &value1);
1830 gen_usual_unary (exp, ax, &value1);
1831 if1 = ax_goto (ax, aop_if_goto);
1832 go1 = ax_goto (ax, aop_goto);
1833 ax_label (ax, if1, ax->len);
1834 gen_expr (exp, pc, ax, &value2);
1835 gen_usual_unary (exp, ax, &value2);
1836 if2 = ax_goto (ax, aop_if_goto);
1837 go2 = ax_goto (ax, aop_goto);
1838 ax_label (ax, if2, ax->len);
1839 ax_const_l (ax, 1);
1840 end = ax_goto (ax, aop_goto);
1841 ax_label (ax, go1, ax->len);
1842 ax_label (ax, go2, ax->len);
1843 ax_const_l (ax, 0);
1844 ax_label (ax, end, ax->len);
1845 value->kind = axs_rvalue;
1846 value->type = int_type;
1847 break;
1848
1849 case BINOP_LOGICAL_OR:
1850 (*pc)++;
1851 /* Generate the obvious sequence of tests and jumps. */
1852 gen_expr (exp, pc, ax, &value1);
1853 gen_usual_unary (exp, ax, &value1);
1854 if1 = ax_goto (ax, aop_if_goto);
1855 gen_expr (exp, pc, ax, &value2);
1856 gen_usual_unary (exp, ax, &value2);
1857 if2 = ax_goto (ax, aop_if_goto);
1858 ax_const_l (ax, 0);
1859 end = ax_goto (ax, aop_goto);
1860 ax_label (ax, if1, ax->len);
1861 ax_label (ax, if2, ax->len);
1862 ax_const_l (ax, 1);
1863 ax_label (ax, end, ax->len);
1864 value->kind = axs_rvalue;
1865 value->type = int_type;
1866 break;
1867
1868 case TERNOP_COND:
1869 (*pc)++;
1870 gen_expr (exp, pc, ax, &value1);
1871 gen_usual_unary (exp, ax, &value1);
1872 /* For (A ? B : C), it's easiest to generate subexpression
1873 bytecodes in order, but if_goto jumps on true, so we invert
1874 the sense of A. Then we can do B by dropping through, and
1875 jump to do C. */
1876 gen_logical_not (ax, &value1, int_type);
1877 if1 = ax_goto (ax, aop_if_goto);
1878 gen_expr (exp, pc, ax, &value2);
1879 gen_usual_unary (exp, ax, &value2);
1880 end = ax_goto (ax, aop_goto);
1881 ax_label (ax, if1, ax->len);
1882 gen_expr (exp, pc, ax, &value3);
1883 gen_usual_unary (exp, ax, &value3);
1884 ax_label (ax, end, ax->len);
1885 /* This is arbitary - what if B and C are incompatible types? */
1886 value->type = value2.type;
1887 value->kind = value2.kind;
1888 break;
1889
1890 case BINOP_ASSIGN:
1891 (*pc)++;
1892 if ((*pc)[0].opcode == OP_INTERNALVAR)
1893 {
1894 char *name = internalvar_name ((*pc)[1].internalvar);
1895 struct trace_state_variable *tsv;
1896
1897 (*pc) += 3;
1898 gen_expr (exp, pc, ax, value);
1899 tsv = find_trace_state_variable (name);
1900 if (tsv)
1901 {
1902 ax_tsv (ax, aop_setv, tsv->number);
1903 if (ax->tracing)
1904 ax_tsv (ax, aop_tracev, tsv->number);
1905 }
1906 else
1907 error (_("$%s is not a trace state variable, "
1908 "may not assign to it"), name);
1909 }
1910 else
1911 error (_("May only assign to trace state variables"));
1912 break;
1913
1914 case BINOP_ASSIGN_MODIFY:
1915 (*pc)++;
1916 op2 = (*pc)[0].opcode;
1917 (*pc)++;
1918 (*pc)++;
1919 if ((*pc)[0].opcode == OP_INTERNALVAR)
1920 {
1921 char *name = internalvar_name ((*pc)[1].internalvar);
1922 struct trace_state_variable *tsv;
1923
1924 (*pc) += 3;
1925 tsv = find_trace_state_variable (name);
1926 if (tsv)
1927 {
1928 /* The tsv will be the left half of the binary operation. */
1929 ax_tsv (ax, aop_getv, tsv->number);
1930 if (ax->tracing)
1931 ax_tsv (ax, aop_tracev, tsv->number);
1932 /* Trace state variables are always 64-bit integers. */
1933 value1.kind = axs_rvalue;
1934 value1.type = builtin_type (exp->gdbarch)->builtin_long_long;
1935 /* Now do right half of expression. */
1936 gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
1937 /* We have a result of the binary op, set the tsv. */
1938 ax_tsv (ax, aop_setv, tsv->number);
1939 if (ax->tracing)
1940 ax_tsv (ax, aop_tracev, tsv->number);
1941 }
1942 else
1943 error (_("$%s is not a trace state variable, "
1944 "may not assign to it"), name);
1945 }
1946 else
1947 error (_("May only assign to trace state variables"));
1948 break;
1949
1950 /* Note that we need to be a little subtle about generating code
1951 for comma. In C, we can do some optimizations here because
1952 we know the left operand is only being evaluated for effect.
1953 However, if the tracing kludge is in effect, then we always
1954 need to evaluate the left hand side fully, so that all the
1955 variables it mentions get traced. */
1956 case BINOP_COMMA:
1957 (*pc)++;
1958 gen_expr (exp, pc, ax, &value1);
1959 /* Don't just dispose of the left operand. We might be tracing,
1960 in which case we want to emit code to trace it if it's an
1961 lvalue. */
1962 gen_traced_pop (exp->gdbarch, ax, &value1);
1963 gen_expr (exp, pc, ax, value);
1964 /* It's the consumer's responsibility to trace the right operand. */
1965 break;
1966
1967 case OP_LONG: /* some integer constant */
1968 {
1969 struct type *type = (*pc)[1].type;
1970 LONGEST k = (*pc)[2].longconst;
1971
1972 (*pc) += 4;
1973 gen_int_literal (ax, value, k, type);
1974 }
1975 break;
1976
1977 case OP_VAR_VALUE:
1978 gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
1979
1980 if (value->optimized_out)
1981 error (_("`%s' has been optimized out, cannot use"),
1982 SYMBOL_PRINT_NAME ((*pc)[2].symbol));
1983
1984 (*pc) += 4;
1985 break;
1986
1987 case OP_REGISTER:
1988 {
1989 const char *name = &(*pc)[2].string;
1990 int reg;
1991
1992 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
1993 reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
1994 if (reg == -1)
1995 internal_error (__FILE__, __LINE__,
1996 _("Register $%s not available"), name);
1997 /* No support for tracing user registers yet. */
1998 if (reg >= gdbarch_num_regs (exp->gdbarch)
1999 + gdbarch_num_pseudo_regs (exp->gdbarch))
2000 error (_("'%s' is a user-register; "
2001 "GDB cannot yet trace user-register contents."),
2002 name);
2003 value->kind = axs_lvalue_register;
2004 value->u.reg = reg;
2005 value->type = register_type (exp->gdbarch, reg);
2006 }
2007 break;
2008
2009 case OP_INTERNALVAR:
2010 {
2011 struct internalvar *var = (*pc)[1].internalvar;
2012 const char *name = internalvar_name (var);
2013 struct trace_state_variable *tsv;
2014
2015 (*pc) += 3;
2016 tsv = find_trace_state_variable (name);
2017 if (tsv)
2018 {
2019 ax_tsv (ax, aop_getv, tsv->number);
2020 if (ax->tracing)
2021 ax_tsv (ax, aop_tracev, tsv->number);
2022 /* Trace state variables are always 64-bit integers. */
2023 value->kind = axs_rvalue;
2024 value->type = builtin_type (exp->gdbarch)->builtin_long_long;
2025 }
2026 else if (! compile_internalvar_to_ax (var, ax, value))
2027 error (_("$%s is not a trace state variable; GDB agent "
2028 "expressions cannot use convenience variables."), name);
2029 }
2030 break;
2031
2032 /* Weirdo operator: see comments for gen_repeat for details. */
2033 case BINOP_REPEAT:
2034 /* Note that gen_repeat handles its own argument evaluation. */
2035 (*pc)++;
2036 gen_repeat (exp, pc, ax, value);
2037 break;
2038
2039 case UNOP_CAST:
2040 {
2041 struct type *type = (*pc)[1].type;
2042
2043 (*pc) += 3;
2044 gen_expr (exp, pc, ax, value);
2045 gen_cast (ax, value, type);
2046 }
2047 break;
2048
2049 case UNOP_CAST_TYPE:
2050 {
2051 int offset;
2052 struct value *val;
2053 struct type *type;
2054
2055 ++*pc;
2056 offset = *pc - exp->elts;
2057 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2058 type = value_type (val);
2059 *pc = &exp->elts[offset];
2060
2061 gen_expr (exp, pc, ax, value);
2062 gen_cast (ax, value, type);
2063 }
2064 break;
2065
2066 case UNOP_MEMVAL:
2067 {
2068 struct type *type = check_typedef ((*pc)[1].type);
2069
2070 (*pc) += 3;
2071 gen_expr (exp, pc, ax, value);
2072
2073 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2074 already have the right value on the stack. For
2075 axs_lvalue_register, we must convert. */
2076 if (value->kind == axs_lvalue_register)
2077 require_rvalue (ax, value);
2078
2079 value->type = type;
2080 value->kind = axs_lvalue_memory;
2081 }
2082 break;
2083
2084 case UNOP_MEMVAL_TYPE:
2085 {
2086 int offset;
2087 struct value *val;
2088 struct type *type;
2089
2090 ++*pc;
2091 offset = *pc - exp->elts;
2092 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2093 type = value_type (val);
2094 *pc = &exp->elts[offset];
2095
2096 gen_expr (exp, pc, ax, value);
2097
2098 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2099 already have the right value on the stack. For
2100 axs_lvalue_register, we must convert. */
2101 if (value->kind == axs_lvalue_register)
2102 require_rvalue (ax, value);
2103
2104 value->type = type;
2105 value->kind = axs_lvalue_memory;
2106 }
2107 break;
2108
2109 case UNOP_PLUS:
2110 (*pc)++;
2111 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
2112 gen_expr (exp, pc, ax, value);
2113 gen_usual_unary (exp, ax, value);
2114 break;
2115
2116 case UNOP_NEG:
2117 (*pc)++;
2118 /* -FOO is equivalent to 0 - FOO. */
2119 gen_int_literal (ax, &value1, 0,
2120 builtin_type (exp->gdbarch)->builtin_int);
2121 gen_usual_unary (exp, ax, &value1); /* shouldn't do much */
2122 gen_expr (exp, pc, ax, &value2);
2123 gen_usual_unary (exp, ax, &value2);
2124 gen_usual_arithmetic (exp, ax, &value1, &value2);
2125 gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
2126 break;
2127
2128 case UNOP_LOGICAL_NOT:
2129 (*pc)++;
2130 gen_expr (exp, pc, ax, value);
2131 gen_usual_unary (exp, ax, value);
2132 gen_logical_not (ax, value, int_type);
2133 break;
2134
2135 case UNOP_COMPLEMENT:
2136 (*pc)++;
2137 gen_expr (exp, pc, ax, value);
2138 gen_usual_unary (exp, ax, value);
2139 gen_integral_promotions (exp, ax, value);
2140 gen_complement (ax, value);
2141 break;
2142
2143 case UNOP_IND:
2144 (*pc)++;
2145 gen_expr (exp, pc, ax, value);
2146 gen_usual_unary (exp, ax, value);
2147 if (!pointer_type (value->type))
2148 error (_("Argument of unary `*' is not a pointer."));
2149 gen_deref (ax, value);
2150 break;
2151
2152 case UNOP_ADDR:
2153 (*pc)++;
2154 gen_expr (exp, pc, ax, value);
2155 gen_address_of (ax, value);
2156 break;
2157
2158 case UNOP_SIZEOF:
2159 (*pc)++;
2160 /* Notice that gen_sizeof handles its own operand, unlike most
2161 of the other unary operator functions. This is because we
2162 have to throw away the code we generate. */
2163 gen_sizeof (exp, pc, ax, value,
2164 builtin_type (exp->gdbarch)->builtin_int);
2165 break;
2166
2167 case STRUCTOP_STRUCT:
2168 case STRUCTOP_PTR:
2169 {
2170 int length = (*pc)[1].longconst;
2171 char *name = &(*pc)[2].string;
2172
2173 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
2174 gen_expr (exp, pc, ax, value);
2175 if (op == STRUCTOP_STRUCT)
2176 gen_struct_ref (exp, ax, value, name, ".", "structure or union");
2177 else if (op == STRUCTOP_PTR)
2178 gen_struct_ref (exp, ax, value, name, "->",
2179 "pointer to a structure or union");
2180 else
2181 /* If this `if' chain doesn't handle it, then the case list
2182 shouldn't mention it, and we shouldn't be here. */
2183 internal_error (__FILE__, __LINE__,
2184 _("gen_expr: unhandled struct case"));
2185 }
2186 break;
2187
2188 case OP_THIS:
2189 {
2190 struct symbol *sym, *func;
2191 const struct block *b;
2192 const struct language_defn *lang;
2193
2194 b = block_for_pc (ax->scope);
2195 func = block_linkage_function (b);
2196 lang = language_def (SYMBOL_LANGUAGE (func));
2197
2198 sym = lookup_language_this (lang, b).symbol;
2199 if (!sym)
2200 error (_("no `%s' found"), lang->la_name_of_this);
2201
2202 gen_var_ref (exp->gdbarch, ax, value, sym);
2203
2204 if (value->optimized_out)
2205 error (_("`%s' has been optimized out, cannot use"),
2206 SYMBOL_PRINT_NAME (sym));
2207
2208 (*pc) += 2;
2209 }
2210 break;
2211
2212 case OP_SCOPE:
2213 {
2214 struct type *type = (*pc)[1].type;
2215 int length = longest_to_int ((*pc)[2].longconst);
2216 char *name = &(*pc)[3].string;
2217 int found;
2218
2219 found = gen_aggregate_elt_ref (exp, ax, value, type, name,
2220 "?", "??");
2221 if (!found)
2222 error (_("There is no field named %s"), name);
2223 (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
2224 }
2225 break;
2226
2227 case OP_TYPE:
2228 case OP_TYPEOF:
2229 case OP_DECLTYPE:
2230 error (_("Attempt to use a type name as an expression."));
2231
2232 default:
2233 error (_("Unsupported operator %s (%d) in expression."),
2234 op_name (exp, op), op);
2235 }
2236 }
2237
2238 /* This handles the middle-to-right-side of code generation for binary
2239 expressions, which is shared between regular binary operations and
2240 assign-modify (+= and friends) expressions. */
2241
2242 static void
2243 gen_expr_binop_rest (struct expression *exp,
2244 enum exp_opcode op, union exp_element **pc,
2245 struct agent_expr *ax, struct axs_value *value,
2246 struct axs_value *value1, struct axs_value *value2)
2247 {
2248 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
2249
2250 gen_expr (exp, pc, ax, value2);
2251 gen_usual_unary (exp, ax, value2);
2252 gen_usual_arithmetic (exp, ax, value1, value2);
2253 switch (op)
2254 {
2255 case BINOP_ADD:
2256 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
2257 && pointer_type (value2->type))
2258 {
2259 /* Swap the values and proceed normally. */
2260 ax_simple (ax, aop_swap);
2261 gen_ptradd (ax, value, value2, value1);
2262 }
2263 else if (pointer_type (value1->type)
2264 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2265 gen_ptradd (ax, value, value1, value2);
2266 else
2267 gen_binop (ax, value, value1, value2,
2268 aop_add, aop_add, 1, "addition");
2269 break;
2270 case BINOP_SUB:
2271 if (pointer_type (value1->type)
2272 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2273 gen_ptrsub (ax,value, value1, value2);
2274 else if (pointer_type (value1->type)
2275 && pointer_type (value2->type))
2276 /* FIXME --- result type should be ptrdiff_t */
2277 gen_ptrdiff (ax, value, value1, value2,
2278 builtin_type (exp->gdbarch)->builtin_long);
2279 else
2280 gen_binop (ax, value, value1, value2,
2281 aop_sub, aop_sub, 1, "subtraction");
2282 break;
2283 case BINOP_MUL:
2284 gen_binop (ax, value, value1, value2,
2285 aop_mul, aop_mul, 1, "multiplication");
2286 break;
2287 case BINOP_DIV:
2288 gen_binop (ax, value, value1, value2,
2289 aop_div_signed, aop_div_unsigned, 1, "division");
2290 break;
2291 case BINOP_REM:
2292 gen_binop (ax, value, value1, value2,
2293 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
2294 break;
2295 case BINOP_LSH:
2296 gen_binop (ax, value, value1, value2,
2297 aop_lsh, aop_lsh, 1, "left shift");
2298 break;
2299 case BINOP_RSH:
2300 gen_binop (ax, value, value1, value2,
2301 aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
2302 break;
2303 case BINOP_SUBSCRIPT:
2304 {
2305 struct type *type;
2306
2307 if (binop_types_user_defined_p (op, value1->type, value2->type))
2308 {
2309 error (_("cannot subscript requested type: "
2310 "cannot call user defined functions"));
2311 }
2312 else
2313 {
2314 /* If the user attempts to subscript something that is not
2315 an array or pointer type (like a plain int variable for
2316 example), then report this as an error. */
2317 type = check_typedef (value1->type);
2318 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2319 && TYPE_CODE (type) != TYPE_CODE_PTR)
2320 {
2321 if (TYPE_NAME (type))
2322 error (_("cannot subscript something of type `%s'"),
2323 TYPE_NAME (type));
2324 else
2325 error (_("cannot subscript requested type"));
2326 }
2327 }
2328
2329 if (!is_integral_type (value2->type))
2330 error (_("Argument to arithmetic operation "
2331 "not a number or boolean."));
2332
2333 gen_ptradd (ax, value, value1, value2);
2334 gen_deref (ax, value);
2335 break;
2336 }
2337 case BINOP_BITWISE_AND:
2338 gen_binop (ax, value, value1, value2,
2339 aop_bit_and, aop_bit_and, 0, "bitwise and");
2340 break;
2341
2342 case BINOP_BITWISE_IOR:
2343 gen_binop (ax, value, value1, value2,
2344 aop_bit_or, aop_bit_or, 0, "bitwise or");
2345 break;
2346
2347 case BINOP_BITWISE_XOR:
2348 gen_binop (ax, value, value1, value2,
2349 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
2350 break;
2351
2352 case BINOP_EQUAL:
2353 gen_equal (ax, value, value1, value2, int_type);
2354 break;
2355
2356 case BINOP_NOTEQUAL:
2357 gen_equal (ax, value, value1, value2, int_type);
2358 gen_logical_not (ax, value, int_type);
2359 break;
2360
2361 case BINOP_LESS:
2362 gen_less (ax, value, value1, value2, int_type);
2363 break;
2364
2365 case BINOP_GTR:
2366 ax_simple (ax, aop_swap);
2367 gen_less (ax, value, value1, value2, int_type);
2368 break;
2369
2370 case BINOP_LEQ:
2371 ax_simple (ax, aop_swap);
2372 gen_less (ax, value, value1, value2, int_type);
2373 gen_logical_not (ax, value, int_type);
2374 break;
2375
2376 case BINOP_GEQ:
2377 gen_less (ax, value, value1, value2, int_type);
2378 gen_logical_not (ax, value, int_type);
2379 break;
2380
2381 default:
2382 /* We should only list operators in the outer case statement
2383 that we actually handle in the inner case statement. */
2384 internal_error (__FILE__, __LINE__,
2385 _("gen_expr: op case sets don't match"));
2386 }
2387 }
2388 \f
2389
2390 /* Given a single variable and a scope, generate bytecodes to trace
2391 its value. This is for use in situations where we have only a
2392 variable's name, and no parsed expression; for instance, when the
2393 name comes from a list of local variables of a function. */
2394
2395 agent_expr_up
2396 gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
2397 struct symbol *var, int trace_string)
2398 {
2399 agent_expr_up ax (new agent_expr (gdbarch, scope));
2400 struct axs_value value;
2401
2402 ax->tracing = 1;
2403 ax->trace_string = trace_string;
2404 gen_var_ref (gdbarch, ax.get (), &value, var);
2405
2406 /* If there is no actual variable to trace, flag it by returning
2407 an empty agent expression. */
2408 if (value.optimized_out)
2409 return agent_expr_up ();
2410
2411 /* Make sure we record the final object, and get rid of it. */
2412 gen_traced_pop (gdbarch, ax.get (), &value);
2413
2414 /* Oh, and terminate. */
2415 ax_simple (ax.get (), aop_end);
2416
2417 return ax;
2418 }
2419
2420 /* Generating bytecode from GDB expressions: driver */
2421
2422 /* Given a GDB expression EXPR, return bytecode to trace its value.
2423 The result will use the `trace' and `trace_quick' bytecodes to
2424 record the value of all memory touched by the expression. The
2425 caller can then use the ax_reqs function to discover which
2426 registers it relies upon. */
2427
2428 agent_expr_up
2429 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr,
2430 int trace_string)
2431 {
2432 agent_expr_up ax (new agent_expr (expr->gdbarch, scope));
2433 union exp_element *pc;
2434 struct axs_value value;
2435
2436 pc = expr->elts;
2437 ax->tracing = 1;
2438 ax->trace_string = trace_string;
2439 value.optimized_out = 0;
2440 gen_expr (expr, &pc, ax.get (), &value);
2441
2442 /* Make sure we record the final object, and get rid of it. */
2443 gen_traced_pop (expr->gdbarch, ax.get (), &value);
2444
2445 /* Oh, and terminate. */
2446 ax_simple (ax.get (), aop_end);
2447
2448 return ax;
2449 }
2450
2451 /* Given a GDB expression EXPR, return a bytecode sequence that will
2452 evaluate and return a result. The bytecodes will do a direct
2453 evaluation, using the current data on the target, rather than
2454 recording blocks of memory and registers for later use, as
2455 gen_trace_for_expr does. The generated bytecode sequence leaves
2456 the result of expression evaluation on the top of the stack. */
2457
2458 agent_expr_up
2459 gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
2460 {
2461 agent_expr_up ax (new agent_expr (expr->gdbarch, scope));
2462 union exp_element *pc;
2463 struct axs_value value;
2464
2465 pc = expr->elts;
2466 ax->tracing = 0;
2467 value.optimized_out = 0;
2468 gen_expr (expr, &pc, ax.get (), &value);
2469
2470 require_rvalue (ax.get (), &value);
2471
2472 /* Oh, and terminate. */
2473 ax_simple (ax.get (), aop_end);
2474
2475 return ax;
2476 }
2477
2478 agent_expr_up
2479 gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch,
2480 int trace_string)
2481 {
2482 agent_expr_up ax (new agent_expr (gdbarch, scope));
2483 struct axs_value value;
2484
2485 ax->tracing = 1;
2486 ax->trace_string = trace_string;
2487
2488 gdbarch_gen_return_address (gdbarch, ax.get (), &value, scope);
2489
2490 /* Make sure we record the final object, and get rid of it. */
2491 gen_traced_pop (gdbarch, ax.get (), &value);
2492
2493 /* Oh, and terminate. */
2494 ax_simple (ax.get (), aop_end);
2495
2496 return ax;
2497 }
2498
2499 /* Given a collection of printf-style arguments, generate code to
2500 evaluate the arguments and pass everything to a special
2501 bytecode. */
2502
2503 agent_expr_up
2504 gen_printf (CORE_ADDR scope, struct gdbarch *gdbarch,
2505 CORE_ADDR function, LONGEST channel,
2506 const char *format, int fmtlen,
2507 struct format_piece *frags,
2508 int nargs, struct expression **exprs)
2509 {
2510 agent_expr_up ax (new agent_expr (gdbarch, scope));
2511 union exp_element *pc;
2512 struct axs_value value;
2513 int tem;
2514
2515 /* We're computing values, not doing side effects. */
2516 ax->tracing = 0;
2517
2518 /* Evaluate and push the args on the stack in reverse order,
2519 for simplicity of collecting them on the target side. */
2520 for (tem = nargs - 1; tem >= 0; --tem)
2521 {
2522 pc = exprs[tem]->elts;
2523 value.optimized_out = 0;
2524 gen_expr (exprs[tem], &pc, ax.get (), &value);
2525 require_rvalue (ax.get (), &value);
2526 }
2527
2528 /* Push function and channel. */
2529 ax_const_l (ax.get (), channel);
2530 ax_const_l (ax.get (), function);
2531
2532 /* Issue the printf bytecode proper. */
2533 ax_simple (ax.get (), aop_printf);
2534 ax_raw_byte (ax.get (), nargs);
2535 ax_string (ax.get (), format, fmtlen);
2536
2537 /* And terminate. */
2538 ax_simple (ax.get (), aop_end);
2539
2540 return ax;
2541 }
2542
2543 static void
2544 agent_eval_command_one (const char *exp, int eval, CORE_ADDR pc)
2545 {
2546 const char *arg;
2547 int trace_string = 0;
2548
2549 if (!eval)
2550 {
2551 if (*exp == '/')
2552 exp = decode_agent_options (exp, &trace_string);
2553 }
2554
2555 agent_expr_up agent;
2556
2557 arg = exp;
2558 if (!eval && strcmp (arg, "$_ret") == 0)
2559 {
2560 agent = gen_trace_for_return_address (pc, get_current_arch (),
2561 trace_string);
2562 }
2563 else
2564 {
2565 expression_up expr = parse_exp_1 (&arg, pc, block_for_pc (pc), 0);
2566
2567 if (eval)
2568 {
2569 gdb_assert (trace_string == 0);
2570 agent = gen_eval_for_expr (pc, expr.get ());
2571 }
2572 else
2573 agent = gen_trace_for_expr (pc, expr.get (), trace_string);
2574 }
2575
2576 ax_reqs (agent.get ());
2577 ax_print (gdb_stdout, agent.get ());
2578
2579 /* It would be nice to call ax_reqs here to gather some general info
2580 about the expression, and then print out the result. */
2581
2582 dont_repeat ();
2583 }
2584
2585 static void
2586 agent_command_1 (char *exp, int eval)
2587 {
2588 /* We don't deal with overlay debugging at the moment. We need to
2589 think more carefully about this. If you copy this code into
2590 another command, change the error message; the user shouldn't
2591 have to know anything about agent expressions. */
2592 if (overlay_debugging)
2593 error (_("GDB can't do agent expression translation with overlays."));
2594
2595 if (exp == 0)
2596 error_no_arg (_("expression to translate"));
2597
2598 if (check_for_argument (&exp, "-at", sizeof ("-at") - 1))
2599 {
2600 struct linespec_result canonical;
2601 int ix;
2602 struct linespec_sals *iter;
2603 struct cleanup *old_chain;
2604 struct event_location *location;
2605
2606 exp = skip_spaces (exp);
2607 init_linespec_result (&canonical);
2608 location = new_linespec_location (&exp);
2609 old_chain = make_cleanup_delete_event_location (location);
2610 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
2611 (struct symtab *) NULL, 0, &canonical,
2612 NULL, NULL);
2613 make_cleanup_destroy_linespec_result (&canonical);
2614 exp = skip_spaces (exp);
2615 if (exp[0] == ',')
2616 {
2617 exp++;
2618 exp = skip_spaces (exp);
2619 }
2620 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
2621 {
2622 int i;
2623
2624 for (i = 0; i < iter->sals.nelts; i++)
2625 agent_eval_command_one (exp, eval, iter->sals.sals[i].pc);
2626 }
2627 do_cleanups (old_chain);
2628 }
2629 else
2630 agent_eval_command_one (exp, eval, get_frame_pc (get_current_frame ()));
2631
2632 dont_repeat ();
2633 }
2634
2635 static void
2636 agent_command (char *exp, int from_tty)
2637 {
2638 agent_command_1 (exp, 0);
2639 }
2640
2641 /* Parse the given expression, compile it into an agent expression
2642 that does direct evaluation, and display the resulting
2643 expression. */
2644
2645 static void
2646 agent_eval_command (char *exp, int from_tty)
2647 {
2648 agent_command_1 (exp, 1);
2649 }
2650
2651 /* Parse the given expression, compile it into an agent expression
2652 that does a printf, and display the resulting expression. */
2653
2654 static void
2655 maint_agent_printf_command (char *exp, int from_tty)
2656 {
2657 struct cleanup *old_chain = 0;
2658 struct expression *argvec[100];
2659 struct frame_info *fi = get_current_frame (); /* need current scope */
2660 const char *cmdrest;
2661 const char *format_start, *format_end;
2662 struct format_piece *fpieces;
2663 int nargs;
2664
2665 /* We don't deal with overlay debugging at the moment. We need to
2666 think more carefully about this. If you copy this code into
2667 another command, change the error message; the user shouldn't
2668 have to know anything about agent expressions. */
2669 if (overlay_debugging)
2670 error (_("GDB can't do agent expression translation with overlays."));
2671
2672 if (exp == 0)
2673 error_no_arg (_("expression to translate"));
2674
2675 cmdrest = exp;
2676
2677 cmdrest = skip_spaces_const (cmdrest);
2678
2679 if (*cmdrest++ != '"')
2680 error (_("Must start with a format string."));
2681
2682 format_start = cmdrest;
2683
2684 fpieces = parse_format_string (&cmdrest);
2685
2686 old_chain = make_cleanup (free_format_pieces_cleanup, &fpieces);
2687
2688 format_end = cmdrest;
2689
2690 if (*cmdrest++ != '"')
2691 error (_("Bad format string, non-terminated '\"'."));
2692
2693 cmdrest = skip_spaces_const (cmdrest);
2694
2695 if (*cmdrest != ',' && *cmdrest != 0)
2696 error (_("Invalid argument syntax"));
2697
2698 if (*cmdrest == ',')
2699 cmdrest++;
2700 cmdrest = skip_spaces_const (cmdrest);
2701
2702 nargs = 0;
2703 while (*cmdrest != '\0')
2704 {
2705 const char *cmd1;
2706
2707 cmd1 = cmdrest;
2708 expression_up expr = parse_exp_1 (&cmd1, 0, (struct block *) 0, 1);
2709 argvec[nargs] = expr.release ();
2710 ++nargs;
2711 cmdrest = cmd1;
2712 if (*cmdrest == ',')
2713 ++cmdrest;
2714 /* else complain? */
2715 }
2716
2717
2718 agent_expr_up agent = gen_printf (get_frame_pc (fi), get_current_arch (),
2719 0, 0,
2720 format_start, format_end - format_start,
2721 fpieces, nargs, argvec);
2722 ax_reqs (agent.get ());
2723 ax_print (gdb_stdout, agent.get ());
2724
2725 /* It would be nice to call ax_reqs here to gather some general info
2726 about the expression, and then print out the result. */
2727
2728 do_cleanups (old_chain);
2729 dont_repeat ();
2730 }
2731 \f
2732
2733 /* Initialization code. */
2734
2735 void _initialize_ax_gdb (void);
2736 void
2737 _initialize_ax_gdb (void)
2738 {
2739 add_cmd ("agent", class_maintenance, agent_command,
2740 _("\
2741 Translate an expression into remote agent bytecode for tracing.\n\
2742 Usage: maint agent [-at location,] EXPRESSION\n\
2743 If -at is given, generate remote agent bytecode for this location.\n\
2744 If not, generate remote agent bytecode for current frame pc address."),
2745 &maintenancelist);
2746
2747 add_cmd ("agent-eval", class_maintenance, agent_eval_command,
2748 _("\
2749 Translate an expression into remote agent bytecode for evaluation.\n\
2750 Usage: maint agent-eval [-at location,] EXPRESSION\n\
2751 If -at is given, generate remote agent bytecode for this location.\n\
2752 If not, generate remote agent bytecode for current frame pc address."),
2753 &maintenancelist);
2754
2755 add_cmd ("agent-printf", class_maintenance, maint_agent_printf_command,
2756 _("Translate an expression into remote "
2757 "agent bytecode for evaluation and display the bytecodes."),
2758 &maintenancelist);
2759 }
This page took 0.137382 seconds and 5 git commands to generate.