2011-01-05 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / ax-general.c
1 /* Functions for manipulating expressions designed to be executed on the agent
2 Copyright (C) 1998, 1999, 2000, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Despite what the above comment says about this file being part of
21 GDB, we would like to keep these functions free of GDB
22 dependencies, since we want to be able to use them in contexts
23 outside of GDB (test suites, the stub, etc.) */
24
25 #include "defs.h"
26 #include "ax.h"
27
28 #include "value.h"
29 #include "gdb_string.h"
30
31 #include "user-regs.h"
32
33 static void grow_expr (struct agent_expr *x, int n);
34
35 static void append_const (struct agent_expr *x, LONGEST val, int n);
36
37 static LONGEST read_const (struct agent_expr *x, int o, int n);
38
39 static void generic_ext (struct agent_expr *x, enum agent_op op, int n);
40 \f
41 /* Functions for building expressions. */
42
43 /* Allocate a new, empty agent expression. */
44 struct agent_expr *
45 new_agent_expr (struct gdbarch *gdbarch, CORE_ADDR scope)
46 {
47 struct agent_expr *x = xmalloc (sizeof (*x));
48
49 x->len = 0;
50 x->size = 1; /* Change this to a larger value once
51 reallocation code is tested. */
52 x->buf = xmalloc (x->size);
53
54 x->gdbarch = gdbarch;
55 x->scope = scope;
56
57 /* Bit vector for registers used. */
58 x->reg_mask_len = 1;
59 x->reg_mask = xmalloc (x->reg_mask_len * sizeof (x->reg_mask[0]));
60 memset (x->reg_mask, 0, x->reg_mask_len * sizeof (x->reg_mask[0]));
61
62 return x;
63 }
64
65 /* Free a agent expression. */
66 void
67 free_agent_expr (struct agent_expr *x)
68 {
69 xfree (x->buf);
70 xfree (x->reg_mask);
71 xfree (x);
72 }
73
74 static void
75 do_free_agent_expr_cleanup (void *x)
76 {
77 free_agent_expr (x);
78 }
79
80 struct cleanup *
81 make_cleanup_free_agent_expr (struct agent_expr *x)
82 {
83 return make_cleanup (do_free_agent_expr_cleanup, x);
84 }
85
86
87 /* Make sure that X has room for at least N more bytes. This doesn't
88 affect the length, just the allocated size. */
89 static void
90 grow_expr (struct agent_expr *x, int n)
91 {
92 if (x->len + n > x->size)
93 {
94 x->size *= 2;
95 if (x->size < x->len + n)
96 x->size = x->len + n + 10;
97 x->buf = xrealloc (x->buf, x->size);
98 }
99 }
100
101
102 /* Append the low N bytes of VAL as an N-byte integer to the
103 expression X, in big-endian order. */
104 static void
105 append_const (struct agent_expr *x, LONGEST val, int n)
106 {
107 int i;
108
109 grow_expr (x, n);
110 for (i = n - 1; i >= 0; i--)
111 {
112 x->buf[x->len + i] = val & 0xff;
113 val >>= 8;
114 }
115 x->len += n;
116 }
117
118
119 /* Extract an N-byte big-endian unsigned integer from expression X at
120 offset O. */
121 static LONGEST
122 read_const (struct agent_expr *x, int o, int n)
123 {
124 int i;
125 LONGEST accum = 0;
126
127 /* Make sure we're not reading off the end of the expression. */
128 if (o + n > x->len)
129 error (_("GDB bug: ax-general.c (read_const): incomplete constant"));
130
131 for (i = 0; i < n; i++)
132 accum = (accum << 8) | x->buf[o + i];
133
134 return accum;
135 }
136
137
138 /* Append a simple operator OP to EXPR. */
139 void
140 ax_simple (struct agent_expr *x, enum agent_op op)
141 {
142 grow_expr (x, 1);
143 x->buf[x->len++] = op;
144 }
145
146
147 /* Append a sign-extension or zero-extension instruction to EXPR, to
148 extend an N-bit value. */
149 static void
150 generic_ext (struct agent_expr *x, enum agent_op op, int n)
151 {
152 /* N must fit in a byte. */
153 if (n < 0 || n > 255)
154 error (_("GDB bug: ax-general.c (generic_ext): bit count out of range"));
155 /* That had better be enough range. */
156 if (sizeof (LONGEST) * 8 > 255)
157 error (_("GDB bug: ax-general.c (generic_ext): "
158 "opcode has inadequate range"));
159
160 grow_expr (x, 2);
161 x->buf[x->len++] = op;
162 x->buf[x->len++] = n;
163 }
164
165
166 /* Append a sign-extension instruction to EXPR, to extend an N-bit value. */
167 void
168 ax_ext (struct agent_expr *x, int n)
169 {
170 generic_ext (x, aop_ext, n);
171 }
172
173
174 /* Append a zero-extension instruction to EXPR, to extend an N-bit value. */
175 void
176 ax_zero_ext (struct agent_expr *x, int n)
177 {
178 generic_ext (x, aop_zero_ext, n);
179 }
180
181
182 /* Append a trace_quick instruction to EXPR, to record N bytes. */
183 void
184 ax_trace_quick (struct agent_expr *x, int n)
185 {
186 /* N must fit in a byte. */
187 if (n < 0 || n > 255)
188 error (_("GDB bug: ax-general.c (ax_trace_quick): "
189 "size out of range for trace_quick"));
190
191 grow_expr (x, 2);
192 x->buf[x->len++] = aop_trace_quick;
193 x->buf[x->len++] = n;
194 }
195
196
197 /* Append a goto op to EXPR. OP is the actual op (must be aop_goto or
198 aop_if_goto). We assume we don't know the target offset yet,
199 because it's probably a forward branch, so we leave space in EXPR
200 for the target, and return the offset in EXPR of that space, so we
201 can backpatch it once we do know the target offset. Use ax_label
202 to do the backpatching. */
203 int
204 ax_goto (struct agent_expr *x, enum agent_op op)
205 {
206 grow_expr (x, 3);
207 x->buf[x->len + 0] = op;
208 x->buf[x->len + 1] = 0xff;
209 x->buf[x->len + 2] = 0xff;
210 x->len += 3;
211 return x->len - 2;
212 }
213
214 /* Suppose a given call to ax_goto returns some value PATCH. When you
215 know the offset TARGET that goto should jump to, call
216 ax_label (EXPR, PATCH, TARGET)
217 to patch TARGET into the ax_goto instruction. */
218 void
219 ax_label (struct agent_expr *x, int patch, int target)
220 {
221 /* Make sure the value is in range. Don't accept 0xffff as an
222 offset; that's our magic sentinel value for unpatched branches. */
223 if (target < 0 || target >= 0xffff)
224 error (_("GDB bug: ax-general.c (ax_label): label target out of range"));
225
226 x->buf[patch] = (target >> 8) & 0xff;
227 x->buf[patch + 1] = target & 0xff;
228 }
229
230
231 /* Assemble code to push a constant on the stack. */
232 void
233 ax_const_l (struct agent_expr *x, LONGEST l)
234 {
235 static enum agent_op ops[]
236 =
237 {aop_const8, aop_const16, aop_const32, aop_const64};
238 int size;
239 int op;
240
241 /* How big is the number? 'op' keeps track of which opcode to use.
242 Notice that we don't really care whether the original number was
243 signed or unsigned; we always reproduce the value exactly, and
244 use the shortest representation. */
245 for (op = 0, size = 8; size < 64; size *= 2, op++)
246 {
247 LONGEST lim = ((LONGEST) 1) << (size - 1);
248
249 if (-lim <= l && l <= lim - 1)
250 break;
251 }
252
253 /* Emit the right opcode... */
254 ax_simple (x, ops[op]);
255
256 /* Emit the low SIZE bytes as an unsigned number. We know that
257 sign-extending this will yield l. */
258 append_const (x, l, size / 8);
259
260 /* Now, if it was negative, and not full-sized, sign-extend it. */
261 if (l < 0 && size < 64)
262 ax_ext (x, size);
263 }
264
265
266 void
267 ax_const_d (struct agent_expr *x, LONGEST d)
268 {
269 /* FIXME: floating-point support not present yet. */
270 error (_("GDB bug: ax-general.c (ax_const_d): "
271 "floating point not supported yet"));
272 }
273
274
275 /* Assemble code to push the value of register number REG on the
276 stack. */
277 void
278 ax_reg (struct agent_expr *x, int reg)
279 {
280 if (reg >= gdbarch_num_regs (x->gdbarch))
281 {
282 /* This is a pseudo-register. */
283 if (!gdbarch_ax_pseudo_register_push_stack_p (x->gdbarch))
284 error (_("'%s' is a pseudo-register; "
285 "GDB cannot yet trace its contents."),
286 user_reg_map_regnum_to_name (x->gdbarch, reg));
287 if (gdbarch_ax_pseudo_register_push_stack (x->gdbarch, x, reg))
288 error (_("Trace '%s' failed."),
289 user_reg_map_regnum_to_name (x->gdbarch, reg));
290 }
291 else
292 {
293 /* Make sure the register number is in range. */
294 if (reg < 0 || reg > 0xffff)
295 error (_("GDB bug: ax-general.c (ax_reg): "
296 "register number out of range"));
297 grow_expr (x, 3);
298 x->buf[x->len] = aop_reg;
299 x->buf[x->len + 1] = (reg >> 8) & 0xff;
300 x->buf[x->len + 2] = (reg) & 0xff;
301 x->len += 3;
302 }
303 }
304
305 /* Assemble code to operate on a trace state variable. */
306
307 void
308 ax_tsv (struct agent_expr *x, enum agent_op op, int num)
309 {
310 /* Make sure the tsv number is in range. */
311 if (num < 0 || num > 0xffff)
312 internal_error (__FILE__, __LINE__,
313 _("ax-general.c (ax_tsv): variable "
314 "number is %d, out of range"), num);
315
316 grow_expr (x, 3);
317 x->buf[x->len] = op;
318 x->buf[x->len + 1] = (num >> 8) & 0xff;
319 x->buf[x->len + 2] = (num) & 0xff;
320 x->len += 3;
321 }
322 \f
323
324
325 /* Functions for disassembling agent expressions, and otherwise
326 debugging the expression compiler. */
327
328 struct aop_map aop_map[] =
329 {
330 {0, 0, 0, 0, 0},
331 {"float", 0, 0, 0, 0}, /* 0x01 */
332 {"add", 0, 0, 2, 1}, /* 0x02 */
333 {"sub", 0, 0, 2, 1}, /* 0x03 */
334 {"mul", 0, 0, 2, 1}, /* 0x04 */
335 {"div_signed", 0, 0, 2, 1}, /* 0x05 */
336 {"div_unsigned", 0, 0, 2, 1}, /* 0x06 */
337 {"rem_signed", 0, 0, 2, 1}, /* 0x07 */
338 {"rem_unsigned", 0, 0, 2, 1}, /* 0x08 */
339 {"lsh", 0, 0, 2, 1}, /* 0x09 */
340 {"rsh_signed", 0, 0, 2, 1}, /* 0x0a */
341 {"rsh_unsigned", 0, 0, 2, 1}, /* 0x0b */
342 {"trace", 0, 0, 2, 0}, /* 0x0c */
343 {"trace_quick", 1, 0, 1, 1}, /* 0x0d */
344 {"log_not", 0, 0, 1, 1}, /* 0x0e */
345 {"bit_and", 0, 0, 2, 1}, /* 0x0f */
346 {"bit_or", 0, 0, 2, 1}, /* 0x10 */
347 {"bit_xor", 0, 0, 2, 1}, /* 0x11 */
348 {"bit_not", 0, 0, 1, 1}, /* 0x12 */
349 {"equal", 0, 0, 2, 1}, /* 0x13 */
350 {"less_signed", 0, 0, 2, 1}, /* 0x14 */
351 {"less_unsigned", 0, 0, 2, 1}, /* 0x15 */
352 {"ext", 1, 0, 1, 1}, /* 0x16 */
353 {"ref8", 0, 8, 1, 1}, /* 0x17 */
354 {"ref16", 0, 16, 1, 1}, /* 0x18 */
355 {"ref32", 0, 32, 1, 1}, /* 0x19 */
356 {"ref64", 0, 64, 1, 1}, /* 0x1a */
357 {"ref_float", 0, 0, 1, 1}, /* 0x1b */
358 {"ref_double", 0, 0, 1, 1}, /* 0x1c */
359 {"ref_long_double", 0, 0, 1, 1}, /* 0x1d */
360 {"l_to_d", 0, 0, 1, 1}, /* 0x1e */
361 {"d_to_l", 0, 0, 1, 1}, /* 0x1f */
362 {"if_goto", 2, 0, 1, 0}, /* 0x20 */
363 {"goto", 2, 0, 0, 0}, /* 0x21 */
364 {"const8", 1, 8, 0, 1}, /* 0x22 */
365 {"const16", 2, 16, 0, 1}, /* 0x23 */
366 {"const32", 4, 32, 0, 1}, /* 0x24 */
367 {"const64", 8, 64, 0, 1}, /* 0x25 */
368 {"reg", 2, 0, 0, 1}, /* 0x26 */
369 {"end", 0, 0, 0, 0}, /* 0x27 */
370 {"dup", 0, 0, 1, 2}, /* 0x28 */
371 {"pop", 0, 0, 1, 0}, /* 0x29 */
372 {"zero_ext", 1, 0, 1, 1}, /* 0x2a */
373 {"swap", 0, 0, 2, 2}, /* 0x2b */
374 {"getv", 2, 0, 0, 1}, /* 0x2c */
375 {"setv", 2, 0, 0, 1}, /* 0x2d */
376 {"tracev", 2, 0, 0, 1}, /* 0x2e */
377 {0, 0, 0, 0, 0}, /* 0x2f */
378 {"trace16", 2, 0, 1, 1}, /* 0x30 */
379 };
380
381
382 /* Disassemble the expression EXPR, writing to F. */
383 void
384 ax_print (struct ui_file *f, struct agent_expr *x)
385 {
386 int i;
387 int is_float = 0;
388
389 fprintf_filtered (f, _("Scope: %s\n"), paddress (x->gdbarch, x->scope));
390 fprintf_filtered (f, _("Reg mask:"));
391 for (i = 0; i < x->reg_mask_len; ++i)
392 fprintf_filtered (f, _(" %02x"), x->reg_mask[i]);
393 fprintf_filtered (f, _("\n"));
394
395 /* Check the size of the name array against the number of entries in
396 the enum, to catch additions that people didn't sync. */
397 if ((sizeof (aop_map) / sizeof (aop_map[0]))
398 != aop_last)
399 error (_("GDB bug: ax-general.c (ax_print): opcode map out of sync"));
400
401 for (i = 0; i < x->len;)
402 {
403 enum agent_op op = x->buf[i];
404
405 if (op >= (sizeof (aop_map) / sizeof (aop_map[0]))
406 || !aop_map[op].name)
407 {
408 fprintf_filtered (f, _("%3d <bad opcode %02x>\n"), i, op);
409 i++;
410 continue;
411 }
412 if (i + 1 + aop_map[op].op_size > x->len)
413 {
414 fprintf_filtered (f, _("%3d <incomplete opcode %s>\n"),
415 i, aop_map[op].name);
416 break;
417 }
418
419 fprintf_filtered (f, "%3d %s", i, aop_map[op].name);
420 if (aop_map[op].op_size > 0)
421 {
422 fputs_filtered (" ", f);
423
424 print_longest (f, 'd', 0,
425 read_const (x, i + 1, aop_map[op].op_size));
426 }
427 fprintf_filtered (f, "\n");
428 i += 1 + aop_map[op].op_size;
429
430 is_float = (op == aop_float);
431 }
432 }
433
434 /* Add register REG to the register mask for expression AX. */
435 void
436 ax_reg_mask (struct agent_expr *ax, int reg)
437 {
438 if (reg >= gdbarch_num_regs (ax->gdbarch))
439 {
440 /* This is a pseudo-register. */
441 if (!gdbarch_ax_pseudo_register_collect_p (ax->gdbarch))
442 error (_("'%s' is a pseudo-register; "
443 "GDB cannot yet trace its contents."),
444 user_reg_map_regnum_to_name (ax->gdbarch, reg));
445 if (gdbarch_ax_pseudo_register_collect (ax->gdbarch, ax, reg))
446 error (_("Trace '%s' failed."),
447 user_reg_map_regnum_to_name (ax->gdbarch, reg));
448 }
449 else
450 {
451 int byte = reg / 8;
452
453 /* Grow the bit mask if necessary. */
454 if (byte >= ax->reg_mask_len)
455 {
456 /* It's not appropriate to double here. This isn't a
457 string buffer. */
458 int new_len = byte + 1;
459 unsigned char *new_reg_mask = xrealloc (ax->reg_mask,
460 new_len
461 * sizeof (ax->reg_mask[0]));
462 memset (new_reg_mask + ax->reg_mask_len, 0,
463 (new_len - ax->reg_mask_len) * sizeof (ax->reg_mask[0]));
464 ax->reg_mask_len = new_len;
465 ax->reg_mask = new_reg_mask;
466 }
467
468 ax->reg_mask[byte] |= 1 << (reg % 8);
469 }
470 }
471
472 /* Given an agent expression AX, fill in requirements and other descriptive
473 bits. */
474 void
475 ax_reqs (struct agent_expr *ax)
476 {
477 int i;
478 int height;
479
480 /* Jump target table. targets[i] is non-zero iff we have found a
481 jump to offset i. */
482 char *targets = (char *) alloca (ax->len * sizeof (targets[0]));
483
484 /* Instruction boundary table. boundary[i] is non-zero iff our scan
485 has reached an instruction starting at offset i. */
486 char *boundary = (char *) alloca (ax->len * sizeof (boundary[0]));
487
488 /* Stack height record. If either targets[i] or boundary[i] is
489 non-zero, heights[i] is the height the stack should have before
490 executing the bytecode at that point. */
491 int *heights = (int *) alloca (ax->len * sizeof (heights[0]));
492
493 /* Pointer to a description of the present op. */
494 struct aop_map *op;
495
496 memset (targets, 0, ax->len * sizeof (targets[0]));
497 memset (boundary, 0, ax->len * sizeof (boundary[0]));
498
499 ax->max_height = ax->min_height = height = 0;
500 ax->flaw = agent_flaw_none;
501 ax->max_data_size = 0;
502
503 for (i = 0; i < ax->len; i += 1 + op->op_size)
504 {
505 if (ax->buf[i] > (sizeof (aop_map) / sizeof (aop_map[0])))
506 {
507 ax->flaw = agent_flaw_bad_instruction;
508 return;
509 }
510
511 op = &aop_map[ax->buf[i]];
512
513 if (!op->name)
514 {
515 ax->flaw = agent_flaw_bad_instruction;
516 return;
517 }
518
519 if (i + 1 + op->op_size > ax->len)
520 {
521 ax->flaw = agent_flaw_incomplete_instruction;
522 return;
523 }
524
525 /* If this instruction is a forward jump target, does the
526 current stack height match the stack height at the jump
527 source? */
528 if (targets[i] && (heights[i] != height))
529 {
530 ax->flaw = agent_flaw_height_mismatch;
531 return;
532 }
533
534 boundary[i] = 1;
535 heights[i] = height;
536
537 height -= op->consumed;
538 if (height < ax->min_height)
539 ax->min_height = height;
540 height += op->produced;
541 if (height > ax->max_height)
542 ax->max_height = height;
543
544 if (op->data_size > ax->max_data_size)
545 ax->max_data_size = op->data_size;
546
547 /* For jump instructions, check that the target is a valid
548 offset. If it is, record the fact that that location is a
549 jump target, and record the height we expect there. */
550 if (aop_goto == op - aop_map
551 || aop_if_goto == op - aop_map)
552 {
553 int target = read_const (ax, i + 1, 2);
554 if (target < 0 || target >= ax->len)
555 {
556 ax->flaw = agent_flaw_bad_jump;
557 return;
558 }
559
560 /* Do we have any information about what the stack height
561 should be at the target? */
562 if (targets[target] || boundary[target])
563 {
564 if (heights[target] != height)
565 {
566 ax->flaw = agent_flaw_height_mismatch;
567 return;
568 }
569 }
570
571 /* Record the target, along with the stack height we expect. */
572 targets[target] = 1;
573 heights[target] = height;
574 }
575
576 /* For unconditional jumps with a successor, check that the
577 successor is a target, and pick up its stack height. */
578 if (aop_goto == op - aop_map
579 && i + 3 < ax->len)
580 {
581 if (!targets[i + 3])
582 {
583 ax->flaw = agent_flaw_hole;
584 return;
585 }
586
587 height = heights[i + 3];
588 }
589
590 /* For reg instructions, record the register in the bit mask. */
591 if (aop_reg == op - aop_map)
592 {
593 int reg = read_const (ax, i + 1, 2);
594
595 ax_reg_mask (ax, reg);
596 }
597 }
598
599 /* Check that all the targets are on boundaries. */
600 for (i = 0; i < ax->len; i++)
601 if (targets[i] && !boundary[i])
602 {
603 ax->flaw = agent_flaw_bad_jump;
604 return;
605 }
606
607 ax->final_height = height;
608 }
This page took 0.060794 seconds and 4 git commands to generate.