Update years in copyright notice for the GDB files.
[deliverable/binutils-gdb.git] / gdb / ax-general.c
1 /* Functions for manipulating expressions designed to be executed on the agent
2 Copyright (C) 1998-2013 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Despite what the above comment says about this file being part of
20 GDB, we would like to keep these functions free of GDB
21 dependencies, since we want to be able to use them in contexts
22 outside of GDB (test suites, the stub, etc.) */
23
24 #include "defs.h"
25 #include "ax.h"
26
27 #include "value.h"
28 #include "gdb_string.h"
29
30 #include "user-regs.h"
31
32 static void grow_expr (struct agent_expr *x, int n);
33
34 static void append_const (struct agent_expr *x, LONGEST val, int n);
35
36 static LONGEST read_const (struct agent_expr *x, int o, int n);
37
38 static void generic_ext (struct agent_expr *x, enum agent_op op, int n);
39 \f
40 /* Functions for building expressions. */
41
42 /* Allocate a new, empty agent expression. */
43 struct agent_expr *
44 new_agent_expr (struct gdbarch *gdbarch, CORE_ADDR scope)
45 {
46 struct agent_expr *x = xmalloc (sizeof (*x));
47
48 x->len = 0;
49 x->size = 1; /* Change this to a larger value once
50 reallocation code is tested. */
51 x->buf = xmalloc (x->size);
52
53 x->gdbarch = gdbarch;
54 x->scope = scope;
55
56 /* Bit vector for registers used. */
57 x->reg_mask_len = 1;
58 x->reg_mask = xmalloc (x->reg_mask_len * sizeof (x->reg_mask[0]));
59 memset (x->reg_mask, 0, x->reg_mask_len * sizeof (x->reg_mask[0]));
60
61 return x;
62 }
63
64 /* Free a agent expression. */
65 void
66 free_agent_expr (struct agent_expr *x)
67 {
68 xfree (x->buf);
69 xfree (x->reg_mask);
70 xfree (x);
71 }
72
73 static void
74 do_free_agent_expr_cleanup (void *x)
75 {
76 free_agent_expr (x);
77 }
78
79 struct cleanup *
80 make_cleanup_free_agent_expr (struct agent_expr *x)
81 {
82 return make_cleanup (do_free_agent_expr_cleanup, x);
83 }
84
85
86 /* Make sure that X has room for at least N more bytes. This doesn't
87 affect the length, just the allocated size. */
88 static void
89 grow_expr (struct agent_expr *x, int n)
90 {
91 if (x->len + n > x->size)
92 {
93 x->size *= 2;
94 if (x->size < x->len + n)
95 x->size = x->len + n + 10;
96 x->buf = xrealloc (x->buf, x->size);
97 }
98 }
99
100
101 /* Append the low N bytes of VAL as an N-byte integer to the
102 expression X, in big-endian order. */
103 static void
104 append_const (struct agent_expr *x, LONGEST val, int n)
105 {
106 int i;
107
108 grow_expr (x, n);
109 for (i = n - 1; i >= 0; i--)
110 {
111 x->buf[x->len + i] = val & 0xff;
112 val >>= 8;
113 }
114 x->len += n;
115 }
116
117
118 /* Extract an N-byte big-endian unsigned integer from expression X at
119 offset O. */
120 static LONGEST
121 read_const (struct agent_expr *x, int o, int n)
122 {
123 int i;
124 LONGEST accum = 0;
125
126 /* Make sure we're not reading off the end of the expression. */
127 if (o + n > x->len)
128 error (_("GDB bug: ax-general.c (read_const): incomplete constant"));
129
130 for (i = 0; i < n; i++)
131 accum = (accum << 8) | x->buf[o + i];
132
133 return accum;
134 }
135
136
137 /* Append a simple operator OP to EXPR. */
138 void
139 ax_simple (struct agent_expr *x, enum agent_op op)
140 {
141 grow_expr (x, 1);
142 x->buf[x->len++] = op;
143 }
144
145 /* Append a pick operator to EXPR. DEPTH is the stack item to pick,
146 with 0 being top of stack. */
147
148 void
149 ax_pick (struct agent_expr *x, int depth)
150 {
151 if (depth < 0 || depth > 255)
152 error (_("GDB bug: ax-general.c (ax_pick): stack depth out of range"));
153 ax_simple (x, aop_pick);
154 append_const (x, 1, depth);
155 }
156
157
158 /* Append a sign-extension or zero-extension instruction to EXPR, to
159 extend an N-bit value. */
160 static void
161 generic_ext (struct agent_expr *x, enum agent_op op, int n)
162 {
163 /* N must fit in a byte. */
164 if (n < 0 || n > 255)
165 error (_("GDB bug: ax-general.c (generic_ext): bit count out of range"));
166 /* That had better be enough range. */
167 if (sizeof (LONGEST) * 8 > 255)
168 error (_("GDB bug: ax-general.c (generic_ext): "
169 "opcode has inadequate range"));
170
171 grow_expr (x, 2);
172 x->buf[x->len++] = op;
173 x->buf[x->len++] = n;
174 }
175
176
177 /* Append a sign-extension instruction to EXPR, to extend an N-bit value. */
178 void
179 ax_ext (struct agent_expr *x, int n)
180 {
181 generic_ext (x, aop_ext, n);
182 }
183
184
185 /* Append a zero-extension instruction to EXPR, to extend an N-bit value. */
186 void
187 ax_zero_ext (struct agent_expr *x, int n)
188 {
189 generic_ext (x, aop_zero_ext, n);
190 }
191
192
193 /* Append a trace_quick instruction to EXPR, to record N bytes. */
194 void
195 ax_trace_quick (struct agent_expr *x, int n)
196 {
197 /* N must fit in a byte. */
198 if (n < 0 || n > 255)
199 error (_("GDB bug: ax-general.c (ax_trace_quick): "
200 "size out of range for trace_quick"));
201
202 grow_expr (x, 2);
203 x->buf[x->len++] = aop_trace_quick;
204 x->buf[x->len++] = n;
205 }
206
207
208 /* Append a goto op to EXPR. OP is the actual op (must be aop_goto or
209 aop_if_goto). We assume we don't know the target offset yet,
210 because it's probably a forward branch, so we leave space in EXPR
211 for the target, and return the offset in EXPR of that space, so we
212 can backpatch it once we do know the target offset. Use ax_label
213 to do the backpatching. */
214 int
215 ax_goto (struct agent_expr *x, enum agent_op op)
216 {
217 grow_expr (x, 3);
218 x->buf[x->len + 0] = op;
219 x->buf[x->len + 1] = 0xff;
220 x->buf[x->len + 2] = 0xff;
221 x->len += 3;
222 return x->len - 2;
223 }
224
225 /* Suppose a given call to ax_goto returns some value PATCH. When you
226 know the offset TARGET that goto should jump to, call
227 ax_label (EXPR, PATCH, TARGET)
228 to patch TARGET into the ax_goto instruction. */
229 void
230 ax_label (struct agent_expr *x, int patch, int target)
231 {
232 /* Make sure the value is in range. Don't accept 0xffff as an
233 offset; that's our magic sentinel value for unpatched branches. */
234 if (target < 0 || target >= 0xffff)
235 error (_("GDB bug: ax-general.c (ax_label): label target out of range"));
236
237 x->buf[patch] = (target >> 8) & 0xff;
238 x->buf[patch + 1] = target & 0xff;
239 }
240
241
242 /* Assemble code to push a constant on the stack. */
243 void
244 ax_const_l (struct agent_expr *x, LONGEST l)
245 {
246 static enum agent_op ops[]
247 =
248 {aop_const8, aop_const16, aop_const32, aop_const64};
249 int size;
250 int op;
251
252 /* How big is the number? 'op' keeps track of which opcode to use.
253 Notice that we don't really care whether the original number was
254 signed or unsigned; we always reproduce the value exactly, and
255 use the shortest representation. */
256 for (op = 0, size = 8; size < 64; size *= 2, op++)
257 {
258 LONGEST lim = ((LONGEST) 1) << (size - 1);
259
260 if (-lim <= l && l <= lim - 1)
261 break;
262 }
263
264 /* Emit the right opcode... */
265 ax_simple (x, ops[op]);
266
267 /* Emit the low SIZE bytes as an unsigned number. We know that
268 sign-extending this will yield l. */
269 append_const (x, l, size / 8);
270
271 /* Now, if it was negative, and not full-sized, sign-extend it. */
272 if (l < 0 && size < 64)
273 ax_ext (x, size);
274 }
275
276
277 void
278 ax_const_d (struct agent_expr *x, LONGEST d)
279 {
280 /* FIXME: floating-point support not present yet. */
281 error (_("GDB bug: ax-general.c (ax_const_d): "
282 "floating point not supported yet"));
283 }
284
285
286 /* Assemble code to push the value of register number REG on the
287 stack. */
288 void
289 ax_reg (struct agent_expr *x, int reg)
290 {
291 if (reg >= gdbarch_num_regs (x->gdbarch))
292 {
293 /* This is a pseudo-register. */
294 if (!gdbarch_ax_pseudo_register_push_stack_p (x->gdbarch))
295 error (_("'%s' is a pseudo-register; "
296 "GDB cannot yet trace its contents."),
297 user_reg_map_regnum_to_name (x->gdbarch, reg));
298 if (gdbarch_ax_pseudo_register_push_stack (x->gdbarch, x, reg))
299 error (_("Trace '%s' failed."),
300 user_reg_map_regnum_to_name (x->gdbarch, reg));
301 }
302 else
303 {
304 /* Make sure the register number is in range. */
305 if (reg < 0 || reg > 0xffff)
306 error (_("GDB bug: ax-general.c (ax_reg): "
307 "register number out of range"));
308 grow_expr (x, 3);
309 x->buf[x->len] = aop_reg;
310 x->buf[x->len + 1] = (reg >> 8) & 0xff;
311 x->buf[x->len + 2] = (reg) & 0xff;
312 x->len += 3;
313 }
314 }
315
316 /* Assemble code to operate on a trace state variable. */
317
318 void
319 ax_tsv (struct agent_expr *x, enum agent_op op, int num)
320 {
321 /* Make sure the tsv number is in range. */
322 if (num < 0 || num > 0xffff)
323 internal_error (__FILE__, __LINE__,
324 _("ax-general.c (ax_tsv): variable "
325 "number is %d, out of range"), num);
326
327 grow_expr (x, 3);
328 x->buf[x->len] = op;
329 x->buf[x->len + 1] = (num >> 8) & 0xff;
330 x->buf[x->len + 2] = (num) & 0xff;
331 x->len += 3;
332 }
333
334 /* Append a string to the expression. Note that the string is going
335 into the bytecodes directly, not on the stack. As a precaution,
336 include both length as prefix, and terminate with a NUL. (The NUL
337 is counted in the length.) */
338
339 void
340 ax_string (struct agent_expr *x, char *str, int slen)
341 {
342 int i;
343
344 /* Make sure the string length is reasonable. */
345 if (slen < 0 || slen > 0xffff)
346 internal_error (__FILE__, __LINE__,
347 _("ax-general.c (ax_string): string "
348 "length is %d, out of allowed range"), slen);
349
350 grow_expr (x, 2 + slen + 1);
351 x->buf[x->len++] = ((slen + 1) >> 8) & 0xff;
352 x->buf[x->len++] = (slen + 1) & 0xff;
353 for (i = 0; i < slen; ++i)
354 x->buf[x->len++] = str[i];
355 x->buf[x->len++] = '\0';
356 }
357 \f
358
359
360 /* Functions for disassembling agent expressions, and otherwise
361 debugging the expression compiler. */
362
363 struct aop_map aop_map[] =
364 {
365 {0, 0, 0, 0, 0}
366 #define DEFOP(NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED, VALUE) \
367 , { # NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED }
368 #include "ax.def"
369 #undef DEFOP
370 };
371
372
373 /* Disassemble the expression EXPR, writing to F. */
374 void
375 ax_print (struct ui_file *f, struct agent_expr *x)
376 {
377 int i;
378 int is_float = 0;
379
380 fprintf_filtered (f, _("Scope: %s\n"), paddress (x->gdbarch, x->scope));
381 fprintf_filtered (f, _("Reg mask:"));
382 for (i = 0; i < x->reg_mask_len; ++i)
383 fprintf_filtered (f, _(" %02x"), x->reg_mask[i]);
384 fprintf_filtered (f, _("\n"));
385
386 /* Check the size of the name array against the number of entries in
387 the enum, to catch additions that people didn't sync. */
388 if ((sizeof (aop_map) / sizeof (aop_map[0]))
389 != aop_last)
390 error (_("GDB bug: ax-general.c (ax_print): opcode map out of sync"));
391
392 for (i = 0; i < x->len;)
393 {
394 enum agent_op op = x->buf[i];
395
396 if (op >= (sizeof (aop_map) / sizeof (aop_map[0]))
397 || !aop_map[op].name)
398 {
399 fprintf_filtered (f, _("%3d <bad opcode %02x>\n"), i, op);
400 i++;
401 continue;
402 }
403 if (i + 1 + aop_map[op].op_size > x->len)
404 {
405 fprintf_filtered (f, _("%3d <incomplete opcode %s>\n"),
406 i, aop_map[op].name);
407 break;
408 }
409
410 fprintf_filtered (f, "%3d %s", i, aop_map[op].name);
411 if (aop_map[op].op_size > 0)
412 {
413 fputs_filtered (" ", f);
414
415 print_longest (f, 'd', 0,
416 read_const (x, i + 1, aop_map[op].op_size));
417 }
418 /* Handle the complicated printf arguments specially. */
419 else if (op == aop_printf)
420 {
421 int slen, nargs;
422
423 i++;
424 nargs = x->buf[i++];
425 slen = x->buf[i++];
426 slen = slen * 256 + x->buf[i++];
427 fprintf_filtered (f, _(" \"%s\", %d args"),
428 &(x->buf[i]), nargs);
429 i += slen - 1;
430 }
431 fprintf_filtered (f, "\n");
432 i += 1 + aop_map[op].op_size;
433
434 is_float = (op == aop_float);
435 }
436 }
437
438 /* Add register REG to the register mask for expression AX. */
439 void
440 ax_reg_mask (struct agent_expr *ax, int reg)
441 {
442 if (reg >= gdbarch_num_regs (ax->gdbarch))
443 {
444 /* This is a pseudo-register. */
445 if (!gdbarch_ax_pseudo_register_collect_p (ax->gdbarch))
446 error (_("'%s' is a pseudo-register; "
447 "GDB cannot yet trace its contents."),
448 user_reg_map_regnum_to_name (ax->gdbarch, reg));
449 if (gdbarch_ax_pseudo_register_collect (ax->gdbarch, ax, reg))
450 error (_("Trace '%s' failed."),
451 user_reg_map_regnum_to_name (ax->gdbarch, reg));
452 }
453 else
454 {
455 int byte = reg / 8;
456
457 /* Grow the bit mask if necessary. */
458 if (byte >= ax->reg_mask_len)
459 {
460 /* It's not appropriate to double here. This isn't a
461 string buffer. */
462 int new_len = byte + 1;
463 unsigned char *new_reg_mask = xrealloc (ax->reg_mask,
464 new_len
465 * sizeof (ax->reg_mask[0]));
466 memset (new_reg_mask + ax->reg_mask_len, 0,
467 (new_len - ax->reg_mask_len) * sizeof (ax->reg_mask[0]));
468 ax->reg_mask_len = new_len;
469 ax->reg_mask = new_reg_mask;
470 }
471
472 ax->reg_mask[byte] |= 1 << (reg % 8);
473 }
474 }
475
476 /* Given an agent expression AX, fill in requirements and other descriptive
477 bits. */
478 void
479 ax_reqs (struct agent_expr *ax)
480 {
481 int i;
482 int height;
483
484 /* Jump target table. targets[i] is non-zero iff we have found a
485 jump to offset i. */
486 char *targets = (char *) alloca (ax->len * sizeof (targets[0]));
487
488 /* Instruction boundary table. boundary[i] is non-zero iff our scan
489 has reached an instruction starting at offset i. */
490 char *boundary = (char *) alloca (ax->len * sizeof (boundary[0]));
491
492 /* Stack height record. If either targets[i] or boundary[i] is
493 non-zero, heights[i] is the height the stack should have before
494 executing the bytecode at that point. */
495 int *heights = (int *) alloca (ax->len * sizeof (heights[0]));
496
497 /* Pointer to a description of the present op. */
498 struct aop_map *op;
499
500 memset (targets, 0, ax->len * sizeof (targets[0]));
501 memset (boundary, 0, ax->len * sizeof (boundary[0]));
502
503 ax->max_height = ax->min_height = height = 0;
504 ax->flaw = agent_flaw_none;
505 ax->max_data_size = 0;
506
507 for (i = 0; i < ax->len; i += 1 + op->op_size)
508 {
509 if (ax->buf[i] > (sizeof (aop_map) / sizeof (aop_map[0])))
510 {
511 ax->flaw = agent_flaw_bad_instruction;
512 return;
513 }
514
515 op = &aop_map[ax->buf[i]];
516
517 if (!op->name)
518 {
519 ax->flaw = agent_flaw_bad_instruction;
520 return;
521 }
522
523 if (i + 1 + op->op_size > ax->len)
524 {
525 ax->flaw = agent_flaw_incomplete_instruction;
526 return;
527 }
528
529 /* If this instruction is a forward jump target, does the
530 current stack height match the stack height at the jump
531 source? */
532 if (targets[i] && (heights[i] != height))
533 {
534 ax->flaw = agent_flaw_height_mismatch;
535 return;
536 }
537
538 boundary[i] = 1;
539 heights[i] = height;
540
541 height -= op->consumed;
542 if (height < ax->min_height)
543 ax->min_height = height;
544 height += op->produced;
545 if (height > ax->max_height)
546 ax->max_height = height;
547
548 if (op->data_size > ax->max_data_size)
549 ax->max_data_size = op->data_size;
550
551 /* For jump instructions, check that the target is a valid
552 offset. If it is, record the fact that that location is a
553 jump target, and record the height we expect there. */
554 if (aop_goto == op - aop_map
555 || aop_if_goto == op - aop_map)
556 {
557 int target = read_const (ax, i + 1, 2);
558 if (target < 0 || target >= ax->len)
559 {
560 ax->flaw = agent_flaw_bad_jump;
561 return;
562 }
563
564 /* Do we have any information about what the stack height
565 should be at the target? */
566 if (targets[target] || boundary[target])
567 {
568 if (heights[target] != height)
569 {
570 ax->flaw = agent_flaw_height_mismatch;
571 return;
572 }
573 }
574
575 /* Record the target, along with the stack height we expect. */
576 targets[target] = 1;
577 heights[target] = height;
578 }
579
580 /* For unconditional jumps with a successor, check that the
581 successor is a target, and pick up its stack height. */
582 if (aop_goto == op - aop_map
583 && i + 3 < ax->len)
584 {
585 if (!targets[i + 3])
586 {
587 ax->flaw = agent_flaw_hole;
588 return;
589 }
590
591 height = heights[i + 3];
592 }
593
594 /* For reg instructions, record the register in the bit mask. */
595 if (aop_reg == op - aop_map)
596 {
597 int reg = read_const (ax, i + 1, 2);
598
599 ax_reg_mask (ax, reg);
600 }
601 }
602
603 /* Check that all the targets are on boundaries. */
604 for (i = 0; i < ax->len; i++)
605 if (targets[i] && !boundary[i])
606 {
607 ax->flaw = agent_flaw_bad_jump;
608 return;
609 }
610
611 ax->final_height = height;
612 }
This page took 0.06278 seconds and 5 git commands to generate.