Update Copyright year range in all files maintained by GDB.
[deliverable/binutils-gdb.git] / gdb / ax-general.c
1 /* Functions for manipulating expressions designed to be executed on the agent
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Despite what the above comment says about this file being part of
20 GDB, we would like to keep these functions free of GDB
21 dependencies, since we want to be able to use them in contexts
22 outside of GDB (test suites, the stub, etc.) */
23
24 #include "defs.h"
25 #include "ax.h"
26
27 #include "value.h"
28 #include <string.h>
29
30 #include "user-regs.h"
31
32 static void grow_expr (struct agent_expr *x, int n);
33
34 static void append_const (struct agent_expr *x, LONGEST val, int n);
35
36 static LONGEST read_const (struct agent_expr *x, int o, int n);
37
38 static void generic_ext (struct agent_expr *x, enum agent_op op, int n);
39 \f
40 /* Functions for building expressions. */
41
42 /* Allocate a new, empty agent expression. */
43 struct agent_expr *
44 new_agent_expr (struct gdbarch *gdbarch, CORE_ADDR scope)
45 {
46 struct agent_expr *x = xmalloc (sizeof (*x));
47
48 x->len = 0;
49 x->size = 1; /* Change this to a larger value once
50 reallocation code is tested. */
51 x->buf = xmalloc (x->size);
52
53 x->gdbarch = gdbarch;
54 x->scope = scope;
55
56 /* Bit vector for registers used. */
57 x->reg_mask_len = 1;
58 x->reg_mask = xmalloc (x->reg_mask_len * sizeof (x->reg_mask[0]));
59 memset (x->reg_mask, 0, x->reg_mask_len * sizeof (x->reg_mask[0]));
60
61 x->tracing = 0;
62 x->trace_string = 0;
63
64 return x;
65 }
66
67 /* Free a agent expression. */
68 void
69 free_agent_expr (struct agent_expr *x)
70 {
71 xfree (x->buf);
72 xfree (x->reg_mask);
73 xfree (x);
74 }
75
76 static void
77 do_free_agent_expr_cleanup (void *x)
78 {
79 free_agent_expr (x);
80 }
81
82 struct cleanup *
83 make_cleanup_free_agent_expr (struct agent_expr *x)
84 {
85 return make_cleanup (do_free_agent_expr_cleanup, x);
86 }
87
88
89 /* Make sure that X has room for at least N more bytes. This doesn't
90 affect the length, just the allocated size. */
91 static void
92 grow_expr (struct agent_expr *x, int n)
93 {
94 if (x->len + n > x->size)
95 {
96 x->size *= 2;
97 if (x->size < x->len + n)
98 x->size = x->len + n + 10;
99 x->buf = xrealloc (x->buf, x->size);
100 }
101 }
102
103
104 /* Append the low N bytes of VAL as an N-byte integer to the
105 expression X, in big-endian order. */
106 static void
107 append_const (struct agent_expr *x, LONGEST val, int n)
108 {
109 int i;
110
111 grow_expr (x, n);
112 for (i = n - 1; i >= 0; i--)
113 {
114 x->buf[x->len + i] = val & 0xff;
115 val >>= 8;
116 }
117 x->len += n;
118 }
119
120
121 /* Extract an N-byte big-endian unsigned integer from expression X at
122 offset O. */
123 static LONGEST
124 read_const (struct agent_expr *x, int o, int n)
125 {
126 int i;
127 LONGEST accum = 0;
128
129 /* Make sure we're not reading off the end of the expression. */
130 if (o + n > x->len)
131 error (_("GDB bug: ax-general.c (read_const): incomplete constant"));
132
133 for (i = 0; i < n; i++)
134 accum = (accum << 8) | x->buf[o + i];
135
136 return accum;
137 }
138
139
140 /* Append a simple operator OP to EXPR. */
141 void
142 ax_simple (struct agent_expr *x, enum agent_op op)
143 {
144 grow_expr (x, 1);
145 x->buf[x->len++] = op;
146 }
147
148 /* Append a pick operator to EXPR. DEPTH is the stack item to pick,
149 with 0 being top of stack. */
150
151 void
152 ax_pick (struct agent_expr *x, int depth)
153 {
154 if (depth < 0 || depth > 255)
155 error (_("GDB bug: ax-general.c (ax_pick): stack depth out of range"));
156 ax_simple (x, aop_pick);
157 append_const (x, 1, depth);
158 }
159
160
161 /* Append a sign-extension or zero-extension instruction to EXPR, to
162 extend an N-bit value. */
163 static void
164 generic_ext (struct agent_expr *x, enum agent_op op, int n)
165 {
166 /* N must fit in a byte. */
167 if (n < 0 || n > 255)
168 error (_("GDB bug: ax-general.c (generic_ext): bit count out of range"));
169 /* That had better be enough range. */
170 if (sizeof (LONGEST) * 8 > 255)
171 error (_("GDB bug: ax-general.c (generic_ext): "
172 "opcode has inadequate range"));
173
174 grow_expr (x, 2);
175 x->buf[x->len++] = op;
176 x->buf[x->len++] = n;
177 }
178
179
180 /* Append a sign-extension instruction to EXPR, to extend an N-bit value. */
181 void
182 ax_ext (struct agent_expr *x, int n)
183 {
184 generic_ext (x, aop_ext, n);
185 }
186
187
188 /* Append a zero-extension instruction to EXPR, to extend an N-bit value. */
189 void
190 ax_zero_ext (struct agent_expr *x, int n)
191 {
192 generic_ext (x, aop_zero_ext, n);
193 }
194
195
196 /* Append a trace_quick instruction to EXPR, to record N bytes. */
197 void
198 ax_trace_quick (struct agent_expr *x, int n)
199 {
200 /* N must fit in a byte. */
201 if (n < 0 || n > 255)
202 error (_("GDB bug: ax-general.c (ax_trace_quick): "
203 "size out of range for trace_quick"));
204
205 grow_expr (x, 2);
206 x->buf[x->len++] = aop_trace_quick;
207 x->buf[x->len++] = n;
208 }
209
210
211 /* Append a goto op to EXPR. OP is the actual op (must be aop_goto or
212 aop_if_goto). We assume we don't know the target offset yet,
213 because it's probably a forward branch, so we leave space in EXPR
214 for the target, and return the offset in EXPR of that space, so we
215 can backpatch it once we do know the target offset. Use ax_label
216 to do the backpatching. */
217 int
218 ax_goto (struct agent_expr *x, enum agent_op op)
219 {
220 grow_expr (x, 3);
221 x->buf[x->len + 0] = op;
222 x->buf[x->len + 1] = 0xff;
223 x->buf[x->len + 2] = 0xff;
224 x->len += 3;
225 return x->len - 2;
226 }
227
228 /* Suppose a given call to ax_goto returns some value PATCH. When you
229 know the offset TARGET that goto should jump to, call
230 ax_label (EXPR, PATCH, TARGET)
231 to patch TARGET into the ax_goto instruction. */
232 void
233 ax_label (struct agent_expr *x, int patch, int target)
234 {
235 /* Make sure the value is in range. Don't accept 0xffff as an
236 offset; that's our magic sentinel value for unpatched branches. */
237 if (target < 0 || target >= 0xffff)
238 error (_("GDB bug: ax-general.c (ax_label): label target out of range"));
239
240 x->buf[patch] = (target >> 8) & 0xff;
241 x->buf[patch + 1] = target & 0xff;
242 }
243
244
245 /* Assemble code to push a constant on the stack. */
246 void
247 ax_const_l (struct agent_expr *x, LONGEST l)
248 {
249 static enum agent_op ops[]
250 =
251 {aop_const8, aop_const16, aop_const32, aop_const64};
252 int size;
253 int op;
254
255 /* How big is the number? 'op' keeps track of which opcode to use.
256 Notice that we don't really care whether the original number was
257 signed or unsigned; we always reproduce the value exactly, and
258 use the shortest representation. */
259 for (op = 0, size = 8; size < 64; size *= 2, op++)
260 {
261 LONGEST lim = ((LONGEST) 1) << (size - 1);
262
263 if (-lim <= l && l <= lim - 1)
264 break;
265 }
266
267 /* Emit the right opcode... */
268 ax_simple (x, ops[op]);
269
270 /* Emit the low SIZE bytes as an unsigned number. We know that
271 sign-extending this will yield l. */
272 append_const (x, l, size / 8);
273
274 /* Now, if it was negative, and not full-sized, sign-extend it. */
275 if (l < 0 && size < 64)
276 ax_ext (x, size);
277 }
278
279
280 void
281 ax_const_d (struct agent_expr *x, LONGEST d)
282 {
283 /* FIXME: floating-point support not present yet. */
284 error (_("GDB bug: ax-general.c (ax_const_d): "
285 "floating point not supported yet"));
286 }
287
288
289 /* Assemble code to push the value of register number REG on the
290 stack. */
291 void
292 ax_reg (struct agent_expr *x, int reg)
293 {
294 if (reg >= gdbarch_num_regs (x->gdbarch))
295 {
296 /* This is a pseudo-register. */
297 if (!gdbarch_ax_pseudo_register_push_stack_p (x->gdbarch))
298 error (_("'%s' is a pseudo-register; "
299 "GDB cannot yet trace its contents."),
300 user_reg_map_regnum_to_name (x->gdbarch, reg));
301 if (gdbarch_ax_pseudo_register_push_stack (x->gdbarch, x, reg))
302 error (_("Trace '%s' failed."),
303 user_reg_map_regnum_to_name (x->gdbarch, reg));
304 }
305 else
306 {
307 /* Make sure the register number is in range. */
308 if (reg < 0 || reg > 0xffff)
309 error (_("GDB bug: ax-general.c (ax_reg): "
310 "register number out of range"));
311 grow_expr (x, 3);
312 x->buf[x->len] = aop_reg;
313 x->buf[x->len + 1] = (reg >> 8) & 0xff;
314 x->buf[x->len + 2] = (reg) & 0xff;
315 x->len += 3;
316 }
317 }
318
319 /* Assemble code to operate on a trace state variable. */
320
321 void
322 ax_tsv (struct agent_expr *x, enum agent_op op, int num)
323 {
324 /* Make sure the tsv number is in range. */
325 if (num < 0 || num > 0xffff)
326 internal_error (__FILE__, __LINE__,
327 _("ax-general.c (ax_tsv): variable "
328 "number is %d, out of range"), num);
329
330 grow_expr (x, 3);
331 x->buf[x->len] = op;
332 x->buf[x->len + 1] = (num >> 8) & 0xff;
333 x->buf[x->len + 2] = (num) & 0xff;
334 x->len += 3;
335 }
336
337 /* Append a string to the expression. Note that the string is going
338 into the bytecodes directly, not on the stack. As a precaution,
339 include both length as prefix, and terminate with a NUL. (The NUL
340 is counted in the length.) */
341
342 void
343 ax_string (struct agent_expr *x, const char *str, int slen)
344 {
345 int i;
346
347 /* Make sure the string length is reasonable. */
348 if (slen < 0 || slen > 0xffff)
349 internal_error (__FILE__, __LINE__,
350 _("ax-general.c (ax_string): string "
351 "length is %d, out of allowed range"), slen);
352
353 grow_expr (x, 2 + slen + 1);
354 x->buf[x->len++] = ((slen + 1) >> 8) & 0xff;
355 x->buf[x->len++] = (slen + 1) & 0xff;
356 for (i = 0; i < slen; ++i)
357 x->buf[x->len++] = str[i];
358 x->buf[x->len++] = '\0';
359 }
360 \f
361
362
363 /* Functions for disassembling agent expressions, and otherwise
364 debugging the expression compiler. */
365
366 struct aop_map aop_map[] =
367 {
368 {0, 0, 0, 0, 0}
369 #define DEFOP(NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED, VALUE) \
370 , { # NAME, SIZE, DATA_SIZE, CONSUMED, PRODUCED }
371 #include "ax.def"
372 #undef DEFOP
373 };
374
375
376 /* Disassemble the expression EXPR, writing to F. */
377 void
378 ax_print (struct ui_file *f, struct agent_expr *x)
379 {
380 int i;
381
382 fprintf_filtered (f, _("Scope: %s\n"), paddress (x->gdbarch, x->scope));
383 fprintf_filtered (f, _("Reg mask:"));
384 for (i = 0; i < x->reg_mask_len; ++i)
385 fprintf_filtered (f, _(" %02x"), x->reg_mask[i]);
386 fprintf_filtered (f, _("\n"));
387
388 /* Check the size of the name array against the number of entries in
389 the enum, to catch additions that people didn't sync. */
390 if ((sizeof (aop_map) / sizeof (aop_map[0]))
391 != aop_last)
392 error (_("GDB bug: ax-general.c (ax_print): opcode map out of sync"));
393
394 for (i = 0; i < x->len;)
395 {
396 enum agent_op op = x->buf[i];
397
398 if (op >= (sizeof (aop_map) / sizeof (aop_map[0]))
399 || !aop_map[op].name)
400 {
401 fprintf_filtered (f, _("%3d <bad opcode %02x>\n"), i, op);
402 i++;
403 continue;
404 }
405 if (i + 1 + aop_map[op].op_size > x->len)
406 {
407 fprintf_filtered (f, _("%3d <incomplete opcode %s>\n"),
408 i, aop_map[op].name);
409 break;
410 }
411
412 fprintf_filtered (f, "%3d %s", i, aop_map[op].name);
413 if (aop_map[op].op_size > 0)
414 {
415 fputs_filtered (" ", f);
416
417 print_longest (f, 'd', 0,
418 read_const (x, i + 1, aop_map[op].op_size));
419 }
420 /* Handle the complicated printf arguments specially. */
421 else if (op == aop_printf)
422 {
423 int slen, nargs;
424
425 i++;
426 nargs = x->buf[i++];
427 slen = x->buf[i++];
428 slen = slen * 256 + x->buf[i++];
429 fprintf_filtered (f, _(" \"%s\", %d args"),
430 &(x->buf[i]), nargs);
431 i += slen - 1;
432 }
433 fprintf_filtered (f, "\n");
434 i += 1 + aop_map[op].op_size;
435 }
436 }
437
438 /* Add register REG to the register mask for expression AX. */
439 void
440 ax_reg_mask (struct agent_expr *ax, int reg)
441 {
442 if (reg >= gdbarch_num_regs (ax->gdbarch))
443 {
444 /* This is a pseudo-register. */
445 if (!gdbarch_ax_pseudo_register_collect_p (ax->gdbarch))
446 error (_("'%s' is a pseudo-register; "
447 "GDB cannot yet trace its contents."),
448 user_reg_map_regnum_to_name (ax->gdbarch, reg));
449 if (gdbarch_ax_pseudo_register_collect (ax->gdbarch, ax, reg))
450 error (_("Trace '%s' failed."),
451 user_reg_map_regnum_to_name (ax->gdbarch, reg));
452 }
453 else
454 {
455 int byte = reg / 8;
456
457 /* Grow the bit mask if necessary. */
458 if (byte >= ax->reg_mask_len)
459 {
460 /* It's not appropriate to double here. This isn't a
461 string buffer. */
462 int new_len = byte + 1;
463 unsigned char *new_reg_mask = xrealloc (ax->reg_mask,
464 new_len
465 * sizeof (ax->reg_mask[0]));
466 memset (new_reg_mask + ax->reg_mask_len, 0,
467 (new_len - ax->reg_mask_len) * sizeof (ax->reg_mask[0]));
468 ax->reg_mask_len = new_len;
469 ax->reg_mask = new_reg_mask;
470 }
471
472 ax->reg_mask[byte] |= 1 << (reg % 8);
473 }
474 }
475
476 /* Given an agent expression AX, fill in requirements and other descriptive
477 bits. */
478 void
479 ax_reqs (struct agent_expr *ax)
480 {
481 int i;
482 int height;
483
484 /* Jump target table. targets[i] is non-zero iff we have found a
485 jump to offset i. */
486 char *targets = (char *) alloca (ax->len * sizeof (targets[0]));
487
488 /* Instruction boundary table. boundary[i] is non-zero iff our scan
489 has reached an instruction starting at offset i. */
490 char *boundary = (char *) alloca (ax->len * sizeof (boundary[0]));
491
492 /* Stack height record. If either targets[i] or boundary[i] is
493 non-zero, heights[i] is the height the stack should have before
494 executing the bytecode at that point. */
495 int *heights = (int *) alloca (ax->len * sizeof (heights[0]));
496
497 /* Pointer to a description of the present op. */
498 struct aop_map *op;
499
500 memset (targets, 0, ax->len * sizeof (targets[0]));
501 memset (boundary, 0, ax->len * sizeof (boundary[0]));
502
503 ax->max_height = ax->min_height = height = 0;
504 ax->flaw = agent_flaw_none;
505 ax->max_data_size = 0;
506
507 for (i = 0; i < ax->len; i += 1 + op->op_size)
508 {
509 if (ax->buf[i] > (sizeof (aop_map) / sizeof (aop_map[0])))
510 {
511 ax->flaw = agent_flaw_bad_instruction;
512 return;
513 }
514
515 op = &aop_map[ax->buf[i]];
516
517 if (!op->name)
518 {
519 ax->flaw = agent_flaw_bad_instruction;
520 return;
521 }
522
523 if (i + 1 + op->op_size > ax->len)
524 {
525 ax->flaw = agent_flaw_incomplete_instruction;
526 return;
527 }
528
529 /* If this instruction is a forward jump target, does the
530 current stack height match the stack height at the jump
531 source? */
532 if (targets[i] && (heights[i] != height))
533 {
534 ax->flaw = agent_flaw_height_mismatch;
535 return;
536 }
537
538 boundary[i] = 1;
539 heights[i] = height;
540
541 height -= op->consumed;
542 if (height < ax->min_height)
543 ax->min_height = height;
544 height += op->produced;
545 if (height > ax->max_height)
546 ax->max_height = height;
547
548 if (op->data_size > ax->max_data_size)
549 ax->max_data_size = op->data_size;
550
551 /* For jump instructions, check that the target is a valid
552 offset. If it is, record the fact that that location is a
553 jump target, and record the height we expect there. */
554 if (aop_goto == op - aop_map
555 || aop_if_goto == op - aop_map)
556 {
557 int target = read_const (ax, i + 1, 2);
558 if (target < 0 || target >= ax->len)
559 {
560 ax->flaw = agent_flaw_bad_jump;
561 return;
562 }
563
564 /* Do we have any information about what the stack height
565 should be at the target? */
566 if (targets[target] || boundary[target])
567 {
568 if (heights[target] != height)
569 {
570 ax->flaw = agent_flaw_height_mismatch;
571 return;
572 }
573 }
574
575 /* Record the target, along with the stack height we expect. */
576 targets[target] = 1;
577 heights[target] = height;
578 }
579
580 /* For unconditional jumps with a successor, check that the
581 successor is a target, and pick up its stack height. */
582 if (aop_goto == op - aop_map
583 && i + 3 < ax->len)
584 {
585 if (!targets[i + 3])
586 {
587 ax->flaw = agent_flaw_hole;
588 return;
589 }
590
591 height = heights[i + 3];
592 }
593
594 /* For reg instructions, record the register in the bit mask. */
595 if (aop_reg == op - aop_map)
596 {
597 int reg = read_const (ax, i + 1, 2);
598
599 ax_reg_mask (ax, reg);
600 }
601 }
602
603 /* Check that all the targets are on boundaries. */
604 for (i = 0; i < ax->len; i++)
605 if (targets[i] && !boundary[i])
606 {
607 ax->flaw = agent_flaw_bad_jump;
608 return;
609 }
610
611 ax->final_height = height;
612 }
This page took 0.045876 seconds and 5 git commands to generate.