2011-01-07 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / bfin-tdep.c
1 /* Target-dependent code for Analog Devices Blackfin processor, for GDB.
2
3 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Contributed by Analog Devices, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "arch-utils.h"
28 #include "regcache.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "dis-asm.h"
34 #include "gdb_assert.h"
35 #include "dwarf2-frame.h"
36 #include "symtab.h"
37 #include "elf-bfd.h"
38 #include "elf/bfin.h"
39 #include "osabi.h"
40 #include "infcall.h"
41 #include "xml-syscall.h"
42 #include "bfin-tdep.h"
43
44 /* Macros used by prologue functions. */
45 #define P_LINKAGE 0xE800
46 #define P_MINUS_SP1 0x0140
47 #define P_MINUS_SP2 0x05C0
48 #define P_MINUS_SP3 0x0540
49 #define P_MINUS_SP4 0x04C0
50 #define P_SP_PLUS 0x6C06
51 #define P_P2_LOW 0xE10A
52 #define P_P2_HIGH 0XE14A
53 #define P_SP_EQ_SP_PLUS_P2 0X5BB2
54 #define P_SP_EQ_P2_PLUS_SP 0x5B96
55 #define P_MINUS_MINUS_SP_EQ_RETS 0x0167
56
57 /* Macros used for program flow control. */
58 /* 16 bit instruction, max */
59 #define P_16_BIT_INSR_MAX 0xBFFF
60 /* 32 bit instruction, min */
61 #define P_32_BIT_INSR_MIN 0xC000
62 /* 32 bit instruction, max */
63 #define P_32_BIT_INSR_MAX 0xE801
64 /* jump (preg), 16-bit, min */
65 #define P_JUMP_PREG_MIN 0x0050
66 /* jump (preg), 16-bit, max */
67 #define P_JUMP_PREG_MAX 0x0057
68 /* jump (pc+preg), 16-bit, min */
69 #define P_JUMP_PC_PLUS_PREG_MIN 0x0080
70 /* jump (pc+preg), 16-bit, max */
71 #define P_JUMP_PC_PLUS_PREG_MAX 0x0087
72 /* jump.s pcrel13m2, 16-bit, min */
73 #define P_JUMP_S_MIN 0x2000
74 /* jump.s pcrel13m2, 16-bit, max */
75 #define P_JUMP_S_MAX 0x2FFF
76 /* jump.l pcrel25m2, 32-bit, min */
77 #define P_JUMP_L_MIN 0xE200
78 /* jump.l pcrel25m2, 32-bit, max */
79 #define P_JUMP_L_MAX 0xE2FF
80 /* conditional jump pcrel11m2, 16-bit, min */
81 #define P_IF_CC_JUMP_MIN 0x1800
82 /* conditional jump pcrel11m2, 16-bit, max */
83 #define P_IF_CC_JUMP_MAX 0x1BFF
84 /* conditional jump(bp) pcrel11m2, 16-bit, min */
85 #define P_IF_CC_JUMP_BP_MIN 0x1C00
86 /* conditional jump(bp) pcrel11m2, 16-bit, max */
87 #define P_IF_CC_JUMP_BP_MAX 0x1FFF
88 /* conditional !jump pcrel11m2, 16-bit, min */
89 #define P_IF_NOT_CC_JUMP_MIN 0x1000
90 /* conditional !jump pcrel11m2, 16-bit, max */
91 #define P_IF_NOT_CC_JUMP_MAX 0x13FF
92 /* conditional jump(bp) pcrel11m2, 16-bit, min */
93 #define P_IF_NOT_CC_JUMP_BP_MIN 0x1400
94 /* conditional jump(bp) pcrel11m2, 16-bit, max */
95 #define P_IF_NOT_CC_JUMP_BP_MAX 0x17FF
96 /* call (preg), 16-bit, min */
97 #define P_CALL_PREG_MIN 0x0060
98 /* call (preg), 16-bit, max */
99 #define P_CALL_PREG_MAX 0x0067
100 /* call (pc+preg), 16-bit, min */
101 #define P_CALL_PC_PLUS_PREG_MIN 0x0070
102 /* call (pc+preg), 16-bit, max */
103 #define P_CALL_PC_PLUS_PREG_MAX 0x0077
104 /* call pcrel25m2, 32-bit, min */
105 #define P_CALL_MIN 0xE300
106 /* call pcrel25m2, 32-bit, max */
107 #define P_CALL_MAX 0xE3FF
108 /* RTS */
109 #define P_RTS 0x0010
110 /* MNOP */
111 #define P_MNOP 0xC803
112 /* EXCPT, 16-bit, min */
113 #define P_EXCPT_MIN 0x00A0
114 /* EXCPT, 16-bit, max */
115 #define P_EXCPT_MAX 0x00AF
116 /* multi instruction mask 1, 16-bit */
117 #define P_BIT_MULTI_INS_1 0xC000
118 /* multi instruction mask 2, 16-bit */
119 #define P_BIT_MULTI_INS_2 0x0800
120
121 /* The maximum bytes we search to skip the prologue. */
122 #define UPPER_LIMIT 40
123
124 /* ASTAT bits */
125 #define ASTAT_CC_POS 5
126 #define ASTAT_CC (1 << ASTAT_CC_POS)
127
128 /* Initial value: Register names used in BFIN's ISA documentation. */
129
130 static const char * const bfin_register_name_strings[] =
131 {
132 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
133 "p0", "p1", "p2", "p3", "p4", "p5", "sp", "fp",
134 "i0", "i1", "i2", "i3", "m0", "m1", "m2", "m3",
135 "b0", "b1", "b2", "b3", "l0", "l1", "l2", "l3",
136 "a0x", "a0w", "a1x", "a1w", "astat", "rets",
137 "lc0", "lt0", "lb0", "lc1", "lt1", "lb1", "cycles", "cycles2",
138 "usp", "seqstat", "syscfg", "reti", "retx", "retn", "rete",
139 "pc", "cc",
140 };
141
142 #define NUM_BFIN_REGNAMES ARRAY_SIZE (bfin_register_name_strings)
143
144
145 /* In this diagram successive memory locations increase downwards or the
146 stack grows upwards with negative indices. (PUSH analogy for stack.)
147
148 The top frame is the "frame" of the current function being executed.
149
150 +--------------+ SP -
151 | local vars | ^
152 +--------------+ |
153 | save regs | |
154 +--------------+ FP |
155 | old FP -|-- top
156 +--------------+ | frame
157 | RETS | | |
158 +--------------+ | |
159 | param 1 | | |
160 | param 2 | | |
161 | ... | | V
162 +--------------+ | -
163 | local vars | | ^
164 +--------------+ | |
165 | save regs | | |
166 +--------------+<- |
167 | old FP -|-- next
168 +--------------+ | frame
169 | RETS | | |
170 +--------------+ | |
171 | param 1 | | |
172 | param 2 | | |
173 | ... | | V
174 +--------------+ | -
175 | local vars | | ^
176 +--------------+ | |
177 | save regs | | |
178 +--------------+<- next frame
179 | old FP | |
180 +--------------+ |
181 | RETS | V
182 +--------------+ -
183
184 The frame chain is formed as following:
185
186 FP has the topmost frame.
187 FP + 4 has the previous FP and so on. */
188
189
190 /* Map from DWARF2 register number to GDB register number. */
191
192 static const int map_gcc_gdb[] =
193 {
194 BFIN_R0_REGNUM,
195 BFIN_R1_REGNUM,
196 BFIN_R2_REGNUM,
197 BFIN_R3_REGNUM,
198 BFIN_R4_REGNUM,
199 BFIN_R5_REGNUM,
200 BFIN_R6_REGNUM,
201 BFIN_R7_REGNUM,
202 BFIN_P0_REGNUM,
203 BFIN_P1_REGNUM,
204 BFIN_P2_REGNUM,
205 BFIN_P3_REGNUM,
206 BFIN_P4_REGNUM,
207 BFIN_P5_REGNUM,
208 BFIN_SP_REGNUM,
209 BFIN_FP_REGNUM,
210 BFIN_I0_REGNUM,
211 BFIN_I1_REGNUM,
212 BFIN_I2_REGNUM,
213 BFIN_I3_REGNUM,
214 BFIN_B0_REGNUM,
215 BFIN_B1_REGNUM,
216 BFIN_B2_REGNUM,
217 BFIN_B3_REGNUM,
218 BFIN_L0_REGNUM,
219 BFIN_L1_REGNUM,
220 BFIN_L2_REGNUM,
221 BFIN_L3_REGNUM,
222 BFIN_M0_REGNUM,
223 BFIN_M1_REGNUM,
224 BFIN_M2_REGNUM,
225 BFIN_M3_REGNUM,
226 BFIN_A0_DOT_X_REGNUM,
227 BFIN_A1_DOT_X_REGNUM,
228 BFIN_CC_REGNUM,
229 BFIN_RETS_REGNUM,
230 BFIN_RETI_REGNUM,
231 BFIN_RETX_REGNUM,
232 BFIN_RETN_REGNUM,
233 BFIN_RETE_REGNUM,
234 BFIN_ASTAT_REGNUM,
235 BFIN_SEQSTAT_REGNUM,
236 BFIN_USP_REGNUM,
237 BFIN_LT0_REGNUM,
238 BFIN_LT1_REGNUM,
239 BFIN_LC0_REGNUM,
240 BFIN_LC1_REGNUM,
241 BFIN_LB0_REGNUM,
242 BFIN_LB1_REGNUM
243 };
244
245
246 struct bfin_frame_cache
247 {
248 /* Base address. */
249 CORE_ADDR base;
250 CORE_ADDR sp_offset;
251 CORE_ADDR pc;
252 int frameless_pc_value;
253
254 /* Saved registers. */
255 CORE_ADDR saved_regs[BFIN_NUM_REGS];
256 CORE_ADDR saved_sp;
257
258 /* Stack space reserved for local variables. */
259 long locals;
260 };
261
262 /* Allocate and initialize a frame cache. */
263
264 static struct bfin_frame_cache *
265 bfin_alloc_frame_cache (void)
266 {
267 struct bfin_frame_cache *cache;
268 int i;
269
270 cache = FRAME_OBSTACK_ZALLOC (struct bfin_frame_cache);
271
272 /* Base address. */
273 cache->base = 0;
274 cache->sp_offset = -4;
275 cache->pc = 0;
276 cache->frameless_pc_value = 0;
277
278 /* Saved registers. We initialize these to -1 since zero is a valid
279 offset (that's where fp is supposed to be stored). */
280 for (i = 0; i < BFIN_NUM_REGS; i++)
281 cache->saved_regs[i] = -1;
282
283 /* Frameless until proven otherwise. */
284 cache->locals = -1;
285
286 return cache;
287 }
288
289 static struct bfin_frame_cache *
290 bfin_frame_cache (struct frame_info *this_frame, void **this_cache)
291 {
292 struct bfin_frame_cache *cache;
293 int i;
294
295 if (*this_cache)
296 return *this_cache;
297
298 cache = bfin_alloc_frame_cache ();
299 *this_cache = cache;
300
301 cache->base = get_frame_register_unsigned (this_frame, BFIN_FP_REGNUM);
302 if (cache->base == 0)
303 return cache;
304
305 /* For normal frames, PC is stored at [FP + 4]. */
306 cache->saved_regs[BFIN_PC_REGNUM] = 4;
307 cache->saved_regs[BFIN_FP_REGNUM] = 0;
308
309 /* Adjust all the saved registers such that they contain addresses
310 instead of offsets. */
311 for (i = 0; i < BFIN_NUM_REGS; i++)
312 if (cache->saved_regs[i] != -1)
313 cache->saved_regs[i] += cache->base;
314
315 cache->pc = get_frame_func (this_frame) ;
316 if (cache->pc == 0 || cache->pc == get_frame_pc (this_frame))
317 {
318 /* Either there is no prologue (frameless function) or we are at
319 the start of a function. In short we do not have a frame.
320 PC is stored in rets register. FP points to previous frame. */
321
322 cache->saved_regs[BFIN_PC_REGNUM] =
323 get_frame_register_unsigned (this_frame, BFIN_RETS_REGNUM);
324 cache->frameless_pc_value = 1;
325 cache->base = get_frame_register_unsigned (this_frame, BFIN_FP_REGNUM);
326 cache->saved_regs[BFIN_FP_REGNUM] = cache->base;
327 cache->saved_sp = cache->base;
328 }
329 else
330 {
331 cache->frameless_pc_value = 0;
332
333 /* Now that we have the base address for the stack frame we can
334 calculate the value of SP in the calling frame. */
335 cache->saved_sp = cache->base + 8;
336 }
337
338 return cache;
339 }
340
341 static void
342 bfin_frame_this_id (struct frame_info *this_frame,
343 void **this_cache,
344 struct frame_id *this_id)
345 {
346 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
347
348 /* This marks the outermost frame. */
349 if (cache->base == 0)
350 return;
351
352 /* See the end of bfin_push_dummy_call. */
353 *this_id = frame_id_build (cache->base + 8, cache->pc);
354 }
355
356 static struct value *
357 bfin_frame_prev_register (struct frame_info *this_frame,
358 void **this_cache,
359 int regnum)
360 {
361 struct gdbarch *gdbarch = get_frame_arch (this_frame);
362 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
363
364 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
365 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
366
367 if (regnum < BFIN_NUM_REGS && cache->saved_regs[regnum] != -1)
368 return frame_unwind_got_memory (this_frame, regnum,
369 cache->saved_regs[regnum]);
370
371 return frame_unwind_got_register (this_frame, regnum, regnum);
372 }
373
374 static const struct frame_unwind bfin_frame_unwind =
375 {
376 NORMAL_FRAME,
377 bfin_frame_this_id,
378 bfin_frame_prev_register,
379 NULL,
380 default_frame_sniffer
381 };
382
383 /* Check for "[--SP] = <reg>;" insns. These are appear in function
384 prologues to save misc registers onto the stack. */
385
386 static int
387 is_minus_minus_sp (int op)
388 {
389 op &= 0xFFC0;
390
391 if ((op == P_MINUS_SP1) || (op == P_MINUS_SP2)
392 || (op == P_MINUS_SP3) || (op == P_MINUS_SP4))
393 return 1;
394
395 return 0;
396 }
397
398 /* Skip all the insns that appear in generated function prologues. */
399
400 static CORE_ADDR
401 bfin_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
402 {
403 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
404 int op = read_memory_unsigned_integer (pc, 2, byte_order);
405 CORE_ADDR orig_pc = pc;
406 int done = 0;
407
408 /* The new gcc prologue generates the register saves BEFORE the link
409 or RETS saving instruction.
410 So, our job is to stop either at those instructions or some upper
411 limit saying there is no frame! */
412
413 while (!done)
414 {
415 if (is_minus_minus_sp (op))
416 {
417 while (is_minus_minus_sp (op))
418 {
419 pc += 2;
420 op = read_memory_unsigned_integer (pc, 2, byte_order);
421 }
422
423 if (op == P_LINKAGE)
424 pc += 4;
425
426 done = 1;
427 }
428 else if (op == P_LINKAGE)
429 {
430 pc += 4;
431 done = 1;
432 }
433 else if (op == P_MINUS_MINUS_SP_EQ_RETS)
434 {
435 pc += 2;
436 done = 1;
437 }
438 else if (op == P_RTS)
439 {
440 done = 1;
441 }
442 else if ((op >= P_JUMP_PREG_MIN && op <= P_JUMP_PREG_MAX)
443 || (op >= P_JUMP_PC_PLUS_PREG_MIN
444 && op <= P_JUMP_PC_PLUS_PREG_MAX)
445 || (op == P_JUMP_S_MIN && op <= P_JUMP_S_MAX))
446 {
447 done = 1;
448 }
449 else if (pc - orig_pc >= UPPER_LIMIT)
450 {
451 warning (_("Function Prologue not recognised; "
452 "pc will point to ENTRY_POINT of the function"));
453 pc = orig_pc + 2;
454 done = 1;
455 }
456 else
457 {
458 pc += 2; /* Not a terminating instruction go on. */
459 op = read_memory_unsigned_integer (pc, 2, byte_order);
460 }
461 }
462
463 /* TODO:
464 Dwarf2 uses entry point value AFTER some register initializations.
465 We should perhaps skip such asssignments as well (R6 = R1, ...). */
466
467 return pc;
468 }
469
470 /* Return the GDB type object for the "standard" data type of data in
471 register N. This should be void pointer for P0-P5, SP, FP;
472 void pointer to function for PC; int otherwise. */
473
474 static struct type *
475 bfin_register_type (struct gdbarch *gdbarch, int regnum)
476 {
477 if ((regnum >= BFIN_P0_REGNUM && regnum <= BFIN_FP_REGNUM)
478 || regnum == BFIN_USP_REGNUM)
479 return builtin_type (gdbarch)->builtin_data_ptr;
480
481 if (regnum == BFIN_PC_REGNUM || regnum == BFIN_RETS_REGNUM
482 || regnum == BFIN_RETI_REGNUM || regnum == BFIN_RETX_REGNUM
483 || regnum == BFIN_RETN_REGNUM || regnum == BFIN_RETE_REGNUM
484 || regnum == BFIN_LT0_REGNUM || regnum == BFIN_LB0_REGNUM
485 || regnum == BFIN_LT1_REGNUM || regnum == BFIN_LB1_REGNUM)
486 return builtin_type (gdbarch)->builtin_func_ptr;
487
488 return builtin_type (gdbarch)->builtin_int32;
489 }
490
491 static CORE_ADDR
492 bfin_push_dummy_call (struct gdbarch *gdbarch,
493 struct value *function,
494 struct regcache *regcache,
495 CORE_ADDR bp_addr,
496 int nargs,
497 struct value **args,
498 CORE_ADDR sp,
499 int struct_return,
500 CORE_ADDR struct_addr)
501 {
502 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
503 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
504 char buf[4];
505 int i;
506 long reg_r0, reg_r1, reg_r2;
507 int total_len = 0;
508 enum bfin_abi abi = bfin_abi (gdbarch);
509 CORE_ADDR func_addr = find_function_addr (function, NULL);
510
511 for (i = nargs - 1; i >= 0; i--)
512 {
513 struct type *value_type = value_enclosing_type (args[i]);
514 int len = TYPE_LENGTH (value_type);
515
516 total_len += (len + 3) & ~3;
517 }
518
519 /* At least twelve bytes of stack space must be allocated for the function's
520 arguments, even for functions that have less than 12 bytes of argument
521 data. */
522
523 if (total_len < 12)
524 sp -= 12 - total_len;
525
526 /* Push arguments in reverse order. */
527
528 for (i = nargs - 1; i >= 0; i--)
529 {
530 struct type *value_type = value_enclosing_type (args[i]);
531 struct type *arg_type = check_typedef (value_type);
532 int len = TYPE_LENGTH (value_type);
533 int container_len = (len + 3) & ~3;
534
535 sp -= container_len;
536 write_memory (sp, value_contents_writeable (args[i]), container_len);
537 }
538
539 /* Initialize R0, R1, and R2 to the first 3 words of parameters. */
540
541 reg_r0 = read_memory_integer (sp, 4, byte_order);
542 regcache_cooked_write_unsigned (regcache, BFIN_R0_REGNUM, reg_r0);
543 reg_r1 = read_memory_integer (sp + 4, 4, byte_order);
544 regcache_cooked_write_unsigned (regcache, BFIN_R1_REGNUM, reg_r1);
545 reg_r2 = read_memory_integer (sp + 8, 4, byte_order);
546 regcache_cooked_write_unsigned (regcache, BFIN_R2_REGNUM, reg_r2);
547
548 /* Store struct value address. */
549
550 if (struct_return)
551 regcache_cooked_write_unsigned (regcache, BFIN_P0_REGNUM, struct_addr);
552
553 /* Set the dummy return value to bp_addr.
554 A dummy breakpoint will be setup to execute the call. */
555
556 regcache_cooked_write_unsigned (regcache, BFIN_RETS_REGNUM, bp_addr);
557
558 /* Finally, update the stack pointer. */
559
560 regcache_cooked_write_unsigned (regcache, BFIN_SP_REGNUM, sp);
561
562 return sp;
563 }
564
565 /* Convert DWARF2 register number REG to the appropriate register number
566 used by GDB. */
567
568 static int
569 bfin_reg_to_regnum (struct gdbarch *gdbarch, int reg)
570 {
571 if (reg > ARRAY_SIZE (map_gcc_gdb))
572 return 0;
573
574 return map_gcc_gdb[reg];
575 }
576
577 /* This function implements the BREAKPOINT_FROM_PC macro. It returns
578 a pointer to a string of bytes that encode a breakpoint instruction,
579 stores the length of the string to *lenptr, and adjusts the program
580 counter (if necessary) to point to the actual memory location where
581 the breakpoint should be inserted. */
582
583 static const unsigned char *
584 bfin_breakpoint_from_pc (struct gdbarch *gdbarch,
585 CORE_ADDR *pcptr, int *lenptr)
586 {
587 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
588 unsigned short iw;
589 static unsigned char bfin_breakpoint[] = {0xa1, 0x00, 0x00, 0x00};
590 static unsigned char bfin_sim_breakpoint[] = {0x25, 0x00, 0x00, 0x00};
591
592 iw = read_memory_unsigned_integer (*pcptr, 2, byte_order);
593
594 if ((iw & 0xf000) >= 0xc000)
595 /* 32-bit instruction. */
596 *lenptr = 4;
597 else
598 *lenptr = 2;
599
600 if (strcmp (target_shortname, "sim") == 0)
601 return bfin_sim_breakpoint;
602 else
603 return bfin_breakpoint;
604 }
605
606 static void
607 bfin_extract_return_value (struct type *type,
608 struct regcache *regs,
609 gdb_byte *dst)
610 {
611 struct gdbarch *gdbarch = get_regcache_arch (regs);
612 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
613 bfd_byte *valbuf = dst;
614 int len = TYPE_LENGTH (type);
615 ULONGEST tmp;
616 int regno = BFIN_R0_REGNUM;
617
618 gdb_assert (len <= 8);
619
620 while (len > 0)
621 {
622 regcache_cooked_read_unsigned (regs, regno++, &tmp);
623 store_unsigned_integer (valbuf, (len > 4 ? 4 : len), tmp, byte_order);
624 len -= 4;
625 valbuf += 4;
626 }
627 }
628
629 /* Write into appropriate registers a function return value of type
630 TYPE, given in virtual format. */
631
632 static void
633 bfin_store_return_value (struct type *type,
634 struct regcache *regs,
635 const gdb_byte *src)
636 {
637 const bfd_byte *valbuf = src;
638
639 /* Integral values greater than one word are stored in consecutive
640 registers starting with R0. This will always be a multiple of
641 the register size. */
642
643 int len = TYPE_LENGTH (type);
644 int regno = BFIN_R0_REGNUM;
645
646 gdb_assert (len <= 8);
647
648 while (len > 0)
649 {
650 regcache_cooked_write (regs, regno++, valbuf);
651 len -= 4;
652 valbuf += 4;
653 }
654 }
655
656 /* Determine, for architecture GDBARCH, how a return value of TYPE
657 should be returned. If it is supposed to be returned in registers,
658 and READBUF is nonzero, read the appropriate value from REGCACHE,
659 and copy it into READBUF. If WRITEBUF is nonzero, write the value
660 from WRITEBUF into REGCACHE. */
661
662 static enum return_value_convention
663 bfin_return_value (struct gdbarch *gdbarch,
664 struct type *func_type,
665 struct type *type,
666 struct regcache *regcache,
667 gdb_byte *readbuf,
668 const gdb_byte *writebuf)
669 {
670 if (TYPE_LENGTH (type) > 8)
671 return RETURN_VALUE_STRUCT_CONVENTION;
672
673 if (readbuf)
674 bfin_extract_return_value (type, regcache, readbuf);
675
676 if (writebuf)
677 bfin_store_return_value (type, regcache, writebuf);
678
679 return RETURN_VALUE_REGISTER_CONVENTION;
680 }
681
682 /* Return the BFIN register name corresponding to register I. */
683
684 static const char *
685 bfin_register_name (struct gdbarch *gdbarch, int i)
686 {
687 return bfin_register_name_strings[i];
688 }
689
690 static void
691 bfin_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
692 int regnum, gdb_byte *buffer)
693 {
694 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
695
696 if (regnum != BFIN_CC_REGNUM)
697 internal_error (__FILE__, __LINE__,
698 _("invalid register number %d"), regnum);
699
700 /* Extract the CC bit from the ASTAT register. */
701 regcache_raw_read (regcache, BFIN_ASTAT_REGNUM, buf);
702 buffer[1] = buffer[2] = buffer[3] = 0;
703 buffer[0] = !!(buf[0] & ASTAT_CC);
704 }
705
706 static void
707 bfin_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
708 int regnum, const gdb_byte *buffer)
709 {
710 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
711
712 if (regnum != BFIN_CC_REGNUM)
713 internal_error (__FILE__, __LINE__,
714 _("invalid register number %d"), regnum);
715
716 /* Overlay the CC bit in the ASTAT register. */
717 regcache_raw_read (regcache, BFIN_ASTAT_REGNUM, buf);
718 buf[0] = (buf[0] & ~ASTAT_CC) | ((buffer[0] & 1) << ASTAT_CC_POS);
719 regcache_raw_write (regcache, BFIN_ASTAT_REGNUM, buf);
720 }
721
722 static CORE_ADDR
723 bfin_frame_base_address (struct frame_info *this_frame, void **this_cache)
724 {
725 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
726
727 return cache->base;
728 }
729
730 static CORE_ADDR
731 bfin_frame_local_address (struct frame_info *this_frame, void **this_cache)
732 {
733 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
734
735 return cache->base - 4;
736 }
737
738 static CORE_ADDR
739 bfin_frame_args_address (struct frame_info *this_frame, void **this_cache)
740 {
741 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
742
743 return cache->base + 8;
744 }
745
746 static const struct frame_base bfin_frame_base =
747 {
748 &bfin_frame_unwind,
749 bfin_frame_base_address,
750 bfin_frame_local_address,
751 bfin_frame_args_address
752 };
753
754 static struct frame_id
755 bfin_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
756 {
757 CORE_ADDR sp;
758
759 sp = get_frame_register_unsigned (this_frame, BFIN_SP_REGNUM);
760
761 return frame_id_build (sp, get_frame_pc (this_frame));
762 }
763
764 static CORE_ADDR
765 bfin_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
766 {
767 return frame_unwind_register_unsigned (next_frame, BFIN_PC_REGNUM);
768 }
769
770 static CORE_ADDR
771 bfin_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
772 {
773 return (address & ~0x3);
774 }
775
776 enum bfin_abi
777 bfin_abi (struct gdbarch *gdbarch)
778 {
779 return gdbarch_tdep (gdbarch)->bfin_abi;
780 }
781
782 /* Initialize the current architecture based on INFO. If possible,
783 re-use an architecture from ARCHES, which is a list of
784 architectures already created during this debugging session.
785
786 Called e.g. at program startup, when reading a core file, and when
787 reading a binary file. */
788
789 static struct gdbarch *
790 bfin_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
791 {
792 struct gdbarch_tdep *tdep;
793 struct gdbarch *gdbarch;
794 int elf_flags;
795 enum bfin_abi abi;
796
797 /* Extract the ELF flags, if available. */
798 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
799 elf_flags = elf_elfheader (info.abfd)->e_flags;
800 else
801 elf_flags = 0;
802
803 abi = BFIN_ABI_FLAT;
804
805 /* If there is already a candidate, use it. */
806
807 for (arches = gdbarch_list_lookup_by_info (arches, &info);
808 arches != NULL;
809 arches = gdbarch_list_lookup_by_info (arches->next, &info))
810 {
811 if (gdbarch_tdep (arches->gdbarch)->bfin_abi != abi)
812 continue;
813 return arches->gdbarch;
814 }
815
816 tdep = XMALLOC (struct gdbarch_tdep);
817 gdbarch = gdbarch_alloc (&info, tdep);
818
819 tdep->bfin_abi = abi;
820
821 set_gdbarch_num_regs (gdbarch, BFIN_NUM_REGS);
822 set_gdbarch_pseudo_register_read (gdbarch, bfin_pseudo_register_read);
823 set_gdbarch_pseudo_register_write (gdbarch, bfin_pseudo_register_write);
824 set_gdbarch_num_pseudo_regs (gdbarch, BFIN_NUM_PSEUDO_REGS);
825 set_gdbarch_sp_regnum (gdbarch, BFIN_SP_REGNUM);
826 set_gdbarch_pc_regnum (gdbarch, BFIN_PC_REGNUM);
827 set_gdbarch_ps_regnum (gdbarch, BFIN_ASTAT_REGNUM);
828 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, bfin_reg_to_regnum);
829 set_gdbarch_register_name (gdbarch, bfin_register_name);
830 set_gdbarch_register_type (gdbarch, bfin_register_type);
831 set_gdbarch_dummy_id (gdbarch, bfin_dummy_id);
832 set_gdbarch_push_dummy_call (gdbarch, bfin_push_dummy_call);
833 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
834 set_gdbarch_return_value (gdbarch, bfin_return_value);
835 set_gdbarch_skip_prologue (gdbarch, bfin_skip_prologue);
836 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
837 set_gdbarch_breakpoint_from_pc (gdbarch, bfin_breakpoint_from_pc);
838 set_gdbarch_decr_pc_after_break (gdbarch, 2);
839 set_gdbarch_frame_args_skip (gdbarch, 8);
840 set_gdbarch_unwind_pc (gdbarch, bfin_unwind_pc);
841 set_gdbarch_frame_align (gdbarch, bfin_frame_align);
842 set_gdbarch_print_insn (gdbarch, print_insn_bfin);
843
844 /* Hook in ABI-specific overrides, if they have been registered. */
845 gdbarch_init_osabi (info, gdbarch);
846
847 dwarf2_append_unwinders (gdbarch);
848
849 frame_base_set_default (gdbarch, &bfin_frame_base);
850
851 frame_unwind_append_unwinder (gdbarch, &bfin_frame_unwind);
852
853 return gdbarch;
854 }
855
856 /* Provide a prototype to silence -Wmissing-prototypes. */
857 extern initialize_file_ftype _initialize_bfin_tdep;
858
859 void
860 _initialize_bfin_tdep (void)
861 {
862 register_gdbarch_init (bfd_arch_bfin, bfin_gdbarch_init);
863 }
This page took 0.065085 seconds and 5 git commands to generate.