remove gdb_string.h
[deliverable/binutils-gdb.git] / gdb / bfin-tdep.c
1 /* Target-dependent code for Analog Devices Blackfin processor, for GDB.
2
3 Copyright (C) 2005-2013 Free Software Foundation, Inc.
4
5 Contributed by Analog Devices, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "inferior.h"
25 #include "gdbcore.h"
26 #include "arch-utils.h"
27 #include "regcache.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "frame-base.h"
31 #include "trad-frame.h"
32 #include "dis-asm.h"
33 #include "gdb_assert.h"
34 #include "sim-regno.h"
35 #include "gdb/sim-bfin.h"
36 #include "dwarf2-frame.h"
37 #include "symtab.h"
38 #include "elf-bfd.h"
39 #include "elf/bfin.h"
40 #include "osabi.h"
41 #include "infcall.h"
42 #include "xml-syscall.h"
43 #include "bfin-tdep.h"
44
45 /* Macros used by prologue functions. */
46 #define P_LINKAGE 0xE800
47 #define P_MINUS_SP1 0x0140
48 #define P_MINUS_SP2 0x05C0
49 #define P_MINUS_SP3 0x0540
50 #define P_MINUS_SP4 0x04C0
51 #define P_SP_PLUS 0x6C06
52 #define P_P2_LOW 0xE10A
53 #define P_P2_HIGH 0XE14A
54 #define P_SP_EQ_SP_PLUS_P2 0X5BB2
55 #define P_SP_EQ_P2_PLUS_SP 0x5B96
56 #define P_MINUS_MINUS_SP_EQ_RETS 0x0167
57
58 /* Macros used for program flow control. */
59 /* 16 bit instruction, max */
60 #define P_16_BIT_INSR_MAX 0xBFFF
61 /* 32 bit instruction, min */
62 #define P_32_BIT_INSR_MIN 0xC000
63 /* 32 bit instruction, max */
64 #define P_32_BIT_INSR_MAX 0xE801
65 /* jump (preg), 16-bit, min */
66 #define P_JUMP_PREG_MIN 0x0050
67 /* jump (preg), 16-bit, max */
68 #define P_JUMP_PREG_MAX 0x0057
69 /* jump (pc+preg), 16-bit, min */
70 #define P_JUMP_PC_PLUS_PREG_MIN 0x0080
71 /* jump (pc+preg), 16-bit, max */
72 #define P_JUMP_PC_PLUS_PREG_MAX 0x0087
73 /* jump.s pcrel13m2, 16-bit, min */
74 #define P_JUMP_S_MIN 0x2000
75 /* jump.s pcrel13m2, 16-bit, max */
76 #define P_JUMP_S_MAX 0x2FFF
77 /* jump.l pcrel25m2, 32-bit, min */
78 #define P_JUMP_L_MIN 0xE200
79 /* jump.l pcrel25m2, 32-bit, max */
80 #define P_JUMP_L_MAX 0xE2FF
81 /* conditional jump pcrel11m2, 16-bit, min */
82 #define P_IF_CC_JUMP_MIN 0x1800
83 /* conditional jump pcrel11m2, 16-bit, max */
84 #define P_IF_CC_JUMP_MAX 0x1BFF
85 /* conditional jump(bp) pcrel11m2, 16-bit, min */
86 #define P_IF_CC_JUMP_BP_MIN 0x1C00
87 /* conditional jump(bp) pcrel11m2, 16-bit, max */
88 #define P_IF_CC_JUMP_BP_MAX 0x1FFF
89 /* conditional !jump pcrel11m2, 16-bit, min */
90 #define P_IF_NOT_CC_JUMP_MIN 0x1000
91 /* conditional !jump pcrel11m2, 16-bit, max */
92 #define P_IF_NOT_CC_JUMP_MAX 0x13FF
93 /* conditional jump(bp) pcrel11m2, 16-bit, min */
94 #define P_IF_NOT_CC_JUMP_BP_MIN 0x1400
95 /* conditional jump(bp) pcrel11m2, 16-bit, max */
96 #define P_IF_NOT_CC_JUMP_BP_MAX 0x17FF
97 /* call (preg), 16-bit, min */
98 #define P_CALL_PREG_MIN 0x0060
99 /* call (preg), 16-bit, max */
100 #define P_CALL_PREG_MAX 0x0067
101 /* call (pc+preg), 16-bit, min */
102 #define P_CALL_PC_PLUS_PREG_MIN 0x0070
103 /* call (pc+preg), 16-bit, max */
104 #define P_CALL_PC_PLUS_PREG_MAX 0x0077
105 /* call pcrel25m2, 32-bit, min */
106 #define P_CALL_MIN 0xE300
107 /* call pcrel25m2, 32-bit, max */
108 #define P_CALL_MAX 0xE3FF
109 /* RTS */
110 #define P_RTS 0x0010
111 /* MNOP */
112 #define P_MNOP 0xC803
113 /* EXCPT, 16-bit, min */
114 #define P_EXCPT_MIN 0x00A0
115 /* EXCPT, 16-bit, max */
116 #define P_EXCPT_MAX 0x00AF
117 /* multi instruction mask 1, 16-bit */
118 #define P_BIT_MULTI_INS_1 0xC000
119 /* multi instruction mask 2, 16-bit */
120 #define P_BIT_MULTI_INS_2 0x0800
121
122 /* The maximum bytes we search to skip the prologue. */
123 #define UPPER_LIMIT 40
124
125 /* ASTAT bits */
126 #define ASTAT_CC_POS 5
127 #define ASTAT_CC (1 << ASTAT_CC_POS)
128
129 /* Initial value: Register names used in BFIN's ISA documentation. */
130
131 static const char * const bfin_register_name_strings[] =
132 {
133 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
134 "p0", "p1", "p2", "p3", "p4", "p5", "sp", "fp",
135 "i0", "i1", "i2", "i3", "m0", "m1", "m2", "m3",
136 "b0", "b1", "b2", "b3", "l0", "l1", "l2", "l3",
137 "a0x", "a0w", "a1x", "a1w", "astat", "rets",
138 "lc0", "lt0", "lb0", "lc1", "lt1", "lb1", "cycles", "cycles2",
139 "usp", "seqstat", "syscfg", "reti", "retx", "retn", "rete",
140 "pc", "cc",
141 };
142
143 #define NUM_BFIN_REGNAMES ARRAY_SIZE (bfin_register_name_strings)
144
145
146 /* In this diagram successive memory locations increase downwards or the
147 stack grows upwards with negative indices. (PUSH analogy for stack.)
148
149 The top frame is the "frame" of the current function being executed.
150
151 +--------------+ SP -
152 | local vars | ^
153 +--------------+ |
154 | save regs | |
155 +--------------+ FP |
156 | old FP -|-- top
157 +--------------+ | frame
158 | RETS | | |
159 +--------------+ | |
160 | param 1 | | |
161 | param 2 | | |
162 | ... | | V
163 +--------------+ | -
164 | local vars | | ^
165 +--------------+ | |
166 | save regs | | |
167 +--------------+<- |
168 | old FP -|-- next
169 +--------------+ | frame
170 | RETS | | |
171 +--------------+ | |
172 | param 1 | | |
173 | param 2 | | |
174 | ... | | V
175 +--------------+ | -
176 | local vars | | ^
177 +--------------+ | |
178 | save regs | | |
179 +--------------+<- next frame
180 | old FP | |
181 +--------------+ |
182 | RETS | V
183 +--------------+ -
184
185 The frame chain is formed as following:
186
187 FP has the topmost frame.
188 FP + 4 has the previous FP and so on. */
189
190
191 /* Map from DWARF2 register number to GDB register number. */
192
193 static const int map_gcc_gdb[] =
194 {
195 BFIN_R0_REGNUM,
196 BFIN_R1_REGNUM,
197 BFIN_R2_REGNUM,
198 BFIN_R3_REGNUM,
199 BFIN_R4_REGNUM,
200 BFIN_R5_REGNUM,
201 BFIN_R6_REGNUM,
202 BFIN_R7_REGNUM,
203 BFIN_P0_REGNUM,
204 BFIN_P1_REGNUM,
205 BFIN_P2_REGNUM,
206 BFIN_P3_REGNUM,
207 BFIN_P4_REGNUM,
208 BFIN_P5_REGNUM,
209 BFIN_SP_REGNUM,
210 BFIN_FP_REGNUM,
211 BFIN_I0_REGNUM,
212 BFIN_I1_REGNUM,
213 BFIN_I2_REGNUM,
214 BFIN_I3_REGNUM,
215 BFIN_B0_REGNUM,
216 BFIN_B1_REGNUM,
217 BFIN_B2_REGNUM,
218 BFIN_B3_REGNUM,
219 BFIN_L0_REGNUM,
220 BFIN_L1_REGNUM,
221 BFIN_L2_REGNUM,
222 BFIN_L3_REGNUM,
223 BFIN_M0_REGNUM,
224 BFIN_M1_REGNUM,
225 BFIN_M2_REGNUM,
226 BFIN_M3_REGNUM,
227 BFIN_A0_DOT_X_REGNUM,
228 BFIN_A1_DOT_X_REGNUM,
229 BFIN_CC_REGNUM,
230 BFIN_RETS_REGNUM,
231 BFIN_RETI_REGNUM,
232 BFIN_RETX_REGNUM,
233 BFIN_RETN_REGNUM,
234 BFIN_RETE_REGNUM,
235 BFIN_ASTAT_REGNUM,
236 BFIN_SEQSTAT_REGNUM,
237 BFIN_USP_REGNUM,
238 BFIN_LT0_REGNUM,
239 BFIN_LT1_REGNUM,
240 BFIN_LC0_REGNUM,
241 BFIN_LC1_REGNUM,
242 BFIN_LB0_REGNUM,
243 BFIN_LB1_REGNUM
244 };
245
246
247 struct bfin_frame_cache
248 {
249 /* Base address. */
250 CORE_ADDR base;
251 CORE_ADDR sp_offset;
252 CORE_ADDR pc;
253 int frameless_pc_value;
254
255 /* Saved registers. */
256 CORE_ADDR saved_regs[BFIN_NUM_REGS];
257 CORE_ADDR saved_sp;
258
259 /* Stack space reserved for local variables. */
260 long locals;
261 };
262
263 /* Allocate and initialize a frame cache. */
264
265 static struct bfin_frame_cache *
266 bfin_alloc_frame_cache (void)
267 {
268 struct bfin_frame_cache *cache;
269 int i;
270
271 cache = FRAME_OBSTACK_ZALLOC (struct bfin_frame_cache);
272
273 /* Base address. */
274 cache->base = 0;
275 cache->sp_offset = -4;
276 cache->pc = 0;
277 cache->frameless_pc_value = 0;
278
279 /* Saved registers. We initialize these to -1 since zero is a valid
280 offset (that's where fp is supposed to be stored). */
281 for (i = 0; i < BFIN_NUM_REGS; i++)
282 cache->saved_regs[i] = -1;
283
284 /* Frameless until proven otherwise. */
285 cache->locals = -1;
286
287 return cache;
288 }
289
290 static struct bfin_frame_cache *
291 bfin_frame_cache (struct frame_info *this_frame, void **this_cache)
292 {
293 struct bfin_frame_cache *cache;
294 int i;
295
296 if (*this_cache)
297 return *this_cache;
298
299 cache = bfin_alloc_frame_cache ();
300 *this_cache = cache;
301
302 cache->base = get_frame_register_unsigned (this_frame, BFIN_FP_REGNUM);
303 if (cache->base == 0)
304 return cache;
305
306 /* For normal frames, PC is stored at [FP + 4]. */
307 cache->saved_regs[BFIN_PC_REGNUM] = 4;
308 cache->saved_regs[BFIN_FP_REGNUM] = 0;
309
310 /* Adjust all the saved registers such that they contain addresses
311 instead of offsets. */
312 for (i = 0; i < BFIN_NUM_REGS; i++)
313 if (cache->saved_regs[i] != -1)
314 cache->saved_regs[i] += cache->base;
315
316 cache->pc = get_frame_func (this_frame) ;
317 if (cache->pc == 0 || cache->pc == get_frame_pc (this_frame))
318 {
319 /* Either there is no prologue (frameless function) or we are at
320 the start of a function. In short we do not have a frame.
321 PC is stored in rets register. FP points to previous frame. */
322
323 cache->saved_regs[BFIN_PC_REGNUM] =
324 get_frame_register_unsigned (this_frame, BFIN_RETS_REGNUM);
325 cache->frameless_pc_value = 1;
326 cache->base = get_frame_register_unsigned (this_frame, BFIN_FP_REGNUM);
327 cache->saved_regs[BFIN_FP_REGNUM] = cache->base;
328 cache->saved_sp = cache->base;
329 }
330 else
331 {
332 cache->frameless_pc_value = 0;
333
334 /* Now that we have the base address for the stack frame we can
335 calculate the value of SP in the calling frame. */
336 cache->saved_sp = cache->base + 8;
337 }
338
339 return cache;
340 }
341
342 static void
343 bfin_frame_this_id (struct frame_info *this_frame,
344 void **this_cache,
345 struct frame_id *this_id)
346 {
347 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
348
349 /* This marks the outermost frame. */
350 if (cache->base == 0)
351 return;
352
353 /* See the end of bfin_push_dummy_call. */
354 *this_id = frame_id_build (cache->base + 8, cache->pc);
355 }
356
357 static struct value *
358 bfin_frame_prev_register (struct frame_info *this_frame,
359 void **this_cache,
360 int regnum)
361 {
362 struct gdbarch *gdbarch = get_frame_arch (this_frame);
363 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
364
365 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
366 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
367
368 if (regnum < BFIN_NUM_REGS && cache->saved_regs[regnum] != -1)
369 return frame_unwind_got_memory (this_frame, regnum,
370 cache->saved_regs[regnum]);
371
372 return frame_unwind_got_register (this_frame, regnum, regnum);
373 }
374
375 static const struct frame_unwind bfin_frame_unwind =
376 {
377 NORMAL_FRAME,
378 default_frame_unwind_stop_reason,
379 bfin_frame_this_id,
380 bfin_frame_prev_register,
381 NULL,
382 default_frame_sniffer
383 };
384
385 /* Check for "[--SP] = <reg>;" insns. These are appear in function
386 prologues to save misc registers onto the stack. */
387
388 static int
389 is_minus_minus_sp (int op)
390 {
391 op &= 0xFFC0;
392
393 if ((op == P_MINUS_SP1) || (op == P_MINUS_SP2)
394 || (op == P_MINUS_SP3) || (op == P_MINUS_SP4))
395 return 1;
396
397 return 0;
398 }
399
400 /* Skip all the insns that appear in generated function prologues. */
401
402 static CORE_ADDR
403 bfin_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
404 {
405 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
406 int op = read_memory_unsigned_integer (pc, 2, byte_order);
407 CORE_ADDR orig_pc = pc;
408 int done = 0;
409
410 /* The new gcc prologue generates the register saves BEFORE the link
411 or RETS saving instruction.
412 So, our job is to stop either at those instructions or some upper
413 limit saying there is no frame! */
414
415 while (!done)
416 {
417 if (is_minus_minus_sp (op))
418 {
419 while (is_minus_minus_sp (op))
420 {
421 pc += 2;
422 op = read_memory_unsigned_integer (pc, 2, byte_order);
423 }
424
425 if (op == P_LINKAGE)
426 pc += 4;
427
428 done = 1;
429 }
430 else if (op == P_LINKAGE)
431 {
432 pc += 4;
433 done = 1;
434 }
435 else if (op == P_MINUS_MINUS_SP_EQ_RETS)
436 {
437 pc += 2;
438 done = 1;
439 }
440 else if (op == P_RTS)
441 {
442 done = 1;
443 }
444 else if ((op >= P_JUMP_PREG_MIN && op <= P_JUMP_PREG_MAX)
445 || (op >= P_JUMP_PC_PLUS_PREG_MIN
446 && op <= P_JUMP_PC_PLUS_PREG_MAX)
447 || (op == P_JUMP_S_MIN && op <= P_JUMP_S_MAX))
448 {
449 done = 1;
450 }
451 else if (pc - orig_pc >= UPPER_LIMIT)
452 {
453 warning (_("Function Prologue not recognised; "
454 "pc will point to ENTRY_POINT of the function"));
455 pc = orig_pc + 2;
456 done = 1;
457 }
458 else
459 {
460 pc += 2; /* Not a terminating instruction go on. */
461 op = read_memory_unsigned_integer (pc, 2, byte_order);
462 }
463 }
464
465 /* TODO:
466 Dwarf2 uses entry point value AFTER some register initializations.
467 We should perhaps skip such asssignments as well (R6 = R1, ...). */
468
469 return pc;
470 }
471
472 /* Return the GDB type object for the "standard" data type of data in
473 register N. This should be void pointer for P0-P5, SP, FP;
474 void pointer to function for PC; int otherwise. */
475
476 static struct type *
477 bfin_register_type (struct gdbarch *gdbarch, int regnum)
478 {
479 if ((regnum >= BFIN_P0_REGNUM && regnum <= BFIN_FP_REGNUM)
480 || regnum == BFIN_USP_REGNUM)
481 return builtin_type (gdbarch)->builtin_data_ptr;
482
483 if (regnum == BFIN_PC_REGNUM || regnum == BFIN_RETS_REGNUM
484 || regnum == BFIN_RETI_REGNUM || regnum == BFIN_RETX_REGNUM
485 || regnum == BFIN_RETN_REGNUM || regnum == BFIN_RETE_REGNUM
486 || regnum == BFIN_LT0_REGNUM || regnum == BFIN_LB0_REGNUM
487 || regnum == BFIN_LT1_REGNUM || regnum == BFIN_LB1_REGNUM)
488 return builtin_type (gdbarch)->builtin_func_ptr;
489
490 return builtin_type (gdbarch)->builtin_int32;
491 }
492
493 static CORE_ADDR
494 bfin_push_dummy_call (struct gdbarch *gdbarch,
495 struct value *function,
496 struct regcache *regcache,
497 CORE_ADDR bp_addr,
498 int nargs,
499 struct value **args,
500 CORE_ADDR sp,
501 int struct_return,
502 CORE_ADDR struct_addr)
503 {
504 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
505 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
506 gdb_byte buf[4];
507 int i;
508 long reg_r0, reg_r1, reg_r2;
509 int total_len = 0;
510 enum bfin_abi abi = bfin_abi (gdbarch);
511 CORE_ADDR func_addr = find_function_addr (function, NULL);
512
513 for (i = nargs - 1; i >= 0; i--)
514 {
515 struct type *value_type = value_enclosing_type (args[i]);
516
517 total_len += (TYPE_LENGTH (value_type) + 3) & ~3;
518 }
519
520 /* At least twelve bytes of stack space must be allocated for the function's
521 arguments, even for functions that have less than 12 bytes of argument
522 data. */
523
524 if (total_len < 12)
525 sp -= 12 - total_len;
526
527 /* Push arguments in reverse order. */
528
529 for (i = nargs - 1; i >= 0; i--)
530 {
531 struct type *value_type = value_enclosing_type (args[i]);
532 struct type *arg_type = check_typedef (value_type);
533 int container_len = (TYPE_LENGTH (value_type) + 3) & ~3;
534
535 sp -= container_len;
536 write_memory (sp, value_contents_writeable (args[i]), container_len);
537 }
538
539 /* Initialize R0, R1, and R2 to the first 3 words of parameters. */
540
541 reg_r0 = read_memory_integer (sp, 4, byte_order);
542 regcache_cooked_write_unsigned (regcache, BFIN_R0_REGNUM, reg_r0);
543 reg_r1 = read_memory_integer (sp + 4, 4, byte_order);
544 regcache_cooked_write_unsigned (regcache, BFIN_R1_REGNUM, reg_r1);
545 reg_r2 = read_memory_integer (sp + 8, 4, byte_order);
546 regcache_cooked_write_unsigned (regcache, BFIN_R2_REGNUM, reg_r2);
547
548 /* Store struct value address. */
549
550 if (struct_return)
551 regcache_cooked_write_unsigned (regcache, BFIN_P0_REGNUM, struct_addr);
552
553 /* Set the dummy return value to bp_addr.
554 A dummy breakpoint will be setup to execute the call. */
555
556 regcache_cooked_write_unsigned (regcache, BFIN_RETS_REGNUM, bp_addr);
557
558 /* Finally, update the stack pointer. */
559
560 regcache_cooked_write_unsigned (regcache, BFIN_SP_REGNUM, sp);
561
562 return sp;
563 }
564
565 /* Convert DWARF2 register number REG to the appropriate register number
566 used by GDB. */
567
568 static int
569 bfin_reg_to_regnum (struct gdbarch *gdbarch, int reg)
570 {
571 if (reg > ARRAY_SIZE (map_gcc_gdb))
572 return 0;
573
574 return map_gcc_gdb[reg];
575 }
576
577 /* This function implements the 'breakpoint_from_pc' gdbarch method.
578 It returns a pointer to a string of bytes that encode a breakpoint
579 instruction, stores the length of the string to *lenptr, and
580 adjusts the program counter (if necessary) to point to the actual
581 memory location where the breakpoint should be inserted. */
582
583 static const unsigned char *
584 bfin_breakpoint_from_pc (struct gdbarch *gdbarch,
585 CORE_ADDR *pcptr, int *lenptr)
586 {
587 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
588 unsigned short iw;
589 static unsigned char bfin_breakpoint[] = {0xa1, 0x00, 0x00, 0x00};
590 static unsigned char bfin_sim_breakpoint[] = {0x25, 0x00, 0x00, 0x00};
591
592 iw = read_memory_unsigned_integer (*pcptr, 2, byte_order);
593
594 if ((iw & 0xf000) >= 0xc000)
595 /* 32-bit instruction. */
596 *lenptr = 4;
597 else
598 *lenptr = 2;
599
600 if (strcmp (target_shortname, "sim") == 0)
601 return bfin_sim_breakpoint;
602 else
603 return bfin_breakpoint;
604 }
605
606 static void
607 bfin_extract_return_value (struct type *type,
608 struct regcache *regs,
609 gdb_byte *dst)
610 {
611 struct gdbarch *gdbarch = get_regcache_arch (regs);
612 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
613 bfd_byte *valbuf = dst;
614 int len = TYPE_LENGTH (type);
615 ULONGEST tmp;
616 int regno = BFIN_R0_REGNUM;
617
618 gdb_assert (len <= 8);
619
620 while (len > 0)
621 {
622 regcache_cooked_read_unsigned (regs, regno++, &tmp);
623 store_unsigned_integer (valbuf, (len > 4 ? 4 : len), byte_order, tmp);
624 len -= 4;
625 valbuf += 4;
626 }
627 }
628
629 /* Write into appropriate registers a function return value of type
630 TYPE, given in virtual format. */
631
632 static void
633 bfin_store_return_value (struct type *type,
634 struct regcache *regs,
635 const gdb_byte *src)
636 {
637 const bfd_byte *valbuf = src;
638
639 /* Integral values greater than one word are stored in consecutive
640 registers starting with R0. This will always be a multiple of
641 the register size. */
642
643 int len = TYPE_LENGTH (type);
644 int regno = BFIN_R0_REGNUM;
645
646 gdb_assert (len <= 8);
647
648 while (len > 0)
649 {
650 regcache_cooked_write (regs, regno++, valbuf);
651 len -= 4;
652 valbuf += 4;
653 }
654 }
655
656 /* Determine, for architecture GDBARCH, how a return value of TYPE
657 should be returned. If it is supposed to be returned in registers,
658 and READBUF is nonzero, read the appropriate value from REGCACHE,
659 and copy it into READBUF. If WRITEBUF is nonzero, write the value
660 from WRITEBUF into REGCACHE. */
661
662 static enum return_value_convention
663 bfin_return_value (struct gdbarch *gdbarch,
664 struct value *function,
665 struct type *type,
666 struct regcache *regcache,
667 gdb_byte *readbuf,
668 const gdb_byte *writebuf)
669 {
670 if (TYPE_LENGTH (type) > 8)
671 return RETURN_VALUE_STRUCT_CONVENTION;
672
673 if (readbuf)
674 bfin_extract_return_value (type, regcache, readbuf);
675
676 if (writebuf)
677 bfin_store_return_value (type, regcache, writebuf);
678
679 return RETURN_VALUE_REGISTER_CONVENTION;
680 }
681
682 /* Return the BFIN register name corresponding to register I. */
683
684 static const char *
685 bfin_register_name (struct gdbarch *gdbarch, int i)
686 {
687 return bfin_register_name_strings[i];
688 }
689
690 static enum register_status
691 bfin_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
692 int regnum, gdb_byte *buffer)
693 {
694 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
695 enum register_status status;
696
697 if (regnum != BFIN_CC_REGNUM)
698 internal_error (__FILE__, __LINE__,
699 _("invalid register number %d"), regnum);
700
701 /* Extract the CC bit from the ASTAT register. */
702 status = regcache_raw_read (regcache, BFIN_ASTAT_REGNUM, buf);
703 if (status == REG_VALID)
704 {
705 buffer[1] = buffer[2] = buffer[3] = 0;
706 buffer[0] = !!(buf[0] & ASTAT_CC);
707 }
708 return status;
709 }
710
711 static void
712 bfin_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
713 int regnum, const gdb_byte *buffer)
714 {
715 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
716
717 if (regnum != BFIN_CC_REGNUM)
718 internal_error (__FILE__, __LINE__,
719 _("invalid register number %d"), regnum);
720
721 /* Overlay the CC bit in the ASTAT register. */
722 regcache_raw_read (regcache, BFIN_ASTAT_REGNUM, buf);
723 buf[0] = (buf[0] & ~ASTAT_CC) | ((buffer[0] & 1) << ASTAT_CC_POS);
724 regcache_raw_write (regcache, BFIN_ASTAT_REGNUM, buf);
725 }
726
727 static CORE_ADDR
728 bfin_frame_base_address (struct frame_info *this_frame, void **this_cache)
729 {
730 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
731
732 return cache->base;
733 }
734
735 static CORE_ADDR
736 bfin_frame_local_address (struct frame_info *this_frame, void **this_cache)
737 {
738 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
739
740 return cache->base - 4;
741 }
742
743 static CORE_ADDR
744 bfin_frame_args_address (struct frame_info *this_frame, void **this_cache)
745 {
746 struct bfin_frame_cache *cache = bfin_frame_cache (this_frame, this_cache);
747
748 return cache->base + 8;
749 }
750
751 static const struct frame_base bfin_frame_base =
752 {
753 &bfin_frame_unwind,
754 bfin_frame_base_address,
755 bfin_frame_local_address,
756 bfin_frame_args_address
757 };
758
759 static struct frame_id
760 bfin_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
761 {
762 CORE_ADDR sp;
763
764 sp = get_frame_register_unsigned (this_frame, BFIN_SP_REGNUM);
765
766 return frame_id_build (sp, get_frame_pc (this_frame));
767 }
768
769 static CORE_ADDR
770 bfin_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
771 {
772 return frame_unwind_register_unsigned (next_frame, BFIN_PC_REGNUM);
773 }
774
775 static CORE_ADDR
776 bfin_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
777 {
778 return (address & ~0x3);
779 }
780
781 enum bfin_abi
782 bfin_abi (struct gdbarch *gdbarch)
783 {
784 return gdbarch_tdep (gdbarch)->bfin_abi;
785 }
786
787 /* Initialize the current architecture based on INFO. If possible,
788 re-use an architecture from ARCHES, which is a list of
789 architectures already created during this debugging session.
790
791 Called e.g. at program startup, when reading a core file, and when
792 reading a binary file. */
793
794 static struct gdbarch *
795 bfin_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
796 {
797 struct gdbarch_tdep *tdep;
798 struct gdbarch *gdbarch;
799 int elf_flags;
800 enum bfin_abi abi;
801
802 /* Extract the ELF flags, if available. */
803 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
804 elf_flags = elf_elfheader (info.abfd)->e_flags;
805 else
806 elf_flags = 0;
807
808 abi = BFIN_ABI_FLAT;
809
810 /* If there is already a candidate, use it. */
811
812 for (arches = gdbarch_list_lookup_by_info (arches, &info);
813 arches != NULL;
814 arches = gdbarch_list_lookup_by_info (arches->next, &info))
815 {
816 if (gdbarch_tdep (arches->gdbarch)->bfin_abi != abi)
817 continue;
818 return arches->gdbarch;
819 }
820
821 tdep = XMALLOC (struct gdbarch_tdep);
822 gdbarch = gdbarch_alloc (&info, tdep);
823
824 tdep->bfin_abi = abi;
825
826 set_gdbarch_num_regs (gdbarch, BFIN_NUM_REGS);
827 set_gdbarch_pseudo_register_read (gdbarch, bfin_pseudo_register_read);
828 set_gdbarch_pseudo_register_write (gdbarch, bfin_pseudo_register_write);
829 set_gdbarch_num_pseudo_regs (gdbarch, BFIN_NUM_PSEUDO_REGS);
830 set_gdbarch_sp_regnum (gdbarch, BFIN_SP_REGNUM);
831 set_gdbarch_pc_regnum (gdbarch, BFIN_PC_REGNUM);
832 set_gdbarch_ps_regnum (gdbarch, BFIN_ASTAT_REGNUM);
833 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, bfin_reg_to_regnum);
834 set_gdbarch_register_name (gdbarch, bfin_register_name);
835 set_gdbarch_register_type (gdbarch, bfin_register_type);
836 set_gdbarch_dummy_id (gdbarch, bfin_dummy_id);
837 set_gdbarch_push_dummy_call (gdbarch, bfin_push_dummy_call);
838 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
839 set_gdbarch_return_value (gdbarch, bfin_return_value);
840 set_gdbarch_skip_prologue (gdbarch, bfin_skip_prologue);
841 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
842 set_gdbarch_breakpoint_from_pc (gdbarch, bfin_breakpoint_from_pc);
843 set_gdbarch_decr_pc_after_break (gdbarch, 2);
844 set_gdbarch_frame_args_skip (gdbarch, 8);
845 set_gdbarch_unwind_pc (gdbarch, bfin_unwind_pc);
846 set_gdbarch_frame_align (gdbarch, bfin_frame_align);
847 set_gdbarch_print_insn (gdbarch, print_insn_bfin);
848
849 /* Hook in ABI-specific overrides, if they have been registered. */
850 gdbarch_init_osabi (info, gdbarch);
851
852 dwarf2_append_unwinders (gdbarch);
853
854 frame_base_set_default (gdbarch, &bfin_frame_base);
855
856 frame_unwind_append_unwinder (gdbarch, &bfin_frame_unwind);
857
858 return gdbarch;
859 }
860
861 /* Provide a prototype to silence -Wmissing-prototypes. */
862 extern initialize_file_ftype _initialize_bfin_tdep;
863
864 void
865 _initialize_bfin_tdep (void)
866 {
867 register_gdbarch_init (bfd_arch_bfin, bfin_gdbarch_init);
868 }
This page took 0.048932 seconds and 5 git commands to generate.